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Abstract

The fragile X family of genes encodes a small family of
RNA binding proteins including FMRP, FXR1P and FXR2P
that were identified in the 1990s. All three members are
encoded by 17 exons and show alternative splicing at the 39
ends of their respective transcripts. They share significant
homology in the protein functional domains, including the
Tudor domains, the nuclear localization sequence, a protein-
protein interaction domain, the KH1 and KH2 domains and
the nuclear export sequence. Fragile X family members are
found throughout the animal kingdom, although all three
members are not consistently present in species outside of
mammals: only two family members are present in the avian
species examined, Gallus gallus and Taeniopygia guttata,
and in the frog Xenopus tropicalis. Although present in many
tissues, the functions of the fragile X family members differ,
which are particularly evident in knockout studies performed
in animals. The fragile X family members play roles in nor-
mal neuronal function and in the case of FXR1, in muscle
function.
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Introduction

The fragile X family of genes consists of three family mem-
bers FMR1, FXR1 and FXR2 based on homology of the
conserved domains. The gene encoding the first family

member, FMR1, was isolated by positional cloning of the X
chromosomal region containing the inducible fragile site in
individuals with fragile X syndrome (1). Cloning of the gene
revealed the molecular defect to be a trinucleotide (CGG)
repeat expansion in exon 1 (2). Normally, individuals have
less than 45 repeats with an average around 30 repeats; how-
ever, expansion to greater than 200 repeats leads to aberrant
methylation of the cytosines, leading to recruitment of
histone deacetylases with consequent transcriptional silenc-
ing of the FMR1 locus (3). Thus, individuals with fragile X
syndrome do not express transcript from the FMR1 locus.
To identify the Xenopus laevis ortholog of FMR1 for further
use in developmental studies, the human FMR1 gene was
used to screen a cDNA library prepared from Xenopus laevis
ovary. In addition to identifying the Xenopus laevis ortholog
of FMR1, the first autosomal paralog FXR1 was discovered
because of its sequence similarity to FMR1 (4).

In contrast to FMR1, which is encoded on the X chro-
mosome, FXR1 is encoded on human chromosome 3 and an
FXR1 pseudogene is on human chromosome 12 (5, 6). The
third family member FXR2 was discovered in a yeast two-
hybrid screen devised to identify proteins that interacted with
the protein product of FMR1, FMRP (7). FXR2 is encoded
on human chromosome 17 (7). The protein products of the
FXR1 and FXR2 loci, FXR1P and FXR2P, respectively, are
very similar in overall structure to FMRP with approximately
60% amino acid identity (8). In addition, all three family
members share 73%y90% amino acid identity over the first
half of the protein with greater divergence in the C-terminal
regions encoded by exons 14y17 (6).

Genomic sequence and protein domain

structures of the fragile X family of proteins,

from 5’ to 3’

The genes encoding the fragile X family members are com-
prised of 17 exons (6) (Figure 1). The first exon of the FMR1
gene encodes the CGG repeat upstream of the start site of
translation (1). Both FMR1 and FXR2 have CGG repeats;
however, the repeat tracts are much shorter in FXR2 (6). The
average size of 59UTRs among human genes has been esti-
mated to be 200 nt (19), although an average size of 125 nt
has also been suggested (20). By either estimate, the 59UTRs
of the fragile X family members are relatively large: 840 nt
for FXR1 (NM_001013439), 366 nt for FXR2 (NM_004860)
and 230 for FMR1 (NM_002024.5), although it is important
to note that this size will vary based on the number of
repeats. In addition, there are alternative start sites for tran-
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Figure 1 Gene structures and corresponding protein domains of the fragile X family members.
Exons are numbered 1–17 and reported splice site usage is indicated by lines below the exons (9–11). Exons 1–10 of all three proteins
encode for similar domain structures. Since FXR1 and FXR2 do not have sequence equivalent to exons 11 and 12 of FMR1, the numbering
diverges: in FXR1 and FXR2, the NES is encoded by exon 12; the RGG box in FXR1 is encoded by exon 13 and the nucleolar targeting
sequences by exons 14 and 15 (6). Td- Tudor domains (12–14), NLS-nuclear localization sequence (15), cc- coiled-coil domain (8),
P-phosphorylation sites (16), NES-nuclear export sequence (15, 17), NoS-nucleolar targeting sequence (11, 18).

scription of the FMR1 mRNA, which will affect the size and
sequence of the 59UTR (21). Initial examination of the pre-
dicted amino acid sequence of FMRP indicated that it con-
tained two KH domains and an RGG box, suggesting that it
was an RNA binding protein (22, 23) (Figure 1).

Structural studies of the N-terminal domain in all three
family members revealed a repeat of two domains closely
resembling the Tudor domain of the SMN protein (12, 14,
24). Tudor domains have many functions, including protein-
protein interactions (25) and binding methylated lysines,
which might facilitate targeting of the fragile X family pro-
teins within the nucleus (12). Immediately C-terminal to the
Tudor domains is a non-classical nuclear localization
sequence (NLS) that is able to direct entry into the nucleus
(22, 15). All three proteins have been observed in the nucleus
of hippocampal neurons (26).

The fragile X family of proteins have a coiled-coil domain
that mediates homo-dimerization, as well as heterodimeri-
zation among the three family members (8). This same
region has also been described as containing a helix-loop-
helix motif (24). In addition, all three proteins have a KH1
domain and a KH2 domain, which are very distinct from one
another (4, 23, 27, 28) (Figure 1).

Interestingly, exons 11 and 12 are unique to mammalian
FMR1: exon 11 is constitutively included in all transcripts
while exon 12 is alternatively spliced (9, 29). Accordingly,
sequence corresponding to exons 11 and 12 is NOT found
in FXR1 and FXR2 (4). Nor are Exons 11 and 12 present in
the following FMR1 orthologs: Drosophila (30); zebra finch
FMR1 (31), chicken FMR1 (32), zebra fish FMR1 (33) and
Xenopus tropicalis FMR1 (34).

The fragile X family members are all primarily cytoplas-
mic; thus, it is not surprising that in addition to an NLS, they
have a Rev-like nuclear export sequence (NES) (15, 17, 35).
Upon removal of the NES or by blocking RNA export,

FMRP can be observed accumulating in the nucleus (15, 17,
35, 36). Treatment of transfected cells with leptomycin B to
block nuclear export through the CMR1/exportin 1 pathway,
resulted in the nuclear accumulation of all three fragile X
family proteins, suggesting that they use the same mecha-
nism for nucleocytoplasmic shuttling (37).

At the time that FMRP was characterized, several RNA
binding proteins were found to contain an arginine- and
glycine-rich domain comprised of a cluster of the tripeptide
repeat called the RGG box (38, 39). The RGG box of FMRP
was described as bearing a striking similarity to those found
in the RNA binding proteins fibrillarin (40) and hnRNP A1
(23, 41). FXR1P was also described as having an RGG box
(4), although FXR2 does not (7). Two groups working
independently found the RGG box to be the high affinity
RNA binding site, recognizing intramolecular G-quadru-
plexes that were present in brain mRNAs, including the
FMR1 mRNA (42, 43). G-quadruplex-like structures were
subsequently found in FMRP-associated mRNAs encoding
amyloid precursor protein (44), MAP1B (45, 42), PSD95
(46–48) and semaphorin 3A (42, 49). Darnell and colleagues
found that FMRP was unique in its ability to bind G-quad-
ruplex RNA and that FXR1P, FXR2P and the Drosophila
ortholog of FMRP could not, suggesting that the RGG box
plays a non-redundant role in the pathophysiology of the
disease (28). Since the RGG box plays a critical role in
FMRP function, it is important to understand how it is reg-
ulated. Stetler and colleagues showed that the RGG box of
FMRP is methylated on four of the arginines comprising the
RGG box and that in vitro methylation with protein arginine
methyl transferase 1 (PRMT1) inhibited binding to G-quad-
ruplex RNA (50, 51), suggesting one mechanism for regu-
lating RGG box function.

Evidence of the divergence between FMRP and the auto-
somal paralogs is apparent in the identification of two nucle-
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olar targeting sequences (NoS) in the C-terminal regions of
FXR1P and FXR2P that are not present in FMRP (18)
(Figure 1). The Rev-like, arginine-rich nucleolar targeting
sequence of FXR1P was able to target to the nucleolus (18).
In addition, FXR2P had been demonstrated to shuttle
between the cytoplasm and the nucleolus (37).

All three fragile X family members contain 3’untranslated
regions (39UTRs). In FMR1, the coding sequence is ;1.9
kb w(9) and NM_002024.5x and the 39UTR is ;2.3 kb in
size, suggesting an important function. 39UTRs have been
shown to direct subcellular localization (52) or facilitate
microRNA (miRNA)-mediated regulation (53). The FMR1
transcript has been reported to be regulated by miRNAs (54),
although this was not observed in other systems (55, 56). In
contrast, there is strong support for miRNA-mediated regu-
lation of the autosomal paralog FXR1 (55). In the initial
characterization of FXR1, the 39UTR of human FXR1 was
determined to be 90% identical to the 39UTR of FXR1 in
Xenopus, over the 238 nucleotides examined, suggesting that
this region may have been conserved for an important func-
tion (4). In contrast, comparison of the 39UTRs of human
and Xenopus FMR1 transcripts over 280 nucleotides showed
them to be only 42% identical (4). Subsequently, Cheever
and colleagues found FXR1 expression to be regulated at the
level of translation by miRNAs 92b, 363 and 367, which
bind the same site in the 39UTR of FXR1 (55).

Spliceforms of the fragile X family members

FMR1 isoforms

Extensive alternative splicing has been demonstrated for the
FMR1 transcript that could potentially generate 20 protein
isoforms (9, 29). Only the isoforms that have been exten-
sively characterized will be explored here. The full length
transcript including all exons is described as isoform 1;
removal of exon 12 leads to creation of isoform 7 (9, 29).
As described above, exon 12 is present only in the mam-
malian homologs of FMR1. However, approximately 80% of
mature brain FMR1 transcripts lack exon 12 due to alterna-
tive splicing (29). At the biochemical level, exon 12 encodes
the most hydrophobic region of FMRP (9) and its presence
in recombinant proteins leads to marked instability (28),
although what this means in a cell is unknown.

Isoforms lacking exon 14 of the FMR1 mRNA have been
described in brain. Because exon 14 encodes the NES, its
removal from FMRP leads to increased nuclear retention (15,
17, 36, 35), although the role of such a nuclear-retained
FMRP is unknown at this time. Interestingly, it should also
be noted that exclusion of exon 14 causes a q1 frameshift,
leading to a novel but truncated C-terminus that no longer
encodes an RGG box (15, 17, 36, 35).

Exon 15 of the FMR1 mRNA can also be alternatively
spliced because there are alternate 3’ acceptor sites present
(9, 10). Exon 15 encodes the highly conserved phosphory-
lation sites (16, 57) and the RGG box. Three alternative
splice acceptor sites are upstream of the RGG box (Figure
1). Consequently, their usage maintains the RGG box but

truncates the N-terminally encoded region of exon 15 (Figure
1). All three exon 15 splice forms have been characterized
at the biochemical level (58) but not in cells. The RGG box
is part of a 3–4 strand antiparallel beta sheet which functions
as a platform for nucleic acid interactions in other RNA
binding proteins (58). Isoform 3, the isoform with the largest
N-terminal deletion in exon 15, is predicted to have a trun-
cated first strand, significantly perturbing the side chain con-
formations of the RGG box arginines (58) and likely
modulating RGG box function. FMRP has been shown to
associate with its own mRNA (27), specifically binding the
G-rich region of the RNA, which encodes the RGG box
through its RGG domain (43). Binding of the G-rich RNA
regulates splice site usage in exon 15 (59). Thus, there is
evidence that FMRP regulates splicing of its own mRNA.

FXR1 isoforms

Regarding the autosomal paralogs, there have been no
reports of alternative splicing of FXR2. In contrast, evidence
for alternative splicing of the FXR1 transcript was presented
in the first description of the gene in 1995 (4). FXR1P has
seven isoforms (6, 60) including one cardiac-specific isoform
(61) and three muscle-specific isoforms (60). Studies in mus-
cle tissues as well as in murine myoblastic cell lines that
were induced to differentiate into myotubules, demonstrated
that the common isoforms of FXR1P that are present in neu-
rons and cell lines were replaced by novel longer isoforms
of 81 and 84 kilodaltons in size (61). The longer isoforms
contain the NOS2 sequence indicated in Figure 1, although
a specific role for FXR1P in the nucleolus has yet to be
determined. For a more detailed description of the isoforms
of FXR1 and their tissue specific expression, please see (18).

Fragile X family members in non-mammalian

species

Proteins in the fragile X family are not unique to mammals,
but seem to be unique to animals. An ortholog was searched
for in the yeast Saccharomyces cerevisiae; one yeast protein
was shown to have a KH domain with 50% homology to the
second KH domain of FMRP but no yeast protein has yet
been named an FMR ortholog (62). Non-mammalian species
expressing an FMRP ortholog include marine snails Aplysia
californica (63) and a Cnidarian species Hydractinia echi-
nata (64), although Caenorhabditis elegans appears to have
lost the gene, as no FMRP ortholog is present (64). An
FMRP ortholog has been found in the planarian species
Dugesia japonica (65, 66) and Schmidtea mediterranea
(Winograd Zayas and Newmark, unpublished observations).
Two avian species have been shown to express FMRP ortho-
logs as well, the chicken Gallus gallus (32) and zebra finch
Taeniopygia guttata (31).

Examination of FMRP orthologs in non-mammalian spe-
cies has helped to elucidate the role of this protein in regu-
lation of cellular and developmental function. A key feature
of this protein is the conservation of the KH and RGG
domains, establishing FMRP’s evolutionarily conserved role
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of RNA binding (28). The chicken ortholog was shown to
bind RNA, a function that required the integrity of the FMRP
RGG domain (32). The planarian D. japonica FMRP has
been localized to ribonucleoprotein-containing stress gran-
ules and neuronal granules in an RNA-binding fashion, sug-
gesting the protein is conserved functionally in a larger scale,
as well, in neuronal regulation (65).

Intriguingly, FMRP expression has been observed to
change during development in a cerebral neural network crit-
ical for song learning in the zebra finch T. guttata (31). A
role for FMRP in learning and memory is corroborated in A.
californica, where FMRP affects both pre- and postsynaptic
regulation of long-term depression (LTD), suggesting its
function in establishment of long-term memory (63). These
studies suggest that just as in mammals, FMRP is critical for
normal learning and memory, possibly by precise spatio-
temporal regulation of its bound RNAs, particularly during
development and maintenance of neural circuits. Excitingly,
the expression of FMRP can be observed during develop-
ment in the zebra fish Danio rerio, an optimal organism for
monitoring genetic changes during development (33); a
knockout animal has recently been generated and promises
further insight (67).

Focusing more on the cellular localization of FMRP, the
NLS of FMRP is conserved across multiple species, albeit
with a missense alteration in the pufferfish Takifugu rubripes
and Tetraodon nigroviridis, which may or may not affect the
protein’s function (68). In the frog Xenopus laevis, FMRP
can bind mRNA while still in the nucleus (36).

Another role for FMRP may be in orchestrating neurons
required for motor effects. The brain region aforementioned
in T. guttata is also critical for birdsong production, as a
premotor nucleus; it would be interesting to characterize
motor changes in a finch that does not express FMRP in this
brain region. In fact, a motor role for FMRP has been shown
in the cricket Gryllus bimaculatus. Absence of the protein
has no effect on wing morphology but does result in atypical
wing stridulation (wing rubbing to produce calls), likely due
to abnormal wing posture (69). This study additionally
showed altered circadian locomotor activity in the knock-
down cricket; a circadian role for FMRP has also been
observed in regulation of locomotor activity of the fly D.
melanogaster (70). The D. melanogaster ortholog of FMRP
is intriguing to study because the fly has one FMR family
member that comprises features of all three human family
members, FMRP, FXR1, and FXR2 (30). Studies in Dro-
sophila were the first to show that FMRP associates with
components of the RNA interference (RNAi) pathway, a
gene silencing mechanism triggered by the presence of dou-
ble-stranded RNA (71, 72). Interestingly, FMRP has only
subtle effects on RNAi pathway efficiency and is not
required for small interfering RNA (siRNA) biogenesis (71,
72). Genetic evidence in fly suggests that the siRNA path-
way and FMRP converge to regulate larval crawling behav-
ior and synaptic growth during development (73, 74). Studies
in Drosophila also gave insight into the role of FMRP at the
neuromuscular junction, demonstrating that in the absence of
FMRP, the axons in the neuromuscular junction display over-

elaboration and an increase in synaptic boutons and branch-
ing (75). In addition, loss of FMRP results in a midline-
crossing defect in the beta-lobe of the mushroom body struc-
ture, which functions analogously to the hippocampus (76,
77). More discussion of the specific contributions made by
work in Drosophila is reviewed elsewhere (78).

Functions of the fragile X family members

All of the family members

At the molecular level, FMRP, FXR1P and FXR2P form
homo- and hetero-dimers (8). In addition, all three are pri-
marily cytoplasmic, associate with ribosomes by immuno-
electron microscopy (26) and are also found in granules (79).
All three family members also associate with microRNA
(miRNA) pathway components, including precursor
miRNAs, mature miRNAs, argonaute proteins, which are key
for mediating miRNA-regulated expression and Dicer, an
endonuclease that processes precursor miRNAs (80).

Regarding cell type specificity, there is overlapping
expression in human tissues, especially the nervous system
(81). In differentiated neurons in adult human brain, a com-
mon expression pattern was observed for FMRP and FXR1P
in the cytoplasm. In contrast, differential distribution of the
family members was found in fetal brain, suggesting that the
fragile X family of proteins, although structurally very sim-
ilar, may have independent functions during embryonic and
adult life (82).

FMRP

Although each of the family members is predicted to be an
RNA binding protein, it is only FMRP whose bound mRNAs
have been extensively characterized (45, 83). FMRP is esti-
mated to bind 4% of brain mRNAs (27, 45), activating the
translation of some mRNAs, while suppressing the transla-
tion of others. The role of FMRP as a regulator of translation
was first suggested when FMRP was observed on polyribo-
somes (84, 85). Subsequent identification of the mRNAs on
polyribosomes showed that their levels varied significantly
depending on whether FMRP was present or absent (45),
strongly suggesting that FMRP both suppresses and enhances
the translation of subsets of mRNAs. Importantly, a mecha-
nism for how FMRP modulates translation had been lacking
until recently. FMRP has been shown to activate the trans-
lation of some of its bound mRNAs (86, 87). In one example,
binding of FMRP to the 59UTR of the SOD1 mRNA stabi-
lizes a novel secondary structure (SoSLIP) to expose the ini-
tiator ATG codon, leading to enhanced translation (86).
However, it is unknown how FMRP activates the translation
of mRNAs that do not contain the SoSLIP motif.

FMRP also suppresses translation of some of its bound
mRNAs; in vitro binding of FMRP to mRNAs repressed pro-
tein synthesis in translation assays through an unknown
mechanism (88, 89). One way to mediate translation repres-
sion is through the miRNA pathway (90). FMRP was recent-
ly been shown to be required for miRNA-mediated
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suppression of NR2A (91). However, the molecular basis for
how FMRP utilizes the miRNA pathway for translation reg-
ulation is unknown.

Although FMRP binds a large collection of mRNAs, it
does not regulate the translation of all of them (45). In fact
one of the first mRNAs identified as being bound by FMRP
was its own mRNA, FMR1 (27); however, FMRP does not
regulate the translation of that mRNA (59). FMRP has also
been shown to regulate the stability of one of its bound
mRNAs PSD-95 (92).

With regard to function, in the case of fragile X syndrome,
FMRP is clearly required for the development of normal cog-
nition. Although the autosomal paralogs are present in brain,
they cannot compensate for the absence of FMRP (81). This
was recently demonstrated again in the Drosophila model
where loss of the single fragile X family member dFMRP
resulted in elevated protein levels that altered the central
brain and neuromuscular junction synaptic structure. Intro-
duction of human FMR1 fully rescued the molecular and
cellular defects in neurons, in contrast to when either of the
autosomal paralogs was introduced, supporting the idea that
FMRP has a unique function in neurons (93). Interestingly,
all three human genes fully rescued the testes deficits in fly.
Thus, FMR1 has a neuron-specific function that is distinct
from its autosomal paralogs and FMRP functions to regulate
neuron protein expression and synaptic connectivity (93).

The specific role of FMRP in mammalian neuronal devel-
opment has been reviewed extensively elsewhere (3, 94);
however, it is important to note that in the absence of FMRP,
neurons have more dendritic spines that are longer and thin-
ner, consistent with immaturity (95). Spines are dynamic
structures that regulate many neurochemical events related
to synaptic transmission (96). At the functional level, FMRP
is required for normal long-term depression (LTD), a form
of synaptic plasticity, because in its absence, there is
enhanced LTD in the FMR1 knockout mouse (97).

A relatively new role for FMRP in neural stem and pro-
genitor cells has been elucidated from studies in fruit fly,
mouse and humans (98–101). Collectively, these works sug-
gest that FMRP plays a critical role in embryonic and adult
neurogenesis, as comprehensively reviewed in (102).

FXR1P

FXR1P is found throughout the body; however, it is highly
expressed in muscle and heart tissue where FMRP and
FXR2P are mostly absent (5, 103, 104). FXR1P is critical
for postnatal viability; inactivation of FXR1P in mice leads
to impaired myogenesis resulting in death of neonates shortly
after birth, most likely due to cardiac or respiratory failure
(60). Both skeletal and cardiac muscles showed disrupted
cellular architecture and overall structure in the FXR1 knock-
out mice compared to wild-type (WT) littermates (60).

Further evidence for a key role of FXR1P in normal mus-
cle development comes from studies of other model organ-
isms. Reduction of FXR1P in Xenopus laevis disrupted MyoD
expression and somite formation, while re-introduction of
long and short FXR1 mRNA isoforms rescued these muscle-
specific effects (105). In zebrafish, knockdown of FXR1

caused abnormalities in striated muscle and severe cardio-
myopathy that resulted in heart failure in embryos (106).
Lastly, in humans, altered expression of muscle specific iso-
forms of FXR1P has been implicated in facioscapulohumeral
muscular dystrophy (FSHD) because patients have abnormal
expression patterns of three different FXR1P isoforms in
myoblasts and myotubes (107).

FXR1P also has a novel role in miRNA-mediated trans-
lation regulation, although it is not as a translation suppres-
sor. Elements in the 39UTR of TNFa enhance translation
relative to mRNA levels upon serum starvation, which sub-
sequently leads to cell cycle arrest. To determine the molec-
ular mechanism driving this phenomenon, the protein
complex assembled on the 39UTR was analyzed and found
to contain FXR1P (108, 109). FXR1P was then shown to be
recruited with Argonaute 2 by miRNAs bound to the 39UTR
of TNFa in quiescent cells to activate translation. These
results suggest that FXR1P plays a role in translation acti-
vation (108, 109).

Recently, both FMR1 and FXR1, as well as specific
miRNAs were shown to have a role in eye development in
Xenopus laevis (110). Knockdown of FMR1, FXR1 or Dicer
led to abnormal eye development and defects in cranial car-
tilage derived from cranial neural crest cells. These results
suggest an essential role for the fragile X family of proteins
through an interaction with the miRNA pathway.

FXR2P

The role of FXR2P has been more difficult to elucidate than
that of its other family members. Individuals with mutations
exclusively in their FXR2 genes have not been documented,
although there is at least one report of an individual with
mild developmental delay and other abnormal features who
has a microdeletion on chromosome 17 that includes FXR2
(111). Since there are many other genes in this region, and
the patient still has one normal copy of FXR2, it is difficult
to know how much of the patient’s phenotype is caused by
haploinsufficiency for FXR2. In contrast, an FXR2 knockout
mouse was created and characterized (112). FXR2-knockout
mice have increased hyperactivity and impaired performance
on the rotorod test, as is observed in FMR1-knockout mice.
In contrast, the FXR2 knockout mouse had reduced levels
of prepulse inhibition, while the FMR1 knockout mouse had
increased levels of prepulse inhibition. Significantly, a role
for FXR2 in cognition was suspected when the knockout
mouse had difficulty locating the hidden platform in the Morris
water task, suggesting mild cognitive impairment (112).

To gain insight into the functional relationship between
FMRP and FXR2P, a FMR1/FXR2 double knockout was
created and examined in behavior assays (113). As might be
expected if the proteins work together, the double knockout
mice have exaggerated phenotypes in open-field activity, pre-
pulse inhibition of acoustic startle response and contextual
fear conditioning when compared to the single knockouts or
to wild-type mice. These findings suggest that FMR1 and
FXR2 genes contribute in a cooperative manner to pathways
controlling locomotor activity, sensorigating and cognitive
processes (113). An additional role for both proteins in
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circadian rhythm behavior was uncovered in the double knock-
out mice. In both the FMR1/FXR2 double knockout mouse
and in the FMR1 knockout/FXR2 heterozygous mouse, a loss
of rhythmic activity in a light:dark cycle was observed (114).

Because FXR2P has RNA binding domains, RNA expres-
sion was examined and compared in the FXR2 knockout brain
and WT (115). 52 RNAs were identified as significantly
changed and the proteins they encode are related to memory
or cognition disorders. Interestingly, the 52 RNAs were
unique to FXR2P and not found among those co-immuno-
precipitated with FMRP (45), nor are misregulated in the
FMR1 knockout mouse (113, 116), suggesting that FXR2P
regulates a unique subset of RNAs.

Expert opinion

This review strives to comprehensively cover knowledge of
the fragile X family members, from the genomic organiza-
tion to the mRNA spliceforms to the structure and function
of the protein domains. Cellular expression patterns were
explored, as well as the functional significance of each of
the family members and the contributions gained from stud-
ying the orthologs in other species. Continuing to analyze
the role of the individual fragile X family members in non-
human species will give greater insight into their specific
functions in humans.

In addition to identifying the mRNAs and perhaps mi-
RNAs that are directly bound by each fragile X family mem-
ber, the functional outcome of RNA binding needs to be
determined. Is RNA binding merely for incorporation into a
transport granule, whose localization determines where the
mRNA is translated? Or, does binding by one of the fragile
X family members play a more mechanistic role in the trans-
lational fate of the mRNA by either exposing a ribosome
binding site or by recruiting proteins like helicases to effect
translation?

It also remains to be determined how the fragile X family
members are regulated. Post-translational modifications offer
an obvious means of regulating these proteins. FMRP is
phosphorylated, which regulates its translation state through
an unknown mechanism. In addition, FMRP is methylated
on its RGG box and is also ubiquitinated. Both FXR1 and
FXR2 are methylated but it is not known where in the protein
this occurs or what the consequence on function will be.

Outlook

In the future, the neurophysiological roles of these proteins
will be determined, specifically, what their specific function
is in the developing nervous system and at the synapse.

Highlights

• First fragile X family member was identified in the molec-
ular characterization of the most common form of inher-
ited mental retardation, fragile X syndrome.

• Subsequent family members (FXR1 and FXR2) were
identified by their sequence similarity to FMR1 or by their
ability to interact with FMRP.

• All three family members have similar domain structures
and are RNA binding proteins found in brain and other
tissues, although alternative splicing may lead to more
specialized functions.

• All three family members are associated with the miRNA
pathway although it is not yet clear how they function
there.

• FXR1P participates in translation activation under condi-
tions of serum starvation.

• Studies of fragile X family members in other species gives
specific insights into their specialized functions.

• FMRP levels increase in the premotor cortex of zebra
finch during a critical phase in vocal learning.

• Knockout studies in mouse and zebra fish indicate a crit-
ical role of FXR1 in cardiac and striatal muscle devel-
opment and function.

• FXR2 knockout mice are mildly cognitively impaired.
• Knocking out both FMR1 and FXR2 revealed a role of

the fragile X family members in circadian rhythms.
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