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   Abstract 

 Non-shivering thermogenesis in brown adipose tissue (BAT) 
plays an important role in thermoregulation. In addition, 
activations of BAT have important implications for energy 
homeostasis due to the metabolic consumption of energy 
reserves entailed in the production of heat in this tissue. In this 
conceptual overview, we describe the role of orexins/hypocre-
tins within the central nervous system in the modulation of 
thermogenesis in BAT under several physiological conditions. 
Within this framework, we consider potential neural mecha-
nisms underlying the pathological conditions associated with 
the absence of the central orexinergic modulation of BAT ther-
mogenesis and energy expenditure. Overall, the experimental 
basis for our understanding of the role of central orexin in reg-
ulating body temperature and energy homeostasis provides an 
illustrative example that highlights several general principles 
and caveats that should help guide future investigations of the 
neurochemical regulation of thermogenesis and metabolism.  

   Keywords:    cannabinoid;   narcolepsy;   obesity;   stress; 
  ultradian rhythm.     

  Introduction 

 The regulation of body temperature by the central nervous 
system is critical for mammalian survival in a wide variety 
of thermal environments. Small variations in core body tem-
perature within the physiological range often occur during 
behavior and may be functionally relevant. However, large 
deviations in cellular temperature can suffi ciently alter a vari-
ety of molecular properties, including enzymatic activities, 
diffusion capacity, and membrane fl uidity, to impair cellular 
function. Severe disruptions in cellular function result in loss 
of motor coordination, mental confusion, loss of conscious-
ness, signifi cant respiratory and cardiovascular dysfunction, 
and eventual death. 

 Signifi cant progress has been made in our understanding 
of the fundamental central nervous system circuitry that reg-
ulates body temperature [see refs.  (1 – 4) ]. Not surprisingly, 

the excitatory amino acid glutamate and the inhibitory amino 
acid GABA are the primary neurotransmitters within the 
fundamental central neural pathways for thermoregulation. 
In addition, body temperature can be infl uenced by an exten-
sive array of peptides and other central neurotransmitters, 
including (but not limited to) hypocretin/orexin, galanin, 
melanin-concentrating hormone, neuropeptide Y, oxyto-
cin, glucagon-like peptide 1, cholecystokinin, cocaine- and 
amphetamine-related transcript, melanocortins, opioids, 
thyrotropin-releasing hormone, corticotropin-releasing fac-
tor, tuberoinfundibular peptide of 39-amino-acid residues 
(TIP-39), dopamine, norepinephrine, epinephrine, serotonin, 
histamine, insulin, and leptin. However, the precise neuroana-
tomical sites of action and the specifi c mechanisms by which 
many of these neurochemicals infl uence the fundamental 
neurocircuitry for thermoregulation remain unknown. In this 
article, we will use an illustrative example the infl uence of 
orexin on thermoregulation, to highlight some of the gen-
eral principles and caveats that should guide experiments to 
understand the precise mechanisms by which neurochemicals 
may interact to infl uence thermoeffector activation.  

  Orexin neurons contribute to the regulation 

of BAT thermogenesis 

 Orexins/hypocretins  (5, 6)  are peptides synthesized primar-
ily by neurons located in the lateral, perifornical, and dorso-
medial areas of the hypothalamus. These orexinergic neurons 
have widespread projections in the brain that include many 
thermoregulatory areas, such as the preoptic area, dorso-
medial hypothalamus, parapyramidal area (PaPy), and the 
rostral raphe pallidus (rRPa)  (7 – 9) . The rRPa is especially 
relevant to thermogenesis as it is the location of the sympa-
thetic premotor neurons for BAT  (10, 11) . We have recently 
demonstrated a role of orexin in the rRPa in the control of 
BAT thermogenesis  (9) . Transynaptic retrograde virus tracers 
injected in BAT as well as injections of the retrograde tracer 
cholera toxin subunit-b in the rRPa and PaPy highlighted a 
direct projection from orexinergic neurons to rRPa and PaPy 
sympathetic premotor neurons controlling BAT thermogene-
sis. Furthermore, nanoinjection of orexin in the rRPa or PaPy, 
or nanoinjection of  N -methyl- d -aspartate (NMDA) in the per-
ifornical area of the lateral hypothalamus containing orexin-
ergic neurons potentiated the ongoing BAT sympathetic nerve 
acti vity (SNA) elicited by mild cooling of core body tem-
perature. However, during a slightly warm condition when 
the BAT sympathetic nerve was quiescent, neither nanoinjec-
tion of orexin in the rRPa nor direct activation of orexinergic 
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neurons by nanoinjections of NMDA in the perifornical area 
of the lateral hypothalamus increased BAT SNA  (9) . Thus, 
orexin appears to serve as a modulator that changes the gain 
of the central thermoregulatory system to facilitate ongoing 
sympathetic activity to BAT and BAT thermogenesis. 

 Figure  1   illustrates several potential mechanisms by which 
orexin-mediated facilitation of the activity of BAT sympathetic 
premotor neurons could occur within the rRPa. Orexin could 
act by inhibiting GABA release onto BAT sympathetic premo-
tor neurons in the rRPa, consistent with the increases in BAT 
SNA that can be driven by blockade of GABA A  receptors in 
this region  (12) . Interestingly, within the periaqueductal gray, 
orexin inhibits the release of GABA by cannabinoid-mediated 
retrograde neurotransmission, in which endocannabinoid, 
released from the postsynaptic cell in response to orexin recep-
tor activation, diffuses retrogradely to inhibit GABA release 
from local presynaptic terminals  (13) . Orexin could also pre-
synaptically potentiate glutamate release onto BAT sympa-
thetic premotor neurons of the rRPa, similar to mechanisms 
described for the potentiation of muscle tone with microinjec-
tion of orexin in somatic motor nuclei  (14) . In addition, orexin 
could act directly on sympathetic premotor neurons in the 
rRPa to alter their responsiveness to synaptic inputs. Although 
there are no data quantifying the phenotypes of the targets of 

orexin terminals within the rRPa, orexin fi bers do form close 
appositions to serotonergic neurons (unpublished observation), 
consistent with the interesting possibility that the modulatory 
effects of orexin could be explained by effects on the seroton-
ergic, BAT sympathetic premotor neurons in the rRPa. Indeed, 
similar to the effect of orexin in the rRPa, activation of seroton-
ergic receptors in the spinal cord changes the gain of the spinal 
thermogenic network by potentiating glutamatergic excitation 
of BAT sympathetic preganglionic neurons  (15 – 17) .  

  Role of orexin in the ultradian cycle of BAT 

thermogenesis 

 Ultradian rhythms are those with a periodicity of   <  24 h. 
Ultradian rhythms in rats have been described for sleep/wake 
cycles, motor activity, arterial pressure, and heart rate. An ultra-
dian rhythm in BAT thermogenesis has also been demonstrated, 
with increases in BAT temperature occurring every  ∼ 1 – 2 h 
 (18, 19) . A role for orexin in the regulation of the ultradian 
rhythm of BAT thermogenesis has been suggested  (18, 20) . 
Consistent with this hypothesis, injection of orexin into the 
cerebral ventricles increases BAT SNA and BAT temperature 
 (21) , and the acti vity of orexinergic neurons as well as the lev-
els of orexin in the extracellular fl uid of the central nervous 
system correlate well with the sleep/wake state of the animal, 
with higher indices of orexin activity during the waking state 
 (22 – 24) . Unfortunately, the presence (or absence) of an ultra-
dian rhythm in BAT temperature in orexin-null mice has not 
yet been described, although these animals do have disrupted 
ultradian sleep/wake cycles characterized by shorter bouts of 
wakefulness compared with control mice  (19, 25) . We postu-
late that the ultradian increases in BAT temperature are medi-
ated by the periodic release of orexin in the rRPa and PaPy, 
resulting in increases in the gain of thermogenic neurotrans-
mission that, in turn, increase body and brain temperatures. 
What are the functional implications of the ability of orexin 
to increase the gain of the thermogenic system ?  An interest-
ing, although untested, hypothesis is that the ultradian rhythm 
of BAT thermogenesis facilitates neural activity and thereby 
improves brain function  (26) . Similarly, given the close cor-
relation of BAT thermogenesis and the resulting increase in 
body temperature with periods of wakefulness, thermogen-
esis in this tissue may act to optimize metabolic function dur-
ing periods requiring enhanced performance in general, and, 
conversely, low levels of thermogenesis during sleep states 
may act to conserve limited metabolic resources. Likewise, 
changing the gain of the excitatory neurotransmitter system 
driving a thermogenic effector, such as BAT, which consumes 
energy stores to produce heat, would have clear functional 
consequences for energy homeostasis (see below).  

  Role of orexin neurons in the stress-induced 

increase in body temperature 

 Zhang and colleagues  (27)  have demonstrated that the increase 
in core body temperature evoked by repeated handling stress 

 Figure 1    Schematic diagram summarizing several proposed mod-
els of the detailed mechanisms responsible for the modulation of 
brown adipose tissue (BAT) sympathetic nerve activity and thermo-
genesis evoked by the actions of orexin in the raphe pallidus. 
 Orexin peptide released from an orexinergic terminal (pink terminal) 
in the raphe pallidus may 1) act at postsynaptic orexin receptors on 
a sympathetic premotor neuron (gray neuron) for BAT to increase its 
responsiveness to other excitatory synaptic inputs; 2) act at orexin 
receptors on glutamatergic terminals (blue terminal) to presynapti-
cally potentiate glutamate release onto sympathetic premotor neu-
rons for BAT; 3) act on sympathetic premotor neurons for BAT to 
stimulate the release of endocannabinoids that subsequently serve 
as retrograde neurotransmitters to inhibit ongoing GABAergic input 
(yellow terminal) to sympathetic premotor neurons for BAT.    
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is attenuated in mice that lack orexin neurons compared with 
wild-type mice. Surprisingly, prepro-orexin knockout mice 
that do not produce orexin peptides have relatively normal 
stress-evoked increases in core body temperature  (27) . On the 
basis of these data, it has been suggested that orexin-contain-
ing neurons may be involved in stress-evoked increases in 
body temperature through the release of neurochemicals other 
than orexin (e.g., dynorphin or glutamate, which are normally 
co-expressed in orexin neurons)  (27) . 

 Particular caution is warranted when interpreting geneti-
cally driven ablation and knockout models as there is always 
the possibility for developmental changes or compensatory 
mechanisms, as well as unintended consequences on addi-
tional cell populations beyond those specifi cally targeted [e.g., 
due to developmental expression patterns that differ from 
those in adult animals; see ref.  (28) ]. This may also be true in 
the case of orexin. Orexin is required for the development and 
differentiation of BAT, and orexin administration during ges-
tation in orexin-null dams rescues this developmental defect 
in the newborn pups  (29) . The placenta may be the source of 
the orexin required for BAT development  (29) . However, how 
could this defect explain the differences observed between 
prepro-orexin knockout mice and orexin neuron-ablated 
mice ?  As the source of the functionally important orexin may 
be the placenta, the genotype of the dam could determine 
the development of BAT in the offspring. The prepro-orexin 
knockout mice were generated by breeding heterozygotes 
 (27) ; therefore, the dams will produce orexin as adults  (30) . 
Unfortunately, it is not clear from the methodological descrip-
tion of the generation of orexin neuron-ablated mice whether 
the dams are devoid of orexin (the specifi c genotype of the 
dams is not stated)  (27) . However, if orexin neuron-ablated 
dams were used, then the differential expression of orexin in 
the placenta of the dams would be expected to result in dif-
ferences in the development of BAT that could contribute to a 
difference in the stress-evoked increase in body temperature 
that is independent of alterations in the central nervous sys-
tem of the pups. There is also an apparent controversy con-
cerning the UCP-1 expression levels in orexin knockout mice 
[compare, for instance, Figure S1E in ref.  (29)  to Figure 3 
in ref.  (27) ]. Obviously, additional insights are necessary to 
resolve these issues.  

  Role of orexin in obesity 

 Narcolepsy is a neurological disorder principally characteri-
zed by altered sleep/wake cycles, in most cases attributable to 
reduced orexin neurotransmission  (30 – 32) . In addition to the 
disturbances in sleep/wake cycles, there is a well-recognized 
association between narcolepsy and obesity in human patients 
and animal models of the disease  (33 – 38) . The increase in 
body weight in human patients with orexin defi ciencies 
occurs despite a reduced caloric intake  (39)  and a normal 
total physical activity compared either with healthy control 
subjects  (40)  or with patients with idiopathic hypersomnia 
 (34) . Similarly in mice that lack orexin, weight gain occurs 
despite reduced food intake; however, in mouse models, 

a decrease in spontaneous motor activity likely contributes 
to the weight gain  (41) . Impaired thermogenesis in BAT has 
also been suggested to play a role in the propensity for weight 
gain in orexin-null mice  (29) . There are currently no studies 
demonstrating a role for diminished activation of BAT in the 
increased incidence of obesity of narcoleptic patients; how-
ever, this hypothesis would be consistent with the recent dem-
onstrations of an inverse relation between the activity of BAT 
and body mass index in adult humans  (42 – 45) . Conversely, 
augmented orexin activity prevents diet-induced obesity and 
could contribute to a lean phenotype  (46) .  

  Highlights   

  Orexin has pleiotropic effects on thermogenesis in brown 1. 
adipose tissue. These include synergistic contributions to 
the development and differentiation of brown adipocytes 
and to the neurally regulated activation of this tissue under 
various physiological conditions. In addition, orexin neu-
rons may contribute to thermogenesis through the release 
of neurotransmitters other than the orexin peptide.  
  Neurochemicals may act as modulators, which by them-2. 
selves may be insuffi cient to drive thermoeffector systems, 
but instead act to change the gain of neural activity driven 
primarily by other neurotransmitters.  
  Because neurons express multiple neurotransmitters, neu-3. 
rochemical phenotyping may have limited utility until the 
unique and the  ‘ interactive ’  roles of each neurochemi-
cal in target cell regulation have been addressed. This is 
especially important when using genetic methods to spe-
cifi cally alter a  ‘ neurochemically specifi c ’  cell population 
as the important neurotransmitter under a given condition 
may indeed differ from the genotype used to target the 
cell.  
   ‘ Knockout ’  models must be interpreted with caution 4. 
owing to developmental compensation and/or potential 
for changes in development.       
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