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Abstract

In response to accumulating cellular stress, cells protect
themselves from abnormal growth by entering the senescent
stage. Senescence is controlled mainly by gene products
from the p16Ink4a/Arf locus. In mouse cells, the expression
of p16Ink4a and Arf increases continuously during prolifera-
tion in cell culture. Transcription from the locus is under
complex control. p16Ink4a and Arf respond independently to
positive and negative signals, and the entire locus is epige-
netically suppressed by histone methylation that depends on
the Polycomb repressive complex-1 and -2 (PRC1 and
PRC2). In fact, the PRCs associate with the p16Ink4a/Arf
locus in young proliferating cells and dissociate in aged
senescent cells. Thus, it seems that chromatin-remodeling
factors that regulate association and dissociation of PRCs
might be important players in the senescence program. Here,
we summarize the molecular mechanisms that mediate cel-
lular aging and introduce the Jun dimerization protein 2
(JDP2) as a factor that regulates replicative senescence by
mediating dissociation of PRCs from the p16Ink4a/Arf locus.
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Introduction

Primary untransformed cells stop growing after several
weeks of cell culture and enter an irreversible growth arrest
stage called replicative senescence, which is related to ‘cel-
lular aging’. The senescence response can be induced by
various cellular stresses, including the loss of telomeres, the
accumulation of oxidative stress, and genotoxic stress by

chemical agents. DNA damage generates responses that pro-
tect cells from aberrant growth. These responses include cell
cycle arrest, DNA repair and apoptosis, as well as autophagy
and senescence. Autophagy is a cellular process by which
cellular components are degraded by lysosomes. It acts as a
tumor suppressor by scavenging damaged organelles (1).
Cells that fail to recover from damage through DNA repair
and autophagy undergo apoptosis and senescence. Senes-
cence protects normal cells from abnormal growth signals
and oncogenic transformation, by stopping progression of the
cell cycle. It can be induced by various signals, including
activation of the MAP kinase pathway by oncogenic Ras.
Senescence increases the activities of two well-known tumor
suppressors, pRb and p53. Interestingly, acute inactivation of
these proteins by shRNA or CRE-loxP dependent conditional
knockdown allows mouse embryonic cells to re-enter the
cell cycle from the senescent state, suggesting that these pro-
teins are also required for maintaining the senescent pheno-
type (2, 3). pRb and p53 expression is regulated by two
distinct proteins, p16Ink4a and Arf, respectively, that are
encoded by the cdkn2a locus (4) (Figure 1). The expression
of p16Ink4a increases dramatically with increasing numbers of
cell division of primary fibroblast in culture (5–7), as well
as in rodent and human models in vivo (8, 9). Recently, the
level of expression of p16Ink4a has begun to be considered to
be a ‘biomarker of aging’ and the regulation of its aging
dependent expression has become a matter of considerable
interest. In this review, we will summarize the roles of
p16Ink4a and Arf in the cell cycle, and describe established
and novel mechanisms for the regulation of their expression.

p16Ink4a and the Rb pathway

A number of genes that are essential for cell cycle progres-
sion, such as cyclin E1 (Figure 2), are transcribed at the
beginning of the G1 phase by the E2F family of transcription
factors. E2F is controlled by the Rb family of proteins, pRb,
p107 and p130 (10, 11). Early in G1, unphosphorylated Rb
proteins bind to the E2F family of proteins and inactivate
their function (12, 13). During G1, the Rb proteins are inac-
tivated by phosphorylation by the Cdk4/6-cyclinD complex-
es, thereby allowing transcription of E2F-dependent genes,
including cyclin E1. Upregulated cyclin E1 forms a complex
with cdk2, which mediates hyperphosphorylation of the Rb
proteins, an essential requirement for the G1/S transition.
p16Ink4a is an allosteric inhibitor of cdk4/6 (14). Binding of
p16Ink4a changes the conformation of cdk4/6, which prevents
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Figure 1 Schematic structure of the p16Ink4a/Arf locus.
Signaling from stress, oncogenic activation, and DNA damage activate transcription from Exon 1b and Exon 1a of Arf and p16Ink4a,
respectively. As a result of splicing, Arf (yellow) and p16Ink4a (blue) share common Exon 2 and Exon 3 sequences but are translated from
alternative open reading frames that code for different amino acid sequences. Arf and p16Ink4a activate the p53 and pRb axes, respectively.

Figure 2 The p16Ink4a-pRb pathway.
In the G0/early G1 phases of the cell cycle, unphosphorylated pRb
(Rb in the figure) forms a complex with the E2F family of tran-
scription factors, preventing E2F-dependent transcription. Phospho-
rylation of pRb by the Cdk4/6-cyclinD complex leads to
transcriptional activation and expression of genes, such as cyclin
E1, that are essential for cell cycle progression. p16Ink4a binds to
Cdk4/6, inhibits the interaction with cyclin D, and thereby blocks
Cdk4/6 kinase activity and phosphorylation of pRb. Overall, the
expression of p16Ink4a induces cell cycle arrest by inhibiting pRb
phosphorylation.

their interaction with cyclin D (15). Therefore, p16Ink4a acts
as an inhibitor of the cell cycle in G1 by modulation of the
Rb pathway. p16INK4A is often lost in a variety of human
malignancies, such as glioblastoma, melanoma, and pancre-
atic adenocarcinoma (16). By contrast, p16INK4A upregulation
induces cell cycle arrest and senescence.

Arf and the p53 pathway

p53 is one of the most studied tumor suppressors. It mediates
cell cycle arrest in G1 and G2, as well as apoptosis (Figure
3). A number of downstream targets of p53 are involved
in these processes, including p21Cip/waf1 for G1 arrest (17),
14-3-3 sigma and GADD45 for G2 arrest (18, 19) and
p21Bax, PUMA, Fas/Apo1 and Killer/DR5 for apoptosis
(20–24). p53 is regulated at the levels of protein stability
and activity, and to some extent transcription and translation
(25, 26). In non-stressed cells, p53 protein levels are very
low because of degradation mediated by the E3 ubiquitin
ligase activity of MDM2, which targets p53 for ubiquitin-
dependent proteolysis (27). MDM2 is a transcriptional target
of p53, thus p53 directly activates the expression of its own
negative regulator, producing a potent negative feedback reg-
ulatory loop (28). There are several stress-responsive kinases,
which, by phosphorylating p53, inhibit its degradation by
MDM2 and increase its transcriptional activity (29–31).
DNA damage rapidly activates ataxia telangiectasia mutated
(Atm) and ataxia telangiectasia related (Atr), which phos-
phorylate the checkpoint kinases Chk1 and Chk2, which in
turn propagate the signal to downstream effectors such as
p53 (32, 33). Chk1 and Chk2 phosphorylate p53 on Ser20,
which prevents efficient recruitment of MDM2. Thus, p53 is
stabilized and its expression level is increased in response to
stress signaling.

MDM2 is regulated by Arf. Arf is predominantly localized
in nucleoli and stabilized by binding to nucleophosmin. In
response to stress signaling, Arf is released from nucleo-
phosmin and translocates to the nucleoplasm, where it inter-
acts with MDM2, inhibits its E3 ubiquitin ligase activity and
blocks nucleocytoplasmic shuttling of the MDM2-p53 com-
plex. The consequence of activation of Arf is stabilization
and activation of p53 (34, 35).
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Figure 3 The Arf-p53 pathway.
In non-stressed cells, p53 protein levels are very low because of
ubiquitin-dependent degradation mediated by MDM2. p53 is sta-
bilized by different mechanisms. DNA damage activates the Atm
and Atr kinases that phosphorylate Chk1/2. Chk1/2 phosphorylate
p53 on ser20, which inhibits MDM2 binding and thereby stabilizes
p53. By contrast, Arf stabilizes p53 by binding to MDM2 and inhib-
iting its activity. Upregulation of p53 leads to cell cycle arrest and
apoptosis.

Figure 4 Regulation of the p16Ink4a and Arf transcription.
Green circles and red squares indicate activators and repressors, respectively, of p16Ink4a and/or Arf transcription.

Transcription regulation of p16Ink4a

Transcriptional regulation of the p16Ink4a gene is an important
event in cellular senescence (Figure 4). p16Ink4a expression
is increased during replicative senescence as well as pre-
mature senescence induced by oncogenic activation (5). Its
expression is regulated by transcription activators such as
Ets1/2 and the basic helix-loop-helix (b-HLH) protein E47,
as well as transcription inhibitors that include the Id-1 HLH

protein (36–39). In addition, the p16Ink4a locus is epigeneti-
cally repressed by the Polycomb Repressive Complexes-1
and -2 (PRC1 and PRC2), which methylate lysine 27 of his-
tone H3 (H3K27) (40). In transformed cells, in which the
cell cycle is not arrested by a senescence program, the CpG
islands on the p16Ink4a promoter and exon 1 are methylated
and the p16Ink4a gene is silenced (41, 42). Understanding the
role of the different factors that regulate the p16Ink4a gene
is important to elucidate the molecular mechanism of the
cellular aging program. Here, we will describe some of these
factors, including transcription activators, inhibitors, and
epigenetic regulators.

Transcription activators

Ets1 and Ets2 activate the p16INK4A gene in response to acti-
vation of the Ras/MEK/MAP kinase pathway by directly
binding to the ets consensus sites on the promoter (39). In
human fibroblasts, hyperactivation of Ets2 by overexpression
of oncogenic Ras induces G1 arrest, premature senescence,
and increased expression of p16INK4A. Ets2 seems to be the
main regulator of p16INK4A expression in the case of onco-
genic premature senescence, whereas Ets1 plays a role in
replicative senescence (43, 44). The b-HLH protein, E47,
binds to DNA and proteins through its basic and HLH
domains, respectively. The E47 homodimer binds specifical-
ly to the E-box (CANNTG) on the p16INK4A promoter (38).
E47 overexpression inhibits proliferation of some tumor cell
lines by inducing p16INK4A expression. Inhibition of E47 by
RNA interference significantly reduces the expression of
p16INK4A and delays the onset of senescence (36). Similarly,
heterodimerization of E47 with ectopically expressed Tal1
inhibits the expression of p16Ink4a (45).

Transcription inhibitors

Id-1 is a negative transcription regulator of p16Ink4a. Id-1
expression correlates negatively with p16Ink4a expression dur-
ing the process of senescence (36, 39). The expression of
p16Ink4a in mouse embryonic fibroblasts (MEFs) is higher in
Id-1-deficient compared with wild type (wt) MEFs (37).
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Overexpression of Id-1 delays replicative senescence by
inhibiting p16INK4A in human keratinocytes and endothelial
cells (46, 47). Id-1 does not have a basic DNA-binding
domain, unlike the b-HLH protein E47. Instead, Id-1 inhibits
transcription of p16Ink4a by heterodimerization with Ets2
(39). Id-1 also heterodimerizes with E47 and inhibits its
transcriptional activity (48).

Epigenetic regulators

The p16Ink4a locus is also regulated epigenetically. The locus
is transcriptionally silenced by trimethylation of lysine 27
of histone H3 (H3K27) in young proliferating primary cells.
By contrast, p16Ink4a expression increases in aged and senes-
ced cells as a result of the loss of H3K27 trimethylation (49).
The methylation of H3K27 and the silencing of the p16Ink4a

locus is mediated by PRC2 and PRC1. PRC1 contains sev-
eral subunits, including polycomb (CBX2, 4, 6, 7, or 8 in
humans), polyhomeotic (PH1 or PH2 in humans), Bmi1,
Ring1B and other subunits (50), whereas PRC2 is composed
of Ezh2, Suz12, and Eed (40, 51). In PRC2, Ezh is the cat-
alytic subunit that methylates H3K27 (40); whereas, the oth-
er components are indispensable for the function of the
complex. Suz12 is essential for complex formation and the
di- and trimethylation of H3K27 in vivo (52, 53). By con-
trast, Eed is required for global H3K27 methylation, includ-
ing monomethylation (54). In PRC1, the CBX subunit
recognizes and binds to trimethylated H3K27 (55, 56).
Ring1B has E3 ligase activity for ubiquitylation of histone
H2A, whereas Bmi1 acts as a cofactor (57, 58). Ubiquity-
lation of H2A by PRC1 prevents elongation of RNA poly-
merase II (59). PRC1 has been shown, by electron
microscopy, to contribute to compaction of chromatin (60).
Therefore, a possible molecular mechanism of PRC-medi-
ated gene silencing might be that Ezh2 and other subunits
of PRC2 trimethylate histone H3K27, which acts as a bind-
ing site for PRC1 that ubiquitylates H2A and compacts chro-
matin, lead to inhibition of elongation of RNA polymerase.
In addition, PRCs can inhibit earlier steps of transcription,
as PRC1 interacts with components of the basal transcription
machinery, the TAFs (TATA box-binding protein associated
factors) (61, 62). This inhibition does not appear to involve
blocking access of RNA polymerase to the promoter, as the
PRCs and transcription factors bind to target genes at the
same time (59, 62–65). In summary, p16Ink4a transcription is
inhibited by PRC2 that methylates histone H3K27, which in
turn recruits PRC1. PRC1 represses p16Ink4a expression in
young proliferating cells. In aged and stressed cells, H3K27
trimethylation marks are lost and PRC1 dissociates from the
p16Ink4a locus, resulting in transcriptional activation by Ets1
and/or Ets2, and cell entry into senescence.

An important aim is to understand how the H3K27 tri-
methylation mark is lost in senescing cells. The various pos-
sibilities include the presence of (i) as yet unidentified
histone demethylases and/or inhibitors of methyl transfer-
ases, and (ii) histone chaperones that recruit histone variants
to chromatin. A recent study reported that the H3K27 spe-
cific demethylase, JMJD3, is induced by Ras-Raf signaling
as well as environmental stresses. JMJD3 is recruited to the

p16Ink4a locus and contributes to transcriptional activation of
p16Ink4a (66, 67). We propose that senescence is regulated by
the Jun dimerization protein 2 (JDP2), which has histone
binding and chaperon activity. JDP2 is a member of the AP1
family of transcription factors that activates transcription of
p16Ink4a, as described below (68).

Regulation of Arf

The contribution of Arf to senescence is still controversial.
In general, it seems that p16INK4A plays a central role in
senescence and tumor suppression in human cells, whereas
Arf has a relatively more prominent role in mouse cells. In
humans, mutations are found specifically in p16INK4A, rather
than ARF. p16INK4A mutations are frequent in primary can-
cers, and occur during the establishment of immortal cell
lines (16, 69). In addition, signaling by the Ras oncogene
and telomere shortening induce p53- and ARF-independent
growth arrest (70, 71). By contrast, in MEFs, Arf expression
correlates with the onset of senescence, and cells lacking Arf
do not senesce in culture (7, 72). Mice strains with targeted
deletions of p16Ink4a or Arf are tumor prone, whereas animals
lacking both p16Ink4a and Arf have a more severe phenotype
(42, 72–75). Signaling from oncogenic Ras activates tran-
scription of the DMP1 (cyclin D-binding Myb-like protein
1) gene via the MAP kinase pathway and AP1 transcription
factors such as c-Jun and Jun-B. DMP1 binds to and acti-
vates transcription of the Arf promoter (76). This pathway
is important, as oncogenic Ras fails to activate Arf in MEFs
from Dmp1-null mice (77).

Curiously, factors that activate Arf expression can have
different phenotypic effects: Ras induces senescence whereas
Myc induces apoptosis. Overexpression of Myc in B-lym-
phocytes augments cell proliferation, which is counteracted
by the ARF-p53-MDM2 pathway. Suppression of the ARF-
p53-MDM2 pathway inhibits Myc-induced apoptosis and
facilitates B cell lymphoma formation (78). However, anoth-
er report indicates that induction of Arf requires high and
continuous Myc activity, and physiological levels of Myc
are not enough to stimulate the Arf promoter (79).

E2F transcription factors activate the Arf promoter. E2F1
stimulates the expression of ARF and activates the ARF-p53-
p21WAF1 axis, which blocks cell proliferation. This block is
removed by loss of function of the ARF-MDM2-p53 path-
way, resulting in E2F1-induced S-phase entry (80). E2F fam-
ily members bind directly to the Arf promoter, as has been
shown by the ChIP assay (81–83). Ectopic expression of
E2F1, E2F2 and E2F3 activate the ARF promoter in human
cells (82). By contrast, an isoform of E2F3, E2F3b, represses
the Arf promoter in MEFs (83).

Among the AP1 family of transcription factors, the c-Jun
and Fra1 (Fos-related antigen-1) heterodimer is an activator
of Arf transcription in both human and mouse cells (sum-
marized in Figure 4). Knockdown of Fra1 in human cells or
deficiency of c-Jun in MEFs results in reduced expression
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of Arf (84). In contrast, Jun-D seems to be a repressor of
Arf, as MEFs lacking Jun-D express elevated levels of Arf,
growth arrest in a p53-dependent manner and senesce pre-
maturely (85). Arf is also transcriptionally repressed by
EGR1 and POKEMON (ZBTB7A). Egr1-null MEFs express
increased levels of Arf, but escape replicative senescence
with decreased expression of p53, p21Cip1/Waf1 and other p53
downstream proteins (86). POKEMON binds to the consen-
sus sequence w59-(G/A)(C/A)GACCCCCCCCC-39x both on
the mouse Arf and human ARF promoters and inhibits their
expression. POKEMON-null MEFs senesce prematurely as
a result of upregulation of Arf, as senescence can be over-
come by mutation of Arf (87).

Senescence and aging in humans and mouse

Cellular senescence appears to be related to organismal age-
ing. Cellular senescence involves processes that include tel-
omere shortening, the accumulation of DNA damage and
activation of the Ink4a/Arf locus. Their contributions to
senescence seem to be different in humans and mice. Cul-
tured mouse fibroblasts undergo senescence, even though
they have long telomeres and high telomerase activity. Senes-
cence is abrogated by the loss of the Ink4a/Arf locus (73).
In human cell cultures, ectopic expression of telomerase is
sufficient to overcome senescence by maintaining the length
of telomeres (88). In mice, telomere length maintenance is
important, as telomerase-deficiency shortens their lifespan
and leads to premature aging (89–91). In human kidney and
skin (92, 93), as well as in the majority of mouse tissues
(7, 8), age-dependent accumulation of INK4A has been
observed. In the case of oncogene induced senescence, there
is in vivo evidence that Arf is an important factor for acti-
vation of p53 tumor suppression (94, 95). However, another
study showed that components of the DNA-damage signal-
ing cascade, including ATM and CHK2, are critical for acti-
vation of p53 in response to oncogenic signals (96–98). The
differences between humans and mice could be due to spe-
cies specificity and/or experimental conditions. Cellular
senescence appears to be related to organismal ageing
because the same processes appear to be involved. Genetic
variants of the INK4A/ARF locus are linked to age-associ-
ated disorders, such as general frailty, heart failure, and type
2 diabetes (99–104). Mutations of telomerase or proteins that
affect telomerase activity are linked to human premature
aging syndromes, including dyskeratosis congenital and
aplastic anemia, (105). There are increases in DNA mutation,
DNA oxidation, and chromosome losses during organismal
aging. It seems reasonable to assume that all three factors,
activation of Ink4a/Arf locus, telomere shortening, and the
accumulation of DNA damage, could have cooperative
effects on aging in physiological situations. Understanding
the mechanisms of cellular senescence is currently of wide
interest and it is important in identifying new components,
such as JDP2.

Jun dimerization protein 2 (JDP2)

JDP2 was identified as a binding partner of c-Jun in a yeast
two-hybrid screen (106). JDP2 forms a heterodimer with c-
Jun and inhibits AP-1-mediated activation of transcription
(106). Similarly, JDP2 was isolated in a yeast two-hybrid
screen using ATF-2 as the ‘bait’ (107). JDP2 homodimers or
heterodimers with ATF-2 and other members of the Jun fam-
ily proteins bind to several DNA consensus elements, includ-
ing AP-1 sites, cyclic AMP response elements (CREs), and
TPA response elements (TREs) (106, 107). JDP2 stimulates
the formation of DNA supercoils in assays using relaxed
DNA and core histones, indicating that JDP2 has histone
chaperon activity (108). Moreover, JDP2 is able to bind his-
tones and inhibit their acetylation. Cellular functions of JDP2
involve transcriptional repression or activation, depending on
the cell type (107–112). JDP2 represses UV-dependent apop-
tosis by inhibiting p53 gene transcription in NIH3T3 cells
(110), whereas others have not observed any significant
effect of JDP2 overexpression on p53 in MEFs (111). JDP2
inhibits transcription of cyclin D1 (113) in myoblast
(C2C12) and rhabdomyosarcoma cells. In contrast, it acti-
vates the cyclin D1 promoter by collaborating with CHOP10
in NIH3T3 cells (114). In MEFs, JDP2 acts as a repressor
of stress-induced transcription of ATF3 (115). JDP2 is impli-
cated in various biological processes, such as proliferation,
differentiation, and apoptosis (106, 109–111, 116, 117). For
example, JDP2 overexpression inhibits retinoic acid-depend-
ent differentiation of embryonic carcinoma F9 cells (112).
Recently, we reported that MEFs from Jdp2 knockout mice
(Jdp2-/- MEFs) are susceptible to adipocyte differentiation,
indicating that JDP2 is involved in differentiation (118). Sub-
sequently, we found that Jdp2-/- MEFs could proliferate for
longer periods of time than wt MEFs (68).

JDP2 and replicative senescence

We analyzed aging-dependent proliferation of MEFs from
Jdp2-/- transgenic mice in the presence of environmental
(20%) or low (3%) oxygen. Jdp2-/- MEFs continued to divide
even after 6 weeks, whereas wt MEFs almost stopped pro-
liferating and entered senescence in environmental oxygen.
By contrast, neither wt MEFs nor Jdp2-/- MEFs succumbed
to replicative senescence at lower oxidative stress. These
results demonstrate that MEFs lacking Jdp2 can escape from
irreversible growth arrest caused by environmental oxygen
(summarized in Figure 5). The expression of p16Ink4a and
Arf were repressed in aged Jdp2-/- MEFs (40 days) compared
to wt MEFs. In 3% oxygen, at the equivalent time (40 days),
wt MEFs expressed lower levels of p16Ink4a and Arf com-
pared with 20% oxygen, whereas Jdp2-/- MEFs maintained
low-level expression of p16Ink4a and Arf. These observations
indicate that the aging-associated expression of p16Ink4a and
Arf are dependent on oxygen stress and that JDP2 controls
the expression of both p16Ink4a and Arf. We did not find
extreme downregulation of the upstream repressors of
p16Ink4a/Arf, Bmi1, and Ezh2, in the absence of JDP2, sug-
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Figure 5 JDP2-deficient mouse embryo fibroblasts (MEFs) escape
replicative senescence.
In high environmental oxygen (20%), wild type MEFs become
senesced after several weeks in culture, whereas Jdp2-/- MEFs
remain proliferative. p16Ink4a and Arf expression are upregulated in
wild type MEFs, but not in Jdp2-/- MEFs. In low oxygen (3%),
neither wild type nor Jdp2-/- MEFs senesce.

Figure 6 Model for epigenetic regulation of the p16Ink4a/Arf locus by JDP2.
Young primary cells exposed to oxidative stress accumulate JDP2. In the presence of JDP2, PRC1 and PRC2 dissociate from the p16Ink4a/
Arf locus and histone H3 on the promoter is demethylated. Finally, p16Ink4a and Arf are expressed and the aged cells senesce.

gesting that JDP2 is not a regulator of their expression. Inter-
estingly, JDP2 expression in wt MEFs increased in the
presence of 20% oxygen, but not in 3% oxygen, suggesting
that its expression depends on oxygenic stress, and that accu-
mulated JDP2 could play a role in transcription activation of
p16Ink4a/Arf. Studies using chromatin immunoprecipitation
demonstrated that methylation of H3K27 on the p16Ink4a/Arf
locus was higher in Jdp2-/- MEFs compared with wt MEFs,
and binding of PRC1 and PRC2 to the p16Ink4a and Arf pro-
moter were more efficient in Jdp2-/- MEFs than in wt MEFs.
These observations suggest that, in the absence of JDP2,
H3K27 is methylated by PRC2 and the p16Ink4a/Arf locus is
silenced by PRC1, whereas increased expression of JDP2
helps to release PRC1 and PRC2 from the p16Ink4a/Arf locus
and thereby decreases H3K27 methylation.

Our data demonstrate that JDP2 is one of the important
factors that regulate cellular senescence. Loss of JDP2 helps
MEFs to escape from senescence and, inversely, overexpres-
sion of JDP2 induces cell cycle arrest. The absence of JDP2

decreases the expression of both p16Ink4a and Arf, whose
gene products inhibit cell cycle progression. Taken together,
we propose a model that takes into account these results.
The accumulation of oxidative stress and/or other environ-
mental stimuli during aging upregulate JDP2 in primary
untransformed cells. Increased JDP2 helps to remove PRC1
and PRC2, which are responsible for methylation of histone
H3 on the p16Ink4a/Arf locus, leading to increased p16Ink4a

and Arf expression and entry into the senescent stage (Figure
6). There is some evidence that Jdp2 acts as a tumor sup-
pressor: Jdp2 inhibits Ras-dependent transformation of
NIH3T3 (117), and Jdp2 gene disruptions are often found in
lymphomas induced by insertional mutagenesis with Molo-
ney murine leukemia virus in MYC/Runx2 transgenic mice
(119). Here, we suggest that Jdp2 not only inhibits transfor-
mation of cells but also plays a role in induction of cell
senescence. Both functions of JDP2 might be important for
its role in inhibiting tumor formation. Moreover, our findings
give new insights into understanding the molecular mecha-
nisms by which senescence is induced in the context of epi-
genetic regulation of the p16Ink4a/Arf locus.

Concluding remarks

Similar to differentiation and tumorgenesis, senescence is
associated with dynamic changes of gene expression, which
are regulated by chromatin remodeling. Here, we have seen
that p16Ink4a and Arf are upregulated in response to accu-
mulating environmental stresses, oncogenic signaling and
DNA damaging signal, and that they in turn induce irrevers-
ible cell cycle arrest by activating the pRb and p53 pathways,
respectively. The expression of p16Ink4a and Arf are epige-
netically regulated by PRC1 and PRC2, which associate with
these loci and methylate histone H3 in young cells and dis-
sociate in aged and senesced cells. Several factors that upre-
gulate or downregulate the p16Ink4a/Arf locus have been
reported. An important question, that needs to be addressed,
is how do these different factors regulate senescence: do
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they affect only euchromatin or do they also regulate heter-
ochromatin, do they modify chromatin structure by recruiting
histone deacetylases, histone acetylases, histone methyltrans-
ferases, histone chaperones, and/or others. Addressing their
precise functions in the context of epigenesis will help us to
understand how senescence and, in a broader context, aging
are regulated.
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