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  Free radical-mediated cytosine C-5 methylation 
triggers epigenetic changes during 
carcinogenesis  
   Abstract:   The methylation of the C-5 position of deoxy-

cytidine (dC) in the promoter regions of tumor suppres-

sor genes is often observed in cancer cells. We found that 

various environmental agents, as well as endogenous 

compounds such as methionine sulfoxide (MetO), gener-

ate methyl radicals and modify dC to form 5-methyl-dC 

in DNA  in vitro . We confirmed that both DNA methyla-

tion and cancer incidence in the liver were increased by 

the administration of MetO to oxidatively stressed mice. 

In this review, we summarize previous reports on methyl 

radical generation  in vitro  and  in vivo  and DNA modifica-

tions by methyl radicals, including our discoveries, as 

well as our recent experimental evidence suggesting that 

free radical-mediated dC methylation triggers epigenetic 

changes.  
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  Introduction 
 DNA methylation at cytosine C-5 in the 5 ′ -CpG-3 ′  sequence 

facilitates the organization of mammalian genomes by 

controlling gene expression in developing embryos 

 (1) . CpG-rich regions, termed CpG islands, are present 

in the 5 ′  regions of many housekeeping genes and are 

normally unmethylated  (2) . During carcinogenesis, 

hypermethylation of the normally unmethylated tumor 

suppressor gene promoters frequently occurs, which 

can lead to gene silencing  (3 – 5) . In both  de novo  meth-

ylation and maintenance methylation, a methyl group 

is introduced enzymatically to the C-5 position of cyto-

sine by DNA methyltransferases (DNMTs). One of the 

widely accepted mechanisms of enhanced  de novo  

methylation during carcinogenesis is the overexpres-

sion of DNMT3b. For example, the inactivation of tumor 

suppressor genes during cadmium-induced cell trans-

formation is reportedly due to the induction of DNMT3b 

before the hypermethylation of these genes  (6) . DNMT3b 

polymorphisms are also reportedly correlated with 

prostate and lung cancer risks  (7, 8) . The DNMT geno-

type with higher activity is related to a more frequent 

cancer incidence. For example, a C/T polymorphism 

in the DNMT3b promoter region results in increased 

activity and has been identified as a risk factor for lung 

cancer  (9) . However, increased expression of DNMTs 

is not always correlated with DNA hypermethylation 

 (10) . The detailed molecular mechanism underlying the 

initial methylation in a normal cell before its carcino-

genic transformation is still mostly unknown. Inflam-

mation is reportedly involved in DNA hypermethylation 

and epigenetic changes during carcinogenesis  (11) . One 

of the published hypotheses on the mechanism of  de 
novo  DNA methylation, especially in relation to inflam-

mation, is the HOCl-induced chlorination of DNA at the 

cytosine C-5 position or the incorporation of the nucleo-

tide product 5-chloro-dCTP into DNA  (12) . 5-Chloro-dC 

in DNA mimics 5-methyldeoxycytidine (m 5 dC) and is 

recognized by the maintenance DNMT protein, which 

triggers further DNA methylation. The same considera-

tion is also possible for another type of inflammation-

induced DNA damage, 5-bromo-dC. 

 We proposed that during carcinogenesis, the nor-

mally unmethylated cytosine C-5 in tumor suppressor 

gene promoters is initially methylated by a free radical 
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mechanism, for the following reasons:  (1)  methyl radi-

cals are produced from various environmental agents 

and endogenous compounds, including methionine sul-

foxide (MetO) in the presence of Fe 2 +   or oxygen radicals 

 in vitro  (for further information, see the next section). 

(2) Methyl radicals are produced by various well-known 

carcinogens or tumor promoters, such as dimethylhydra-

zine (DMH), acetaldehyde,  tertiary -butyl hydroperoxide 

(tBuOOH), and cumene hydroperoxide (CuOOH), by their 

metabolism. (3) DNA methylation inducers, including 

inflammation  (11) , aging  (13) , and smoking  (14) , as well as 

many epi-mutagens, such as nickel, chromate,  arsenite, 

hydroxy urea,  cisplatin, and diethylstilbestrol, directly or 

indirectly generate oxygen radicals  (15 – 17)  and may trigger 

the formation of methyl radicals from the endogenous 

molecule, MetO.  (4)  The cytosine C-5 position is  targeted 

by free radical reactions, based on quantum chemical 

 calculations  (18) . 

 Based on these previous findings, it was tempting to 

test the reaction of dC with the methyl radical-producing 

tumor promoters tBuOOH and CuOOH in the presence of 

Fe 2 +   because they are known to methylate deoxyguano-

sine (dG) at the C-8 position by a free radical mechanism. 

The formation of m 5 dC was clearly demonstrated in these 

 in vitro  reactions, although the yield was lower than that 

of methylated dG, 8-methyldeoxyguanosine (m 8 dG)  (19)  

(Figure 1). Oxidized methionine, MetO, also generated 

methyl radicals in the presence of hydroxyl radical ( · OH) 

and induced the dC → m 5 dC modification  (20) . Increased 

MetO formation in proteins has been detected in conjunc-

tion with inflammation, aging, and smoking  (21 – 24) , thus 

suggesting a link between free radical-mediated dC meth-

ylation and epigenetic changes during carcinogenesis  (25) . 

 In this review, we summarize the previous reports on 

the generation of methyl radicals  in vitro  and  in vivo , the 

DNA modifications induced by methyl radicals, including 

our discoveries, and our recent experimental evidence 

suggesting that free radical-mediated dC methylation trig-

gers epigenetic changes.  

 Figure 1    Formation of m 5 dC  via  a methyl radical by DMSO and MetO 

and by tBuOOH and CuOOH.    

  Generation of methyl radicals and 
their reactions with nucleic acid 
components 
 Various examples of the generation of methyl radi-

cals from endogenous and exogenous compounds and 

their reactions with nucleic acid components have been 

reported. In many cases, reactive oxygen species (ROS) 

have been implicated as essential factors in methyl radical 

production from chemicals, and iron is often involved in 

ROS production. 

  tBuOOH  produces methyl radicals by metal catalysis. 

Maeda et  al.  (26)  first reported the methyl radical-medi-

ated modification of nucleic acid components. Guanine, 

guanosine, and 5 ′ -guanilic acid were methylated with 

tBuOOH in the presence of ferrous ion to yield the cor-

responding 8-methyl derivatives, especially under acidic 

conditions. Adenine and adenosine also underwent meth-

ylation to produce the C2- or C8-methyl derivatives. Hix 

et  al.  (27)  also reported methyl radical generation from 

the tBuOOH-Fe 2 +   system and adduct formation, includ-

ing m 8 dG, in DNA. The reaction of a hydroxyl radical 

with  t -butyl alcohol, the major metabolite of the carcino-

genic gasoline additive methyl  t -butyl ether, produces the 

alkoxyl radical, which can undergo spontaneous fission to 

produce acetone and the methyl radical  (28) . The human 

carcinogen acetaldehyde generates a methyl radical upon 

treatment with peroxynitrite and Fe 2 +  /H 
2
 O 

2
   (29) . Further-

more, Kang et al.  (30)  reported that methyl radicals were 

generated from dimethylsulfoxide (DMSO), with hydroxyl 

radicals produced from a Fenton-type reaction between 

hydrogen peroxide and iron(II)-EDTA. When RNA was 

reacted with this system, 8-methylguanine, 2-methylad-

enine, and 8-methyladenine were detected in the acid 

hydrolysate. Makino  (31)  reported methyl radical produc-

tion in a  γ -irradiated aqueous solution of  dl -methionine, 

as detected by ESR spectroscopy. Nakao et al.  (32)  reported 

that both free and peptide-bound MetO are oxidized 

by hydrogen peroxide/iron(II)-EDTA and peroxynitrite, 

through a hydroxyl radical intermediate, to produce a 

methyl radical. 

 Various descriptions of methyl radical formation 

 in  vitro  in relation to AGE (advanced glycation end- 

product), a methylcobalt compound, and a biochemical 

cofactor have been published. Nakayama et al.  (33)  reported 

that the free radicals generated by methylglyoxal (an AGE 

compound) and hydrogen peroxide included the methyl 

radical. Kofod  (34)  reported that  pentaaminemethylcobalt 

(III) decomposes upon dissolution in water by releasing a 
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methyl radical, which reacts with AMP and GMP to afford 

8-methyl-AMP and 8-methyl-GMP, respectively. Methyl 

radical generation was suggested during methyl transfer 

from methylcobalamin, a cofactor involved in biomethyla-

tion reactions such as the methylations of homocysteine 

and heavy metals, to diaquocobinamide  (35) . 

 Methyl radicals are also generated by the metabolism 

of chemicals. In the horseradish peroxidase-catalyzed oxi-

dation of the colon carcinogen 1,2-DMH, the ESR spectra 

of the 2-methyl-2-nitrosopropane spin-trapped radicals 

revealed the methyl radical  (36) . Additionally, the metabo-

lism of DMH by liver microsomes revealed methyl radical 

generation  in vitro   (37) . 

 Several examples of methyl radical formation  in vivo  

or in cultured cells have been published. Nakao et al.  (38)  

performed EPR spin trapping studies and reported that 

acetaldehyde metabolism by xanthine oxidase, submito-

chondrial particles, and in whole rats generates methyl 

radicals. An  α -(4-pyridyl-1-oxide)- N - tert -butylnitrone 

(POBN)-methyl radical adduct was also detected in the 

bile of acetaldehyde-treated rats. 8-Methylguanine was 

found in the liver and colon DNA of rats treated with DMH 

 (39) . The anticancer hydrazine derivative procarbazine, 

which also has carcinogenic properties, generates methyl 

radicals in rat organs  (40) . When tBuOOH was adminis-

tered to rats, methyl radical generation was detected by 

the EPR spin trapping technique, and methyl radical-dG 

adduct formation was observed in the liver and stomach 

DNA  (41) . Methyl radicals were also detected when iso-

lated mouse keratinocytes were treated with the skin 

tumor promoters, tBuOOH and CuOOH, in the presence 

of spin traps  (42) . Evidence for the metabolism of these 

organic peroxides into methyl radicals by human car-

cinoma skin keratinocytes was obtained by an ESR spin 

trapping study  (43) . 

 To determine whether a skin tumor promoter could 

induce radical methylation of DNA  in vivo , mouse skin was 

treated with CuOOH in the presence of Fe 2 +  , and the meth-

ylated purine nucleosides in the epidermal DNA were ana-

lyzed by an LC-MS-MS method  (44) . 8-Methyldeoxyadeno-

sine (m 8 dA) and m 8 dG were detected at levels of 2.65  ±  1.41 

and 0.98  ±  0.14 per 10 7  nucleotides, respectively, suggesting 

that radical DNA methylations, including the formation of 

m 5 dC, may occur in cellular DNA. These results are com-

patible with our hypothesis that  de novo  DNA methylation 

at cytosine C-5, triggered by a free radical mechanism, 

may be related to epigenetic changes in carcinogenesis. 

 Regarding nucleic acid modifications by methyl radi-

cals, only the formation of 8-methylguanine, 2-methyl-

adenine, and 8-methyladenine has been reported. The 

generation of 5-methylcytosine has not been detected, 

possibly due to its low yield.  In vivo , a small increase of 

5-methylcytosine in DNA would be especially difficult to 

detect because it is a normal DNA constituent.  

  Methylation at the C-5 position 
of cytosine by a methyl radical 
 The C-5 position of cytosine can be methylated by envi-

ronmental chemicals because it is an active site for free 

radical reactions  (18) . We found m 5 dC as a reaction product 

of CuOOH and deoxycytidine (dC) under physiological 

conditions (pH 7.4) in the presence of ferrous ion  (19)  

(Figure 1). m 5 dC was also formed by the reaction of 

tBuOOH and dC under the same conditions. As CuOOH 

and tBuOOH are both tumor promoters, these non-enzy-

matic methylation reactions are particularly interesting. 

These chemicals are widely used in industry. CuOOH is 

a synthetic intermediate for acetone and phenol produc-

tion, and tBuOOH is an initiator for radical polymeriza-

tion. Therefore, humans are exposed to these organic per-

oxides during manufacturing processes  (45) . It is worth 

mentioning that m 5 dC formation by CuOOH was strongly 

inhibited by the free radical scavengers 2,2,6,6-tetrameth-

ylpiperidine-1-oxyl and POBN. This finding supports the 

idea that cytosine methylation occurs  via  methyl radical 

generation from environmental chemicals, such as 

CuOOH or tBuOOH. The rate of dC methylation in DNA by 

CuOOH is about 10 times slower than that of monomeric 

dC under the same conditions [63    m m  CuOOH and 6    m m  

Fe(II) at pH 7.4]  (19) . This rate difference is probably due to 

the steric hindrance of double-stranded DNA, which often 

occurs in chemical modifications of DNA. For example, 

when dG, as the monomer or in DNA, was reacted with 

oxygen radicals, a 16-fold higher yield of 8-hydroxydeoxy-

guanosine (8-OHdG) from dG was observed, as compared 

with its formation in DNA  (46) . 

 The formation of m 5 dC from dC or in DNA  in vitro  was 

also observed in treatments with DMSO and MetO, under 

physiological conditions at pH 7.3 in the presence of the 

Fenton reagent  (20) . The production levels of m 5 dC in the 

DNA-100    m m  DMSO-Fenton and DNA-100    m m  MetO-Fen-

ton reactions were 5/10 4  dC and 1.6/10 4  dC, respectively. In 

addition, m 8 dG was detected in DNA under the same reac-

tion conditions.    

 We recently confirmed the increases in DNA methyla-

tion and cancer incidence by the administration of MetO to 

mice  (47) . In that study, instead of the Fenton reaction  in 
vitro , non-alcoholic steatohepatitis (NASH) mice were used 

for higher ROS production. NASH mice develop hepatitis 
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caused by endogenous oxidative stress. The incidences of 

hepatocellular carcinoma were 16.7 % , 80 % , and 90 %  in the 

groups provided drinking water containing 0 % , 2 % , and 3 %  

MetO, respectively (Figure  2  ). The DNA methylation status of 

the p16 gene promoter region was higher in the liver of the 

MetO-treated mice (in both the non-tumor region and the 

liver tumor) (Figure  3  ). The higher incidence of hepatocarci-

noma may be due in part to the m 5 dC formation by methyl 

radicals  in vivo . In addition, we confirmed the formation of 

m 8 dA in the MetO-treated mouse liver DNA, suggesting that 

methyl radicals are actually produced in the mouse liver by 

those treatments  (44) . Notably, MetO is generated in pro-

teins by inflammation, aging, and smoking  (21 – 24) , which 

are recognized as DNA hypermethylation inducers  (11, 13, 

14) . In addition, MetO reductase (Msr), which repairs MetO 

in proteins, is reportedly a tumor suppressor  (48) .  

  Discussion 
 The hypermethylation of the tumor suppressor gene pro-

moter DNA is considered to play an important role in car-

cinogenesis. Clark and her collaborators  (49)  suggested 

that the hypermethylation of the GSPT1 promoter is initi-

ated by a combination of transcriptional gene silencing 

and methylation seeds. However, the precise mechanism 

of the initial seeding methylation is not known. It was 

also reported that  de novo  (initial) methylation occurs in 
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 Figure 2    Incidence of hepatocellular carcinoma after administra-

tion of MetO to NASH mice. 
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 Figure 3    Methylation of p16 in liver tumor and non-tumor regions 

of NASH mice after treatment with MetO.    

nucleosome-free linker regions, which can be accessed by 

DNMTs  (50) . Ushijima and his collaborators  (51)  reported 

that RNA polymerase II (pol II) binding around a transcrip-

tion start site can function as a protective factor for DNA 

methylation. They speculated that pol II forms a complex 

with transcription factors, and its binding around promoter 

CpG islands may compete with DNMTs. If we consider the 

free radical mechanism for seeding methylation, instead of 

enzymatic methylation, then site-specific methylation may 

also depend on the open or closed structure of DNA, due to 

protein binding. For example, we observed that 8-OHdG, a 

form of oxidative DNA damage induced by an OH radical, 

was not formed and distributed uniformly throughout the 

whole genome but was restricted to particular genes and 

regions, depending upon the chromatin structure  (52) . 

 Oxidative stress seems to play an important role in epi-

genetic changes during carcinogenesis  (53 – 55) . Consider-

ing the mitochondrial localization of high concentrations 

of oxygen radicals and MetO  (56) , the mitochondria (mt) 

might be a potential source of methyl radical generation, 

involved in cytosine C-5 methylation. In fact, enhanced 

cytosine methylation of liver mtDNA in selected regions 

of the mt genome, such as the mitochondrially encoded 

NADH dehydrogenase 6 gene, and its decreased expres-

sion have been implicated in the pathogenesis of NASH 

 (57) . DNMT1 is also reportedly present in the mitochon-

drial matrix, where it methylates mtDNA, suggesting the 

presence of epigenetic modifications of the mitochondrial 

genome in the regulation of mitochondrial transcription 

 (58) . In addition, insulin resistance in non-alcoholic fatty 

liver disease is epigenetically regulated by the methyla-

tion of the peroxisome proliferation-activated receptor  γ  

coactivator 1 α  promoter and is accompanied by mitochon-

drial dysfunction  (59) . 

 Bernal et  al.  (60)  recently reported that a low-dose 

ionizing radiation (0.7 – 7.6 cGy) exposure during gestation 

significantly increased DNA methylation at viable yellow 

agouti (A vy ) locus in male offspring. Their coat color, which 

is epigenetically controlled, was concomitantly shifted 

from yellow to pseudoagouti. Maternal dietary antioxi-

dant supplementation mitigated both the DNA methyla-

tion changes and coat color shift. These results suggested 

that ionizing radiation elicits epigenetic changes medi-

ated by oxidative stress. It is reasonable to speculate that 

the initial seeds of methylation are formed by a free radical 

mechanism because methyl radicals are generated by the 

 γ -irradiation of methionine, an endogenous molecule  (31) . 

 Our hypothesis for free radical-mediated m 5 dC forma-

tion, in conjunction with a model of DNA hypermethylation 

during carcinogenesis by Stirzaker et al.  (49) , is shown in 

Scheme  1  . Even if the level of free radical-mediated m 5 dC 
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formation is very low, it will gradually increase because a 

specific repair system for m 5 dC has not been found. Methyl 

radicals are presumably able to modify cytosine in any of 

the CpG, CpA, CpC, and CpT sequences. However, only 

methylated CpG is recognized by DNMT1, and the meth-

ylation patterns can be maintained from the parental to 

the newly synthesized daughter DNA strands in DNA repli-

cation, whereas m 5 dC in other sequences would disappear 

after DNA replication. In addition, only methylated CpG in 

a specific sequence context can be recognized by methyl-

CpG binding domain proteins (MBD2 and MeCP2), which 

recruit DNMT3 and histone deacetylase  (61) . These pro-

teins promote  de novo  methylation spreading and deacet-

ylation, respectively. Finally, dense DNA methylation and 

stronger gene silencing may occur. Therefore, an increase 

in non-specific cytosine C-5 methylation seeds may 

enhance the probability of functionally important meth-

ylation changes. Natural selection, instead of molecular 

targeting, is also involved in the formation of gene- and 

tissue-specific methylation patterns in cancer cells  (62) . 

Certain CpG islands are hypermethylated in cancer cells, 

whereas others are not because the hypermethylation 

confers a selective advantage to the survival or growth of 

the cancer cells. 

 In addition to the DNA hypermethylation of tumor 

suppressor gene promoters, global hypomethylation is 

also often observed in cancer cell DNA. Under oxidative 

stress conditions, oxygen radicals result in the oxidation 

of dG to 8-OHdG and m 5 dC to 5-hydroxymethyldeoxycy-

tidine (5-hmdC) in DNA. The formation of either 8-OHdG 

or 5-hmdC in the m 5 CpG sequence inhibits the DNMT1-

mediated methylation of cytosine in the opposite DNA 

strand, thus generating global hypomethylation  (12, 63) . 

Therefore, both the promoter hypermethylation and the 

global hypomethylation can be explained by a free radical 

mechanism. Our studies suggested that free radical-medi-

ated cytosine C-5 methylation is a possible mechanism 

of seeding methylation. Our experimental data revealed 

that oxygen radicals exert epigenetic as well as muta-

genic changes. It should be emphasized that there are no 

contradictions between our hypothesis and the presently 

accepted concepts of cancer epigenetics.    
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