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   Abstract 

 Glucocorticoids (GCs) are potent anti-infl ammatory agents 
that are used to treat chronic infl ammatory diseases, allergic 
conditions, and some cancers. However, their therapeutic 
effects are hampered by severe side effects, such as muscle 
weakness, insulin resistance, fat redistribution, and osteopo-
rosis. GCs act on many cell types that express the GC recep-
tor (GR) via several modes of action. One of them includes 
GR homodimers recognizing binding sequences in the DNA 
of gene promoters. Another mode involves the modulation of 
other DNA-bound transcription factors via dimer-independent 
mechanisms. To what extent these mechanisms contribute to 
GC-mediated effects is currently being elucidated from analy-
ses of mice with conditional and function-selective mutations 
of the GR and is summarized in this review. Whether GR 
homodimerization or its monomer activity is decisive in the 
therapeutic effectiveness and associated side effects of GCs for 
the treatment of infl ammatory conditions depends on the type 
of the pathological condition. Thus, the classic criterion for 
selective GR modulators, discrimination between GR dimer- 
and GR monomer-dependent protein-protein interaction, will 
not help in any condition to avoid side effects and maintain 
anti-infl ammatory activity. Rather, novel criteria for selective 
GR modulators have to be defi ned that take into consideration 
the tissue-specifi c mechanisms of the GR to achieve optimized 
anti-infl ammatory therapies with reduced side effects. In the 
case of avoiding osteoporosis as a side effect, a fi rst example 
of such optimized compounds can be provided.  

   Keywords:    conditional knockout mice;   glucocorticoid 
receptor;   infl ammation;   osteoporosis.     

  Introduction 

 Since the middle of the last century, glucocorticoids (GCs) 
have been widely used as anti-infl ammatory agents for the 
treatment of allergic conditions, chronic infl ammatory dis-
eases, and some cancers in which the initial cause is unknown 

or diffi cult to combat  (1) . This is surprising because due to 
their undisputed severe side effects, GCs would not pass cur-
rent regulations for drug approval in most countries. The side 
effects include type 2 diabetes, osteoporosis, muscle weakness, 
skin atrophy, and even depression upon long-term use  (2) . 

 Their receptors, in particular, the classic GC receptor (GR), 
act in a versatile manner from altering gene expression as 
transcription factors to interfering with signaling pathways in 
a non-genomic fashion. Therefore, research on the molecular 
mechanisms of GC action is of importance to shed light on 
physiological processes under GC control. This should gener-
ate rationales to achieve specifi c drug development with the 
goal of anti-infl ammatory therapy with fewer side effects. 

 Here, we summarize the pivotal fi ndings and recent prog-
ress regarding cell-type-specifi c GR mechanisms of action 
revealed by genetic alterations of the GR in mice.  

  Endogenous GCs 

 GCs are elevated in a diurnal rhythm and during acute stress 
responses  (3) . Their secretion is pulsatile and controlled by a 
feedback mechanism involving hormones of the hypothala-
mus and pituitary (hypothalamus-pituitary-adrenal axis)  (4) . 
The hypothalamus releases corticotropin-releasing hormone 
(CRH) triggered by the circadian rhythm, systemic infl am-
mation reactions, or mental stress. Subsequently, CRH causes 
secretion of proopiomelanocortin (POMC) from the anterior 
pituitary, which in turn is proteolytically cleaved into adreno-
corticotropic hormone, the latter acting on the adrenal gland 
cortex to enhance production of corticosteroids  (4) . High con-
centrations of GCs lead to a suppression of POMC and CRH 
in the pituitary and hypothalamus, respectively, resulting in 
a decreased GC release. In rodents, the main GC is corticos-
terone, whereas in humans, it is cortisol or hydrocortisone 
 (5) . Within cells, the restricting factor for the production of 
active cortisol is 11- β -hydroxysteroid dehydrogenase type 1 
(11 β -HSD1), which converts inactive cortisone to the active 
metabolite. Conversely, active cortisol can be modifi ed by 
11- β -hydroxysteroid dehydrogenase type 2 (11 β -HSD2) via 
conversion of the hydroxyl group to a keto group at position 
11, which in turn leads to inactive cortisone  (6) . 

 One important function of GCs is to allow the mobilization 
of glucose for rapid energy supply to the brain and by support-
ing gluconeogenesis  (7) . In addition, decisive roles in behavior 
 (8)  and infl ammation  (9)  have been uncovered. Two disease 
states demonstrate the involvement of GCs in the regulation 
of glucose and energy metabolism  (10) . Addison ’ s disease 
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patients with chronic low GC levels experience stress sensiti-
vity, lymphoid tissue hypertrophy, weight loss, and hypogly-
cemia  (11) . Cushing ’ s disease patients with chronic GC excess 
display hyperglycemia, liver steatosis, hypertension, elevated 
cholesterol, immunodefi ciency, and insulin resistance  (10) . 
Further studies have been performed with rodent models of 
impaired GC secretion by adrenalectomy, recapitulating the 
Addison phenotype  (10)  and demonstrating an early role of 
endogenous GCs in systemic infl ammation  (12, 13) . 

 In addition, multiple aspects of the role of endogenous GCs 
during development and in adult physiology have been revealed 
after introducing loss-of-function mutations for the GR in mice 
and inactivating GC activity in mice overexpressing 11 β -HSD2 
or being devoid of 11 β -HSD1. With these genetically modifi ed 
mice, it could be shown that endogenous GCs are required for 
the differentiation of chromaffi n cells, lung maturation during 
development  (14, 15) , and bone integrity  (16 – 18) . 

 Thus, it is not surprising that because of the multiple roles 
of endogenous GCs in various physiological processes, the 
presence of excessive GCs during anti-infl ammatory therapy 
leads to multiple side effects. In the following section, we 
briefl y summarize how GCs act at the molecular level. We 
then describe the contributions of different molecular mecha-
nisms to GC actions that have been elucidated in animal 
models.  

  The GC receptor 

  Non-genomic effects 

 GCs bind to the GR, a member of the nuclear receptor fam-
ily. Nuclear receptors are ligand-induced transcription fac-
tors and share a common homology and domain structure: 
an N-terminal transactivation domain (AF-1), followed by 
a DNA-binding domain (DBD), a subsequent hinge region 
and a C-terminally located ligand-binding domain (LBD) 
associated with a second transactivation domain (AF-2)  (19)  
(Figure  1  A). 

 Despite being considered a transcription factor, rapid non-
genomic effects have been described. In particular, inter-
ference of the GR with components of signal transduction 
pathways, such as PI3K, JNK, and 14-3-3 proteins, has been 
reported  (20 – 22) . Recently, Lowenberg et al.  (23)  suggested 
a mechanism underlying non-genomic GC-induced immuno-
suppression in T cells by membrane-associated liganded GR 
disrupting the protein kinase Fyn complex and impairment of 
T-cell receptor (TCR) activity. GC effects may also be medi-
ated by non-specifi c interactions with cellular membranes 
or by specifi c interactions with membrane-bound GR  (24) . 
However, a clear identifi cation of these GR types is lacking 
and remains a challenge.  

  Regulation of gene expression by DNA binding 

of the GR 

 In the presence of hormones, the GR chaperone complexes 
in the cytoplasm are disrupted and the nuclear localization 

sequences are unmasked, resulting in an import of the ligand-
bound GR into the nucleus  (25) . Localization of the GR appears 
to be dynamic, because cyclic administration, withdrawal of 
ligands in tissue culture as well as pulsed GC treatment of 
adrenalectomized rats lead to a cyclic localization between 
the nucleus and the cytoplasm. This GR shuttling is associated 
with cyclic GR target gene expression over time  (26) . 

 Within the nucleus, the ligand-activated GR binds to palin-
dromic response elements of the DNA [GC response elements 
(GREs)] as homodimers in a head-to-tail fashion via hydro-
phobic motifs present in the LBD  (27)  and interactions by the 
DBD  (28) . The DBD consists of two zinc fi ngers. The amino 
terminal zinc fi nger of the GR molecule makes contact with 
the DNA. The D-loop adjacent to the second zinc fi nger motif 
interacts with the D-loop of the dimerization partner  (28, 29) . 
So far, crystal structures of the entire GR bound to DNA are 
lacking, leaving the possibility open that additional dimer 
interface exists. Recently, it was elegantly demonstrated by 
structural, biochemical and cell-based analyses that varia-
tions in the GREs result in differential GR conformational 
changes that affect recruited coactivators, leading to different 
transactivation functions on different GC target genes  (30) . In 
addition, experiments by the Hager group demonstrated that 
a preoccupied GR binding site by the GR helps to assist bind-
ing of additional GR molecules that exchange in a dynamic 
fashion  (31) . Transactivation of transcription is dependent 
on the AF domains of the GR. The AF-1 domain is respon-
sible for transcriptional activation and association with basal 
transcription coactivators in a ligand-independent manner by 
interacting with ATPase BRG1 and recruiting histone acety-
lases like p/CAF and CBP/p300  (32) . In contrast, the AF-2 
domain with its helix 12 acts in a ligand-dependent manner 
by recruiting coactivators from the p160 family (e.g., SRC-1, 
TIF2/GRIP1) (Figure 1A). These coactivators possess histone 
acetylase activity and thereby help to open chromatin to allow 
transcriptional activation  (33, 34) . 

 Binding to DNA, however, can also lead to repression of 
the transcription of genes. Negative GREs (nGREs) were 
initially described as palindromic sequences separated by a 
three-base pair spacer and being present only in a few genes, 
such as POMC, prolactin, α-fetoprotein, CRH, osteocalcin, 
interleukin 1 β , and proliferin  (35) . However, it was recently 
reported that additional nGREs exist as inverted repeats with 
none, one, or two spacing base pairs, leading to recruitment 
of corepressors, such as silencing mediator for retinoid and 
thyroid receptors and nuclear receptor corepressor  (36) . 

 Recent genome-wide binding studies of the GR in mamma-
lian cells have revealed that binding motifs for the GR might be 
more diverse than previously anticipated, which explains in part 
the diverse response of genes dependent on the cellular con-
text  (37) . In particular, cell-type-specifi c predetermined open 
chromatin sites in the absence of ligand revealed by genome-
wide DNAse I hypersensitivity profi ling seem to determine the 
majority of GR occupancy in the presence of hormone  (38) . To 
a minor degree, the occupancy of GR binding motifs is deter-
mined by binding sites for certain other transcription factors  –   
again, dependent on the cell type as revealed by the comparison 
of a mammary cell line with a pituitary cell line  (38) .  
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 Figure 1    Primary structure of the glucocorticoid receptor (GR). 
 (A) The transactivation domain AF-1 is followed by the DNA-binding domain (DBD) with two zinc fi ngers involved in DNA binding 
(P-box) and dimerization of the receptor (D-loop), a hinge domain (HD) with two nuclear localization sequences (NLS), a ligand-binding 
domain (LBD), and a C-terminal transactivation domain AF-2. Coactivators with histone acetyltransferase activity such as CBP/p300, 
ATP-dependent chromatin remodeling complexes like switch/sucrose non-fermenting (SWI/SNF) proteins enhance the transcriptional 
activator function of the receptor in a ligand-independent manner. The AF-2 domain has a ligand-dependent coactivator function that 
recruits coactivators with the LXXLL motif in helix 12. Those coactivators belong to the p160 family, which further recruit multiple 
coactivators among the CBP/p300. Integrators such as TRIP6 interact with the DBD to mediate transrepression of AP-1. (B) The GR dimer 
binds to the palindromic glucocorticoid responsive elements (GRE) in regulatory sequences of GR target genes and facilitates transcrip-
tion by recruitment of coactivators (p160, CBP). The GR as a monomer infl uences the activity of pro-infl ammatory transcription factors 
like AP-1, NF- κ B, and IRF3 by tethering mechanism with co-integrators (Trip6, STAMP). The liganded GR also could sequester GRIP1, 
usually, a coactivator for IRF3, from these transcription factors. By this mechanism, the pro-infl ammatory gene activity is repressed or 
modulated.    

  Tethering of the monomer GR to other transcription 

factors 

 Another major mode of gene regulation is the association of 
GR as a monomer with pro-infl ammatory-acting transcription 
factors [AP-1  (39 – 41) , NF- κ B  (42, 43) , IRF3  (44 – 46) , STAT 
proteins  (47) , CREB, NFAT, T-bet, and GATA3  (48 – 50) ] and 
thereby modulating their activity and target gene expression. 
Therefore, this  tethering  mechanism is also considered to be 
a  transrepression  mechanism. 

 The cointegrator proteins SRC1, TIF2-associated-binding 
protein (STAMP)  (51) , thyroid hormone receptor interactor 
6 (TRIP6), GR-interacting protein 1 (GRIP-1), and positive 
transcriptional elongation factor b (P-TEFb) had been shown 
to be decisive to ensure transrepression  (45, 46, 52, 53)  

(Figure 1B). Loss-of-function studies also point to a role of 
tumor suppressor protein p53 being involved in transrepres-
sion by an unknown mechanism  (54) . 

 Recent genome-wide studies by Rao et al.  (55)  measuring 
p65/NF-kB and GR occupancy on the DNA of TNF and GC 
triggered HeLa cells revealed a more detailed picture of the 
crosstalk of those two transcription signaling pathways. Both 
DNA-binding-dependent mechanisms utilizing partially pre-
occupied DNA sites for GR and p65 as well as presumably 
DNA-binding-independent mechanisms of the GR in TNF 
and GC triggered cells seem to be involved. More genome-
wide studies of infl ammatory acting cells with GR mutations 
unable to dimerize (see below), for example, are required to 
resolve the mechanisms more comprehensively.   
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  Contribution of the molecular functions 

of the GR therapeutic and side effects 

in steroid therapy 

 Because pro-infl ammatory genes under the control of AP-1 
and NF- κ B can be repressed by the GR monomer, there is a 
long-standing hypothesis that selective-acting GR-modulating 
compounds that address the monomer function of the GR 
represent selective anti-infl ammatory drugs with fewer side 
effects  (56) . Mouse models had been developed to prove the 
relevance of this concept. 

 Two different types of modifi cation of the GR allele in 
the mouse were designed to achieve these goals. First, con-
ditional GR knockout mice were generated, harboring a GR 
allele with loxP sites fl anking exon 3  (8)  or exon 2  (57) , so-
called GRfl ox mice. GRfl ox mice were crossed with trans-
genic mice expressing Cre recombinase in a cell-type-specifi c 
manner in adult mice to reveal the critical cell types involved 
in an organismic response to GCs  (58) . Second, GR dim  mice, 
a knock-in strain carrying a point mutation in the dimeriza-
tion interface of the DBD encoded in exon 4  (59) , were char-
acterized to abrogate dimerization-dependent regulation of 
GRE-containing genes but allow DNA-binding-independent 
tethering mechanisms to AP-1 and NF- κ B  (29, 43, 59, 60) . 
Interestingly, this germ line mutation has been shown to res-
cue a number of defects observed in complete knockout mice 
 (14) , such as lung maturation, development of the adrenal 
medulla, and thus perinatal lethality  (59) . Gene expression 
profi ling revealed that the induction of metabolic genes is 
strongly reduced, but a subset of genes is regulated in a simi-
lar manner in the liver of wild-type and GR dim  mice following 
systemic prednisolone treatment  (61) . The differential regula-
tion of genes by GCs in GR dim  mice makes these mice very 
suitable for studies determining the molecular mechanism in 
disease models where GCs are applied. This is of particular 
importance for functional target genes of the GR in therapeu-
tic and side effects of GC application. 

  GC effects on skin infl ammation 

 A classic animal model of acute irritant infl ammation in the 
skin is phorbol ester-induced ear infl ammation. It is char-
acterized by edema formation, swelling and increased vas-
cular permeability, infl ux of neutrophilic granulocytes, and 
mononuclear cells into the skin and can be determined by 
an increase of ear thickness. Topical treatment with GCs 
severely suppresses this infl ammation in wild-type and GR dim  
mice  (62) . Thus, the dimerization-defi cient GR is suffi cient to 
mediate an anti-infl ammatory response. 

 In contrast, contact allergy, which can be modeled by con-
tact hypersensitivity (CHS) in mice, requires GR dimeriza-
tion for anti-infl ammatory effects by GCs  (63) . GR dim  mice 
display a complete refractory response toward GCs, although 
some cytokines, such as TNF- α , are suffi ciently suppressed. 
IL-1 β , MCP1, and IP10 fail to be repressed in GR dim  mice. 
Using tissue-specifi c GR knockout mice in the CHS model, 
it has been revealed that the GR in keratinocytes and the 
GR in T cells are dispensable for GC treatment. Only mice 

lacking the GR in myeloid cells (GR LysMCre ) are resistant to GC 
therapy  (62) . 

 Thus, in different types of skin infl ammation, different require-
ments of GR functions are involved in the anti-infl ammatory 
activity of GCs.  

  Systemic infl ammation: septic shock 

 Usually, infl ammatory responses against infections are 
counterbalanced by a resolution of this infl ammation, where 
endogenous GCs are considered to participate. Hence, 
patients with adrenal insuffi ciencies  (64)  have a decreased 
survival rate of septic shock as well as rodents subjected 
to adrenalectomy  (12) . Moreover, mice lacking the GR in 
macrophages are highly sensitive to septic shock induced 
by a bolus injection of lipopolysaccharides (LPS)  (9) . Their 
enhanced lethality is explained by an impaired expression 
of dual specifi c phosphatase 1 (DUSP1/MKP1) in mac-
rophages by endogenous GCs, leading to a suppression of 
p38 activity, thereby blunting TNF- α  expression. However, 
suppression of macrophage activity by GCs during this dis-
ease appears to occur on different levels. First, the degree 
of suppression of pro-infl ammatory-acting MAP-kinases 
depends on the type of involved toll-like receptors with 
respective adaptors  (44, 65) . Second, GR dimerization-de-
pendent functions in these cell types appear to be decisive, 
because macrophages from GR dim  mice have a less stringent 
effi ciency to suppress cytokines  (63) . Furthermore, they are 
largely resistant to changes in cell shape, NO synthesis, and 
surface expression of classic activation markers  (66)  and fail 
to up-regulate GC and LPS synergistically regulated genes. 
Moreover, GR dim  mice display an enhanced lethality in vari-
ous septic shock models  (66) . Interestingly, in these mice, 
TNF- α  is not misregulated in septic shock, but IL-1 β  and 
IL-6 levels are increased. Indeed, inhibition of IL-1 activ-
ity by recombinant IL-1 receptor antagonist administration 
rescues GR LysMCre  mice completely and GR dim  mice partially 
from death after LPS administration  (66) . This demonstrates 
that IL-1 β  is an important target of endogenous GCs protect-
ing against septic shock. 

 GCs have been reported not only to diminish pro-
infl ammatory features of macrophages but also to induce 
 ‘ alternatively ’  activated macrophages  (67) . These have been 
implicated in the resolution of infl ammation by express-
ing IL-10 with anti-infl ammatory activity and enhancing 
the expression of scavenger receptors, such as CD163, FcR 
(CD16 and mannose receptor)  (68) . Therefore, the clearance 
of apoptotic cells  (69) , a crucial process for the resolution 
of infl ammation, is enhanced. Studies of genome-wide gene 
expression and phagocytosis in GC-exposed human mono-
cytes  –  the precursors of macrophages  –  have corroborated 
the GC-induced  ‘ anti-infl ammatory ’ , presumably alternative, 
phenotype  (70) . Furthermore, GCs enhance the survival of 
anti-infl ammatory-acting monocytes by up-regulation of the 
A3 adenosine receptor to prevent apoptosis  (71) . 

 Thus, myeloid cells, in particular, monocytes/macrophages, 
play a key role in systemic infl ammation, which needs to be 
addressed by GCs in order to prevent it.   
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  GC action in suppression of infl ammation 

in models of autoimmunity 

 Multiple sclerosis is the most prevalent autoimmune dis-
ease of the central nervous system. High-dose GC therapy is 
applied during acute phases of the disease; however, accom-
panied complications and sometimes incomplete recov-
ery can occur  (72) . Using an animal model, experimental 
autoimmune encephalomyelitis (EAE), Wust et al.  (73)  and 
Schweingruber et al.  (74)  could demonstrate that GC action 
in T cells and myeloid cells is decisive in a therapeutic set-
ting. GR LysMCre  mice were found to be curable by free acces-
sible GCs, whereas GR LckCre  mice, lacking the GR in T cells, 
displayed an earlier onset of the disease and were completely 
resistant to GC application, remaining heavily infl amed  (73) . 
In contrast, when GCs encapsulated in liposomes that are 
taken up by phagocytotic cells, macrophages were identifi ed 
to be the main targets  (74) . This impressively demonstrates 
that dependent on the formulation of corticosteroids, different 
cell types could become critical for anti-infl ammatory action. 
It remains a challenge to underpin the exact mechanisms 
behind these differences. 

 Concerning the involvement of GR dimerization, no stud-
ies have been performed yet, but it is noteworthy that  ‘ com-
pound A ’  (CpdA), a GR-selective ligand favoring monomer 
GR function, has been reported to be successful in suppress-
ing EAE  (75, 76) . 

 GC effects on T cells and their precursors are long estab-
lished. Double positive (CD4  +  , CD8  +  ) T cells are very vul-
nerable to GC-induced apoptosis. GR dim  mice fail to show 
apoptosis of double positive cells  (59) . Potential target genes 
of the GR are the proapoptotic proteins Puma and Bim  (77, 
78) . Mice lacking the GR in T cells do not display altered 
thymocyte subsets or TCR β  expression  (57, 79) , excluding 
a role of the GR during thymocyte selection. Interestingly, 
GCs produced by the thymus stroma and/or epithelial cells 
appear to mediate post-pubertal thymus involution in male 
mice dependent on androgen action  (80, 81) . 

 GCs can suppress activation-induced cell death of 
peripheral T cells  (82, 83)  and inhibit T cell activation, 
suppress a plethora of cytokines, induce apoptosis, and 
shift from Th1 to Th2 cells, reviewed elsewhere  (84) . The 
actions of GCs on Th17 cells and regulatory T cells (T regs ), 
both important modifi ers of autoimmune diseases, have 
been less studied to date. T regs  are potent suppressors of 
autoinfl ammatory T cell responses and have been reported 
to be elevated upon GC treatment  (85, 86) . Despite the 
observation that T regs  primed  in vitro  by GCs impede EAE 
in mice after transfer, endogenous T reg  numbers are reduced 
during GC therapy of EAE  (73) . Nonetheless, a reduction 
of IL-17 cells accompanies GC treatment in EAE, indi-
cating a potential mechanism for GR action to suppress 
infl ammation in this model. 

 Inhibition of IL-17-producing cells by the GR dimer 
appears to be in part also important for the treatment of another 
autoimmune disease, rheumatoid arthritis, as revealed by the 
resistance of GR dim , GR LckCre , and IL-17 knockout mice to GC 
treatment in antigen-induced arthritis  (87) . 

 Taken together, the GR in T cells, most likely in the IL-17-
producing subset, is critical for the suppression of infl amma-
tion in the hitherto analyzed models of autoimmune diseases. 
However, myeloid cells may also play a role depending on the 
availability of GCs. 

  Side effects 

 The most prominent side effects of GC excess, either applied 
pharmacologically or being present in disease conditions, are 
muscle weakness, hyperglycemia, hepatic steatosis, insulin 
resistance, and bone loss  (10) . 

  Muscle weakness     GC-induced muscle loss occurs 
via the GR in muscle  (88) , in part by up-regulation of the 
muscle degradation initiating E3-ubiquitin ligase Murf1/
Atrogenin  (89) . Despite the requirement of GR dimerization 
to up-regulate Murf1/Atrogenin, muscle loss is not affected 
in GR dim  mice. This could be due to non-genomic effects, 
because overexpression of a nuclear localization defective 
GR in muscle fi bers of muscle specifi c knockout mice could 
confer decrease of muscle fi ber size  (88) . Paradoxically, also, 
Murf1/Atrogenin was in these mice still induced, in contrast 
to GR dim  mice  (89) . Thus, more unrecognized GC-regulated 
genes contribute to muscle weakness. Furthermore, the GR in 
muscle contributes to diabetes-induced muscle wasting  (88) .  

  Insulin resistance     Insulin resistance as one of the major 
complications is rapidly evoked by GC administration, which 
is in part due to the suppression of insulin secretion from  β  
cells by GCs  (90, 91) . Moreover, mice overexpressing the 
GR in  β -islets display an increased insulin resistance  (90) . 
Furthermore, GCs have direct effects on insulin receptor 
signaling by affecting the expression of insulin receptor 
substrate 1 and 2, reduction of the activity of PI3K, and thus 
Akt phosphorylation, which may be mediated by ceramides. 
Rodents with impaired ceramide synthesis are rendered 
resistant to GC-induced insulin resistance and do not show 
reduced Akt phosphorylation  (92) . 

 Nonetheless, loss of GR function in the liver of mice illus-
trates features of the role of endogenous GCs in metabolism. 
In the liver, GCs, together with glucagon, regulate glucose 
output, which is antagonized by the actions of insulin  (93) . 
Mice lacking the GR in the liver show a strong hypoglyce-
mia after fasting  (94) , which is accompanied by a failure 
of the up-regulation of mRNA encoding key gluconeogenic 
enzymes tyrosine aminotransferase and phosphoenol pyru-
vate carboxykinase. Both are characterized by GREs in the 
promoters and require dimerization-competent receptors for 
up-regulation of mRNA by GCs  (59) . Indeed, unpublished 
work in our laboratory favors GR dimerization-dependent 
processes in GC-induced glucose intolerance. 

 Hyperglycemia is further augmented by the breakdown of 
protein and fat stores to enhance the substrates for gluconeo-
genesis  (93) . Long-term GC treatment up-regulates PPAR α  
 (95) , which is involved in insulin resistance. PPAR α -defi cient 
mice display a reduced insulin resistance after 5 months of 
dexamethasone treatment. Interestingly, interruption of vagal 
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nerve innervation in the liver reduces insulin resistance of 
GC-treated wild-type mice, but not of PPAR α -defi cient mice 
 (96) . How PPAR α  activity links vagal nerve innervation to 
GC-induced insulin resistance and whether this mechanism 
applies to short-term GC exposures require investigation. 
Very recent liver X-receptor β was recognized as a mediator 
for GC-induced insulin resistance by participating in gluco-
neogenetic gene regulation  (97) . Thus, mechanisms involved 
in GC-induced insulin resistance are complex and require fur-
ther comprehensive investigations.  

  Lipid metabolism     Within the liver, GCs exert profound 
effects on lipid metabolism and contribute to liver steatosis 
via the GR at least in obese mice  (96) . In particular, they are 
involved in the elevation of plasma non-esterifi ed fatty acids, 
induction of lipolysis in fat tissue, and therefore enhanced 
triglyceride synthesis, which is in combination with a decrease 
of fatty acid oxidation; lipid accumulation in the liver triggers 
for hepatic insulin resistance  (93) . GCs exert profound effects 
on fat tissue. Redistribution of peripheral fat, which is poorly 
understood, and gain of visceral fat are augmented by GCs. 
Lipoprotein lipase is up-regulated upon GC exposure; the 
uptake of non-esterifi ed fatty acids and triglycerides into 
adipocytes is augmented  (93) . 

 In addition, the generation of adipocytes from mesenchy-
mal stem cells is facilitated by GR activity. Further adipogenic 
differentiation involves the actions of several transcription 
factors, most importantly, those of the CCAAT/enhancer-
binding family of proteins (C/EBPs) and PPAR γ . C/EBP β  
and C/EBP δ  are early induced genes that precede the expres-
sion of the key adipogenic transcription factors C/EBP α  and 
PPAR γ  for the terminal differentiation of adipocytes  (98) . 

 Derepression of C/EBP β  by the GR ligand domain at the 
promoter of C/EBP α  in the preadipocytic model cell line 
3T3-L1  (99, 100)  as a non-genomic mechanism had been 
proposed. However, genomic effects of the GR appear to 
play a major role. Very recently, Siersb æ k et al.  (101)  studied 
the transcription factor recruitment to open chromatin sites 
during adipocyte differentiation in 3T3-L1 cells. Here, they 
identifi ed that the GR in concert with retinoid X receptor, 
STAT5α, C/EBP β , and  δ  works as pioneering factors to pre-
pare transcription factor hotspots a few hours after differen-
tiation has been initiated. These factors in later differentiation 
events facilitate in part PPAR γ  binding  (101) . Additionally, 
dexamethasone stimulates C/EBP δ  expression and subse-
quent PPAR γ  and C/EBP α  expression in 3T3-L1 cells  (102) . 
Recently, we found that GR dimerization is required for this 
process  (103) . Mouse embryonic fi broblasts of GR dim  and GR 
knockout mice, cultured under adipogenic conditions, dis-
play a strong reduction of adipogenic differentiation capac-
ity. GR dim  and GR knockout cells fail to up regulate KLF15, 
which is required for adipogenesis  in vitro   (103) . However, 
whether the generation of de novo fat involves the GR  in vivo  
requires further investigation.  

  Osteoporosis     GC-induced osteoporosis (GIO) is a major 
side effect of steroid treatment: 25 %  of all clinical osteoporotic 

incidences in clinics are associated with high GC intake or 
GC excess  (104, 105) . The bone loss observed in GIO is due 
to an adverse imbalance of bone formation by osteoblasts and 
bone resorption by osteoclasts. Systemic effects of GCs such 
as lowering of calcium levels and those of anabolic-acting 
hormones, for example, sex steroids and growth hormone, 
can contribute to bone loss to a certain extent  (106) . However, 
direct effects on bone cells have been shown to be crucial in 
causing bone loss. 

 GCs are potent inducers of osteoclastogenesis-promoting 
receptor activator of NF- κ B ligand (RANKL) and suppress the 
osteoclast inhibitor osteoprotegerin (OPG)  (107) . Confl icting 
results exist over GC effects on osteoclast activity in mouse 
models. Whereas increased resorption has been reported in 
GC-treated Balb/c mice  (108) , other studies have reported 
decreased resorption (approx. 20 %  – 30 % ) in mice of differ-
ent backgrounds  (17, 109) . Jia et al.  (109)  suggest that GCs 
enhance the lifespan of mature osteoclasts, whereas osteo-
clastogenesis from osteoclast progenitors is inhibited. The 
inhibition of osteoclastogenesis by pharmacological GC con-
centrations observed in co-cultures of osteoblast and osteoclast 
precursors is dependent on GR expression in both cell types 
 (17) . This observation is in line with the observed decrease of 
resorption  in vivo  reported by Rauch et al.  (17)  and Kim et al. 
 (110) . The cell-autonomous inhibition of osteoclastogenesis by 
GCs is explained by impairment of the reorganization of the 
cytoskeleton (actin rings for resorptive osteoclast activities) 
 (110) . Importantly, total inhibition of resorption by bisphos-
phonates or by RANKL inhibitory antibodies in humanized 
RANKL knock-in mice ameliorates GC-mediated bone loss 
 (108) . 

 Recently, it was shown that the GR in osteoblasts is crucial 
for GC-induced bone loss. Mice lacking the GR in osteoblasts 
(GR Runx2Cre  mice) are resistant against GC-mediated inhibition 
of bone formation and loss of bone mass  (17) . Inhibition of 
bone formation is accompanied with reduced osteoblast and 
osteocyte numbers  (111) . The reduction of osteoblast num-
bers could be due to inhibition of proliferation, induction of 
apoptosis or inhibition of differentiation. 

 The proliferation of osteoblasts can be inhibited by GCs 
by antagonizing the Wnt pathway  (112) , GC-induced MKP1/
DUSP1, leading to a reduction of mitogenic signaling  (113)  
that requires GR dimerization  (17) . Nevertheless, GR dim  
mice have impaired bone formation upon GC exposure, indi-
cating that effects of GCs on proliferation are involved in 
GC-induced bone loss to only a minor extent  (17) . Apoptosis 
of osteoblasts and osteocytes is observed after prednisolone 
treatment  (114) , is independent of GR dimerization  (17) , is 
accompanied with caspase 3 activation  (115) , has induction 
of the pro-apoptotic protein BAX  (116)  and might depend, 
in addition, on the activation of the FAK-related kinase Pyk2 
 (117) . Furthermore, an overall bone loss is still displayed in 
mice with impaired GC activity and consequently reduced 
apoptotic rates in late differentiated osteoblasts and osteo-
cytes  in vivo   (118) , indicating that induced apoptosis is not 
the only mechanism of GC-induced bone loss. 

 High dosage of GCs impairs the differentiation capa city 
of primary osteoblasts by about 70 %  to 90 %   (17)  and is 
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accompanied by reduced differentiation marker gene expres-
sion  (119) . Following reduced differentiation, osteoblast 
function (collagen production) declines  (120)   in vitro  and  in 
vivo  and, consequently, bone formation is reduced. This GC 
effect is absent in mice specifi cally lacking the GR in osteo-
blasts (GR Runx2Cre ), but not GR dim  mice  (17)  and prevents bone 
loss only in GR Runx2Cre  mice. Taking these fi ndings together, 
it can be concluded that the inhibition of differentiation is a 
major mechanism of GIO  (17) . 

 GCs can affect differentiation by engagement of multiple 
mechanisms and factors, including suppression of BMP/
TGF β  signaling  (121, 122) , growth hormone/IGF-1 acti-
vity and affecting AP-1-dependent LIF and particular IL-11 
expression by the GR monomer in osteoblasts. IL-11 is a 
potent inducer of osteoblastogenesis  in vitro  and  in vivo  via 
the Jak2/STAT3 pathway, and when applied in excess, it can 
counteract the GC-induced suppression of osteoblast differ-
entiation  (123 – 125) .    

  Novel criteria for selective GR modulators 

for therapeutic effi cacy and prevention 

of osteoporosis 

 Based upon the observation that the monomer GR can repress 
the activity of pro-infl ammatory transcription factors, in par-
ticular, AP-1 and NF-kB, selective ligands for the GR have 
been developed on the principles that they should retain 
monomeric function of the GR but disrupt dimerization func-
tions. The so-called selective GR modulators or activators 
(SEGRM, SEGRA)  (2, 126)  should maintain immune sup-
pression but avoid side effects. 

 In the early years, potential compounds were screened for 
their ability to suppress a cytokine promoter and for their 
inability to transactivate GRE-containing promoters. Selected 
compounds could dissociate between transactivation and 
transrepression of the GR  in vitro . However, some of them 
exerted side effects  (127, 128) , such as weight loss, shrink-
age of the thymus, and bone turnover  (128)  or the induc-
tion of gluconeogenetic enzyme genes in liver cells  (129) . 
Nonetheless, for local topical application to treat infl ammatory 
skin diseases, the non-steroidal compound ZK245186 looks 
to be a promising candidate to maintain anti-infl ammatory 
effi cacy and to avoid brittleness of the skin  (130)  and is cur-
rently in clinical trials. Studies using cell-type-specifi c and 
function-selective knockout mice have revealed different GR 
mechanism requirements for the therapeutic and side effects 
of classic GR ligands (Figure  2  ). For some anti-infl ammatory 
activities, such as irritant skin infl ammation, a GR defec-
tive in dimerization is able to perform full anti-infl ammatory 
activity. In other infl ammatory types, contact allergy, sep-
tic shock, and arthritis, dimer-dependent mechanisms are 
required. Furthermore, the activity of the GR in distinct cell 
types appears to be critical. Side effects also utilize GR dimer-
dependent and GR dimer-independent mechanisms. The 
induction of hyperglycemia appears to be GR dimer depen-
dent (Rauch and Tuckermann, unpublished data) as expected, 
whereas GIO occurs in the absence of GR dimerization and 

a discrimination between interference of NF-kB vs. AP-1 
might be important to protect osteoblast differentiation while 
still promoting some anti-infl ammatory activity. 

 Our analysis of the activity of the GR ligand CpdA on bone 
cells demonstrates that these criteria can be met in osteo-
blasts  (123) . CpdA displays potent anti-infl ammatory actions 
in collagen-induced arthritis  (131) . In addition, CpdA is 
capable of suppressing pro-infl ammatory cytokines, such as 
CXCL10 and IL-6, and does not infl uence the RANKL/OPG 
ratio in osteoblastic cell lines and primary cells  (123, 132) , 
whereas expression of  Il11  and osteoblast differentiation are 
unaffected by CpdA. Finally, mice with collagen-induced 
arthritis receiving an immunosuppressive dose of CpdA have 
strikingly higher serum osteocalcin levels compared with 
dexamethasone-treated animals  (123) . Therefore, although 
CpdA has a narrow therapeutic window, such compounds 
with optimized pharmacology could be of major clinical use 
to suppress infl ammatory bone diseases and maintain bone 
integrity. 

 This example demonstrates that for the future screening 
of optimized GR ligands, a more specifi c screening approach 
should be undertaken. In particular, cellular readouts need to 
be developed, which resemble therapeutic and side effects  in 
vivo . The most promising candidates will be required to avoid 
particular side effects but maintain anti-infl ammatory effi -
cacy. Moreover, selective GR ligands may only be success-
ful in certain types of infl ammation, as revealed from studies 
with conditional mutant GR mice.  

  Expert opinion and outlook 

 Advanced understanding about the molecular basis of the 
physiological effects of GCs was obtained by the analysis 
of conditional knockout and knock-in mice for the GR. The 
requirement of the GR in T cells for immune suppression in 
a model of multiple sclerosis, but in myeloid cells for models 
of contact allergy and septic shock  (66) , could be unequivo-
cally demonstrated. In part, the immune suppressive effects 
are dependent on GR dimerization. Also, side effects of GC 
medication seem to employ different modes of GR activ-
ity. For GIO, interaction of the GR monomer with AP-1 is 
required, whereas for induction of adipogenesis, a dimeriza-
tion competent GR is necessary. 

 Albeit these analyses are far from being complete, it 
becomes evident that for different infl ammatory disease 
models and for different side effects, specifi c modes of 
GR action in particular cell types are involved. Further 
insights of the tissue-specifi c molecular mechanisms of the 
GR will be obtained in the near future by combining the 
physiological analysis of the transgenic mouse models with 
the genome-wide determination of gene regulatory acti vity 
and functional interference of GR target genes in a tissue-
specifi c manner. The comprehensive understanding of GR 
biology will give novel rationales for the development 
of specifi c GR modulators that may reduce side effects 
and keep anti-infl ammatory effi cacy in particular disease 
conditions.  
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  Highlights  

   GR acts by different mechanisms to suppress infl ammation • 
dependent on the disease type.  
  Side effects may depend on GR dimerization but also em-• 
ploy GR monomer dependent activities as in the case of 
GIO.  
  Molecular mechanisms of GR activity in a genome-wide • 
manner are just becoming uncovered and reveal novel 
DNA recognition sequences for direct or indirect binding 
of the GR. How cell-type specifi city governs gene regula-
tion by the GR remains a challenge in the fi eld and needs 
to be addressed.  

  Selective GR modulators addressing cell-type-spe-• 
cific mechanisms of the GR are required for reduced 
side effects in the therapy of particular inflammatory 
diseases.      
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 Figure 2    Different physiological processes in steroid therapy require cell-type-specifi c modes of GR action. 
 Shown is a graphical summary of the results from analyses of GR dimer-defi cient and cell-type-specifi c GR knockout mice in benefi cial (left) 
and detrimental effects (right) of GC therapy. For benefi cial anti-infl ammatory effects of GCs (left), GR dimerization is required in animal 
models for arthritis, sepsis, and contact allergy. For irritant infl ammation, the monomer GR activity is suffi cient; however, the involved inter-
acting partners remain to be identifi ed. The GR in T cells is required for the immunosuppressive effects in an animal for model experimental 
autoimmune encephalomyelitis (EAE) and arthritis, whereas cell-type requirements for asthma have not been demonstrated. Detrimental side 
effects (right) of the GR dimer-dependent processes in adipocytes are important for differentiation and possibly for fat redistribution. Type 
2 diabetes seems to be GR dimer dependent, which has to be further investigated. Monomer GR-AP-1 interaction is critical for GC-induced 
osteoporosis. Models for hypertension, brittleness of the skin and depression remain to be analyzed with conditional GR knockout mice. 
Selective GR modulators should fulfi ll the molecular requirements, specifi cally for individual infl ammatory diseases, and then should exert 
distinct capacities to reduce side effects.    
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