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  RNAi and retroviruses: are they in RISC ?   
   Abstract:   RNA interference (RNAi) is a potent cellular 

system against viruses in various organisms. Although 

common traits are observed in plants, insects, and nema-

todes, the situation observed in mammals appears more 

complex. In mammalian somatic cells, RNAi is impli-

cated in endonucleolytic cleavage mediated by artificially 

delivered small interfering RNAs (siRNAs) as well as in 

translation repression mediated by microRNAs (miRNAs). 

Because siRNAs and miRNAs recognize viral mRNAs, 

RNAi inherently limits virus production and participates 

in antiviral defense. However, several observations made 

in the cases of hepatitis C virus and retroviruses (includ-

ing the human immunodeficiency virus and the primate 

foamy virus) bring evidence that this relationship is much 

more complex and that certain components of the RNAi 

effector complex [called the RNA-induced silencing com-

plex (RISC)], such as AGO2, are also required for viral 

replication. Here, we summarize recent discoveries that 

have revealed this dual implication in virus biology. We 

further discuss their potential implications for the func-

tions of RNAi-related proteins, with special emphasis on 

retrotransposition and genome stability.  
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  Introduction 

 RNA interference (RNAi or RNA silencing) is at the core of 

potent defense systems against invading nucleic acids, 

including transposable elements and exogenous viruses. 

The underlying molecular mechanisms are disparate 

among species and cell types and range from transcrip-

tional gene silencing to post-transcriptional RNA degra-

dation and translation inhibition  (1 – 8) . A common trait 

of these antiviral mechanisms is the recognition of viral 

nucleic acids by 20- to 30-nt noncoding RNAs (ncRNAs), 

which gives the RNAi machinery its specificity  (4, 9 – 14) . 

The ancestral RNAi machinery is thought to comprise 

one Dicer-like RNase III, one Argonaute (AGO) protein, 

one P-element-induced wimpy testis (PIWI) protein as 

well as one RNA-dependent RNA polymerase  (15 – 17) . The 

latter is only present in certain eukaryotes  (15) , where it 

is implicated in RNAi propagation and amplification  (18) . 

Interestingly, the greatest conservation among these poly-

peptides is found in AGO-PIWI proteins  (15) , which are 

invariably present in all species where RNAi has been 

documented. Specific species independently lost either 

one or the other class of proteins, and only animals 

appear to have retained both  (15 – 17) . For instance, the 

human genome encodes four PIWI (PIWI-like 1 – 4, or 

PIWIL1 – 4) and four AGO  proteins (AGO1 – 4)  (16, 19) . The 

20- to 30-nt ncRNAs are often, if not invariably, processed 

from  double-stranded RNAs by Dicer-like and/or AGO-

PIWI-like proteins  (9) . The ncRNAs are then loaded onto 

members of the  AGO-PIWI  effectors, which represent core 

proteins of the RNAi  effector complex RISC (RNA-induced 

silencing complex).  

  Antiviral RNAi in mammals 
 The first discovered natural function of RNAi was the anti-

viral response in plants, wherein the replication of RNA 

and DNA viruses is associated with a massive generation 

of virus-derived small RNAs by cellular Dicers  (1, 5, 20) . 

These small RNAs further trigger the cleavage of viral mes-

sengers, thereby limiting viral infection. A similar type of 
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defense is observed in insects and nematodes  (1, 6, 20) . 

In mammals, although artifically induced RNAi is clearly 

potent against various viruses  (21) , viral infections do not 

seem to be associated with a massive production of virus-

derived small ncRNAs  (7, 22 – 24) . The mammalian antiviral 

RNAi rather seems to rely on small ncRNAs derived from 

cellular RNAs. In mammals, at least three classes of small 

ncRNAs have been identified  (9, 14) : endogenous small 

interfering RNAs (endo-siRNAs), PIWI-interacting RNAs 

(piRNAs), and microRNAs (miRNAs). To date, a well-

characterized function of endo-siRNAs and piRNAs is the 

maintenance of genomic integrity by silencing of trans-

posable elements in germline cells  (2, 3, 9, 25) . Accord-

ingly, mammalian endo-siRNAs are highly expressed 

in oocytes  (26)  and embryonic stem cells  (27, 28) , and 

piRNAs have consistently been reported to be essentially 

expressed in male and female germline cells  (2, 3) . The 

third class, miRNAs, recognizes mRNA targets through 

imperfect homologies and induces an AGO-based trans-

lation repression, which is associated with mRNA dead-

enylation and degradation  (12, 29 – 31) . The RISC complex, 

miRNAs, and targeted mRNAs are found in particular cyto-

plasmic foci, called processing (P) bodies  (32) . Although 

some differences may exist  (33, 34) , the four human AGO 

proteins bind to miRNAs and play redundant functions in 

translation control  (35) . 

 Thus far, given our current knowledge, miRNA is 

the major class of ncRNAs faced by exogenous viruses 

in mammalian somatic cells. There is over a thousand 

miRNAs in the human genome (1600 precursors and 2042 

mature in miRBase v19) that can be predicted to modulate 

more than 50 %  of human protein-coding genes  (36) , and 

miRNAs have been shown to play a role in most if not all 

cellular processes. Three classes of miRNA-virus interac-

tions can easily be distinguished. First, several viruses 

encode their own miRNAs to regulate viral and/or cellu-

lar mRNAs  (37) . Although the capacity of herpesviruses, 

adenoviruses, and polyomaviruses to generate such viral 

miRNAs is unequivocal  (37) , several studies have also pro-

vided evidence of the existence discrete species of small 

ncRNA, akin to viral miRNAs, for other types of viruses 

 (38 – 42) . Second, viruses specifically modulate the host 

miRNA repertoire, and these modulations can create 

favorable conditions for viral replication  (43 – 47) . Some 

viruses also widely affect the host miRNA repertoire by 

directly interfering with the miRNA biogenesis machin-

ery. For instance, human immunodeficiency virus type 1 

(HIV-1) suppresses the expression of Dicer  via  the viral 

gene Vpr in macrophages  (48) . In addition, HIV-1  (39, 48)  

and HTLV-I  (49)  inhibit the action of Dicer. In fact, it is 

now admitted that, similar to the situation observed in 

plants and insects  (1) , viruses produce proteins and/or 

RNAs that can negatively interfere with various steps of 

RNAi [reviewed in  (50) ]. Third, host miRNAs can recognize 

viral mRNAs  (51 – 62) . This process is thought to be similar 

to that described for endogenous miRNAs. It tethers the 

RNAi machinery, in particular AGO2, to viral messengers 

and leads to the sequestration of viral RNAs in P bodies 

and the inhibition of their translation  (58, 63) . Therefore, 

host miRNAs may have a potential as an RNA-based anti-

viral system  (51, 54 – 62, 64) . In fact, this particular inter-

play is exploited in genetic engineering and therapeutic 

gene transfer to artificially regulate transgene expression 

 (61, 65, 66) . However, several findings bring evidence that 

the relationship between RNAi and viruses in mamma-

lian somatic cells is much more complex. Notably, viruses 

seem to have co-evolved with the miRNA repertoire of their 

hosts  (67, 68) , and some viruses have been reported to be 

able to exploit the miRNA recognition during the course of 

their replication  (53, 56) .  

  AGO2 and hepatitis C virus 
 Soon after the observation that a cellular miRNA recog-

nizes the RNAs of primate foamy virus type 1 (PFV-1) and 

limits viral replication  (51) , Jopling et al.  (53)  reported 

that the liver-specific miR-122 recognizes hepatitis C virus 

(HCV) RNAs and that this recognition is beneficial for 

HCV replication. This decisive paper provided the first 

evidence that the interplay between viral RNAs and cellu-

lar miRNAs is more complex than previously thought 

and opened new avenue for the development of origi-

nal miRNA-based therapy [reviewed in  (69) ]. Indeed, the 

treatment of chronically HCV-infected chimpanzees with 

the locked nucleic acid-modified antisense oligonucleo-

tide miravirsen directed against miR-122 leads to a long 

lasting suppression of HCV viremia with no evidence of 

viral resistance or side effects in the treated animals  (70) , 

and in 2010, Santaris Pharma initiated a phase IIa study 

to assess the safety and antiviral activity of miravirsen 

in treatment-naive HCV patients  (71) . That study shows 

that miravirsen given as a 4-week monotherapy treatment 

provided robust, dose-dependent antiviral activity with a 

mean reduction of 2 to 3 logs from baseline in HCV RNA 

(log10 IU/ml) that was maintained for more than 4 weeks 

beyond the end of therapy and that in four of nine patients 

treated with the highest doses of miravirsen, HCV RNAs 

became undetectable during the study  (71) . 

 At the cellular level, miR-122 binds two sites in the 

5 ′  untranslated region of HCV mRNAs to promote viral 
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replication  (52, 53) . miRNAs usually interact with the 3 ′  

end of target mRNA to downregulate their expression. 

Accordingly, introduction of an miR-122 target site in the 

3 ′  noncoding region of HCV genomic RNA leads to an miR-

122-dependent downregulation of its expression  (52) . The 

location of the miR-122 binding site thus appears to dictate 

its effect on the genomic RNA. This is likely not limited 

to miR-122 because similar observations have been made 

on the regulation of endogenous mRNA by miR-10a  (72) . 

Although it is clear that miR-122 contributes positively 

to HCV replication, the molecular mechanisms are still 

only partially understood. miR-122 is able to stimulate 

HCV translation  (73 – 77) , but this effect is not sufficient to 

fully explain its actions on HCV replication  (76) . Recently, 

miR-122 was shown to promote the accumulation of the 

viral genome  (77, 78)  by protecting it from the host mRNA 

decay machinery  (78) . This stabilization of HCV RNA by 

miR-122 could also be in part responsible for the observed 

miR-122-induced enhancement of HCV translation  (78) . 

In both cases, AGO2 is required for the effect of miR-122 

on HCV  (75, 77, 78) . Importantly, HCV does not hijack the 

whole RNAi machinery but only some components, in 

particular AGO2. This is supported by observations that 

HCV RNA-miR-122 complex reroutes some but not all com-

ponents of the RNAi machinery to replication foci that 

are distinct from P bodies  (79, 80) . In fact, P-body dis-

ruption does not alter virus protein levels and virus pro-

duction  (80) . Conversely, the HCV RNAs interact with P 

bodies when cleaved by artificially delivered siRNAs  (79) . 

Together, these results unveil a new function for AGO2 in 

HCV replication, which (i) is mediated by the miR-122, (ii) 

probably occurs in a subcellular structures distinct from 

P bodies, and (iii) is beneficial for the virus. Interestingly, 

interferon  β , which is used in standard treatments against 

HCV, increases the expression of several cellular miRNAs 

interfering with HCV replication while it decreases the 

expression of the miR-122  (55) . The balance between 

the two functions of AGO2 is thus likely to influence the 

outcome of HCV infection.  

  AGO2 and retroviruses 
 We have recently unveiled a dual interaction of AGO2 with 

retroviral RNAs  (81) . We showed that both the wild-type 

AGO2 protein and the well-characterized PAZ9 mutant 

that lost the ability to bind miRNAs  (82)  were able to inter-

act with the retroviral GAG core proteins of both HIV-1 

and PFV-1. As a consequence, AGO2 was found to be teth-

ered to unspliced retroviral RNAs that are bound to GAG 

through their encapsidation sequences. We also showed 

that this GAG-dependent but miRNA-independent binding 

did not elicit retroviral mRNA translational repression 

 (81) . In addition, AGO2 depletion was shown to be detri-

mental to retroviral replication in human somatic cells 

 (81) . Hence, there are at least two ways to recruit AGO2 on 

retroviral mRNAs: one elicited by host miRNAs and nega-

tive for viral replication  (51, 56 – 58, 63) ; second, mediated 

by GAG and the RNA packaging sequences, implicated in 

retroviral particle formation  (81) . These two types of inter-

action, which are not exclusive and are likely involved in 

distinct steps of the retroviral life cycle, are reminiscent 

of the dual interaction of AGO2 with HCV. The recognition 

of viral mRNAs by cellular miRNAs  (51, 57, 58, 63, 83)  and 

their sequestration in P bodies  (58, 63)  might thus repre-

sent the deleterious consequences of the recruitment of 

AGO2 or other RNAi-related components in viral replica-

tion. The mechanism by which AGO2 plays a positive role 

on retroviral replication is still poorly understood. Using 

FRET/FLIM experiments, we showed that AGO2 is required 

for PFV-1 GAG multimerization (unpublished data). This 

observation, which is consistent with the role of AGO2 

in retroviral particle formation, is supported by electron 

microscopy observations showing an accumulation of HIV 

particles with an immature morphology in infected cells 

knocked down for AGO2  (81) . In line with these results, 

Reed et al.  (84)  have shown that during the assembly of 

immature capsids, HIV-1 GAG traffics through a pathway of 

assembly intermediates that contain endogenous P-body-

related proteins, including AGO2 and the RNA helicase 

DDX6 (also called p54/RCK). DDX6 was further shown to 

facilitate GAG multimerization at the plasma membrane 

and capsid assembly independent of RNA packaging  (84) . 

The authors proposed that HIV-1 assembly co-opts a pre-

existing host complex containing cellular facilitators such 

as a particular P-body-related protein that the virus uses 

to catalyze capsid assembly  (84) . Together, these studies 

reveal that AGO2 and presumably other RNAi-related pro-

teins play central and positive roles in the assembly of 

retro viral particles.  

  Expert opinion: dual actions of RISC 
components in retroviral replication 
 We have performed RNAi experiments against several 

RNAi-related proteins, and we have observed that while 

AGO2 RNAi consistently diminished both HIV-1 and PFV-1 

replication, RNAi directed against other AGOs, GW182, and 

DDX6 yielded great standard deviations and inconclusive 
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results regarding their contribution in retroviral replica-

tion  (81) . However, several independent studies have 

shown that DDX6 is required for PFV-1  (85) , HCV  (86, 87) , 

and HIV-1  (84)  replication. This is in contrast with three 

other papers that reported that DDX6 either has no effect 

 (88)  or limits HIV-1 replication  (58, 63) . In fact, contradic-

tory results have often been observed knocking down dif-

ferent RNAi-related components (Table 1). For instance, 

Dicer was shown to be required for HIV-1 replication  (89) , 

whereas another study  (47)  reported that it is detrimental. 

The Moloney leukemia virus 10 (MOV10) protein, which 

interacts with AGO2   (90 – 92) , has been reported to be either 

beneficial  (93)  or deleterious  (94, 95)  for HIV-1 replication. 

Interestingly, MOV10 is widely implicated in the replication 

of various retroviruses, even retroelements. Wang et al.  (95)  

have reported that MOV10 reduces the infectivity not only 

of HIV-1 but also of simian immunodeficiency virus and 

murine leukemia virus. Endogenous MOV10 also inhibits 

retrotransposition of intracisternal A particles (IAPs)  (96)  as 

well as that of other LTR and non-LTR endogenous retroele-

ments  (97) .  Strikingly, in contrast to Wang et al.  (95) , Arjan-

Odedra et  al.  (97)  reported that depletion of endogenous 

MOV10 had no significant effect on the production of infec-

tious particles for a panel of exogenous retroviruses (HIV-1, 

SIVmac, MLV, or M-PMV). Hence, at present, it is difficult to 

conclude on a general effect of the RNAi machinery on viral 

replication. It is likely that the ability of RNAi-related pro-

teins to inhibit and/or promote viral replication depends on 

their interacting partners. In fact, the exact composition of 

the RNAi machinery is still not fully defined, and it is likely 

to vary in time and in specific cells. Thus, the accumula-

tion of data is clearly required before drawing any defini-

tive conclusion. For instance, a better characterization of 

AGO2 domains implicated in viral replication as well as 

proteomics approaches aimed at determining the dynamic 

composition of the AGO2 and GAG containing complexes 

 (90 – 92, 98)  may provide invaluable information. Likewise, 

a better characterization of AGO2-regulating proteins  (99) , 

AGO2 post-translational modifications  (100, 101)  and/or 

particular subcellular localizations  (102, 103)  could also 

 profoundly impact our understanding of the complex inter-

play between the RNAi machinery and viruses.  

  Outlook 

  RNAi and retrotransposition 

 Because HIV-1 and PFV-1 are among the most distant retro-

viruses  (104 – 106) , features common to these two viruses 

are likely to be conserved in the whole Retroviridae family 

including endogenous retroviruses and retrotransposons. 

In fact, foamy viruses can be found in endogenous forms 

 (107, 108) . Moreover, PFV-1 exhibits the unique property 

among exogenous retroviruses to retrotranspose  (109) , 

 Table 1      The yin and yang of RNAi proteins: examples of RISC-associated proteins having dual actions in virus biology.  

AGO2 Inhibits Viruses through therapeutic RNAi [reviewed in  (21) ]

Is required PFV-1  (81) 

HIV  (81) 

HCV  (75, 77, 80) 

p54/RCK (DDX6) Inhibits Viruses through therapeutic RNAi [reviewed in  (21) ]

HIV-1  (58, 63) 

Is required for PFV-1  (85) 

HCV  (86, 87) 

HIV-1  (84) 

Has no effect on HIV-1  (88) 

Dicer Inhibits Viruses through therapeutic RNAi [reviewed in  (21) ]

HIV-1  (47) 

Is required for HIV-1  (89) 

MOV10 Is required for HIV-1 (93

Inhibits Viruses through therapeutic RNAi [reviewed in  (21) ]

HIV-1  (94, 95) 

Simian immunodeficiency virus  (95) 

Murine leukemia virus  (95) 

Intracisternal A particles  (96) 

LTR and non-LTR retroelements  (97) 

Has no effect on HIV-1, SIVmac, MLV, and M-PMV  (97) 
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and this retrotransposition depends on the expression of a 

functional GAG protein  (109) . As AGO2 affects PFV-1 repli-

cation  (81) , presumably at or before the GAG multimeriza-

tion step (unpublished data), it may also influence PFV-1 

retrotransposition. Strikingly, PFV-1 GAG shares several 

features with the GAG protein of the  Saccharomyces 
 cerevisiae  Ty1 retrotransposon, which bring it closer to this 

retrotransposon than to HIV-1  (106, 110, 111) . Ty1 virus-like 

particle (VLP) assembly requires some P-body proteins but 

not P-body foci  per se   (112) . Likewise, the VLPs of Ty3 ret-

rotransposon assemble in association with P-body compo-

nents  (113) . In human cells, the RNA- binding protein ORF1 

of the LINE-1 retrotransposon localizes with AGO2 and can 

physically interact with several of its partners  (114) . These 

interactions have been proposed to mitigate the potential 

mutagenic effects of  retrotransposition by sequestering 

LINE-1 ribonucleoproteins and possibly targeting them for 

degradation  (114) , a scenario similar to that described for 

IAPs  (115)  and exogenous retroviruses  (51, 58, 63) . Mean-

while, given that some components of the RNAi  machinery 

have a dual role on the life cycle of exogenous retrovirus, 

it would be also worth investigating whether AGO2 and 

some of its partners can  positively regulate LINE-1 ribo-

nucleoprotein formation and retrotransposition. 

 Likewise, it might be of interest to evaluate whether 

endogenous retroviruses exhibit relationships with the 

PIWI proteins comparable to that reported for AGOs and 

exogenous retroviruses  (81, 84) . Endogenous retro viruses 

are present in both somatic and germinal cells and therefore 

face both AGO and PIWI proteins, in contrast to  exogenous 

retroviruses, which can only interact with AGO proteins in 

somatic cells. The particular case of endo genizing retrovi-

ruses  (108, 116 – 119)  might also provide an exciting homo-

geneous framework to study the interplay existing between 

exogenous/endogenous retroviruses and AGOs/PIWIs.  

  Viruses to probe unconventional functions 
of the RNAi machinery 

 A body of evidence suggests that RNAi proteins, such as 

AGO2, have functions that are different from the classi-

cal RNAi pathway. First, RNAi proteins function inde-

pendently from miRNAs. For instance, the  S. cerevisiae  

genome does not encode miRNAs but contains several 

homologues of RNAi proteins  (15) . Also, mouse and 

human AGO2-mRNA interactions can take place in the 

absence of miRNAs  (81, 98) . Second, AGO2 has functions 

that are distinct from translational control such as tran-

scriptional gene silencing  (120)  and DNA double-strand 

break (DSB) repair  (121) . Transcriptional gene silencing 

depends on the recruitment in the nucleus of miRNAs 

onto the promoter region of the gene that is silenced 

 (120) . Meanwhile, DSB repair requires specific 21-nt DSB-

induced small RNAs that are distinct from miRNAs and 

represent a new population of ncRNAs that needs to be 

further characterized  (121) . Finally, RNAi proteins can be 

found in specific subcellular locations and protein com-

plexes that are not linked to miRNA biogenesis or RNAi 

 (92, 102) . Together, these observations indicate that in 

mammalian somatic cells, certain components of the 

RNAi machinery play additional functions independently 

from miRNAs and translation control that remain to be 

properly characterized. AGO2 mutations and/or dysregu-

lations have been observed in certain malignancies, in 

particular cancers  (122 – 124) . In breast cancer, the expres-

sion of AGO2, as opposed to other AGOs, correlates with 

tumor subtypes  (125) . One may legitimately anticipate 

that AGO2 deregulation is linked to carcinogenesis by 

leading to global changes in miRNA expression/action. 

However, while AGO2 and AGO1 play redundant functions 

in miRNA-mediated translation repression, forced expres-

sion of AGO2 in breast cancer cell lines enhances prolifer-

ation, reduces cell-cell adhesion, and increases migratory 

ability  (124) . In contrast, AGO1 acts as a tumor suppressor 

gene  (126) . Hence, the sole action of AGOs in miRNA-medi-

ated translation repression cannot explain these contrast-

ing results. We may then assume that AGO2 deregulations 

impact other cellular pathways independently of miRNAs. 

Notably, as discussed above, AGO2 and other components 

of the RNAi machinery could help retransposons such as 

LINE-1 to form active ribo nucleoparticles. The retrotrans-

position of LINE elements has indeed been implicated in 

natural human genome mutagenesis  (127 – 133) , and several 

other retro elements remain active in our genome  (134) . It 

is possible that the increased AGO2 expression observed 

in certain cancers  (123 – 125)  will favor ribonucleoparticle 

assembly and retro transposition, thereby contributing 

to  retrotransposon-triggered mutagenesis. We therefore 

contend that a better characterization of the complex 

interplay between (retro)viruses and the RNAi machinery 

will unveil unanticipated results that may impact unsus-

pected aspects of cell biology.   

  Highlights 
 –     RNAi and miRNAs can limit viral replication.  

 –   Viruses, including HCV and retroviruses, hijack some 

components of the RNAi pathway to facilitate their 

replication.  
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 –   RNAi proteins play dual functions in viral life cycle, 

making it difficult to draw definite conclusions 

regarding the overall effects of the RNAi machinery 

on viral replication.  

 –   A better characterization of the protein complexes 

involved is clearly required.  

 –   This characterization may reveal unsuspected 

functions of the RNAi-related proteins.  

 –   AGO2 mutations and/or dysregulations have been 

observed in certain malignancies, in particular, cancers.  

 –   It would be worth investigating whether RNAi-

related proteins, including AGO2, positively regulate 

retrotransposition.  

 –   AGO2 roles in retroviral particle formation may shed a 

new light on retrotransposon-triggered mutagenesis.          
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