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Abstract

In the past years aldose reductase (AKR1B1; AR) is thought
to be involved in the pathogenesis of secondary diabetic
complications such as retinopathy, neuropathy, nephropathy
and cataractogenesis. Subsequently, several AR inhibitors
have been developed and tested for diabetic complications.
Although these inhibitors have found to be safe for human
use, they have not been successful in clinical studies because
of limited efficacy. Recently, the potential physiological role
of AR has been reassessed from a different point of view.
Diverse groups suggested that AR, in addition to reducing
glucose, also efficiently reduces oxidative stress-generated
lipid peroxidation-derived aldehydes and their glutathione
conjugates. Because lipid aldehydes alter cellular signals by
regulating the activation of transcription factors such as NF-
kB and AP1, inhibition of AR could inhibit such events.
Indeed, a wide array of recent experimental evidence indi-
cates that the inhibition of AR prevents oxidative stress-
induced activation of NF-kB and AP1 signals that lead to
cell death or growth. Furthermore, AR inhibitors have been
shown to prevent inflammatory complications such as sepsis,
asthma, colon cancer and uveitis in rodent animal models.
The new experimental in vitro and in vivo data has provided
a basis for investigating the clinical efficacy of AR inhibitors
in preventing other inflammatory complications than diabe-
tes. This review describes how recent studies have identified
novel plethoric physiological and pathophysiological signif-
icance of AR in mediating inflammatory complications, and
how the discovery of such new insights for this old enzyme
could have considerable importance in envisioning potential
new therapeutic strategies for the prevention or treatment of
inflammatory diseases.
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Introduction

Aldose reductase (AKR1B1; AR) is a monomeric reduced
NAD phosphate (NADPH)-dependent cytosolic enzyme that
belongs to a superfamily of aldo-keto reductases (AKR). The

story of AR was started five decades back when it was first
identified as a protein with glucose reducing activity in 1956
by Hers (1). Subsequently, van Heyningen (2) reported that
high levels of sorbitol and galactitol accumulated in the dia-
betic and galactosemic rat ocular lens is due to increased AR
activity. Following this observation, Kinoshita et al. (3–5)
have shown that inhibition of this enzyme with flavinoids
and pharmacological inhibitors such as sorbinil and tolrestat
prevented the cataractogenesis in diabetic rats. Furthermore,
several series of studies showed that the pathophysiological
conditions attributed to hyperglycemia are believed to be
caused by the accumulation of sorbitol in tissues via polyol
pathway hyperactivity (Figure 1) (5–8). Sorbitol being imper-
meable through the biological membranes accumulates inside
the tissues leading to osmotic stress. This results in ionic
imbalance and protein insolubilization leading to secondary
diabetic complications such as diabetic cataractogenesis, ret-
inopathy, nephropathy, and neuropathy. Extensive investiga-
tions have been performed in the identification and
development of potential AR inhibitors that could suppress
sorbitol accumulation and prevent secondary diabetic com-
plications. Several in vitro and experimental animal models
indicate that drugs with varying AR inhibiting efficacy show
significant protection against diabetic complications wsee
Refs. (9–11) for recent reviewsx. The involvement of AR in
diabetes is further supported by the demonstration that its
overexpression in transgenic animals enhances hyperglyce-
mic injury to specific target organs (12, 13). Such mice
develop cataracts more rapidly during hyperglycemia com-
pared to non-transgenic litter mates. In addition, polymor-
phism of the AR gene is a genetic risk marker for diabetic
nephropathy reported to date (14), and AR gene expression
is increased in peripheral blood mononuclear cells obtained
from insulin-dependent diabetes mellitus patients with
nephropathy (15). Together, these observations provide com-
pelling evidence pointing to a significant role of AR in medi-
ating hyperglycemic injury. However, in clinical trials some
of the AR inhibitors have yielded uncertain results, in part,
owing to lack of efficacy, skin allergic reactions, and liver
toxicities. Despite three decades of intense investigations,
including some clinical studies, the details of AR-mediated
hyperglycemic injury remain unclear. In particular, the mech-
anisms which control and regulate the expression of the AR
gene and the catalytic activity of AR protein remain poorly
understood. Recent studies from the past decade or so sug-
gest that reducing glucose might not be the major physio-
logical function of AR. This is supported by studies which
show prevention of diabetic cataracts by using antioxidants
without affecting sorbitol levels (16–18). Furthermore,
reports have also suggested that the increased activity of AR
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Figure 1 Aldose reductase regulates polyol pathway of glucose metabolism and lipid aldehyde mediated cell signaling.
During hyperglycemia AR reduces glucose to sorbitol using NADPH as a cofactor and later sorbitol dehydrogenase (SDH) reduces sorbitol
to fructose using NAD as a cofactor. AR causes oxidative stress by decreasing the ratio of NADP/NADPH and also competing with
glutathione reductase (GR) for NADPH. Increased accumulation of sorbitol could cause osmotic stress. Metabolites of fructose increase
AGE formation and cause glycative stress. Furthermore, during oxidative stress conditions, AR catalyzed lipid aldehyde reaction products
mediate cellular signals via activation of redox sensitive transcription factors.

under hyperglycemia leads to the depletion of cellular NAD-
PH, which compromises antioxidative defenses, because
NADPH is an essential cofactor for reduction of oxidized
glutathione (GSSG) by glutathione reductase (11).

The isolated, homogeneous enzyme has a poor affinity for
glucose (Km of 50–100 mM), and its kinetic and structural
properties are unlike those of other glucose-metabolizing
enzymes. In the mid-1990s, the structural studies and X-ray
analyses of AR crystals indicated that the active site of AR
lacked the ionic residues characteristic of polyol-binding pro-
teins but revealed highly plastic and hydrophobic residues at
its active site (19). These studies thus indicate that the high
hydrophobicity of the substrate-binding domain essentially
precludes efficient carbohydrate reduction, and suggests that
hydrophobic aldehydes are likely to be the preferred sub-
strates. From there on, several studies were directed to iden-
tify potential physiological substrates of AR.

The most obvious endogenous source of hydrophobic
aldehydes is lipid peroxidation, which generates high con-
centrations of long-chain aldehydes. Because several of these
are unsaturated, such as 4-hydroxynonenal (HNE) the most
abundant, they display high toxicity, owing to their ability to
bind cellular glutathione (GSH). In the early 2000s, simul-
taneous reports from two groups indicated that AR efficiently
catalyzes lipid peroxidation-derived aldehydes (LDAs) such
as HNE (20, 21). Later, our studies show that recombinant

human AR catalyzes the reduction of a large series of satu-
rated and unsaturated aldehydes with 1000-fold higher effi-
ciency than glucose (22–25). Furthermore, AR is particularly
efficient in catalyzing medium- to long-chain (C-6 to C-18)
aldehydes generally generated during lipid peroxidation (Fig-
ure 1). In addition to aldehydes, this enzyme exhibited a
higher efficiency in catalyzing the reduction of the GSH con-
jugates of unsaturated aldehydes than that of their parent free
aldehydes (23–25). Thus, our studies show that AR is an
important metabolic route for the detoxification of lipid-
derived aldehydes. This conclusion is supported by the
observations that (a) homogeneous AR catalyzes the reduc-
tion of HNE and its conjugate GS-HNE (to DHN and GS-
DHN, respectively) with an affinity which is four orders of
magnitude higher than that for glucose (20); (b) the gener-
ation of GS-DHN in perfused rat hearts (26), lens (27), and
erythrocytes (28) exposed to HNE is prevented by AR inhi-
bition; (c) inhibition of AR exacerbates the toxicity of HNE
to the ocular lens, isolated cardiac myocytes, and vascular
smooth muscle cells (VSMCs) in culture; and (d) exposure
of VSMCs to HNE leads to marked upregulation of AR (29).
Taken together, these observations provide firm support for
the concept that metabolism of LDAs is a significant in vivo
role of AR (Figure 2). Because LDAs are known to alter the
cellular function by regulating the oxidative stress signals
mediated by NF-kB and AP1 (30–32), it was hypothesized
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Figure 2 Aldose reductase catalyzes a wide array of substrates and regulates cellular signals initiated by various oxidants.

that AR regulates cellular function by altering the oxidative
stress signals. This hypothesis is supported by the studies
which indicate that the inhibition of AR prevents HNE-,
growth factor- and cytokine-induced cytotoxicity in cultured
cells (33–37). Most importantly, our studies indicating inhi-
bition of AR prevents endotoxin, allergen, cytokine, and
growth factor-induced activation of NF-kB signals made a
solid foundation in recapitulating the novel role of AR in the
pathophysiology of various disease processes (Figure 2).
Very recent and currently ongoing studies indicate that the
inhibition of AR prevents various inflammatory diseases
such as sepsis, asthma, and colon cancer in experimental
animals. In this review, we recapitulate the novel role of AR
in the pathophysiology of inflammatory diseases.

The polyol pathway hypothesis of diabetic

complications

The polyol pathway enzyme AR has been implicated in the
development of secondary diabetic complications in general
and diabetic nephropathy, in particular. The polyol pathway
consists of two enzymes (Figure 1): AR, which catalyzes the
NADPH-mediated reduction of glucose to sorbitol, and sor-
bitol dehydrogenase, which catalyzes the conversion of sor-
bitol to fructose, utilizing nicotinamide adenine dinucleotide
(NAD). The net result of the polyol pathway is the formation

of fructose from glucose and the transfer of reducing equi-
valents from NADPH to NAD. Under normoglycemic con-
ditions the polyol pathway affects -3% of glucose flux.
However, under hyperglycemia this pathway can account for
25–30% of the total glucose metabolism (11). It has been
suggested that the hyperglycemia-induced increase in activity
of the polyol pathway (and the attendant metabolic changes)
are the primary cause of hyperglycemic injury. In agreement
with a crucial role of AR in mediating hyperglycemic injury,
it was demonstrated that synthetic inhibitors of AR prevent,
delay and in some cases even reverse tissue injury owing to
several secondary diabetic complications, and AR inhibitors
decrease elevated urinary albumin excretion. Although over-
whelming evidence derived from inhibitor studies, transgenic
animals and genetic susceptibility analysis suggest a crucial
role of AR in diabetic nephropathy, the lack of a clear mech-
anistic understanding made the data remain only correlative.
Based on a high accumulation of polyol in diabetic and
galactocemic lens, it was initially suggested that the AR per-
turbs cell structure, function, and ion balance by inducing
osmotic stress owing to membrane-impermeable polyols.
However, later experiments demonstrated that even under
extreme and prolonged hyperglycemia the sorbitol concen-
trations are not osmotically relevant. Although several other
explanations have been put forward to account for its inju-
rious effects (e.g., depletion of myoinositol and NADPH, as
well as generation of pseudohypoxia), the role of AR in
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mediating hyperglycemic injury remains obscure. However,
even from the beginning, several features of AR were dis-
concerting. The isolated, homogeneous enzyme has a poor
affinity for glucose (Km of 50–100 mM), and its kinetic and
structural properties are unlike those of other glucose-metab-
olizing enzymes. The high hydrophobicity of the substrate-
binding domain of AR essentially precludes efficient carbo-
hydrate reduction and suggests that hydrophobic aldehydes
are likely to be the preferred substrates. Indeed, we and
others have shown that AR efficiently catalyzes lipid alde-
hydes and their GSH conjugates (20–27). Specifically, we
have also found that the AR catalytic site has more affinity
towards GS-aldehyde conjugates than parent aldehydes
alone. By using site-directed mutagenesis experiments, we
have found that the AR active site has residues responsible
for binding to glutathione moiety (24). Indeed, we have
recently solved the crystal structure of GSH-analog bound to
AR, and our structural studies confirmed that AR has a spe-
cific GS-aldehyde binding site in its active site (38). Taken
together, these observations provide firm support for the con-
cept that metabolism of LDAs is a significant in vivo role of
AR. Based on this identification, it was concluded that upre-
gulation of AR during diabetes could be a response to oxi-
dative stress, which appears to be an important feature of
long-term diabetes, given the increased generation of reactive
oxygen species (ROS) and increased accumulation of lipid
peroxidation products in tissues from diabetic animals and
humans. The significance of AR in diabetes is also strength-
ened by identification of genetic polymorphisms associated
with the human AR gene. Ko and colleagues identified that
(A–C)n dinucleotide repeat domain at the 59 end of the AR
gene is associated with early-onset diabetic retinopathy in
non-insulin-dependent diabetes mellitus patients (39). Later,
several studies indicated that AR Z-2 (A–C)n microsatellite
polymorphism in the AR gene is associated with several sec-
ondary diabetic complications, including retinopathy, neurop-
athy, and nephropathy (40–46). Thus, studies performed in
different population groups have established the association
of AR gene polymorphism and diabetic complications.

Significance of AR in oxidative stress signaling

It is well established that ROS generated in response to cyto-
kines, growth factors, lipopolysaccharide (LPS), and hyper-
glycemia cause lipid peroxidation and form LDAs. The
LDAs and their GSH conjugates are excellent AR substrates.
Because ROS is an essential mediator of intracellular sig-
naling under a variety of conditions, some of the mitogenic
and cytotoxic effects of ROS can be mediated by LDAs and
their GSH conjugates. Indeed, at low levels HNE is a potent
smooth muscle cell mitogen, and at high concentrations it
induces apoptosis in several cell types (47–50). Moreover,
inhibition of HNE metabolism by inhibiting AR prevents the
growth of vascular lesions (29). To build on these observa-
tions, our laboratory undertook a systematic study to delin-
eate the role of AR in mediating the cytotoxic signals of
cytokines. These studies indicate that reduction of LDAs and

their GSH conjugates is essential for transducing the cyto-
toxic signals (47). Increased oxidative stress and lipid peroxi-
dation are key features of inflammation-induced cytotoxicity
and activation of redox sensitive transcription factors such
as NF-kB and AP1, which stimulate the expression of genes
that transcribe inflammatory cytokines and chemokines.
Uncontrolled and excessive production of inflammatory
mediators causes cytotoxicity in an autocrine and paracrine
manner. The ROS-sensitive transcription factor NF-kB is a
crucial mediator of oxidative stress-induced inflammation
initiated by bacterial infections, xenobiotics, environmental
pollutants, and autoimmune diseases (51, 52). When inactive,
it is sequestered in the cytosol as a complex with its inhibitor,
IkB; stimulation of protein kinases such as protein kinase C
(PKC), mitogen-activated protein kinase (MAPK), and IkB
kinase (IKK) results in the activation of NF-kB via phos-
phorylation of IkB (51, 52). Several studies have shown that
ROS activate NF-kB, but the mechanisms are not clearly
understood. The other major redox-sensitive transcription
factor, AP1, is formed by homo- or heterodimerization of
members of the Jun and Fos families of proteins; ROS can
regulate AP1 activity via several mechanisms. AP1 can be
regulated via the c-Jun N-terminal kinase (JNK) cascade;
JNKs are part of the MAPK superfamily of serine/threonine
kinases that also includes the extracellular signal-regulated
kinases ERK1/2 and p38MAPK (53–55). All MAPKs are
activated via a cascade of phosphorylation reactions. We
have recently shown that inhibition or ablation of AR atten-
uates the phosphorylation of p38 and JNK in endothelial
cells and macrophages (56, 57).

Lipid peroxidation has been suggested to be a major con-
tributor to the pathophysiology of inflammation (31). At low
concentrations lipid peroxidation products such as HNE can
stimulate proliferation of VSMCs and apoptosis in vascular
endothelial cells (VECs) and at high concentrations HNE is
genotoxic and mutagenic (47, 58, 59). Thus, as discussed
above, the enzymes that can detoxify HNE could be involved
in mediating oxidative stress-induced signals, including those
of cytokine and LPS that activate transcription factors. The
enzymes that regulate the concentration of HNE and its
metabolites are known to modify the activities of multiple
cytoskeletal proteins, MAPKs and transcription factors (60).
Several reports suggest that PKC activation by HNE and its
metabolites cause inflammation (61–64). Increased genera-
tion of ROS by growth factors, cytokines, chemokines, and
LPS could be an essential step for cell growth because ove-
rexpression of antioxidants such as catalase and super oxide
dismutase (SOD) or treatment with N-acetylcysteine are
known to diminish growth factor and cytokine-stimulated
cell growth (65–67). It has been demonstrated that through
ROS, growth factors stimulate redox-sensitive transcription
factors such as NF-kB, AP1, CREB and ATF2 (Figure 3)
(68). Of these, NF-kB is the major transcription factor acti-
vated by oxidative stress (69). Because LPS signals are prop-
agated by autocrine and paracrine effects to generate
excessive amounts of cytokines and growth factors during
the inflammatory response, antibodies against cytokines such
as interleukin-18 (IL-18), tumor necrosis factor-a (TNF-a)
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Figure 3 Aldose reductase prevents inflammatory complications by preventing the oxidative stress-induced inflammatory signals down-
stream to reactive oxygen species.
Various disease conditions such as sepsis, diabetes, and infections by allergens could cause oxidative stress by generating the reactive oxygen
species. The increased ROS levels are well known to mediate inflammatory signaling by activating various protein kinases such as JNK,
PI3K, PKC, and PLC, etc., which activate redox sensitive transcription factors such as STAT, CREB, NF-kB, AP1, NFAT, and ATF2 via a
series of signaling events transduced by other kinases such as MAPK, ERK, and JAK. The activation of transcription factors lead to the
transcriptional activation of inflammatory cytokines, chemokines, and growth factors which in an autocrine and paracrine manner could
amplify inflammatory complications. Aldose reductase inhibitors (ARIs) could prevent the inflammatory signaling by preventing pathways
downstream to ROS as well as autocrine/paracrine mediated formation of ROS by inflammatory proteins.

and IL-6 have been shown to attenuate the progression of
LPS-induced cytotoxicity (70–72).

The association of ROS and AR is supported by the obser-
vation that inhibitors of AR attenuate glucose-induced oxi-
dative stress and superoxide production in retinal pericytes,
bovine aortic endothelial cells, and rabbit aortas (73–75).
The strongest evidence that AR is involved in mediating
growth comes from our studies showing that inhibition of
AR prevents proliferation of cultured VSMCs in response to
fibroblast growth factor, high glucose, and thrombin (29, 34,
76). The observation that the AR inhibitor, epalrestat, pre-
vents initial thickening in the coronary arteries of galactose-
fed beagle dogs provides additional support for the role of
AR in abnormal VSMC growth (77, 78). We recently dem-
onstrated that AR plays a pivotal role in the proliferation of
VSMCs, apoptosis of VECs, and restenosis of rat carotid
arteries after balloon injury (33, 57, 76). In addition, a sig-
nificant decrease in neointima formation in balloon-injured
rat carotid arteries, inhibition of AR diminished in situ acti-
vation of NF-kB during restenosis as well as in cultured
VSMCs (35, 76, 79, 80). The inhibition of AR has been

shown to regulate cell growth and death by modulating the
cell cycle events at the G1/S transition in VSMCs as well as
in colon cancer cells (81, 82). Our studies also indicated that
AR mediates high glucose-induced VSMC growth by regu-
lating the high glucose triggered release of TNF-a, a major
proinflammatory cytokine, in VSMCs via activation of PKC
and TACE (83, 84). Our recent observations show that AR
mediates the mitogenic and cytotoxic signals of cytokines
and growth factors. We have further shown that inhibition or
ablation of AR attenuates TNF-a- and growth factor-induced
IkB-a phosphorylation, degradation, and activation of NF-
kB, and PKC, proliferation of VSMCs and apoptosis of
VECs, human lens epithelial cells (HLECs), and macro-
phages (24, 57). These findings are consistent with our
hypothesis that AR, via modulation of NF-kB, is involved
in the regulation of many genes during inflammation induced
by cytokines (TNF, IL-1, IL-8, IL-6), cell adhesion proteins
such as ICAM-1, MHC genes, enzymes such as nitric oxide
synthase (NOS), Cox and Mn-SOD, and endotoxins such as
LPS (Figure 3). In addition, AR inhibition has also been
shown to regulate the expression of glucose transporter pro-



108 K.V. Ramana

Article in press - uncorrected proof

Figure 4 Aldose reductase mediates growth factor-induced inflammatory signals.
Growth factor stimulated oxidative stress generates lipid peroxidation-derived lipid aldehydes such as highly toxic HNE. HNE being highly
electrophilic conjugates with cellular GSH to form GS-HNE. AR catalyzes the reduction of GS-HNE to GS-DHN. The GS-DHN has been
shown to mediate oxidative stress signals upstream to PLC/PKC leading to activation of transcription factors such as NF-kB and AP1 which
transcribes inflammatory genes. The inflammatory proteins propagate the carcinogenic signals and cause tissue damage, dysfunction leading
to uncontrolled tumor growth.

teins in macrophages. Reddy et al. (85) have shown that AR
inhibitors prevent the LPS-induced activation of transcription
factor CREB via regulating the ROS/cAMP/PKA pathway.
Hwang et al. (86) have also shown that ROS activated JAK2/
STAT5 pathway in ischemic hearts was inhibited by AR inhi-
bition, indicating that AR also mediates the JAK/STAT
signaling pathway. These studies indicate that AR inhibition
works downstream of ROS formation and also blocks ROS
generation in an autocrine and paracrine manner. Because
various oxidant stimuli such as LPS, cytokines, growth fac-
tors, and high glucose are known to cause oxidative stress
and increase the synthesis of inflammatory cytokines and
chemokines, AR-catalyzed reaction products should play an
important role in eliciting oxidative stress-induced cytotoxi-
city and inflammation. This is further substantiated by our
demonstration that HNE, GS-HNE, and GS-DHN promote
cultured VSMC growth (87). AR inhibition or ablation of
AR by siRNA prevents HNE- and GS-HNE-induced growth,
but has no effect on the GS-DHN-induced VSMC prolifer-
ation. These studies indicate that it is the reduced form of
lipid-aldehyde glutathione conjugates (GS-DHN) that are
involved in the oxidative stress-induced LDA-mediated sig-
naling. Furthermore, studies are required to investigate how
GS-DHN activates gene transcription. Nevertheless, our
observations have opened a wide area of research into the
role of lipid peroxide and lipid aldehyde formation in oxi-
dative stress signaling.

Significance of AR in inflammatory

complications

Inflammation is a complex system of a host systemic and
local response to injury and infection. Inflammation contrib-
utes to almost all disease processes, including immunological
and vascular pathology, sepsis, and chemical and metabolic
injury. In inflammation, the regulation of the immune
response by macrophages plays a central role which triggers
gene induction of proinflammatory cytokines, such as TNF-
a, IL-1, and biosynthesis of prostaglandins (PGE2). These
and other cytokines act in an autocrine or paracrine manner
to induce and amplify the host cell response and defense
systems that help to eliminate the infection. However, uncon-
trolled and excessive cytokine expression can induce acute
or chronic inflammatory processes. Recent studies indicate
that inhibition of AR prevents cytokine-, growth factor- and
high glucose-induced apoptosis of HLECs, VECs, macro-
phages, and proliferation of VSMCs and colon cancer cells.
As shown in Figure 4, ROS generated during growth factor
and cytokine signaling induce lipid peroxidation, which in
turn leads to the generation of a wide range of cytotoxic
aldehydes such as HNE. These aldehydes react readily with
reduced GSH to form glutathionyl aldehydes such as GS-
HNE. We have found that AR efficiently reduces GS-HNE
to GS-DHN and that the GS-DHN formed in turn activates
phospholiase C (PLC) via an unidentified mechanism. This
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leads to the activation of signaling cascades that involve the
activation of such transcription factors as NF-kB and AP1
via PKC/PI3K/MAPK/IKK. NF-kB and AP1 stimulate tran-
scription of various inflammatory cytokines (TNF-a, inter-
leukins), chemokines (MCP-1, MIP-1), and inflammatory
mediators such as cycloxygenase-2 (Cox2) and inducible
NOS (iNOS). Uncontrolled productions of these inflamma-
tory markers cause cytotoxicity leading to tissue damage and
dysfunction leading to pathologies such as cancer and
inflammatory response syndrome. We have shown that AR
inhibitors such as sorbinil, tolrestat, zopolrestat, and fidares-
tat, as well as ablation of AR by siRNA, effectively block
the ROS-induced formation of GS-DHN and downregulate
stress signals that activate NF-kB and AP1 in vascular cells
and macrophages (87). Furthermore, AR inhibitors also pre-
vented the activation of caspase-3 and degradation of nucle-
osomal histones by high glucose or TNF-a in HLECs and
by LPS in macrophages (35, 56). These results raised the
interesting and significant question of how AR regulates the
signaling events initiated by cytokines and growth factors,
and how inhibition of AR prevents cytokine and growth fac-
tor signaling. Understanding this role of AR should provide
pharmacological tools for eventual therapeutic interventions
to control cell proliferation, apoptosis, tissue repair, and to
prevent the cytotoxicity of cytokines and chemokines, which
are increased during oxidative stress. More importantly, these
studies will provide a mechanistic link between oxidative
stress and inflammation. We have extended our investiga-
tions from cultured cells to various animal models of inflam-
matory diseases such as colon cancer, sepsis, asthma, and
uveitis and have shown that inhibition of AR prevents these
inflammatory disorders. These studies backed by strong evi-
dence obtained using cellular as well as animal models sug-
gest that AR plays a pivotal role in the pathophysiology of
inflammation.

Aldose reductase in sepsis

During sepsis and related systemic inflammatory response
syndrome, the chemical or biological (bacterial and viral)
agents cause severe toxicity by increasing oxidative stress
(88, 89). The acute uncontrolled inflammatory response can
lead to extensive tissue injury and multiple organ failure.
Studies from our laboratory have indicated that the toxic
effects of uncontrolled inflammation can be effectively pre-
vented or significantly ameliorated by inhibiting AR either
by pharmacological AR inhibiting drugs or by genetic abla-
tion of AR message (87). Despite mechanistic ambiguities,
our demonstration that AR mediates cytokine-induced acti-
vation of NF-kB suggested to us an entirely new modality
for prevention and treatment of the acute inflammatory epi-
sodes. Therefore, to examine the role of AR in a cellular
model of inflammation, we investigated how AR mediates
the lipopolysaccharide (LPS)-induced release of inflamma-
tory mediators in RAW264.7 murine macrophages and per-
itoneal macrophages (87, 90). Pharmacological inhibition or
siRNA ablation of AR prevented the biosynthesis of cyto-

kines in LPS-activated RAW264.7 cells. Inhibition or abla-
tion of AR significantly attenuated LPS-induced activation
of PKC and PLC, nuclear translocation of NF-kB, and phos-
phorylation and proteolytic degradation of IkB-a in macro-
phages, suggesting that inhibition of AR prevents key steps
in the development of inflammation. Given our results with
macrophages in culture, we tested whether inhibition of AR
would also prevent acute inflammatory events in vivo. For
this, we chose to study endotoxin-induced sepsis complica-
tions in mice (91). Our results show that as in LPS-treated
macrophages administration of AR inhibitor in the mice pre-
vented the serum, liver, spleen, and heart inflammatory cyto-
kines in response to LPS challenge (87). Treatment with AR
inhibitor blunted the activation of PKC, JNK, and p38-
MAPK, as well as phosphorylation of IkB-a, IKK, and PLC.
These changes were associated with decreased myocardial
NF-kB and AP1 activity, PGE2 production, induction of
Cox2, and iNOS. Furthermore, our studies demonstrate that
inhibition of AR prevented the LPS-induced functional
recovery in myocardial fractional shortening in vivo and pre-
served contractile function of isolated perfused hearts, indi-
cating that AR inhibition prevents LPS-induced cardio-
myopathy (91). Most importantly, inhibition of AR increased
survival in mice injected with lethal doses of LPS. Similarly,
AR inhibition also prevented the inflammatory cytokine lev-
els in a cecum ligation and puncture model of polymicrobial
sepsis, which closely mimics the sepsis syndrome in humans
(92). These observations provided a promising demonstration
of the potentially high therapeutic efficacy of AR inhibitors
in treating sepsis and other acute inflammatory syndromes.

Aldose reductase in asthma pathogenesis

Asthma is one of the most common chronic respiratory dis-
eases, with more than 100 million sufferers worldwide (93).
This inflammatory disorder is caused by a hypersensitive
immune system that results from several triggers, such as
dust, pollen, viruses, and changes in the weather. Although
it is not clear how asthma is initiated in the setting of chronic
inflammation, accumulating evidence strongly support the
association of airway inflammation with asthma (94). Fur-
thermore, the increase in inflammation in the bronchial epi-
thelium leads to eosinophil infiltration, an increase in mucus
production, and most importantly upregulation of cytokines
such as TNF-a, IL-4, IL-5, IL-6, and IL-13, chemokines
such as MCP-1, and MIP-1, adhesion molecules such as
ICAM-1, and E- and P-selectins (94). Thus, exposure of
nearby cells to inflammatory cytokines and chemokines can
trigger various autocrine/paracrine effects, leading to Th2
immune response and inflammatory cell accumulation. Our
studies indicate that inhibition of AR prevents expression of
inflammatory markers in human small airway epithelial cells,
indicating that AR inhibition could prevent asthma (95–97).
Indeed, we examined the efficacy of AR inhibitors in pre-
vention of allergen-induced airway inflammation in mouse
models of asthma. We found that AR inhibition prevents rag-
weed pollen extract and ovalbumin-induced allergic res-
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ponses, airway inflammation and hyper-responsiveness in
mouse models of asthma. Our studies also indicate that AR
inhibitors significantly prevent the number of eosinophils
and mucin levels in bronchoalveolar lavage (BAL) fluid of
allergen-treated mice. These results indicate that AR inhibi-
tion could significantly prevent the pathophysiological
effects of allergen-induced respiratory complications.

Aldose reductase in uveitis

Uveitis is a systemic inflammatory response syndrome char-
acterized by excessive production of inflammatory cytokines
generated in response to bacterial infections (98). Our inves-
tigations indicating that AR plays an obligatory role in medi-
ating bacterial endotoxin-stimulated inflammatory signaling
suggest that inhibition of AR could be a useful approach for
attenuating maladaptive host responses and for treating acute
ocular inflammation due to uveitis. To determine whether
inhibition of AR prevents ocular inflammation in vivo, we
examined the effects of AR inhibitor on NF-kB signaling
pathways and ocular inflammation in a rat model of LPS-
induced uveitis (99). Inhibition of AR prevents inflammatory
marker levels in the aqueous humor of uveitis rat eyes. AR
inhibition also suppressed the inflammatory cells infiltration
and protein concentration in the aqueous humor of uveitis
rat eyes. Similarly, the increase of inflammatory cytokines
such as TNF-a, NO and PGE2 levels in the aqueous humor
of uveitis rat eyes was significantly attenuated by AR inhi-
bition. Similarly, the increased expression of TNF-a, iNOS
and Cox2 proteins in the ciliary body, corneal epithelium,
and retinal wall was significantly prevented by AR inhibi-
tion. In addition to pharmacological inhibitors of AR, natural
compounds such as benfotiamine and guggulsterone which
prevent the expression of AR and the activation of NF-kB
also ameliorate endotoxin-induced uveitis in rats (100–102).
Thus, based upon these results, AR inhibitors could be used
therapeutically to treat patients with uveitis and its associated
complications that have the potential of stimulating the
inflammatory signals.

Aldose reductase in cancer

Colon cancer is the third most common form of cancer and
the second leading cause of cancer-related deaths in Western
countries, including the United States (103). Epidemiological
and experimental studies indicate that colon cancer is usually
mediated by dietary and environmental factors and is more
pronounced in genetically predisposed subjects (103, 104).
Recent studies indicate that inflammation plays a major role
in colon carcinogenesis (105). Results from our investiga-
tions have established the role of AR in the carcinogenic
signaling induced by growth factors and cytokines, and pro-
vided new insights into the physiological role of this enzyme
in colon cancer cell mitogenicity as well as inflammation
associated with colon carcinogenesis. Our recent studies indi-
cate that ROS-induced signaling that activates NF-kB and
transcribes genes responsible for tumor progression is pre-

vented by AR inhibition in human colon cancer cells (37,
83, 106). Similarly, inhibition of AR also prevented tumor
growth in nude mice bearing human adenocarcinoma
(SW480 cell) xenografts. Furthermore, we have identified
that reduced lipid aldehyde glutathione conjugate catalyzed
by AR is a novel signaling intermediate in the transduction
of ROS-initiated cell signals leading to mitogenicity in colon
cancer cells. We have found that AR knockout mice are resis-
tant to chemically induced colon cancer in the azoxyme-
thane-induced mouse model (107). Thus, our results suggest
that AR inhibitors could be used therapeutically to prevent
colon cancer and its associated complications.

Expert opinion

Our demonstration that AR also efficiently reduces lipid
aldehydes and their conjugates with GSH has opened new
dimensions in understanding the detoxification of reactive
aldehydes generated during lipid peroxidation. Using kinetic,
structural, and physiological studies, we have investigated
the mechanisms by which AR selectively recognizes and cat-
alyzes the reduction of LDAs and their GSH conjugates. We
have also shown that AR activity can be regulated by lipid
aldehydes, as well as by NO. To our surprise, we have found
that AR-catalyzed lipid aldehyde products are obligatory
mediators of cytokine-, chemokine-, growth factor- and LPS-
induced cellular cytotoxicity as measured by decreased cell
growth or apoptosis. Recent studies demonstrate that AR
plays a pivotal role in inflammation (108, 109). Understand-
ing this role of AR has provided pharmacological tools for
eventual therapeutic interventions to control cell prolifera-
tion, apoptosis, tissue repair, and to prevent the cytotoxicity
of cytokines, which are increased during infections and
inflammation. More importantly, these studies provided a
mechanistic link with oxidative stress-induced toxicity, espe-
cially in inflammatory pathologies where oxidative stress is
known to cause toxicity through the expression of proinflam-
matory cytokines and chemokines. Thus, based upon these
results, AR inhibitors could be used therapeutically to treat
patients with inflammatory diseases such as asthma, colon
cancer, uveitis, sepsis, burn, and other injuries such as those
caused by viruses and bioterrorism that have the potential of
stimulating the immune system and generating large amounts
of inflammatory cytokines and chemokines. These AR inhib-
itors could also be used to prevent inflammation mediated
by cytokines and chemokines, irrespective of the source.

Outlook

Inflammatory complications, including sepsis, cancer, and
asthma, remain huge clinical problems worldwide despite
improved health care and specific treatment approaches.
Accordingly, there is an ongoing need for development of
new therapeutic strategies in the treatment of such diseases.
Elucidation of cytokine signaling is crucial for understanding
multiple diseases, including infection, atherosclerosis, and
cancer, and for developing therapeutic interventions for min-
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imizing their inflammatory components. Hence, investigating
the mechanisms that normalize inflammatory signals has
intense importance for understanding and managing a wide
array of disease processes. As described in the present
review, extensive research during recent years has identified
that AR plays a major role in mediation of oxidative stress-
induced inflammatory signals via PLC/PKC/IKK/MAPK/
NF-kB/AP1. Inhibition of AR prevents inflammatory diseases
such as uveitis, sepsis, colon cancer, atherosclerosis, and
asthma in experimental animal models. We expect that these
results will shed new light on the fundamental mechanisms
regulating inflammation as well as lay down the foundation
for future studies to devise strategies for clinical implica-
tions. Accordingly, potential strategies that prevent AR and
retard the progression of inflammatory complications still
need to be evaluated. The challenge for future research will
be to unravel these complex interactions that AR mediates
between cellular metabolism, inflammation, and cancer. A
better understanding of the signaling pathways engaged by
AR-catalyzed lipid peroxidation products and their gluta-
thione conjugates will help in understanding the causes of
tissue and organ dysfunction. The future search for new
potential pathways and the development of rational thera-
peutic options for better management of inflammatory com-
plications could be facilitated by using newly developed
tools such as microRNA technology, nanoparticle based drug
delivery, and microarrays to identify the signaling pathways
mediated by AR.

Highlights

• AR catalyzes the first and rate limiting step of the polyol
pathway of glucose metabolism.

• AR has been shown to be involved in secondary diabetic
complications.

• Many AR inhibitors have gone to phase III clinical stud-
ies for diabetic neuropathy, but failed owing to lack of
efficacy.

• AR in addition to reducing glucose efficiently reduces
lipid peroxidation-derived lipid aldehydes and their con-
jugates with glutathione.

• AR-catalyzed reaction product such as GS-DHN could
mediate oxidative stress signals.

• AR regulates cytokine, chemokine, growth factor, endo-
toxin, hyperglycemia signals by regulating PKC/MAPK/
IKK/NF-kB and AP1 pathways.

• AR is now shown to be involved in the pathophysiology
of inflammatory complications such as atherosclerosis,
colon cancer, sepsis, asthma, and uveitis.

• AR inhibitors could be anti-inflammatory, antimitogenic,
and chemotherapeutic agents and their potential efficacy
needs to be investigated at the translational levels.
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