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   Abstract 

 Epigenetic mechanisms have emerged as a central process in 
learning and memory. Histone modifi cations and DNA methy-
lation are epigenetic events that can mediate gene transcrip-
tion. Interesting features of these epigenetic changes are their 
transient and long lasting potential. Recent advances in neu-
roscience suggest that DNA methylation is both dynamic and 
stable, mediating the formation and maintenance of memory. 
In this review, we will further illustrate the recent hypothesis 
that DNA methylation participates in the transcriptional regu-
lation necessary for memory.  

   Keywords:    behavior;   brain;   DNA methylation;   epigenetics; 
  learning;   memory.       

  Introduction 

 The brain is a highly plastic structure, which is able to 
adjust rapidly and repeatedly to changes in the environ-
ment. Learning, which results from the association of two 
initially unrelated inputs, is an excellent illustration of the 
brain’s dynamic capacity to respond to the environment. For 
example, touching a hot burner on the stove leads to a learned 
association between pain and the black coils on the stovetop. 
Paradigms used to study memory in rodents employ similar 
types of associative conditioning in which a specifi c context 
or cue (e.g., novel environment or auditory tone) is paired 
with a previously independent stimulus (i.e., foot shock or 
food reward). Different brain regions are involved in the asso-
ciative process, supporting learning. The acquired informa-
tion will subsequently be stored as memory so that it can be 
recalled in the presence of the environmental stimulus that 
triggered the initial learning. Retrieval of this memory will 
subsequently modify behavior (e.g., avoid touching the stove). 
The formation and consolidation of many types of memories 
occur shortly after learning in the hippocampus, after which 
many are subsequently incorporated into and maintained in 
cortical areas. Interestingly, in the absence of the reinforcing 
environmental stimulus a memory can be extinguished. We 

would for example eventually lose our fear of touching a 
burner on a broken stove that is incapable of heating. This 
ability to modify established memories further demonstrates 
the brain’s capacity for plastic changes. At the cellular level, 
memory requires a carefully coordinated program of tran-
scription and translation, in addition to structural and func-
tional changes in the brain (Figure  1  ). Memory results from 
the environments transcriptional impact on our genome sug-
gesting that epigenetics could be a critical regulator of this 
complex cognitive process. 

 Epigenetics has traditionally been viewed as changes that 
are inherited through generations or cell division and are not 
dependent on the DNA sequence itself  (1) . However, numer-
ous examples of intrinsic reversibility of epigenetic changes 
have been established  (2, 3) . In light of this and due to their 
critical involvement in gene regulation epigenetic mechanisms 
represent an attractive and reversible means for the brain to 
respond and adapt to specifi c environmental changes. In addi-
tion, epigenetic alterations triggered by external factors and 
environmental stimuli can lead to molecular responses and 
enduring changes in gene expression. Therefore, transient 
activation of epigenetic players can contribute to heritable 
gene regulation constituting cellular memory  (4, 5) . Recent 
evidence suggests that epigenetic events, such as histone 
modifi cations and DNA methylation occur in post-mitotic 
cells in the brain to regulate key cellular processes involved 
in learning and memory. 

 DNA in living cells is not naked. It wraps around core 
histone proteins to form nucleosomes, which subsequently 
becomes a highly organized structure termed chromatin. 
Histone tails extend from the surface of the nucleosome, 
where several post-translational modifi cations including 
acetylation and methylation have been identifi ed  (6, 7) . 
Combinations of different histone modifi cations on the tails 
participate in the regulation of chromatin structure, con-
trolling access to genes for transcription  (8 – 10) . This com-
binatorial nature of different histone marks adds a layer of 
complexity to predicting transcriptional outcome based on 
the observation of a single post-translational modifi cation. 
Histone acetylation and phosphorylation have been associ-
ated with an open chromatin state and active transcription, 
whereas histone methylation can mediate active and silent 
chromatin states. DNA itself can also be directly modifi ed 
through the covalent addition of a methyl group (-CH3) on 
the cytosine pyrimidine ring in DNA located in a CpG dinu-
cleotide. DNA methylation can participate in transcriptional 
regulation and protein synthesis  (11) . Small stretches of DNA 
known as CpG islands are comparatively rich in CpGs and 
frequently free of DNA methylation. These CpG islands are 
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often located within the promoter regions of specifi c genes 
and DNA methylation within these islands undergoes dra-
matic changes during the early stages of embryonic develop-
ment. DNA methylation marks are almost completely erased 
in the peri-implantation embryo and then methylation pat-
terns are set up over the genome  (12, 13) . This epigenetic 
reprogramming is believed to be essential for cellular totipo-
tency  (14) . During embryonic development, the  de novo  DNA 
methyltransferases DNMT3A and 3B are needed for repro-
gramming of DNA methylation. DNMT3A and DNMT3B 
establish the original DNA methylation patterns during 
early development whereas patterns of DNA methylation are 
maintained by DNMT1. Homozygous deletions of any of 
these genes in mice are lethal either before birth ( Dnmt1  and 
 Dnmt3b ) or shortly after ( Dnmt3a )  (15, 16) . Controversial 
fi ndings suggest that DNMT3A and 3B are also involved in 
both the addition and removal of methyl groups. The removal 
has been proposed to occur through deamination. However, 
the precise mechanism for DNA demethylation remains 
elusive (see  ‘ DNA methylation and memory ’  Section)  (17) . 
Different families of proteins bind methylated DNA. These 
proteins can specifi cally recognize methylated DNA and act 
as mediators of the methylation signal recruiting DNMTs 
and co-repressors [e.g., histone deacetylases (HDACs) and 
histone methyltransferases (HMTs)]. The players that medi-
ate the addition of a methyl mark, their removal and those 
that have the ability to bind methylated DNA have been 
implicated in cellular functions of the brain. This suggests 
that DNA methylation might participate in the transcriptional 
regulation necessary for memory supporting synaptic plas-
ticity mechanisms and stable memory formation. 

  Writers and readers of DNA methylation identifi ed 

in the brain 

 Recent evidence suggest that DNA methylation occurs 
in post-mitotic and mitotic cells, in which the balance and 
pattern of DNA methylation can be maintained by DNMTs 
and emerging candidates of DNA demethylation. The  de 

novo  (DNMT3A and 3B) and maintenance (DNMT1) DNA 
methyl transferases are expressed in the brain and have been 
implicated in the regulation of neuronal genes  (18 – 23) . 
Therefore, DNMT1 and DNMT3A could be participating in 
synaptic plasticity by establishing and maintaining a DNA 
methylation pattern that coordinates the expression of appro-
priate neuronal genes. Interestingly, the role of DNMT3A 
in the brain might be specifi c to brain regions and genomic 
locations because non-promoter methylation mediated by 
this methyltransferase can facilitate the transcription of neu-
rogenic genes  (24) . Moreover, DNMT3a is also dynamically 
regulated in the nucleus accumbens (the brain’s reward cen-
ter) and infl uences behavioral response to cocaine use and 
stress  (25) . Surprisingly, the upstream signaling that con-
trols DNMT-mediated regulation of transcription in the brain 
remains unclear. 

 Methyl binding proteins can also indirectly infl uence 
transcription. Ubiquitin-like, containing plant homeo 
domain (PHD) and really interesting new gene (RING) fi n-
ger domains, 1 protein (UHRF1), a protein member of the 
Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) and RING 
fi nger associated (SRA) domain family can bind to methy-
lated DNA and mediate the maintenance of DNA methylation 
through the binding of hemimethylated DNA and recruitment 
of DNMT1  (26, 27) . UHRF1 has been shown to be upregu-
lated in fresh water snails retaining long-term memory  (28) . 
However, it remains to be addressed if this protein has a 
redundant function in the brain of higher model organisms 
where other methyl binding proteins have been implicated in 
cognitive function. 

 The methyl-CpG binding domain (MBD) family is com-
prised of well characterized proteins [methyl CpG binding 
protein 2 (MeCP2), MBD1, MBD2, MBD3 and MBD4] that 
are required to maintain neuronal function and homeostasis 
 (29 – 31) . The MBD proteins are capable of binding methy-
lated DNA through the recognition of a single methylated 
CpG site  (32) . One of these members, MeCP2, is a critical 
player in the neurodevelopmental disease, Rett syndrome  (33) . 
MeCP2 interacts with methyl ated DNA and other proteins to 

 Figure 1    Outline of the basic structural and molecular events that take place during memory formation. 
 Associative learning can be induced by different environmental factors  (1) , which will lead to cellular changes in the brain in order to induce 
structural plasticity and increase synaptic strength  (2) . The transcriptional program is regulated in part by epigenetic events in order to dynami-
cally modulate protein synthesis through transcriptional activation and silencing  (3, 4)  to establish long lasting memory  (6) . Thus, epigenetic 
changes can mediate and be mediated by behavioral changes, synaptic plasticity and structural changes (i.e., spine enlargement) to potentiate 
long-term memory processes  (3, 5) .    
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form a repressive complex that contributes to gene silencing. 
Interestingly, it could have other neuronal functions because 
MeCP2 can bind outside of a CpG island  (34)  and might 
function as a transcriptional activator through the binding 
of a distal methylated promoter  (35) . Despite its controver-
sial function as a dual repressor and gene activator, MeCP2 
appears to be participating in memory modulation through the 
regulation of important plasticity genes, such as brain-derived 
neurotrophic factor ( Bdnf )  (36, 37) . Another MBD protein, 
MBD1, which is specifi c to heterochromatic regions  (38)  has 
been implicated in spatial learning and long-term synaptic 
potentiation (LTP)  (39, 40) . The ability of DNA methylation 
to regulate gene expression in post-mitotic neurons in addi-
tion to the importance of methyl-binding proteins in memory 
further suggests a role for DNA methylation in learning and 
memory.   

  Dynamic DNA methylation in the adult brain 

 DNA methylation changes observed in the brain are dynamic 
and bidirectional, with gain and loss of methylation observed 
throughout an organisms lifespan  (41) . These dynamic 
changes are likely to occur through a reciprocal relation-
ship between DNA methylation and the environment. For 
example, the expression of DNMTs can modulate behavioral 
responses to drug abuse  (25) . Several reports suggest that the 
quality of early life environment can also impact adult behav-
ior through changes to the epigenetic landscape, parti cularly 
DNA methylation  (42 – 45) . For instance, poor maternal care 
was associated with promoter methylation changes in the glu-
cocorticoid receptor in pups. This epigenetic change persisted 
into adulthood and was associated with increased receptor 
expression  (42)  suggesting that changes in DNA methylation 
can dynamically respond to the environment not only during 
embryonic development but also postnatally. 

  DNA methylation in memory 

 Dynamic DNA methylation events have been reported in the 
adult brain, particularly in the hippocampus. During learn-
ing, synaptic activity at hippocampal neurons initiates several 
signaling cascades, with changes occurring locally at the 
synapse in addition to in the nucleus where transcriptional 
changes are made to plasticity-related proteins. These 
changes are supported, at least in part, by epigenetic modi-
fi cations  (46, 47) . Surprisingly, beyond a dependence on one 
of the earliest steps in synaptic transmission, glutamate bind-
ing to the N-Methyl-D-aspartic acid receptor (NMDAR), the 
upstream players that regulate DNMTs during learning have 
not yet been established  (48 – 50) . 

 The proteins responsible for  de novo  DNA methylation, 
DNMT3A and 3B, are upregulated in the hippocampus fol-
lowing fear learning  (51) . In this hippocampus and NMDAR-
dependent paradigm, known as contextual fear conditioning, 
rats are trained to associate mild foot shock with a novel con-
text. Local inhibition of DNMTs within the hippocampus dis-
rupts formation of this fear memory in addition to estrogens 

ability to enhance memory for a novel object  (49, 51 – 53) . 
Moreover, the  Dnmt1-Dnmt3a  double knockouts (but not sin-
gle knockouts of either gene) show impairments in a form of 
spatial learning, indicating that DNMTs serve non-redundant 
functions during memory acquisition  (23) . 

 Within an hour of training for contextual fear, suppressors 
of memory are hypermethylated whereas memory promoters 
are hypomethylated  (51) . These modifi cations in methylation 
are associated with corresponding transcriptional changes and 
are consistent with the need for a program of transcriptional 
changes during memory acquisition that requires a balance of 
activation and suppression. The memory promoter,  Bdnf , is 
induced in the hippocampus with learning and has been the 
attention of several epigenetic studies.  Bdnf  methylation and 
expression is dynamically regulated in the hippocampus in an 
NMDA receptor-dependent manner during memory forma-
tion  (37, 49, 54 – 56) . Together, these data indicate that gene 
specifi c DNA methylation in the hippocampus is capable of 
responding to the environment in a rapid and dynamic fash-
ion, and is associated with synaptic activity and cognition. 

 Successful support of memory formation suggests the need 
for DNA methylation to be dynamically regulated in a bidirec-
tional and parallel manner, mediating the silen cing of memory 
repressors through their hypermethylation, while promoting 
the activation of memory enhancers through demethylation. 
Although DNA demethylation appears to be operational in 
mammalian cells  (17, 51, 57 – 59) , the precise mechanism 
has not yet been identifi ed. In mitotic cells, de methylation is 
a passive process that occurs through rounds of DNA rep-
lication and can be triggered either by downregulation of 
DNMT1 or through its inhibition by DNMT inhibitors [e.g., 
5-azacytidine (5-azaC)]. However, DNA demethylation in 
non-dividing cells of the adult brain suggests that an active 
process must exist. Several DNA demethylases have been 
proposed, including MBD2  (60) . However, their activities 
have been challenged  (61 – 63)  and it is still not clear which 
protein could function as an active DNA demethylase  (64) . 
Yet the number of documented demethylation events is accu-
mulating and several hypotheses have been raised with addi-
tional candidate mechanisms for demethylation  (17, 61) . As 
removal of methyl groups from cytosines is energetically 
unlikely, alternative pathways involving DNA glycosylases 
and deaminases have been proposed  (65 – 67) . Glycosylase 
activity in active demethylation is well established in plants 
 (68 – 71)  but it remains unclear if this same process occurs in 
mammals. 

 A number of genes that enhance memory and regulate neu-
ronal migration (e.g., reelin;  Reln ) have now been reported to 
undergo DNA demethylation and are likely do so to support 
dynamic mechanisms in the brain, such as synaptic plasticity 
 (37, 42, 49 – 51, 54 – 56) . Therefore, DNA methylation changes 
could regulate and be regulated by behavioral changes and 
synaptic plasticity to potentiate long-term memory processes 
 (48) . Recent evidence suggests that hydroxylation of the methyl 
group can lead to 5-hydroxymethylation (5hmC), a poten-
tially necessary step for active DNA demethylation  (17, 72) . 
Proteins of the Ten-Eleven-Translocation (TET) family 
can catalyze the hydroxylation of 5-methylcytosine (5mC). 



462       T. Vaissi è re    and   C.A. Miller

Recent reports suggest that TET enzymes participate in 
the formation of 5-formylcytosine and 5-carboxylcytosine 
through iterative oxidation of 5mC and 5hmC. Although 
unknown decarboxylase and base excision mechanisms 
have been proposed to mediate the replacement of the oxi-
dized base, the precise mechanisms and number of pathways 
involved remain elusive  (73, 74) . Interestingly, 5hmC is pres-
ent in neurons, with brain tissue reported to have the highest 
levels in the body  (75, 76) . 5hmC might be an intermediate 
that recruits several mechanisms, including glycosylation and 
deaminiation to produce an unmethylated cytosine  (17) . In 
the adult brain, TET1 is promoted by the activation induced 
deaminase/apolipoprotein B mRNA editing enzyme, catalytic 
polypeptide (AID/APOBEC) deamination pathway and is 
suffi cient to demethylate 5hmC. This pathway can generate a 
5-hydroxymethyluracil (5hmU) from a 5hmC, creating a mis-
match that will be repaired by the base excision repair (BER) 
pathway  (55) . DNA demethylation of  Bdnf  and  Fgf1b  by the 
TET1/AID mechanism has been demonstrated in the central 
nervous system (CNS). Furthermore, the deletion of growth 
arrest and DNA damage-inducible protein 45 B (GADD45B), 
a protein that is part of the machinery for BER and nucleotide 
excision repair, abolishes DNA demethylation of those genes 
 (54, 77) . Thus,  Gadd45b,  which is activated during learning 
and memory in the hippocampus, might be supporting mem-
ory by promoting demethylation  (77) . Proteins implicated in 
DNA demethylation processes (i.e., TET1, GADD45B, AID) 
could have different functions throughout the life of an organ-
ism, mediating the widespread erasure of 5mC during early 
embryonic development, while serving a gene specifi c func-
tion in the adult brain  (55, 78) . It would be of interest to deter-
mine the order and kinetics of DNA demethylation events 
induced by neuronal activity in addition to what signals the 
specifi city of genomic location to the associated enzymes. 

 Adult neurogenesis has been identifi ed in two brain regions, 
the subventricular and subgranular zones of the dentate gyrus 
 (79, 80) . Interestingly, these brain regions are part of the hip-
pocampus, an integration center of information and memory 
consolidation. Furthermore, several players involved in neu-
rogenesis are regulated by DNA methylation processes  (81) . 
Therefore, there might also be an indirect link through which 
DNA methylation also supports memory. By facilitating 
neurogenesis and the dendritic growth of newborn neurons, 
the hippocampus ’  capacity for memory formation could be 
increased  (82 – 84) . The transcriptional regulation of Fgf2 and 
Bdnf is critical for neurogenesis and has been associated with 
the DNA MBD proteins, MBD1 and MeCP2, respectively. 
These MBDs participate in the transcriptional regulation of 
Fgf2 and Bdnf in an activity dependent fashion  (39, 85, 86) . 
Furthermore, loss of MeCP2 results in defi cits in the matu-
ration of newborn neurons and neuronal differentiation in 
addition to reduced dendritic spine density  (87) . Interestingly, 
non-promoter methylation mediated by DNMT3a also facili-
tates gene transcription and is required for neurogenesis  (24) . 
Thus, neurogenesis and memory formation might require 
DNA methylation and demethylation events to occur at dis-
tinct genomic locations, determined by methyl binding pro-
teins and higher order chromatin organization.  

  A self reinforcing link between epigenetic changes 

for memory formation 

 The dynamic DNA methylation changes that have been 
observed in the adult brain suggest a high level of epigenetic 
plasticity. This could be achieved through interplay between 
DNA methylation and other epigenetic events, such as histone 
modifi cations. The investigation of epigenetic changes during 
stem cell differentiation and tumor progression suggests that 
DNA methylation and histone acetylation are dynamically 
linked and occur to maintain a specifi c state of activity. DNA 
methylation can be the primary mark for gene silencing, with 
loss of acetylation being secondary. In contrast, transcrip-
tional repression can be achieved through the loss of acety-
lation, followed by DNA methylation  (88 – 90) . As described 
above, the DNMT and MBD proteins are required for learn-
ing and memory. Importantly, other chromatin modifi ers are 
also critical for long-term memory  (91 – 93) , suggesting that 
an epigenetic interplay might also occur during learning and 
memory. This crosstalk would add another layer of regulatory 
control to the process of determining gene specifi c regulation 
for the brain’s complex plasticity needs. 

 Recent research suggest that both DNA methylation and 
histone modifi cations are important during learning and 
memory  (46, 52, 92, 94, 95) . The DNMT inhibitor (DNMTi), 
5-azaC, blocks training induced acetylation of histone H3 
and memory consolidation, suggesting that DNA methyla-
tion is connected to histone acetylation in some way  (52, 96) . 
Conversely, intra-hippocampal infusion of a HDAC inhibitor 
(HDACi) prior to the addition of a DNMTi rescues the mem-
ory defi cit triggered by DNMTi. This further indicates that 
crosstalk between DNA methylation and histone acetylation 
is occurring to regulate memory associated genes  (52) . This 
transcriptional state maintained by epigenetic modifi cations 
is likely to be dynamic, involving feedback between active 
(e.g., histone acetylation) and repressive (e.g., DNA methyla-
tion) marks. 

 The rescue of a DNMTi-induced memory defi cit by 
HDACi suggests that DNA methylation might occur as a pri-
mary event to potentiate histone acetylation during memory 
consolidation  (52) . Interestingly, the protein phosphatase1-
histone deacetylase1 (PP1-HDAC1) complex represses 
cyclic adenosine mono-phosphate (cAMP) response element-
binding (CREB), a mediator of histone acetylation, to alter 
the acetylation status of downstream targets  (51, 97) . In this 
context, DNA methylation might indirectly participate in the 
regulation of histone acetylation by mediating the expression 
of  Pp1 . Prior to synaptic activity, enhancer genes could be 
bound by the repressive PP1-HDAC1 complex, preventing 
their transcription and inhibiting histone acetylation. This 
status could then be modifi ed by the synaptic activity that 
triggers silencing of  Pp1 , disrupting the PP1-HDAC1 com-
plex. The result would be enhanced transcription of memory 
enhancer genes through the binding of CREB and subsequent 
histone acetylation. Histone acetylation might also exert a 
primary infl uence on DNA methylation, as suggested by the 
ability of HDACi to occlude the memory disrupting effects 
of DNMTi  (98, 99) . Once a memory has been acquired and 
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consolidated, feedback mechanisms are needed to return the 
system to a homeostatic state where it is primed for future 
learning events. While the idea has yet to be explored, this 
might involve transcriptional repression of memory enhanc-
ers through an enrichment of CpG methylation and a decrease 
in histone acetylation  (51, 100) . Interestingly, recent reports 
in stem cells suggest that in addition to a mediator of demeth-
ylation TET1 also recruits epigenetic repressive complexes 
associated with histone deacetylation and histone methyl 
marks  (101 – 104) . This process might apply to hippocampal 
neurons where specifi c chromatin organization would enable 
TET1 and other epigenetic modifi ers to slide along promoter 
regions to establish either an active or repressive state. 

 The cross infl uence of histone acetylation and DNA methy-
lation has also been observed at the level of epigenetic modi-
fi ers associated with these marks. In triggering a behavioral 
response, neurotrophic factors are regulated by the disso-
ciation of a repressive complex formed by MeCP2 and the 
histone deacetylase HDAC1  (37, 105) . Interestingly, environ-
mental factors and behavior also use epigenetic interplay to 
regulate the glucocorticoid receptor. Hypomethylation of the 
promoter leads to an increase in acetylation of histone H3 at 
lysine 9 (H3K9)  (42, 106) . Thus, the communication between 
different types of epigenetic modifi cations participates in the 
regulation of specifi c genes that underlie a complex regula-
tory network to stably or transiently affect neural function.   

  Stable DNA methylation in the adult brain as a 

mechanism to maintain behavioral memories 

 Some newly acquired memories have been demonstrated to 
originate in the hippocampus. Over time, the memories con-
tinue to consolidate as they are incorporated into their fi nal 
storage site in the cortex  (107) . The brain likely requires 
both dynamic and long lasting molecular changes to support 

these different stages of memory. The transient and dynamic 
properties of epigenetic modifi cations are analogous to the 
molecular requirement for memory formation. Conversely, 
the ability of epigenetic modifi cations to self perpetuate in 
the absence of the initial triggering stimulus mirrors the need 
of long-term memory storage. The latter is strikingly similar 
to the cell-autonomous process of cellular memory, allowing 
the transmission of non-genetic information through cellular 
division. DNA methylation represents an interesting candi-
date mechanism for the stable maintenance of the transitory 
neuronal events initiated at the time memories are formed 
(Figure  2  )  (108) . 

 The intrinsic nature of the dynamic methylation observed 
in the hippocampus is unlikely to serve as a long-term storage 
mechanism. Recent work suggests that although hippocam-
pal methylation can be transient, methylation of certain corti-
cal genes is a gradual and stable event that could serve as a 
molecular storage mechanism  (50, 51) . This study found that 
the immediate early gene early growth response 1/zinc fi n-
ger protein ( Egr1/Zif268 ) is demethylated in the dorsomedial 
prefrontal cortex (prelimbic and anterior cingulate cortices) 
within an hour of contextual fear conditioning. Interestingly, 
this demethylation occurred in animals that learned in addi-
tion to those that were simply exposed to the novel context. 
Furthermore, this demethylation persisted for at least 30 days 
(the longest time point examined), suggesting that the change 
in DNA methylation status refl ects a response to any type of 
new experience. On the other hand, hypermethylation of the 
memory enhancer gene,  Reln  and the protein phosphatase cal-
cineurin gene,  Ppp3ca , thought to be a negative regulator inhib-
iting memory storage was specifi c to animals that learned the 
fear association and persisted as the cortical memory trace was 
established  (50, 109, 110) . Calcineurins cortical hyper-
methylation also persisted for at least 30 days and was asso-
ciated with increased levels of the gene’s transcript upon 
retrieval. The cortical DNA methylation events appear to be 

 Figure 2    DNA methylation dynamics for memory formation and storage. 
 Basal DNMT activity might be greater or directed to a specifi c subset of genes in the prefrontal cortex (PFC) to achieve a stable epigenetic land-
scape required for memory storage. In the hippocampus, DNA methylation might be more dynamic with additional epigenetic players active to 
establish a chromatin state targeted by DNMTs and DNA  ‘ demethylases ’ , leading to gene silencing and gene activation.    
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critical for stable associative memory because intra-cortical 
inhibition of DNMT1 disrupted the 30 day old fear memory. 
Interestingly, the establishment of this stable memory trace 
relies on a dialog between the hippocampus and the cortex, 
as blockade of hippocampal NMDARs at the time of training 
prevented learning and cortical hypermethylation of reelin 
and calcineurin  (50) . The cortical changes observed at these 
candidate gene promoters likely apply to a whole host of 
genes in order to establish a specifi c transcriptional thresh-
old necessary for intra- and interneuronal synapto-nuclear 
communication. In this way, a nuclear change could achieve 
the synaptic specifi city required to enable neurons to support 
multiple memories.  

  Concluding remarks 

 Memory acquisition, consolidation and long-term storage 
recruit DNA methylation in a context specifi c manner with 
different kinetics. DNA methylation has primarily been con-
sidered a transcriptional regulator that mediates gene silenc-
ing. However, its regulation and function are likely to be far 
more complex in the adult brain and several questions are 
already apparent. In addition to the proteins that methylate 
DNA, other epigenetic players are involved and interact with 
each other (e.g., histone modifi cations and chromatin remod-
eling). Recent evidence indicates that non-CpG DNA methy-
lation also has a regulatory function  (111) . Moving forward, it 
will be important to go beyond the assessment of methylation 
patterns at individual gene targets and specifi c histone modifi -
cations to establish the entire epigenetic landscape associated 
with a specifi c memory.     
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