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   Abstract 

 Cyclin A2 belongs to the core cell cycle regulators and par-
ticipates in the control of both S phase and mitosis. However, 
several observations suggest that it is also endowed with other 
functions, and our recent data shed light on its involvement in 
cytoskeleton dynamic and cell motility. From the transcrip-
tion of its gene to its posttranslational modifi cations, cyclin 
A2 regulation reveals the complexity of the regulatory net-
work shaping cell cycle progression. We summarize our cur-
rent knowledge on this cell cycle regulator and discuss recent 
fi ndings raising the possibility that cyclin A2 might play a 
much broader role in epithelial tissues homeostasis.  

   Keywords:    cytoskeleton;   degradation;   invasion;   mitosis; 
  Rho GTPases;   S phase;   transcription.    

   Introduction 

 The cell division cycle, with its two fundamental events, DNA 
replication and chromosome segregation, requires a complex 
machinery to ensure that each round of its different steps is 
completed before the next one takes place. It is, in a large 
part, regulated by the oscillating activity of cyclin-dependent 
kinases (CDKs). CDKs function at different phases of the 

cell cycle and are regulated by their association with specifi c 
cofactors, among which the cyclins play a dual role as activa-
tors and targeting agents toward specifi c substrates. Different 
cyclins exhibit distinct expression and degradation patterns 
that contribute to the temporal coordination of each cell cycle 
event. Thus, the activity of the cyclin D-CDK4 and cyclin 
D-CDK6 is detected during the G1 phase. At the end of it, 
CDK2 binds to cyclin E and then to cyclin A. Finally, CDC2/
CDK1, in association with cyclins A and B, functions at the 
G2/M transition and in M [for reviews, see  (1, 2) ]. CDKs are 
also controlled by transient interactions with inhibitory part-
ners such as p21, p27, p57, as well as reversible phosphoryla-
tion reactions  (3) . 

 The specifi c functions of cyclin A protein at different stages 
of the cell cycle are dependent upon its CDK partners. Cyclin 
A is essential for at least two critical points in the somatic cell 
cycle: during the S phase,  via  the activation of CDK2, and 
during the G2 to M transition,  via  the activation of CDK1  (4) . 
The cyclin A protein localizes predominantly to the nucleus 
during the S phase, where it regulates the initiation and pro-
gression of DNA synthesis  (5) . As this cyclin has no nuclear 
localization signal (NLS), it is likely to be addressed to the 
nucleus  via  its association with partners with genuine NLS, 
even though several of previously proposed ones (CDK2, 
p21, p27, and p107) seem to be dispensable  (6) . 

 Phosphorylation of components of the DNA replication 
machinery such as CDC6 by cyclin A-CDK is believed to be 
important to ensure only one round of DNA replication per 
cell cycle  (7) . At the end of G2, cyclin A relocalizes to the 
centrosomes in the cytoplasm, where it binds to the poles of 
mitotic spindles. The precise role of cyclin A in mitosis is still 
not completely understood and is in part related to the control 
of cyclin B-CDK1 activity  (8 – 10) . 

 This simplistic vision of the cell cycle is complicated by 
the fact that all cyclin families consist of several members, 
and cyclin A does not escape this rule. Two forms of cyclin 
A exist in mammals. Cyclin A2 is ubiquitously expressed and 
activates CDK2 or CDK1 kinases to promote both S phase 
progression and G2/M transition, respectively. In contrast, 
cyclin A1 is present preferentially in germ cells undergo-
ing meiosis and is abundant in the testis as well as in certain 
myeloid leukemia cells in humans  (11 – 14) . Consistently, its 
targeted expression in the myeloid lineage leads to an altered 
myelopoiesis and the development of myeloid leukemia in 
mice  (15) . Interestingly, whereas there is no detectable cyclin 
A2 at both the mRNA and the protein levels in the early male 
meiotic cycle, both cyclins A1 and A2 are present in murine 
oocytes. The essential role of cyclin A1 in meiosis was con-
fi rmed by the observation that cyclin A1-defi cient male germ 
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cells arrest at the G2/M transition of meiotic prophase I and 
exhibit some apoptotic phenotypes  (16 – 18) . Cyclin A2 is 
essential for embryonic development, with the null embryos 
dying at around day 5.5 postcoitum  (19) . A recently published 
work using mice with conditional  cyclin A2  alleles confi rmed 
its absolute requirement, not only in early embryonic devel-
opment, but also in the establishment of the hematopoietic 
lineage, while pointing to the compensatory effect brought 
about by cyclin E2 in cyclin A2 defi ciency  (20) .  

  Cyclin A2 expression and regulation: on the road 

to degradation 

 In multicellular organisms the activity of cyclin-CDK com-
plexes is controlled at many levels, including for cyclins: cell 
cycle-regulated transcription, posttranslational modifi cations, 
programmed proteolytic destruction, and even subcellular 
localization. 

  Cyclin A2 gene transcription 

 Cyclin A2 is encoded in a 7-Kpb gene ( cyclin A2  or  ccna2 ) 
made up of 8 exons  (21) , located on human chromosome 4 
(mouse chromosome 3), leading to the synthesis of two mRNA, 
with length of 1.8 and 2.7 Kb, respectively, differing solely in 
their 3 ′ -untranslated region (3 ′ UTR). Cyclin A2 mRNA level 
increases at the G1/S transition and peaks during the S phase, 
resulting from a periodic relief from transcriptional repression 
when cells enter S phase  (22 – 26) . Cyclin A2 transcriptional reg-
ulation is modulated by peripheral cues such as growth factors, 
TGF- β , as well as cell interactions with the extracellular matrix 
 (27 – 29) . The latter certainly plays an important role in mediat-
ing the control of cell cycle regulators expression by the cellular 
niche. Accordingly,  cyclin A2  transcription is down-regulated 
in the absence of anchorage. Interestingly, the activated forms 
of Ras and Cdc42 have been shown to synergistically alleviate 
the anchorage requirement for cell cycle progression, probably 
through a down-regulation of p38 MAP kinase  (27, 30 – 33) . 

 The  cyclin A2  gene promoter contains two sites, a CRE 
and a CAAT box, that are constitutively occupied and bind 
CREB, ATF, and NF-Y family members  in vitro  and  in vivo,  
respectively  (23) . Moreover, the most 5 ′  CRE element has 
also been shown to bind transcription factors such as E4F1 
and JunB  (34, 35) . It is worth mentioning that the latter tran-
scription factor, depending on its level of expression, is likely 
to exert both positive and negative control on the  cyclin A2  
promoter. Cyclin A2 is down-regulated in both MEF cells 
defi cient for the  Jun B  gene  (35)  or cells treated with antisense 
RNA directed at its mRNA, as well as in cells where JunB 
expression is forced (our unpublished observation). Whereas 
a small level of JunB is required for transcription of  cyclin 
A2 , a high level will induce that of  p16 , and as an indirect 
consequence, will repress  cyclin A2  transcription through the 
inhibition of pRb phosphorylation  (36) . Consistent with this, 
 Jun B  is a transcriptional target of TGF- β  and an important 
effector of the epithelial to mesenchymal transition induced 
by this cytokine  (37) . 

 In addition, a transcriptional repression element that is 
constituted of two modules, cell cycle responsive element 
(CCRE) or cell cycle-dependent element (CDE), and cell 
cycle homology region (CHR), was identifi ed, with CHR 
located 3 ′  of CCRE/CDE  (22, 23, 31) . These sites are occu-
pied in quiescent cells and in the G1 phase, and their mutation 
leads to deregulated  cyclin A2  expression. Transcriptional 
repression of  cyclin A2  involves promoter-bound complexes, 
which include E2F members, pRb-related proteins, likely 
p130, and chromatin remodeling factors such as Brahma/
SNF2    (26) . E2F4 is proposed to be responsible for the inhibi-
tory phase in quiescent cells and early G1 of proliferating 
cells and replaced in mid/late G1 by E2F3  (38) . However, 
these data are diffi cult to reconcile with the loss of  in vivo  
footprint associated with the activation of  cyclin A2  transcrip-
tion. As already mentioned, the  cyclin A2  CAAT box is a high 
affi nity-binding site for NF-Y. The latter protein consists of 
three subunits (NFY-A, NFY-B, and NFY-C) and is likely to 
organize the binding of nearby factors. In fact, although it 
was originally considered as a constitutive transcription fac-
tor, later data have shown that its activity could be modulated, 
in particular through NFY-A expression  (39, 40) . Along these 
lines, we have shown that TGF- β , through a modulation of 
the interplay between MAPK pathways, could fi nely tune the 
transcriptional regulation of  cyclin A2   (29) . Expression of a 
dominant negative form of NF-Y delays S phase entry and 
leads to a prolonged cell division time, whereas  nfy-A  knock-
out leads to early embryonic lethality  (41) . 

 Deacetylation plays a central role in repression of many 
E2F-regulated genes, but chromatin remodeling is essential 
for  cyclin A2  gene, and relief of its transcription repression 
results mainly from the loss of two nucleosomes positioned 
on the promoter  (26, 42 – 44) . For example, whereas  cyclin 
E  gene transcription is induced when cells are treated with 
inhibitors of deacetylases, this is not the case for cyclin A2 
 (26, 42 – 44) , and a switch between HDAC-pRb and SWI/
SNF-pRb has been proposed to maintain the order of cyclins 
E and A expression (Figure  1  A). 

 More recently, a multimolecular complex named DREAM, 
initially isolated in  Drosophila  [ Drosophila  RBF, E2F, and 
Myb  (45) ], has been proposed to be instrumental in controlling 
the transcription of CCRE/CDE-CHR-containing cell cycle-
regulated genes [ (46, 47) ; reviewed in  (48) ]. Homologues of 
all subunits of this complex have been found in the human 
genome and highlighted a family of Myb-interacting proteins 
that cooperate with pRb in tumor suppression. The core com-
plex contains E2F4/5, DP1/2, and fi ve human homologues of 
 Caenorhabditis elegans  proteins encoded by the synMuvG 
group of genes. DREAM switches from a transcriptionally 
repressive state in G0 and G1 by binding to p130 or p107, but 
not pRb, and in association with E2F4/5, to a transcription-
ally active state in S and G2  via  the interaction with B-Myb 
 (49 – 52)  (Figure 1B). The presence of B-Myb, itself a prod-
uct of an E2F-responsive gene, would suggest that  cyclin A2  
belongs to a subset of E2F secondary response genes that 
relies on non-E2F transcription factors for their up-regulation. 
Interestingly enough, B-Myb is a target of CDK2-cyclin A2 
 (49 – 59) , thus revealing a positive feedback loop necessary for 
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genes transcribed in the S and G2 phases, such as  cyclin A2 , 
 cyclin B ,  survivin , or  cdk1 . 

 Finally, cyclin A2 mRNA accumulation is also likely to 
result from the modulation of its stability during the cell 
cycle, with a clear stabilization in the S phase and a decrease 
afterward when cells exit G2. Among the usual suspects, two 
potential candidates, HuR (human antigen R, or ELAV-like 
protein 1) and WTAP (Wilms tumor 1-associated protein) 
have been found to impinge upon cyclin A2 mRNA stability 
 (60 – 62) . The former was fi rst characterized as a specifi c tumor 
antigen, and afterward, as the major interactor of AU-rich 
sequences present in the 3 ′ UTR of unstable mRNAs [for a 
review, see  (63) ]. The latter protein was shown to interact both 
 in vitro  and  in vivo  with WT1  (64, 65)  and was identifi ed as 
the mammalian homologue of the  Drosophila  female-lethal-
2-D, a protein involved in alternative splicing. Both proteins 
have been found to associate with cyclin A2 mRNA 3 ′ UTR, 
and accordingly, their knockdown resulted in a signifi cant 
reduction of cyclin A2 mRNA stability. Interestingly, WTAP-
defi cient cells accumulate in G2, and  wtap- null mice die at 
day 6.5 postcoitum. Both phenotypes are reminiscent of what 
is observed in cyclin A2-defi cient cells as well as in  cyclin 
A2- null mice  (62) .  

  Cyclin A2 protein degradation 

 The name cyclins comes from the fact that, along with many 
other cell cycle regulators, they are periodically degraded in 
cycling cells by the ATP-dependent proteasome machinery, 
following their ubiquitinylation by two ubiquitin ligases, the 
SKP1-CUL1-F box protein complex (SCF) and the anaphase-
promoting complex, also known as the cyclosome (APC/C) 
[for reviews, see  (66, 67) ]. The latter is an E3 ubiquitin ligase 
that contains a dozen of core subunits and associates with 
activator proteins such as Cdc20/Fizzy (Fzy) and Cdh1/Fizzy-
related (Fzr), which play important roles in substrate recruit-
ment. It is also a target of the spindle assembly checkpoint 
through proteins such as Mad2, Bub3, and BubR1  (68 – 70) . 
This occurs when some chromosomes are not yet attached 
to the mitotic apparatus and thus prevents the APC/C from 
prematurely degrading securin, the inhibitor of separase, the 

enzyme that cleaves cohesins, the proteins responsible for sis-
ter chromatid attachment. Cyclin A2 is destroyed at the onset 
of prometaphase when the nuclear membrane breaks down and 
requires the transient association of Cdc20/Fizzy to APC/C 
 (71, 72) . Substrate recognition is ensured by a motif called 
the destruction box (D-box) localized in the amino terminus 
of the protein (amino acids 57 – 72), and this direct binding of 
Cdc20 allows cyclin A2 to be degraded regardless of the acti-
vation state of the spindle assembly checkpoint. The destruc-
tion box is necessary but not suffi cient, and a more extended 
region, with a participation of its CDK partner, is necessary 
for an effi cient degradation. Recent data suggest that, in fact, 
Cks1 (Cdk subunits; Cks1 and Cks2) is a major contributor 
to cyclin A2 direct binding to phosphorylated mitotic APC/C 
 (73) . Whether this involves a modulation of substrate affi nity 
for the degradation machinery through a cooperation between 
Cdc20 and Cks1 remains to be established. Cdh1 also seems 
to play a role in cyclin A2 degradation at the G1/S transition 
because in its absence early cyclin A2 accumulation is associ-
ated with premature DNA replication  (74) . 

 Cyclin A2 was also shown to bind acetyl transferases such 
as PCAF (p300/CREB binding protein-associated factor) 
or GCN5 (general control nonderepressible 5). Acetylation 
occurs on four lysines present in the amino-terminal half of 
the protein (Lys 54, 68, 95, 112), two of which (Lys 54, 68) are 
also targets for ubiquitinylation and concurs to the subsequent 
ubiquitinylation of cyclin A2. Consistently, the quadruple 
mutant is expected to be much more stable than its wild-type 
counterpart, which has a decreased stability in the presence 
of deacetylase inhibitors such as trichostatin A. However, 
this does not seem to be the case in all experimental settings 
examined so far [ (75) ; our unpublished observations].   

  From cell cycle to motility control: a new role 

in cytoskeleton dynamic ?  

  Cyclin A2 and cell cycle transitions 

 As already mentioned, and according to a widely accepted 
view, whereas cyclin E-CDK2 is necessary for S phase initia-
tion, cyclin A2 works in relay, and in association with CDK2, 

A B

 Figure 1    Transcriptional regulation of  cyclin A2 . 
 (A) HDAC-pRb and SWI/SNF-pRb maintain the order of cyclins E and A expression. (B) Transition from a repressed to an active  cyclin A2  
transcriptional state results from both chromatin remodeling and a switch in the composition of bound transcription factors.    
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is necessary for S phase progression. Later on, a new exchange 
with CDK1 occurs, and mitosis is triggered following nuclear 
envelope breakdown that signs the destruction of cyclin A2 
and the full activation of cyclin B-CDK1. This switch from 
CDK2 to CDK1 is proposed to be instrumental in our under-
standing of the dual role of cyclin A2. When quiescent cells 
are committed to proliferate, they enter the cell division cycle 
through activation of cyclin D-CDK4/CDK6 complexes that 
are, again, according to the classical view, seen as sensors 
of external cues. Once the restriction point is passed, cells 
are believed to obey a cell autonomous mechanism, indepen-
dent of further stimulation by cell growth factors, and then 
enter an exponentially dividing state during which G1 phase 
is devoted to the resetting of replication origins. Then, new 
cyclin synthesis is required to activate CDK2, fi rst with cyclin 
E, then cyclin A2, and afterward cyclin B, with now the par-
ticipation of CDK1. Cyclin A2-CDK2 will fi nish the work 
of cyclin E-CDK2 at the beginning of the S phase by fully 
phosphorylating pRB and its related proteins, as well as the 
proteins of the SWI/SNF complex, thus allowing a new round 
of transcription of genes coding for proteins required in S and 
G2/M (Figure 1A). Meanwhile, proteins involved in replica-
tion origin fi ring and licensing such as Cdc6 constitute essen-
tial S phase targets  (7) . When cells progress to mitosis, and 
while phosphorylating several transcription factors such as 
B-Myb, NF-Y, or FoxM1  (76) , cyclin A2 targets many com-
ponents of the APC/C to down-regulate its activity in concert 
with Emi1, whose destruction is a prerequisite to entry into 
prometaphase  (67) . Two major phosphorylation events char-
acterize this transition: the massive phosphorylation of histone 
H3, which is associated with chromosomes condensation, and 
that of lamins and components of the nuclear pore complexes, 
which results in loss of nuclear envelope integrity. Cyclin A2 
has been proposed to participate in both events  (77) . 

 Similarly to chromosomes, centrosomes must be dupli-
cated, and this takes place at the onset of the S phase to allow 
the faithfully duplicated organelles to move to the poles of 
the duplicating cell and then to be distributed to the daugh-
ter cells. Both cyclins E and A2 associated with CDK2 have 
been implicated in this phenomenon, with nucleophosmin 
as an important target  (78, 79) . Interestingly, cyclin A2 has 
also been shown to localize to the centrosome in a CDK-
independent manner, and through the binding of MCM5 and 
Orc1, prevents the reduplication of this organelle  (80 – 82) . 
Knockdown of cyclin A2 and inhibition of CDK2 prevent cells 
from forming stable attachments of their mitotic spindle to the 
cell cortex  (9, 83) . This results in the mislocalization of the 
spindle and an unleashed rotation of the nucleus. Moreover, 
cyclin A2-CDK2 specifi cally associates with adenomatous 
polyposis coli in the late G2 phase and phosphorylates it on 
Ser1360, whose mutation results in identical off-centered 
mitotic spindles  (83) . Thus, astral microtubule attachment to 
the cortical surface in mitosis relies on the phosphorylation by 
cyclin A2-CDK2 of critical amino acids within the mutation 
cluster region of adenomatous polyposis coli. 

 By now, there are only a few described S phase targets, 
whereas mitotic ones are much more numerous. However, 
the full comprehensive list of such substrates remains to be 

established since the redundancy highlighted by the various 
knockout models is refl ected by the large overlapping  in vitro  
substrates when the various complexes are compared. In that 
respect, cyclin A2 defi ciency is compensated for by cyclin E 
in most adult tissues with the exception of the hematopoietic 
system  (20) . Subcellular localization is also likely to play a 
primeval role because cyclin A2-CDK shuttles between the 
nucleus and the cytoplasm  (84) , a situation that is dramati-
cally changed after nuclear envelope breakdown.  

  Cyclin A2, cytoskeleton, and cell morphology 

 More recently, our group uncovered a novel aspect of cyclin 
A2 function that does not seem to require its association to 
CDKs. Its depletion in fi broblasts leads to an increase in cell 
motility in wound healing assays and cooperates with onco-
genic transformation to increase their invasiveness in collagen 
matrices  (85) . Cyclin A2-defi cient fi broblasts contain a per-
turbed cytoskeleton, harboring a cortical localization of actin 
fi laments and a redistribution of focal adhesions. Interestingly, 
a cyclin A2 mutant unable to bind CDK1 and CDK2 corrects 
these defects. As cyclin A2 has no NLS, this mutant, which 
is no longer able to interact with all known partners of the 
cyclin, remains cytoplasmic. Moreover, redirecting the mutant 
to the nucleus through the addition of an SV40 NLS abolishes 
its capacity to restore a wild-type phenotype, strongly sug-
gesting that this novel function takes place in the cytoplasm. 
Previous studies have already reported the retention of cyclin 
A2 in the cytoplasm either  via  a complex with the cellular 
protein SCAPER  (86)  or under the form of a fusion with a 
viral protein, consecutive to the insertion of HBV in the  cyclin 
A2  locus  (87, 88) . Curiously, in both instances, cyclin A2 was 
addressed to the endoplasmic reticulum, and in the latter case, 
this was associated with cell transformation in cooperation 
with activated Ras. Whether SCAPER is part of a core control 
of cytoplasmic cyclin A2 functions remains to be established. 
These data have led us to check whether decreased levels of 
cyclin A2 might be linked to metastasis. Indeed, cyclin A2 
levels are much higher in SW480 cells with respect to SW620 
cells, which are derived from a primary colon carcinoma and 
a distant lymph node metastasis, respectively, in the same 
patient. Moreover, the same is true in primary colon adeno-
carcinoma relative to hepatic metastases in matched human 
tumors  (85) . 

 Cyclin A2 defi ciency is associated with a down-regulation 
of the RhoA-ROCK pathway and decreased phosphorylation 
of cofi lin, which is involved in the reorganization of actin 
fi laments, consecutively leading to an increased cell migra-
tion and invasion. Importantly, pharmacological inhibition of 
ROCK in control fi broblasts leads to an increase in migra-
tion velocity similar to that of cyclin A2-depleted cells (our 
unpublished results). Consistent with this, cyclin A2 and 
RhoA proteins interact both  in vivo  and  in vitro  and recom-
binant cyclin A2 enhances  in vitro  the exchange activity of 
RhoA-specifi c GEFs. As RhoA, RhoB, and RhoC share more 
than 95 %  sequence similarity, it is not surprising that cyclin 
A2 interacts with all three GTPases  (85) . Indeed, when cyclin 
A2 is knocked down in epithelial cells, such as normal mouse 
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mammary epithelial cells (NMuMG), they exhibit a strong 
down-regulation of RhoA activity and an increase in that of 
RhoC (our unpublished observation). No interaction or any 
variation in its activity was detected with Rac1, suggesting 
that the balance usually observed between the activities of 
Rho and Rac GTPases is disrupted in cyclin A2-defi cient 
cells. These data complete earlier observations on other cell 
cycle regulators [reviewed in  (89) ; commented in  (90) ] and 
are summarized in Figure  2  . Whereas p57, p21, and cyclin 
D1,  via  p27, are inhibitors of the RhoA-ROCK signaling 
pathway, cyclin A2 leads to its activation. This is likely at 
the expense of RhoC, as the two GTPases share probably the 
same GEFs, but this remains to be established.   

  How can we link subcellular localization 

and degradation of cyclin A2 to the completion 

of mitosis ?  Future challenges 

 The reciprocal alteration of RhoA and RhoC activities 
observed in cyclin A2-defi cient epithelial cells is reminiscent 
of what is observed during the epithelial to mesenchymal tran-
sition (EMT)  (91) . Interestingly, whereas RhoC is dispensable 
for embryonic and postnatal mouse development  (92) , its loss 
leads to a drastic inhibition of metastasis without affecting 
tumor development at the primary site. These observations 
call for more work on the molecular mechanisms through 
which cyclin A2 impinges upon cellular morphology, most 
particularly in the context of EMT. 

 As already mentioned, cyclin A2 shuttles between the 
nucleus and the cytoplasm, a compartmentalization that 
is obviously abolished once the nuclear envelope breaks 
down. The targeting of the centrosomes by mitotic kinases 
raises the question of its potential infl uence on the relation-
ships entertained by this organelle with other structures. In 
this respect, the Golgi apparatus is a good candidate because 
the close proximity of these two structures suggests that they 
are engaged in functional interactions  (93) . Indeed, mitotic 
spindle orientation and cell polarization are likely to be the 
two sides of the same coin. The Golgi is fragmented during 
mitosis when the nuclear envelope is disrupted, and both pro-
cesses contribute to the accumulation of lipidic membranes 

and vesicles in the cytoplasm. Later, a constriction forms in a 
plane perpendicular to the spindle axis in preparation for the 
last phase of mitosis, which culminates with the separation 
of the two daughter cells. Specifying the orientation of the 
mitotic spindle, and therefore the plane of the contractile ring, 
plays a central role during the development of epithelia and 
wound healing. Basal progenitor cells may undergo symmet-
ric or asymmetric divisions, depending on the orientation of 
the mitotic spindle with respect to the basement membrane. 
The outcome for the tissue is twofold: an increase in surface 
or in volume, on the one hand, and morphogenesis through a 
change in cell fate, on the other. 

 Cyclin A2-defi cient fi broblasts are depolarized, as visual-
ized through Golgi staining with snail lectin (our unpublished 
observation). Recently,  Drosophila  cyclin A localization was 
proposed to be a downstream target of Par-1 in male germ 
cells through a currently unclear mechanism  (94) . PAR pro-
teins are conserved and form complexes containing, among 
other proteins, Par-3, Par-6, and aPKC (atypical protein 
kinase C), which are dedicated to the control of cell polarity 
[for a review, see  (95) ]. One important insight is that Cdc42 
has been implicated in the control of cell polarization through 
the formation of a complex with Par-3, Par-6, and aPKC. In 
mammalian cells, the orientation of the cell division axis is 
strongly infl uenced by the extracellular matrix that inter-
acts at focal adhesion sites with integrins  (96, 97) . Among 
their known cytoplasmic effectors, the integrin-linked kinase 
localizes to the centrosome and participates on the mitotic 
spindle organization  (98) , a situation reminiscent of a previ-
ous work linking Cdc42 activation and integrin engagement 
to the establishment of polarity in migrating cells  (99) . An 
interesting challenge is now to establish the possible func-
tional interactions between this GTPase and cyclin A2 during 
epithelial morphogenesis  (100, 101)  (Figure  3  ). 

 More puzzling is the direct binding of cyclin A2 to RhoA 
that appears, at least  in vitro , to facilitate its GTP loading 
by GEFs. This is consistent with the involvement of RhoA 
in early mitosis, when its increased activity leads to corti-
cal retraction and cell rounding  via  its downstream effectors 
ROCK and mDia. In addition, the formation of the contractile 
ring during cytokinesis depends upon RhoA activation in a 
precise zone at the cell equator  (102)  (Figure 3). 

Cyclin D1

p27

p21

ROCK

RhoC

RhoA

?

Cyclin A2 LIMK Cofilin Actin polymerization Motility

p57

 Figure 2    Cell cycle regulators and the Rho/ROCK signaling pathway. 
 Although cyclin D1, p27, p21, and p57 have been shown to inhibit RhoA or its downstream effectors, cyclin A2 appears to be required for 
its full activation. Cyclin D1 binds directly to p27 and thereby blocks RhoA activation by inhibiting interaction with its GEF  (105 – 108) . 
Cytoplasmic p21 has been shown to bind and inhibit ROCK1, whereas p57 was shown to sequester LIMK.    
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 This occurs at a time when, according to the simplis-
tic model presented in the fi rst chapter, there should not be 
enough cyclin A2 remaining to activate CDK1. A functional 
role of cyclin A2 at that time would imply its localization to 
specifi c subcellular structures that have yet to be described. 
Moreover, the consequences would be twofold: fi rst, its diver-
sion from the usual degradation pathway, and second, its tar-
geting to the periphery of the dividing cell, where it could 
participate, perhaps synergistically, with the spindle poles in 
the defi nition of the apical-basal axis. Remarkably enough, 
autophagy, initially described as a process of nonselective 
recycling of bulk cytoplasmic structures, has already been 
shown to participate in RhoA-mediated cortical remodeling 
and cell spreading of macrophages  (103) . This addresses the 
relevance of this observation with the morphological transi-
tion occurring at mitosis when the cell switches from a round 
shape to a more fl at one during its respreading.  

  Conclusion 

 If these observations complete our vision of the intricate 
relationships entertained by cell cycle regulators and small 

GTPases, they point to the putative involvement of cyclin A2 
in the mechanisms governing the orientation of the mitotic 
spindle within an epithelial structure. Most particularly, this 
addresses its potential role as a mediator between external 
cues and cell autonomous mechanisms in the establishment of 
cell polarization, i.e., whether the candidate proliferating cell 
will undergo a symmetric or an asymmetric mode of division. 
Moreover, cyclin A2 defi ciency appears to be also linked to 
metastatic spreading. Consistent with this, cyclin A2 seems 
to be down-regulated in some metastatic cells compared with 
cells from the primary site  (85, 104) . Even though cyclin A2 
interaction with Rho GTPases unveils some new avenues, 
the nature of the mechanisms at play are still an open ques-
tion, and going further will certainly require the use of animal 
models.   
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