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Abstract

Coiled coils are formed by two or more a-helices wrapped
around one another. This structural motif often guides di-,
tri- or multimerization of proteins involved in diverse bio-
logical processes such as membrane fusion, signal transduc-
tion and the organization of the cytoskeleton. Although
coiled coil motifs seem conceptually simple and their exis-
tence was proposed in the early 1950s, the high variability
of the motif makes coiled coil prediction from sequence a
difficult task. They might be confused with intrinsically dis-
ordered sequences and even more with a recently described
structural motif, the charged single a-helix. By contrast, the
versatility of coiled coil structures renders them an ideal can-
didate for protein (re)design and many novel variants have
been successfully created to date. In this paper, we review
coiled coils in the light of protein evolution by putting our
present understanding of the motif and its variants in the
context of structural interconversions. We argue that coiled
coils are ideal subjects for studies of subtle and large-scale
structural changes because of their well-characterized and
versatile nature.

Keywords: charged single a-helix; coiled coil; intrinsically
disordered protein; protein design; protein structure.

Introduction

The existence of the coiled coil motif was proposed by Fran-
cis Crick in 1952 based on crystallographic observations (1).
The first atomic level structure was reported in 1981 (2), and
a large number of different coiled coils from a wealth of
proteins has been discovered since then. The structures cur-
rently known represent a wide range of variations of the
common coiled coil theme (3—5). The structural information
gathered yielded insight into the atomic level details of struc-
ture stabilization and organization of this structural unit.
There are many excellent reviews detailing coiled coil struc-
ture, function and design (3-9).

In this paper, we organize our current understanding of
coiled coils from a novel perspective, protein structural evo-

lution, a field that is of emerging interest among theoretical
and experimental structural biologists (10, 11). Our present
knowledge has allowed successful rational redesign of exist-
ing coiled coil motifs (8). More recently, the possibility of
interconverting coiled coils to different structural classes
such as amyloid-type aggregates (12), intrinsically disordered
segments or charged single a-helices (CSAHs) has been
raised. In this review, we argue that the abundance, structural
and functional versatility, as well as the existence of well-
described stabilizing interactions render coiled coils ideal
models for investigating structural changes in proteins that
might occur during evolution, ranging from changes in sta-
bility through alterations in oligomeric state and/or topology
to fold transitions. It must be stressed that (re)constructing
possible evolutionary pathways differs from classical design
studies as all proposed alterations should be reasonably
accessible by mutations and all stages should retain some
functionality or at least be harmless within the organism. We
also note that the possibility that mutations in coiled coils
can lead to structural changes does not necessarily mean that
such changes played a major role or indeed occurred during
evolution. Nevertheless, this neither prevents their use in
model studies nor excludes the interpretation of existing data
from this point of view.

The classical coiled coil structure

Coiled coils are unique among protein structural motifs in
the sense that they can readily be described by means of
relatively simple parametric equations (4) (Figure 1). These
equations, originally compiled by Crick (13) and adopted for
real structures later (14, 15), describe the positions of back-
bone atoms along the two or more helices wrapped around
each other resulting in the coiled coil. At first sight this might
suggest that the coiled coil motif is always well-defined,
rather rigid and does not change easily in the course of their
function and molecular evolution. By contrast, as we will
point out below, our present knowledge shows rather the
opposite of this notion.

The classical picture of a coiled coil consists of two right-
handed parallel a-helices wrapped around each other in a
left-handed supercoil. The typical helix crossing angle for
such an arrangement is around 22° and the pitch is approx-
imately 140 A (16). As a-helices have around 3.6 residues
per turn, the supercoiling is needed to ensure that the inter-
helical interface is formed by side chains on average 3.5
residues apart. Indeed, in classical coiled coils, every third
and then fourth residue is hydrophobic, resulting in the clas-
sic ‘heptad’ repeat pattern abcdefg, where the positions d and
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Figure 1 Ribbon representations of an idealized coiled coil com-
puted using the principles in Crick’s equations as described in
Ref. (13).

(A) View of a 28-residue coiled coil down the supercoil axis. (B)
Side view of a long segment of 1.5 superhelical turns. Figures drawn
with MOLSCRIPT (105).

a form the interaction layers characteristic of coiled coils.
The packing is often referred to as knobs-into-holes meaning
that a side chain from one of the helices is packed between
four side chains of the other. In two-stranded coiled coils,
one of the residues forming the hole is also itself a knob and
vice versa. The geometry of the side chains involved can be
perpendicular, parallel or between these two extremes, acute,
as defined by the relative orientation of the Ca-C vectors
of the residue in question and the helix face of the opposite
chain (8). The a and d layers show characteristic differences
in this regard (Figure 2). Beyond the role of hydrophobic
side chains at the core a and d positions, coiled coils can
use intra- and interhelical electrostatic interactions to tune
their stability, especially those between the flanking e and g
positions of neighboring chains. It is notable that knobs-into-
holes packing are not restricted to coiled coils; it has been
observed in local a-helix interactions such as between the
roughly perpendicular packing of a-helices from the regu-

latory light chain and the IQ heavy chain in conventional
myosins (17).

A typical example of a regular classical two-stranded
coiled coil is the leucine zipper motif found in several tran-
scription regulator proteins. The largely regular structure of
classical coiled coils suggests that they can be optimal targets
of protein design studies — indeed, as will be detailed below,
coiled coil design has been recognized as the most successful
target of protein engineering (8).

Structural variations (coiled coil topologies)

In addition to the classical, two-stranded parallel coiled coils
described above, many other forms have been described to
date, as demonstrated by the recently compiled periodic table
of coiled coils (18). An important common aspect is that all
of them exhibit knobs-into-holes type interactions to some
extent. It should be noted that the precise distinction between
coiled coils and other structures is not always straightforward
(4). However, owing to the quasi-continuous nature of pro-
tein conformations, this is true for many other structural
motifs in proteins (19).

In general, structures recognized as coiled coils currently
represent a wide range of superhelical arrangements that can
be classified according to the number and relative direction
of constituent helices as well as the handedness of the super-
coil. Currently, the highest-order coiled coil considered, with
a single hydrophobic core, is a hexamer, whereas even larger
circular structures (dodecamer is the largest) can arise from
the bending of a complex structure of pairwisely interacting
helices (18). A parallel seven-stranded coiled coil was
described in an engineered GCN4 Leu-zipper in which all e
and g positions were replaced by Ala residues. High reso-
lution structure of this heptamer revealed a large tubular
channel with an unusual heptad register shift between adja-
cent staggered helices (20). An a-barrel, a 12 chain anti-
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Figure 2 Schematic representation of a two-stranded canonical coiled coil.

(A) Helical wheel diagram showing the arrangement of residues along the superhelical axis with a straightened interhelical interface to
emphasize the heptad repeat structure. (B) Knobs-into-holes packing of the side chains in the a and d positions. The a and d side chains
in the middle are knobs fitting into a hole defined by four residues on the other helix (residues with the same notation are one heptad
apart). At the same time, they also participate in hole formation for knobs on the interacting chain. (C) Organization of interaction layers

in the hydrophobic core of coiled coils.
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parallel coiled coil exists in TolC, an Escherichia coli outer
membrane efflux pump (21). The direction of the helices
(parallel vs. antiparallel) is also of considerable variation.

In addition to the well-characterized heptad repeat, there
are several different repeat sequences, most prominently
composed of hendecad units, promoting the formation of
coiled coils. Regarding the heptad repeats, there are three
common types of its perturbations or discontinuities recog-
nized: skips, stammers and stutters. Skips correspond to the
insertion of one residue, stammers to three and stutters to
four residues (4). The latter two can be accommodated into
the coiled coil without seriously distorting local helical struc-
ture. These irregular positions are often highly conserved;
skip residues are present in the long coiled coil of myosin
tails that are thought to modify the superhelical pitch and
affect both the filament structure and regulation through
interactions with the head domains (22, 23).

The relationships between sequence periodicity, residues
per helical turn in the constituent helices and supercoil geom-
etry are well understood (4, 6) (Figure 3). The positioning
of the interacting side chains in the repeated sequences might
result in left-handed, straight and right-handed assemblies.
Some of these possibilities have even been recognized in the
absence of detailed structural information based on theoret-
ical considerations on how interhelical interfaces can be
formed by distorting «-helical geometry (24). Moreover,
such parameters can vary over the length of the coiled coil
according to the underlying amino acid sequence. The nat-
urally occurring four-stranded coiled coil at the C-terminus
of the tetrabrachion protein contains both hendecads and 15-
residue pentadecad repeats giving rise to a slightly and a
more markedly right-handed supercoil segment (25). The
second coiled coil segment of the intermediate filament pro-
tein vimentin, a hendecad parallel a-helical bundle is fol-
lowed by a regular left-handed coiled coil (26). Another
recently described example is the trimeric coiled coil of the
Yersinia adhesin YadA where a structural transition occurs
from a firm right-handed to a left-handed supercoil (27).

In a sense, non-heptad repeat units can be regarded as
heptads with discontinuities, e.g., hendecads might be
viewed as heptads with a stutter. However, it might be more
fruitful to consider coiled coils as structures that can have
different underlying repeats in their amino acid sequence.
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This concept is useful in interpreting structural features (e.g.,
interaction layers) of coiled coil segments and also possible
evolutionary events, e.g., separating the conversion of one
repeat to another and subsequent alterations of the newly
arisen repeat.

Somewhat surprisingly in the light of the description of
‘classical’ coiled coils above, the current view is that the
‘default’ is the trimeric form of coiled coils, meaning that
specific interactions are needed to trigger dimer, tetramer or
higher order coiled coil formation (4, 8). For example, the
GCN4 leucine zipper contains Asn in one of the a positions
forming an asymmetric hydrogen-bonded interaction desta-
bilizing higher-order structures (28). Interestingly, extracel-
lular a-fibrous proteins mostly are three-stranded (including
laminin, tenascin, fibrinogen) compared with the mostly two-
stranded o-fibrous proteins (including myosin, tropomyosin,
intermediate filament proteins) found intracellularly. Other
proteins containing trimeric coiled coil domains include
influenza hemagglutinin, heat shock transcription factors,
spectrin, a-actinin and dystrophin. Three-stranded coiled
coils in several autotransporter adhesins have been recently
shown to exhibit unusual stabilizing interactions with an
elaborate polar network and ions in the core (29). Neverthe-
less, dimeric ones are by far the most abundant among coiled
coils of known structure (18).

The variability of coiled coils is even more increased by
heterologous superhelix formation, where different protein
chains associate to form asymmetric multimeric structures.
Such segments can be formed by single chains as in anti-
parallel coiled coils formed by sequentially neighboring hel-
ices in seryl-tRNA synthetases (30) or separate chains such
as in heterodimeric leucine zipper transcription factors (4).
ITonic interactions between the helices are considered a major
factor governing pair preferences (31).

Folding, stability, dynamics and mechanical
properties of coiled coils

In line with the underlying sequence diversity, the coiled coil
motif exhibits considerable variation in terms of stability and
dynamics including interconversion of distinct oligomeric
species. Length of natural coiled coils is a crucial factor
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Figure 3 Relationships between repeat sequence, helical and superhelical parameters.
The angle between consecutive residues in the constituent helices is calculated from the residue/turn ratios shown in the call-outs and are
defined relative to the supercoil axis. The diagram is based on the data and classification in Ref. (6).
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determining their stability; usually fragments of long coiled
coils are not stable, that is their stability is fine-tuned for
their biological function (17, 32, 33).

Coiled coil segments are generally considered as being
unfolded in monomeric form and folding upon either super-
coil formation or partner recognition and supercoil formation
(34, 35). The folding/unfolding of coiled coils is generally
described by a two-state transition between unfolded mono-
meric peptide chains and folded coiled coil dimers or olig-
omers (5). However, more recent studies suggested a more
complex folding mechanism (36, 37). Several observations
suggested the existence of trigger sequences forming stable
monomeric a-helical structures that are required for the ini-
tial interactions that can be propagated to the rest of the
structure to form coiled coil structure over even a large dis-
tance (38, 39). This is in line with studies showing that sev-
eral regions of long coiled coils can be inherently unstable
and require the attachment of a stabilizing extension for
structural investigations. In such coiled coils poorly packed
residues in the interior of the structure have a propensity for
spontaneous unwinding and changes in flexibility (17, 40).
Recently, ‘stability control regions’ of tropomyosin were
identified that act in synergy over long distances to control
coiled coil stability (41). The internal core of coiled coils is
also dynamic: based on NMR data, it has been proposed that
the asymmetric Asn pair in a leucine zipper is in exchange
with an alternate symmetric conformation (42).

Coiled coil formation can also be triggered by environ-
mental changes and such a conformational transition can act
as a functional molecular switch (43). The most prominent
example is provided by influenza hemagglutinin, where a
pH-induced irreversible rearrangement results in coiled coil
formation by a segment adopting a loop structure in the
native metastable state (44). Another sequence capable of
coiled coil formation upon binding to an appropriate partner
is the basic DNA-binding part following the leucine zipper
region in some transcription factors (45).

An interesting aspect of dynamism is the promiscuity in
partner selection sometimes leading to equilibrium of het-
erogeneous assemblies. The former phenomenon is prevalent
in SNARE complex assemblies involved in membrane fusion
processes (46), whereas the latter has been observed in sev-
eral designed coiled coils (8). What is more, a truncated
coiled coil segment of scallop myosin was suggested to form
antiparallel dimers instead of parallel ones as in the full-
length protein (32). Such a topological heterogeneity was
also observed in crystal structures of GCN4 derived peptides
that form both parallel and antiparallel tetrameric coiled coils
(47).

Coiled coil proteins are valuable models to study mechan-
ical properties of protein structures. It was shown by atomic
force microscopy, molecular mechanics simulations and nor-
mal mode analysis that the coiled coil of the myosin tail
(especially the head-proximal S2 subdomain) is a truly elas-
tic structure that is expected to play an important role in the
power stroke of the motor (48—50). Presence of an elastic
spring element in processive transport myosins is also impor-
tant for cargo movement in cells (51). Importance of modular
elasticity and flexibility in other coiled coil proteins, such as

in tropomyosin, fibrinogen and desmin is also being recog-
nized (52, 53).

Coiled coil recognition in protein structures
and prediction from sequence

Coiled coil recognition from three-dimensional structures
relies on the identification of knobs-into-holes packing of
side chains in neighboring helices, the distinctive hallmark
of coiled coils. The program SOCKET has been specifically
designed for this task (54) and currently it can be considered
as a benchmark in defining coiled coils. However, the cut-
off distance used for the definition of interacting residues
can be varied to render the algorithm more permissive and
several structures considered to be coiled coils by experts
can only be recognized with SOCKET when considerably
elevated cut-off values are used (18). SOCKET has been
used to define a relational coiled coil database (55) and to
define data sets of ‘known’ coiled coils for comparative
studies (56).

A somewhat different task is the prediction of coiled coil
regions in proteins from their sequence. Despite the appar-
ently simple nature of sequence determinants of coiled coils,
the number of algorithms currently available with different
underlying concepts (57-67) indicates that recognizing all
coiled coils accurately is not trivial. We provide a list of
several widely used and some novel methods in Table 1. The
most often used program is COILS (58) which is based on
amino acid frequency profiles (implemented as position spe-
cific scoring matrices, PSSMs) derived from a set of known
coiled coil segments. More recent methods often use Hidden
Markov Models (HMMs; Table 1). Although they vary con-
siderably in their underlying concept, practically all of the
current methods (except SOSUlIcoil, Table 1) are designed
to detect uninterrupted heptad repeats (4, 68). Another
important aspect is that they usually implement a minimum
length threshold for coiled coils that is longer than the short-
est ones identified in protein structures, which, in turn, can
also be recognized differently by experts as there is no con-
sensus on the minimum length of coiled coil structures.
These are limitations that should be considered when inter-
preting coiled coil predictions on full proteomes.

In addition to the presence of a coiled coil segment in a
sequence, there are more sophisticated prediction methods to
characterize these regions in more detail. The authors of the
SOSUlIcoil approach have also described and incorporated a
method for the detection of fragile points, i.e., regions with
less stability in coiled coils (67). They found good agreement
of the predictions with electron microscopy and X-ray data.

The program MultiCoil, in principle an extension of
PairCoil, was specifically developed to discriminate between
two- and three-stranded coiled coils (63). The PrOCoil web
server is designed for the same task (http://www.bioinf jku.at/
software/procoil/). The recently described SpiriCoil approach
is able to differentiate between all coiled coil architectures
of presently known structure.
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Table 1 List of several coiled coil prediction methods.

Name Principle of coiled coil References URL
recognition
COILS PSSM (58) http://www.ch.embnet.org/software/COILS_form.html
PCOILS PSSM (59) http://toolkit.tuebingen.mpg.de/pcoils
PairCoil, Pairwise residue correlations (60, 61) http://groups.csail.mit.edu/cb/paircoil2/
PairCoil2 within the heptads
MARCOIL HMM (62) http://www.isrec.isb-sib.ch/BCF/Delorenzi/Marcoil/index.html
MultiCoil Pairwise residue correlations  (63) http://groups.csail.mit.edu/cb/multicoil/cgi-bin/multicoil .cgi/cgi-bin/multicoil
within the heptads
CCHMM_PROF HMM (64) http://gpcr.biocomp.unibo.it/cgi/predictors/cchmmprof/pred_cchmmprof.cgi
SpiriCoil HMM (65) http://supfam.cs.bris.ac.uk/SUPERFAMILY/spiricoil/
Amphiseach Residue hydrophobicity (66) -
SOSUlcoil Canonical discriminant (67) http://bp.nuap.nagoya-u.ac.jp/sosui/coil/submit.html
analysis
PrOCoil (uses input from - http://www.bioinf.jku.at/software/procoil/

other methods and predicts
oligomerization state using
support vector machines)

CC, coiled coil; CSAH, charged single a-helix; DYNLL, LC8 dynein light chain; HMM, hidden Markov model; PSSM, position-specific

scoring matrix.

Perhaps the most complicated issue is the prediction of
pair preferences in heteromeric coiled coil structures. This
was addressed for leucine zipper interactions with a method
scoring all pairwise interactions regarded important in part-
ner specificity of dimeric coiled coils (69). The authors con-
cluded that taking into account dd', da’, ad', ga' and de’'
interactions in addition to the more commonly considered
ge' and aa’ pairs increases the accuracy of the predictions.

Occurrence of coiled coils in living organisms

Coiled coils are present in all domains of life indicating the
evolutionary success of a simple yet versatile architecture.
They are clearly more abundant in eukaryotes suggesting that
they play a role in the increasingly complex intracellular pro-
cesses of eukaryotic cells. They are predicted in ~10% of
all eukaryotic proteins and less than 5% in prokaryotes. A
comprehensive database was collected for long coiled coils
(defined as longer than 70 residues in one chain) in 22 organ-
isms (70). The only long coiled coils are SMC proteins (that
belong to the ABC type ATPase family and are involved in
structural maintenance of chromosomes) that are conserved
in all kingdoms. Interestingly, no coiled coil proteins with
longer than 250 residues were identified in all but one of the
eubacterial genomes. As expected, archaeal genomes contain
all size class of coiled coil proteins similar to eukaryotes. In
addition to the SMC proteins, additional long coiled coil
domains present in prokaryotes include proteins involved in
cell growth and morphology. Several of them have been
shown to have a cytoskeletal function and some have been
proposed to have an IF-like character (71). Shorter coiled
coils that are shared by prokaryotes and eukaryotes are trans-
lation IF2s and AAA* ATPases. Coiled coil containing
motor proteins (myosins, kinesin, dyneins), membrane teth-

ering and vesicle transport proteins are specific for eukary-
otes only.

Long coiled coil proteins are four-fold more frequent in
the animal kingdom and could reflect early events in the
divergence of plants and animals. It has been speculated that
some of these coiled coils and their interactions can underlie
metazoan differentiated cell and tissue structure (72). Coiled
coil sequences limited to mammals include keratins, several
centrosomal proteins and blood clotting factors to name just
a few. A large number of coiled coil domain containing plant
proteins have unknown function. Plant-specific coiled coils
include protein kinase and actin binding proteins (73).

A very recent genome-wide survey of coiled coil domains,
based on known SCOP superfamilies and hidden Markov
models (SpiriCoil database), allowed analysis of coiled coil
evolution; it is suggested that coiled coils have arisen inde-
pendently de novo well over a hundred times and coiled coils
with almost all oligomeric states were present in the last
universal common ancestor of life (65). Wild distribution of
coiled coil proteins in living organisms together with their
functional diversity underlies the requirement for evolution-
ary selection of robust but dynamic and highly adaptable
coiled coil structure; in fact, they possess these properties.

Functions of coiled coils

High prevalence of coiled coil domains across the evolution-
ary tree of life indicates their significance in many key bio-
logical processes. The fact that such a simple architecture
could participate in several distinct cellular functions suggest
that the rules governing the partner selection of the helices
are both complex and easily tunable by evolution as new
functions could arise either by tinkering with existing struc-
tures or the emergence of novel ones not negatively inter-
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fering with those already present. Their most obvious
function is to act as a ‘molecular Velcro’ to hold together
polypeptide chains and subcellular structures. They are pres-
ent in all classes of proteins — fibrous, globular and mem-
brane proteins. Historically, the a-fibrous proteins were first
recognized as coiled coils. The MTK proteins (myosin, tro-
pomyosin and keratin) are the archetypes of long parallel
dimeric coiled coils and their sequences were used to devel-
op the first coiled coil prediction method, COILS (4).

Currently, myriad and still expanding functions can be
assigned to coiled coils and they are still expanding. Coiled
coils are the most frequent dimerization, multimerization
motifs. Long coiled coils have mostly structural and mechan-
ical roles. They form rod-like rigid, but often discontinuous,
flexible structures that could assemble into fibers, mesh-
works and scaffolds. They are ideally suited to form kerati-
naceous structures, extracellular matrix components (e.g.,
laminin, fibrinogen), intermediate and several other types of
intracellular filaments (e.g., muscle thick filaments, flagel-
lins). The extracellular cartilage oligomeric matrix protein
(COMP) is a five-stranded coiled coil that has one of the
highest thermal stability of all proteins (74). They can also
function as molecular spacers (e.g., in seryl-tRNA synthe-
tase). One of the longest flexible spacer coiled coil domain
(230 nm) was identified in CENP-E kinesin that provides a
flexible, motile tether linking kinetochores to dynamic spin-
dle microtubules (75). Coiled coils could act as molecular
switches or ‘zippers’ in hemagglutinin, in the HIV gp120
protein and in other host-pathogen interactions. They could
be organizers in subcellular structures such as in the cyto-
skeleton, microtubule organizing center, nuclear pore com-
plex, chemotaxis machinery and so on. Coiled coil domains
together with ATPase or GTPase domains often function in
folding and repair; e.g., prefoldin chaperon in protein folding
(76), topoisomerases and helicases in DNA remodeling (77,
78). Transcription elongation is regulated by Hexim which
has a bipartite flexible coiled coil domain (79). Coiled coil
motifs can also homodimerize and heterodimerize membrane
receptor and channel proteins (80).

The dynamic nature of many coiled coils would allow
them to interact with various partners and participate in mul-
tiple complexes. Some coiled coil predicted sequences are
not stable enough to dimerize under physiological conditions
and they need some chaperonin-like assistance to zipper up;
the DYNLL hub protein has been suggested to act like a
coiled coil dimerization engine (81, 82). By regulating the
stability of coiled coil domains, DYNLL could regulate and
fine-tune the activity of the binding partner.

The structural simplicity and reversible nature of coiled
coil associations render them a promising target for phar-
macological interference (successfully exemplified by viral
fusion inhibitors) (83). Recently, an interesting biological app-
lication, use of coiled coil proteins for therapeutic purposes
as drug delivery systems has been put forward; vitamins and
the anticancer drug cisplatin have already been shown to
bind to the large internal cavities in the pentameric coiled
coil domain of COMP and the tetrameric right-handed coiled
coil of the Staphylothermus marinus RHCC protein (84).

Variant design

Although usually not aimed at understanding structural evo-
lution, design studies provide a wealth of information on
how amino acid changes affect coiled coil structure and
dynamics and thus the results could easily be interpreted
within an evolutionary context in a model system. Coiled
coils are one of the most successful subjects of protein design
and engineering. Analysis of the side chain-side chain inter-
actions in the hydrophobic core of existing structures led to
quick recognition of some basic packing rules in these struc-
tures (28). Varying Ile and Leu in the a and d positions in
the GCN4 leucine zipper led to dimeric (GCN4-p-IL, having
Ile in @ and Leu in d positions), trimeric (GCN4-p-1I) and
tetrameric (GCN4-p-LI) forms (28). In agreement with these
preferences, the retro version of the GCN4 leucine zipper
forms a tetramer having Leu in @ and Ile in d positions (85).
For the purpose of this review, it is important to note that
other designed peptides, such as p-VI, p-VL, p-LV and p-LL
exhibited multiple oligomerization states (28).

It is believed that an Asn in leucine zipers is required to
make the dimeric form preferred. This is based on the H-
bonding interaction formed between two Asn residues in a
positions (consider also the dynamic nature of this interaction
mentioned above). Moreover, steric factors also govern mul-
timeric state as both bulky hydrophobic and large hydrophilic
side chains prefer dimer formation as they might not easily
accommodate the larger interiors in larger assemblies. The
designed peptide coil-Ser forms a trimer with two parallel
strands, which was in part rationalized on the basis of the
presence of a Trp residue in the first a positions which cannot
fit into a single layer in a trimeric core (86). A computational
approach to distinguish between dimeric and trimeric coiled
coils was also developed in the mid-1990s (8) based on ami-
no acid preferences observed in known dimeric and trimeric
structures. Somewhat less is known about the role of ionic
interactions in coiled coils. However, there are successful
designs where partner selection could be directed by engi-
neering salt bridges favorable only in the desired structure.
Rational engineering of the GCN4-p-LI peptide resulted in
a heterotetrameric structure where the two constituent strands
did not form coiled coils in the absence of the other one
(87). Experience with such systems suggests that avoiding
unfavored interactions is more important than the formation
of favored ones (8). Coiled coil peptides have also been
designed to form fibers (both amyloid and non-amyloid)
upon external triggering by pH or temperature, or simply
upon mixing (88).

Relation of coiled coils to other structural
motifs

Although coiled coils have distinct characteristics making
them a unique conformational state, they share similarities
with other types of protein structural elements. Instances of
knobs-into-holes packing has been observed in several inter-
helical interactions previously not considered as coiled coils
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(89). The distinguishing feature of coiled coils in this regard
is the occurrence of full layers with this interaction in a con-
secutive manner along the helices. This restriction still en-
ables the recognition of several transmembrane helical inter-
actions as coiled coils in the photosynthetic reaction center
by the program SOCKET, although not consistently between
the same pairs of homologous helices in the different struc-
tures examined (54). This means that this type of interaction
is not a key feature in these transmembrane segments.

Coiled coils are often viewed as a specific set of intrin-
sically disordered proteins (IDPs), defined as having no well-
defined structure in their physiological state (90). Coiled
coils meet this criterion in the sense that they are unfolded
as monomers as specifically observed for several designed
heteromeric structures (see above). Moreover, coiled coil
sequences have been noted to be predicted to be disordered
by IDP prediction algorithms (91). A prominent example of
mispredictions is provided by the trimeric coiled coils of
autotransporter proteins, having an unusual heptad repeat
with asparagine in the d position (29). In general, cross-pre-
dictions have been found common in a systematic survey
involving several coiled coil and IDP prediction algorithms
(56). This can be rationalized on the basis of similar amino
acid composition of coiled coils and IDPs, the most striking
differences being in the abundance of Leu, Pro and Gly
(Figure 4).

The recently identified CSAH structural motif (92, 93)
also often overlaps with predicted coiled coil segments. More
importantly, in several proteins CSAHs are localized in posi-
tions of coiled coils in homologous sequences (93), indicat-
ing that they might have been interconverted during
evolution. The notion that coiled coils can be converted to
distinct structural classes is reinforced by the designed pep-
tide ccf3, which forms amyloid-type aggregates at elevated
temperatures (12). This is in accordance with some obser-
vations showing that amyloid formation is an inherent prop-
erty of polypeptide chains (94, 95).

Coiled coils have also been used as initial templates to
design model transmembrane helices, although it must be

noted that the resulting sequences were far from the tem-
plates used and the exact mode of interaction of the helices
within the membranes could not be reliably identified (96,
97).

Coiled coils and protein structural evolution

Protein structural evolution is a process different from ration-
al protein engineering mainly because evolution does only
allow specific types of sequence alteration constrained by the
need of a functional or at least harmless variant of the protein
in question. Thus, reconstructing evolutionary events or test-
ing possible routes should take this consideration into acc-
ount, as is done in studies resurrecting ancient proteins (98).

Detection of evolutionary relationships between proteins
relies on comparisons of their sequence and structure. Coiled
coils represent a special case in this regard as their relatively
simple repeating sequence suggests that such structures
might have emerged multiple times during protein evolution,
meaning that not all present coiled coils are homologous.
Even similar coiled coils might be the result of convergent
evolution. Indeed, recent investigations of protein superfam-
ilies suggest the emergence of coiled coils over 100 times
independently (65). This is a feature most probably common
with other low complexity protein segments such as IDPs
and is consistent with the increased abundance of coiled coil
proteins in archaea and eukaryotes (also having an excess of
IDPs relative to bacteria) again justified by phylogenetic
analysis (65). By contrast, the observations derived from
design studies suggest that some coiled coils with different
topologies might be more closely related than expected based
on strict sequence comparisons. To further complicate the
issue, finding different structural segments in the place of
coiled coils in homologous proteins does not necessarily
mean that the two segments are related as they could have
arisen by independent insertion-deletion events not neces-
sarily detectable even at the DNA level. Nevertheless, even
if it might not be always feasible to reconstruct the exact
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Figure 4 Amino acid abundance in IDPs, coiled coils and CSAHs.

IDP sequences were taken from DisProt, coiled coils from a database generated by running SOCKET on structures listed in the PDB
SELECT database, CSAHs from segments identified in Ref. (92). Data taken from Ref. (56).
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evolutionary history of a coiled coil, investigating hypothe-
ses on its possible structural transitions can still be of sci-
entific value.

In addition to point mutations and small insertions altering
a few amino acids, the repetitive nature of coiled coil sequen-
ces could also allow repeat expansion/contraction events
affecting larger segments. There are several other types of
helical proteins composed of repeated units with variations
(99), but coiled coils differ from these because of having a
relatively short repeat unit, the heptad/hendecad (although
any multiples of these could serve as a ‘unit’ for expansion)
and that addition of units would elongate the constituent hel-
ices rather than inserting a new, more or less independent
structural module. Variations in coiled coil sequences might
result in superhelical structures differing in length, geometry,
partner specificity and/or dynamics from the parent mole-
cule. Insertions might result in distortion of the repeat pattern
by inserting a skip, a stutter or a stammer, all of which are
compatible with coiled coil formation but alter the local
geometry of the superhelix. Mutation of the core residues
could affect stability, oligomeric state and together with the
alteration of ionic interactions might alter partner selection
and strand orientation. Based on the analysis of natural var-
iants, it has been suggested that there is a delicate balance
governing coiled coil geometry and stability between the
deviation from the optimal helical geometry and helix-helix
packing interactions (4). Thus, it is expected that there are
relatively short paths of small evolutionary changes that
interconvert coiled coils with different topologies while
keeping superhelical geometry at each step. Such paths might
proceed through states where mixtures of different forms

and/or relatively unstable structures exist. These nevertheless
might be functional if one of the forms is capable of fulfilling
a task beneficial for the organism. Dynamically interconver-
ting ensembles are a manifestation of intermolecular dyna-
mism, an extension of intramolecular flexibility that is
considered a key factor in protein structural evolution (11).
Coiled coils might also be formed conditionally, e.g., upon
pH change just like in influenza hemagglutinin and HIV
gp120, and such transient or conditional structures might be
stabilized or destabilized to yield new variants. Discrepancies
in coiled coil prediction might reflect different propensities
of protein segments to form coiled coils (Figure 5A). Intrin-
sic disorder of monomers of coiled coils is an important
property for molecular recognition; the coiled coil propensity
together with considerable structural plasticity could be high-
ly advantageous to evolve novel hetero coiled coils and multi-
chain coiled coil complexes.

Coiled coil-IDP interconversion might proceed through
different courses. Leu and Pro, two of the residues exhibiting
large differences in their abundance in these two structural
classes, are encoded by neighboring boxes in the standard
genetic code. Thus, these residues can be easily interconver-
ted by point mutations and several such mutations might be
sufficient to convert coiled coils to IDPs or in reverse.
Although this would be an attractive ‘direct route’ between
the two types of structures, segments predicted to be both
coiled coils and IDPs have an amino acid distribution resem-
bling those of CSAHSs, although not always recognized as
such by the current algorithms. This suggests that an indirect
route might exist proceeding through the CSAH stage. CSAHs
are indeed similar, in several aspects, to coiled coils and, in

A AmphiSearch GPEGCVVAAVAA KE: XXXX XXXX EGEAMRALRQOKGRAAMG 13§
MarCoil GPEGCVVAAVAARSEREX XXX XXX XXX AXAAXAXXXXX XXX XXXX AMG 139
MultiCeil GPEGCVVAAVAARSEKEQLQALNDRFAGY IDKVRQL EGEAARLRO AMG 139
Coils GPEGCVVAAVAA 139
AmphiSearch ELYEREVREMRGAVLRLGAARGOLRLEQEHLLEDIAHVRORLDEEARQREEAEAAARALA 199
MarCoil ELYE LA 199
MultiCoil ELYERE 199
Coils ELYEREVRE RLGA x 199
AmphiSearch FAQEAREAARVELOKKAQALQEECGYLRRHHQEEVGELLGQI 240
MarCoil FAQE: YLRRHHQEEVGELLGQI 240
MultiCoil AAXXXXX xx VGELLGQI 240
Coils AAAAXXAXXXXAAXXXXXXXXXXAK EVGELLGQI 240
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Myosin head-like
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Figure 5 Variations for coiled coil recognition and occurrence in proteins.
(A) Results of coiled coil predictions with different algorithms on the same sequence. A segment of the mouse neurofilament heavy peptide

(SwissProt ID: NFH_MOUSE) is shown as an example, residues predicted from coiled coils are masked by ‘x’.

Prediction results are taken

from Ref. (56). (B) Domain composition of three human myosins. Assignments are based on SwissProt annotations plus CSAH detection
(93) as well as IUPred (106). Note that analogous position of segments does not necessarily imply homology.
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other ones to IDPs, and it is highly probable that present-
day CSAHSs in several proteins such as myosin VI and X
stem from coiled coil segments found in their place in several
other myosin families (Figure 5B) (100, 101). The fact that
some orthologs of certain CSAHs or coiled coil domains,
even within the vertebrate clan are interchangeable, support
the above view (93). Regarding the structural evolution of
the coiled coil motifs it would also be possible that they
evolved from the rearrangement of existing a-helices in pro-
teins; however, the recently presented SpiriCoil analysis of
coiled coil structural domains across all sequenced genomes
argues against this hypothesis (65).

The possibility of coiled coils to change their oligomeri-
zation state during evolution looks plausible in the light of
numerous design studies showing the feasibility of this with
just a few amino acid changes. By contrast, data in the
recently compiled SpiriCoil database show that coiled coils
have essentially not undergone such alterations except the
assembly of two two-stranded coiled coils to form a four-
handed superhelix (65). However, the observation that some
CSAHs might have emerged from coiled coils can be regard-
ed as an example of more recent changes in the oligomeri-
zation state (102).

Last but not least, it is important to stress that using coiled
coils as models to understand aspects of protein structural
evolution does not mean that the changes that might be
observed had indeed occurred during evolution. Proteins
exist in an environment within organisms where a multitude
of selection constraints are in operation that might preclude
structural transitions that can be easily modeled experimen-
tally. Actual evolutionary routes from one state to the other
might be highly complex and require detailed phylogenetic
studies to get uncovered. Thus, our proposed network of
interconverting helical structures (Figure 6) might be plau-
sible during protein evolution but it might well be that some
of the paths have been never taken by natural sequences.

Expert opinion and outlook

Despite the relative simplicity of their sequences, coiled coils
constitute an extremely versatile class of proteins both in
terms of structure and function. They provide one of the best-
understood examples of the links between sequence and
structural features, knowledge which has been extensively
used in successful protein design studies. This growing
knowledge allows the design of structural transitions
between coiled coils with various topologies and even also
leading to other structures with step-by-step alterations keep-
ing some functionality at each step. The recent discovery of
a catalytic site within a coiled coil motif (103) and obser-
vations that poorly structured proteins can act as enzymes
(104) provide the possibility of devising and performing
functional assays to explore such evolutionary scenarios. We
believe that along with recent suggestions (11), protein
dynamics — both internal motions and dynamic association
with different partners — is one of the key factors governing
structural and functional transitions. Thus, dynamic aspects

Pitch,
handedness

+
/ Coiled
coils

Strand *

number Dynamic
-+ -
and Length features

orientation

Membrane

Partner
specificity

Helical

bundles

Figure 6 A possible depiction of suggested interrelationships of
coiled coil features as well as coiled coils and other structural motifs
in the course of protein structural evolution.

Routes that might be less prevalent are shown with hollow arrows.

of proteins, including coiled coils, should be considered in
the design and considered in the evaluation of the variants
investigated.

We expect that our understanding of the relationships of
protein sequence, structure, dynamics and function will be
facilitated by studies modeling possible evolutionary transi-
tions in proteins. For such investigations, coiled coils con-
stitute well-characterized and ready-to-use systems of vary-
ing complexity, rendering them ideal targets.
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