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   Abstract 

 Estrogen affects transcriptional status by activating its corre-
sponding nuclear receptor, the estrogen receptor (ER). It can 
also induce rapid cellular reactions within a few minutes, and 
this feature cannot be explained by the transcription-mediated 
effects of estrogen. The latter mechanisms are called  ‘ non-
genomic actions ’  of estrogen. In contrast, the former classic 
modes of action came to be called  ‘ genomic actions ’ . One 
of the recent developments of research on estrogen was the 
substantiation of the non-genomic actions of estrogen; these 
were initially observed and reported as intriguing phenomena 
more than 40 years ago. The interacting molecules as well 
as the biological signifi cance of non-genomic actions have 
now been shown. In the fi eld of genomic actions, invention 
and spread of new technologies, including high-throughput 
sequencers, promoted a comprehensive view of estrogen-me-
diated transcriptional regulation.  

   Keywords:    estrogen;   estrogen receptor;   genomic action; 
  non-genomic action.     

  Introduction 

 Estrogen plays an important role in biological and patho-
logical processes, such as female reproduction, circulation, 
bone metabolism, and development of breast cancer. The 
action of estrogen is mediated by its corresponding nuclear 
receptor, the estrogen receptor (ER). ER has two subtypes, 
namely, ER α  and ER β . On the stimulation of agonistic 
ligands, ER forms complexes with coactivators and histone 
acetyltransferases, resulting in conformational changes of 

chromatin and activation of transcription pathways. In con-
trast, antagonistic ligands induce complexes of ER, core-
pressors, and histone deacetylases (HDACs), which alter 
the chromatin conformation into a transcriptionally inactive 
form. 

 Estrogen can cause rapid changes in signal-transducing 
molecules within a few minutes. This phenomenon cannot be 
explained by transcriptional regulation, which requires time 
for transcription and translation, and came to be known as 
 ‘ non-genomic estrogen action ’ , whereas the classic function 
mediated by transcriptional regulation is termed  ‘ genomic 
estrogen action ’  (Figure  1  ). 

 In this review, we discuss the physiological and patho-
logical signifi cance of newly found  ‘ non-genomic estrogen 
actions ’ , and recent developments in the analysis of  ‘ genomic 
estrogen action ’  promoted by technological advancement.  

  Membrane ERs 

 The existence of rapid estrogen reactions was reported as 
early as the 1960s. In 1967, Szego and Davis  (1)  described 
rapid increase in cyclic AMP (cAMP) in the rat uterus after 
estrogen stimulation. In 1975, it was observed that estro-
gen stimulus caused a rapid increase in calcium uptake in 
rat endometrial cells  (2) . In 1977, estrogen-specifi c bind-
ing sites were predicted on the outer membrane of endo-
metrial and hepatic cells  (3) . However, after the cloning of 
ER α  was successful in the middle of 1980s  (4) , researchers 
tended to focus on the analysis of transcriptional regula-
tion. In the 1990s, phenomena that could not be explained 
by genomic actions began to draw attention again. In 1992, 
Morley and colleagues  (5)  reported rapid calcium release 
in chicken granulosa cells induced by estrogen stimulus. In 
1994, it was discovered that estrogen stimulus caused ele-
vated cAMP in breast cancer cells and uterine cells, which 
was not blocked by inhibitors of RNA and protein synthesis 
 (6) . At this time, the receptor mediating these rapid effects 
was not clarifi ed. 

 In 1996, Migliaccio and coworkers  (7)  demonstrated rapid 
transient activation of mitogen-activated kinase (MAPK) 
by estrogen in breast cancer cells. They showed the interac-
tion of ER and c-Src in this process by immunoprecipitation 
assay. In 2002, estrogen-induced membrane translocation of 
the ER was shown in breast cancer cells by immunostaining 
using an ER α  antibody  (8) . Thus, non-genomic action medi-
ated by ER, the same receptor mediating genomic action, 
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came to be accepted, and the non-genomic actions of estro-
gen were attributed to ER α  functioning. Recently, other than 
full-length 66-kDa ER α , shorter variants of ER  –  ER α 36 
(36 kDa) and ER46 (46 kDa)  –  were shown to mainly localize 
at the plasma membrane and mediate non-genomic actions 
of estrogen  (9, 10) . Some lines of evidence indicated that 
fatty acid modifi cation of the ER might be important for the 
mechanism of membrane translocation of ER. Acconcia et al. 
 (11)  demonstrated that S-palmitoylation of the Cys447 ER α  
residue is responsible for membrane localization by a muta-
tion that changes Cys477 to Ala. Another post-transcriptional 
modifi cation of ER α , methylation of Arg260 in the DNA 
binding domain, may also be involved in the non-genomic 
action of estrogen  (12) . This modifi cation occurs rapidly after 
estrogen stimulus and promotes the interaction of signal-
transducing molecules, such as phosphatidylinositol-3-OH 
kinase (PI3K) and c-Src. 

 Some researchers assumed that other estrogen membrane 
receptors mediate the non-genomic actions of estrogen. In 
2000, Filardo et al.  (13)  showed MAPK was activated by estro-
gen, even in breast cancer cells without ER expression. They 
demonstrated that GPR30, a member of the seven-transmem-
brane-spanning G-protein coupled receptors, can act as an ER 
at the membrane  (13) . Expression of GPR30 was reported in 
several cancer cell lines, including breast  (13) , endometrial 
 (14) , and ovarian  (15)  cancer cells. Expression of GPR30 was 
also detected in several tissues, such as the reproductive tis-
sues  (16) , pancreas  (17) , bone tissue  (18) , blood vessels  (19) , 
and brain  (20, 21) . The wide range of GPR30 expression sug-
gested that the non-genomic actions of estrogen mediated by 
GPR30 can affect physiological and pathological processes in 
various organs.  

  Non-genomic actions of estrogen involved in 

physiological processes 

 The reproductive tissues are important targets of estrogen 
action. Non-genomic actions of estrogen in the endometrium 
were discovered long before the ER was isolated. Rapid 
increases of cAMP in rat uterus  (1)  and calcium uptake in 
rat endometrial cells  (2)  were shown following an estrogen 
stimulus. Interestingly, Rambo and Szego  (22)  reported rapid 
morphological changes in the endometrial cell microvilli. 
Presently, GPR30 expressed in the endometrium  (16)  as well 
as ER α  could also mediate the non-genomic actions of estro-
gen in the uterus. 

 The discovery of rapid calcium release from the granulosa 
cells of chicken preovulatory follicles after estrogen stimu-
lus was one of the early fi ndings of the non-genomic actions 
of estrogen  (5) . Tesarik and colleagues  (23)  found that rapid 
calcium infl ux is induced by estrogen in human oocytes dur-
ing the germinal vesicle stage. Recent studies have suggested 
that GPR30 is expressed in neonatal hamster ovary and is 
involved in primordial follicle formation  (24) . 

 As for the effects of estrogen on male reproductive tis-
sues, it was reported that effects on the spermatozoa in 
which estrogen stimulus improved ova penetration  (25) . 
As spermatozoa contain densely packaged DNA, genomic 
action is supposed to be impossible. Therefore, the effects 
of estrogen on the spermatozoa are likely mediated by 
non-genomic actions. Aquila et al.  (26)  demonstrated ER α  
(and ER β ) expression in the spermatozoa, and interactions 
between ER α  and the p55 regulatory subunit of PI3K, which 
could explain the mechanisms of the non-genomic actions 
of estrogen in the spermatozoa. 
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 Figure 1    Mechanisms of estrogen action. 
 The ER functions as a ligand-dependent transcription factor, and this classic function is called  ‘ genomic action ’ . Messenger RNA, anti-sense 
RNA, and small RNA are transcriptionally regulated by estrogen. However, estrogen also alters signal transduction molecules within a few 
minutes. This action is called  ‘ non-genomic action ’ . Membrane-localized ERs and GPR30 are reported to mediate this function.    
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 Estrogen is assumed to have a protective effect on the car-
diovascular system, although this effect is still controversial 
in clinical studies. Simoncini et al.  (27)  reported evidence that 
non-genomic actions are involved in these effects. In vascular 
endothelial cells, estrogen rapidly induces nitric oxide pro-
duction by activating the PI3K pathway. During this action, 
membrane-localizing ER α  associates with the p85 α  regula-
tory subunit of PI3K, leading to the activation of Akt and 
endothelial nitric oxide synthase. Recently, Haas et al.  (19)  
reported GPR30 also mediates a rapid vasodilating effect. 

 Estrogen also plays a benefi cial role in the bone tissue. 
In osteoblasts, the membrane-localizing ER α  mediates anti-
apoptotic effects by activating the Src/Shc/extracellular sig-
nal-regulated kinase (ERK) pathway  (28) . During this action, 
the membrane-localizing ER α  associates with c-Src. In osteo-
blast progenitor cells, GPR30 is also expressed, and GPR30-
mediated signaling promotes the proliferation of these cells 
 (18) . 

 Some studies show the involvement of estrogen-mediated 
non-genomic actions in the central nervous system. In 1991, 
Hayden-Hixon and Ferris  (29)  reported that estrogen injec-
tions into the anterior hypothalamus of male hamsters caused 
rapid behavioral changes, i.e., increased fl ank marking. 
Similar rapid behavioral changes were also found in experi-
ments involving rats, in which estrogen administration facili-
tated anogenital investigation and mounting behavior within 
35 min  (30) . Recently, Dewing and coworkers  (31)  revealed 
part of the molecular mechanism of behavioral changes in 
female rats. They demonstrated that ER α  and the metabotro-
pic glutamate receptor 1a directly interact to mediate a rapid 
estradiol-induced activation of the  µ -opioid receptor in the 
medial preoptic nucleus, leading to female sexual receptivity, 
such as lordosis. In the central nervous system, estrogen can 
also infl uence memory and hippocampal function. Fernandez 
et al.  (32)  demonstrated that these effects were mediated 
by the non-genomic actions of estrogen accompanied with 
MAPK activation in the dorsal hippocampus. They showed 
that cerebroventricular infusion of membrane-impermeable 
bovine serum albumin-conjugated estrogen caused enhanced 
object recognition and hippocampal extracellular signal-reg-
ulated kinase activation. Neuronal cells also contain GPR30. 
Regulation of energy homeostasis in hypothalamic neurons 
 (20) , and prolactin secretion in the hypothalamic-pituitary 
axis  (21)  are reported to be mediated by GPR30 signaling.  

  Non-genomic actions of estrogen involved in 

pathological processes 

 The non-genomic actions of estrogen are also analyzed 
under pathological conditions, such as breast cancer. Ligand-
dependent rapid phosphorylation of MAPKs caused by estro-
gen was revealed in ER α -positive breast cancer MCF-7 cells 
 (7) . As MCF-7 cells also were later shown to be GPR30 posi-
tive, this phenomenon could be attributed to both membrane-
localized ER and GPR30. 

 Further studies on membrane-localizing ER led to the discov-
ery of several associated molecules at the plasma membrane. 

One of these proteins is MNAR [modulator of non-genomic 
action of estrogen, also known as PELP1 (proline-, glutamic 
acid-, and leucine-rich protein-1)], which functions as a scaffold 
protein binding with ER α  and c-Src at the same time, leading 
to c-Src activation  (33) . Recently, MNAR was found to inter-
act with integrin-linked kinase 1, and this complex mediates 
estrogen-induced cytoskeletal reorganization and enhanced 
motility of breast cancer cells  (34) . Enhancement of motility was 
also explained by rapid tubulin deacetylation by estrogen stimu-
lus  (35) . We revealed that the membrane-localizing ER associ-
ates with tubulin and HDAC6 in the cytoplasm. In this case, 
HDAC6 deacetylates tubulin instead of histone. Interestingly, 
tamoxifen, which functions as an antagonist to the genomic 
actions of ER, behaves as an agonist for the non-genomic 
actions of ER. It was also reported that another tubulin-binding 
protein, the hematopoietic PBX-interaction protein, associates 
with ER α   (36)  and functions as a scaffold protein, associating 
with c-Src, the p85 subunit of PI3K, and tubulin. Formation of 
this complex leads to activation of Akt and MAPK, and depo-
lymerization of microtubule, which causes enhanced cell motil-
ity. Another scaffold protein, p130Cas, was also shown to be 
associated with ER α  and c-Src  (37) . p130Cas could mediate 
non-genomic actions, such as MAPK activation in ER-positive 
breast cancer cells  (37) . 

 GPR30-mediated enhanced proliferation and motility in 
ER-negative/GPR30-positive SKBr3 breast cancer cells was 
also shown  (38) . GPR30-induced transcription of connective 
tissue growth factor was necessary for these observed effects. 
Hydroxytamoxifen was an agonist in this action.  

  Advancement of genomic action analysis 

 Since the discovery of ER α , various studies have been per-
formed to clarify genomic actions of estrogen, including iden-
tifi cation of estrogen target genes and the cofactors involved 
in estrogen-induced transcriptional regulation. After comple-
tion of the human genome project, and with the advent of 
newly developed sequencing technology, a more comprehen-
sive vision of the estrogen transcriptome was elucidated. 

 The chromatin immunoprecipitation (ChIP) method helps 
in understanding temporal regulation and special occupancy 
of the promoter/enhancer regions by ER α  and its cofactors. 
Using ChIP experimentation, Reid et al.  (39)  revealed that 
ER α  and associated cofactors were recruited in a cyclic pat-
tern. This cyclic recruitment depended on nuclear protea-
some activity, suggesting a rapid mechanism involving on/off 
regulation in the presence and absence of ligands. By com-
bining ChIP and microarray analysis, Carrol et al. performed 
chromosome-wide  (40) , and later, genome-wide  (41)  analy-
sis of the ER-binding sites. These revealed many potential 
ER α -regulated genes, and possible transcriptional regulation 
from a remote enhancer at as far as 500 kb from the target 
genes. In the late 2000s, high-throughput sequencing tech-
nology became widely available. This technology is poten-
tially a valuable tool for transcriptional analysis. In 2009, 
Welboren et al.  (42)  combined ChIP and high-throughput 
sequencing (ChIP-seq) methods to comprehensively analyze 
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the genomic binding sites of ER α  in response to different 
ligands. Recently, investigations have focused on the three-
dimensional structure of chromatin, which could explain 
the mechanism of ER α -mediated transcriptional regulation 
from the remote enhancer sites. Fullwood et al.  (43)  under-
took a comprehensive analysis of the ER α -bound chromatin 
interactome by using a strategy called chromatin interaction 
analysis by paired-end tag sequencing (ChIA-PET). In this 
strategy, ChIP and high-throughput sequencing methods were 
used after cross-linking of chromatin and proximal ligation 
of DNA. High-throughput sequencing can also be applied 
for the analysis of estrogen-induced transcription. Hah et al. 
 (44)  focused on newly synthesized RNA using global nuclear 
run-on and sequencing (GRO-seq), and demonstrated estro-
gen-mediated induction of mRNA, antisense RNA, divergent 
RNA, and small RNAs, which were overlooked in steady-
state RNA sequencing. Thus, comprehensive studies of the 
genomic actions of estrogen promote functional understand-
ing of the roles of estrogen in cells, tissues, and organs.   
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