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  Sugar glues for broken neurons  
   Abstract:   Proteoglycans (PGs) regulate diverse functions 

in the central nervous system (CNS) by interacting with a 

number of growth factors, matrix proteins, and cell sur-

face molecules. Heparan sulfate (HS) and chondroitin 

sulfate (CS) are two major glycosaminoglycans present 

in the PGs of the CNS. The functionality of these PGs is 

to a large extent dictated by the fine sulfation patterns 

present on their glycosaminoglycan (GAG) chains. In the 

past 15 years, there has been a significant expansion in 

our knowledge on the role of HS and CS chains in various 

neurological processes, such as neuronal growth, regen-

eration, plasticity, and pathfinding. However, defining the 

relation between distinct sulfation patterns of the GAGs 

and their functionality has thus far been difficult. With 

the emergence of novel tools for the synthesis of defined 

GAG structures, and techniques for their characterization, 

we are now in a better position to explore the structure-

function relation of GAGs in the context of their sulfation 

patterns. In this review, we discuss the importance of 

GAGs on CNS development, injury, and disorders with an 

emphasis on their sulfation patterns. Finally, we outline 

several GAG-based therapeutic strategies to exploit GAG 

chains for ameliorating various CNS disorders.  
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  List of abbreviations 

 3OST, 3- O -sulfotransferase; 6OST, 6- O -sulfotransferase; 

6OST1, 6- O -sulfotransferase 1; AB, amyloid- β ; AD, Alz-

heimer ’ s disease; APP, amyloid precursor protein; BACE1, 

 β -secretase-1; BDNF, brain-derived neurotrophic factor; 

ChABC, chondroitinase ABC; ChAC, chondroitinase AC; 

ChB, chondroitinase B; CNS, central nervous system; CS, 

chondroitin sulfate; CSPG, chondroitin sulfate proteogly-

can; DRG, dorsal root ganglion; DS, dermatan sulfate; 

ECM, extracellular matrix; FGF, fibroblast growth factor; 

FGFR, fibroblast growth factor receptor; GAG, glycosami-

noglycan; Gal, galactose; GalNAc,  N -acetylgalactosamine; 

GDNF, glial cell-derived neurotrophic factor; GlcA, glucu-

ronic acid; GlcNAc,  N -acetylglucosamine; GPI, glycosyl 

phosphatidyl inositol; HA, hyaluronan; HB-EGF, heparin-

binding epidermal growth factor; HBGAM, heparin-bind-

ing growth-associated molecule; Hep I, II, III, heparitinase 

I, II, and III; HS, heparan sulfate; HSPG, heparan sulfate 

proteoglycan; IdoA, iduronic acid; KS, keratan sulfate; 

MAPK, mitogen-activated protein kinase; NCAM, neural 

cell adhesion molecule; NDST,  N -deacetylase/ N -sul-

fotransferase; NGF, nerve growth factor; NgR, Nogo recep-

tor; NPCs, neuronal progenitor cells; NT, neutrophin; NFT, 

neurofibrillary tangles; OST,  O -sulfotransferase; PD, Par-

kinson ’ s disease; PG, proteoglycan; PKC, protein kinase C; 

PNN, perineuronal net; PTN, pleiotrophin; RPTP β , recep-

tor type protein-tyrosine phosphatase beta; RPTP σ , recep-

tor type protein tyrosine phosphatase sigma; SCI, spinal 

cord injury; SE, status epilepticus; TGF- β , transforming 

growth factor beta; Trk, tyrosine receptor kinase.  

  Introduction 
 Glycosaminoglycans (GAGs) are a family of linear, sulfated 

polysaccharides that are associated with central nervous 

system (CNS) development, maintenance, and disorders. 

For example, the heparan sulfate (HS) chain, a member 

of the GAG family, regulates receptor-ligand interactions 

that control neurite outgrowth and pathfinding ( 1 – 3,  and 

references therein). Similarly, the chondroitin sulfate 
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(CS) chain, another common GAG, is overexpressed at 

the scar site in spinal cord injuries (SCIs), and is a major 

roadblock to regeneration  (4, 5) . All GAGs but hyaluronan 

are found associated with a core protein that belongs to a 

special class of biomolecules called proteoglycans (PGs). 

HS and CS are the two most common and prominent GAG 

types found in the CNS. Although these chains have been 

reported to affect various functions in the CNS, a com-

prehensive understanding of their structure-function 

relation is still lacking. Sulfate groups present in these 

molecules impart negative charge at discrete positions 

defining not only the fine structure but also the inter-

actions with various signaling factors. Sulfation of GAG 

chains is a non-template process that occurs in the Golgi 

apparatus and relatively little is understood about spe-

cific contributions of various  ‘ sulfation patterns ’  on GAG 

functionality ( 6 ,  7 , and references therein). However, 

with recent advancements in GAG synthesis and char-

acterization, many critical functions of sugar moieties 

of HSPGs/CSPGs are being revealed. In this review, we 

focus on the role of HS and CS chains, in particular their 

sulfation patterns, in various CNS pathophysiological 

processes. Finally, we propose various GAG-based thera-

peutic approaches to combat different CNS disorders for 

which no cure exists at present.  

  Molecular perspective of PGs 
 GAGs can be distinguished into four groups depending 

on their sugar building blocks and the nature of their gly-

cosidic linkages: HS/heparin, CS/dermatan sulfate (DS/

CS-B), keratan sulfate (KS), and hyaluronan (HA). HS is 

composed of alternating glucosamine (GlcN) and glucu-

ronic acid (GlcA) or iduronic acid (IdoA); CS/DS is com-

posed of alternating  N -acetylgalactosamine (GalNAc) and 

GlcA or IdoA; KS is composed of alternating galactose (Gal) 

and  N -acetylglucosamine (GlcNAc); HA is a non-sulfated 

GAG, composed of alternating GlcNAc and GlcA residues 

(Figure  1  ). Furthermore, unlike other GAG chains, HA is 

not covalently bound to any protein and exists exclusively 

in the extracellular matrix (ECM)  (8) . 

 The synthesis of HS and CS polysaccharide chains 

involves two main steps: (i) attachment of linkage tetra-

saccharide (GlcA-Gal-Gal-Xyl) to the core proteins through 

the serine residue, and (ii) subsequent elongation and 

modification of the GAG chains. GAG chains undergo 

diverse modifications by the action of various enzymes 

in a tissue-specific manner. These modifications include 

epimerization,  N -deacetylation/sulfation, and  O -sulfation 

by various  O -sulfotransferases (OSTs), which act by sul-

fating residues at specific positions (Table  1  ). The review 

 Figure 1    Schematic representation of disaccharide units found in HS, HA, KS, and CS.    
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 Table 1      Enzymes associated with HS and CS modifications and their implications in the CNS.  

Enzymes Role in GAG modification Known implications References

HS C-5 epimerase Epimerization of GlcA to 

IdoA of HS

 Caenorhabditis elegans  lacking the enzyme showed 

axonal and cellular guidance defects

 (2, 198) 

HS NDST (1 – 4) Converts GalNAc to GalNS Initiated sulfation of HS; required for FGF-4 signaling; 

disruption can impair wingless, FGF, and hedgehog 

signaling in mice

 (199) 

HS 2-OST 2- O -sulfation of GlcA/IdoA  (198) 

HS endosulfatase Removes 6 S , preference 

for NS2 S 6 S 

Expression regulated  Wnt  signaling positively and FGF 

signaling negatively

 (200 – 202) 

HS 3-OST 3- O -sulfation Dramatic changes in its expression were seen in 

developing zebrafish; expression observed in various 

locations during mouse development

 (139 – 141) 

HS 6-OST 6- O -sulfation Modified HS chains on syndecan-1; enhanced Slit 

signaling; dramatic changes in its expression were seen 

in developing zebrafish; expression reported during 

mouse development

 (139, 142, 198, 

203, 204) 

CS/DS 2-OST 2- O -sulfation Knockdown led to failure of neuronal polarization; 

upregulated in differentiated neuronal cells

 (92, 205, 206) 

CS 6-OST 6- O -sulfation Ratio of 4 S /6 S  varied during development and affected 

neuronal plasticity; upregulated after CNS injury; 

upregulated in neuronal stem cells

 (81, 160, 205, 207) 

CS 4-OST 4- O -sulfation Upregulated in neuronal stem  (205) 

 N -acetylgalactosamine 

4-sulfate-6-OST

6- O -sulfation Knockdown led to failure of neuronal polarization in mice 

hippocampal neurons; downregulation reduced CSPG-

mediated inhibition in E18 rat cortical neurons

 (92, 161) 

CS/DS C5-epimerase Epimerization of GlcA to 

IdoA

Upregulated in astrocytes and neurons as compared with 

neuronal stem cells

 (205, 208) 

DS 4-OST1 Mutation associated with adducted thumb-clubfoot 

syndrome; deficiency resulted in impaired differentiation 

and proliferation of neural stem cells

 (209, 210) 

by Sugahara and Kitagawa ( 6  and references therein) pro-

vides a detailed description of HS and CS biosynthesis. 

 Two of the most abundant HSPGs in the CNS are 

syndecans and glypicans. Syndecans belong to trans-

membrane core protein family composed of four distinct 

members and carry both HS and CS chains  (9, 10) . Unlike 

syndecans, glypicans are attached to the cell membrane 

through a glycosyl phosphatidyl inositol (GPI) linkage, 

are composed of six distinct members, and carry the HS 

chain exclusively ( 11  and references therein). CS chains 

are primarily carried by large PGs such as hyalectans 

or lecticans, the most abundant PGs found in the ECM 

of the CNS  (11) . The lectican family consists of four 

members that have been cloned thus far: versican (also 

called PG-M) aggrecan, neurocan, and brevican  (12 – 15) . 

It has been suggested that the number of GAG chains 

per unit length in versican, neurocan, and brevican is 

fairly constant. However, the number, size, and compo-

sition of the GAG chains are not only influenced by the 

core protein but also by the tissue from which the lecti-

can originates. For example, the number of KS-binding 

domains of aggrecan varies among different species 

and tissues. Aggrecan DNA sequence shows the number 

of domains to be 13 in human, 4 in rat and mouse, and 

none in chicken  (16) . PGs other than syndecans, glypi-

cans, and lecticans exist in the CNS; however, many of 

these are structurally unique. One example of such a PG 

is the receptor-type protein tyrosine phosphatase RPTP β . 

Two of the three identified isoforms of RPTP β  have been 

found to carry CS chains  (17) . This article mainly focuses 

on GAGs, and detailed description of PGs can be found 

elsewhere  (11, 18) .  

  Influence of HS and CS in the CNS 

  (i) Neural development 

 HSPGs are expressed in actively mitotic areas of the brain. 

Glypican-1 transcripts have been reported in the ventricular 

zone, the area of neurogenesis, during CNS development 
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 (19) . Most neuronal precursor cells do not express glypi-

can-2, -4, and -5, excluding glypican-4 (or K-glypican) 

expression in the ventricular zone of the cerebral cell wall 

 (20)  and glypican-5 expression in the ganglionic eminence 

 (21) . In  Drosophila , mutations in the gene associated with 

glypican (Dally locus) results in alteration of the cell divi-

sion pattern at the larval stage  (22) . Loss of Dally protein 

delays lamina precursor cells from entering into the final 

round of cell division. Furthermore, in humans, mutations 

in glypican-3 result in human X-linked Simpson-Golabi-

Behmel syndrome (SGBS)  (23) . SGBS results in prenatal 

and postnatal overgrowth and has been associated with 

the high incidence of neuroblastoma. Syndecan-3 is the 

most prominent syndecan family member expressed in 

the adult mammalian CNS; its maximal expression in 

rats was found on postnatal day 7 and corresponded to 

glial cell differentiation, myelination, and formation of 

neuronal connections. The expression declined in adult 

neurons, where it was mainly found in axons  (24) . 

 CSPGs have also been found to influence CNS devel-

opment by regulating cell division, neuronal stem cell 

proliferation, secondary neurosphere formation, and neu-

rogenesis  (25 – 27) . For example, phosphacan, an RPTP β  

variant, is upregulated in areas of active cell proliferation 

during embryonic development of rats  (11, 28, 29) . Neu-

rosphere-forming cells in rat fetal telencephalons were 

found to express neurocan, phosphacan, and neuroglycan 

C. In addition, CS chains have been associated with neural 

stem cell proliferation through FGF-2 signaling  (30) .  

  (ii) Neuronal migration 

 In addition to affecting various developmental processes, 

PGs (mainly CS) also affect the signaling properties of the 

ECM that control neuronal migration. In the CNS, neu-

ronal migration is guided by a radial glial fiber system that 

acts as a scaffold for migrating neurons. In early cortical 

neurons, CSPGs such as protein tyrosine phosphatase 

RPTP β /phosphacan are localized along radial glial fibers 

and on migrating neurons  (31) . RPTP β /phosphacan binds 

to several adhesion molecules, including f3/contactin, 

N-CAM, L1, TAG1, and tenascin  (32) . The most important 

factor that interacts with RPTP β  is pleiotrophin (PTN). 

PTN is a member of the HS-binding proteins that stimu-

lates neurite outgrowth  in vitro   (33) . The CS side chain 

and protein of RPTP β  form the binding site for pleiotro-

phin, and several GAGs have been reported to inhibit this 

binding  (34) . In the developing cortex, PTN is synthesized 

by radial glial cells and is deposited along their fibers  (35) . 

Antibodies against RPTP β  and treatment with exogenous 

GAGs were reported to disturb PTN-induced migration of 

neurons  (36) . This evidence suggests that a PG-dependent 

ligand receptor mechanism must play a role in neuronal 

migration. 

 Studies also indicate that changes in CSPG expres-

sion are inversely correlated with migration pathways of 

neural crest (NC) cells. Immunohistochemical studies of 

chick embryos showed the restricted appearance of the 

CSPG versican into the CNS barrier tissues  (37) . In addi-

tion, surface-immobilized versican does not support the 

attachment of NC cells  in vitro   (38) . Thus, the avoidance 

of versican-expressing regions by NC cells should have 

functional importance in their migration within the CNS. 

However, not all CSPGs are inhibitory. For example, highly 

sulfated CS motifs have been shown to enhance neuronal 

migration. Ishii and Maeda  (39)  used shRNA constructs to 

downregulate the production of highly sulfated CS chains, 

CS-D and CS-E types. The treatment of neuronal progeni-

tor cells with such shRNA constructs in mouse embryos 

resulted in the accumulation of non-migrated neurons in 

the subventricular and intermediate zones of the cortex. 

This evidence further strengthens the argument that GAG 

type as well as their sulfation influences crucial processes 

in neuronal development.  

  (iii) Neurite outgrowth 

 One of the most widely studied roles of GAGs is their effect 

on neurite outgrowth and axonal pathfinding. Both HS and 

CS chains are known to be involved in neurite outgrowth. 

The expression pattern of HSPGs, such as glypicans and 

syndecans, is tightly regulated in the developing nervous 

system and is closely associated with neurite outgrowth 

 (40 – 42) . The study by Wang and Denburg  (43)  showed 

that exogenous GAGs can alter axon growth  in situ . The 

involvement of HS was confirmed by using HS-degrading 

enzymes that led to perturbation of axonal pathfinding. 

Another study on the developing  Xenopus  optic pathway 

showed that HS binding of exogenous FGF-2, but not 

FGF-1, disrupts target recognition  (44) . 

  In vitro  studies have indicated that HSPGs support 

neurite outgrowth by sequestering growth-enhancing 

molecules such as laminin, NCAM, heparin-binding EGF 

(HB-EGF), and several other midkine (MK) family members 

 (45, 46) . In addition to their growth-promoting effects, 

glypican-1 has been reported to serve as a receptor for Slit 

proteins  (47) . Slit proteins function as chemorepellants 

and inhibit axonal growth upon binding to their rounda-

bout (Robo) receptors  (48) . Syndecan-3 has been identi-

fied as a possible receptor for HB-GAM  (49) . Inhibitors 
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of Src family kinases affect HB-GAM-dependent neurite 

outgrowth of syndecan-3-transfected cells. Therefore, 

Kinnunen et al.  (50)  suggested that syndecan-3-mediated 

neurite growth is associated with the cortactin-Src kinase 

pathway. The role of HSPGs is dependent on the devel-

opmental stage of the CNS  (18) . Various HS-modifying 

enzymes (Table 1) regulate the spatiotemporal variations 

in the sulfations of HS chains. The affinity of HS-signaling 

complexes is highly dependent on the subtle structural 

changes of their sulfated motifs. Hence, the diversity in 

HS-ligand interactions forms the basis of their observed 

variations in their influence on neurons. An overview of 

the prominent HSPG-mediated ligand-receptor interac-

tions of the CNS is shown in Figure  2  . More information in 

this regard can be found in the review by Lee and Chien  (3)  

and the references cited therein. 

 Similar to the influence of HSPGs, the roles of 

CSPGs on axonal growth are multifaceted and have 

been studied more extensively. CSPGs are well known to 

inhibit axonal growth in several regions or developmen-

tal stages of the CNS ( 4 ,  51 ,  52 , and references therein), 

and  in vivo  evidences have shown the inability of axons 

to penetrate a lectican-containing glial scar  (5, 53, 54) . 

However, tissues that express higher levels of CSPGs are 

not always inhibitory to neural proliferation. In fact, 

in several studies, CS has been shown to coincide with 

developing axonal pathways  (55 – 57) . Neurocan and 

phosphacan serve as good examples in highlighting 

 Figure 2    Receptors of HSPGs. 

 Prominent interactions in the CNS that are mediated by HSPGs are shown. Robo receptors bind to Slit ligands, UNC-5 and DCC (deleted in 

colorectal cancer) receptors bind to Netrin, FGF binds to FGFR, and ephrin receptors (Eph) bind to ephrin ligands. Box contains the defini-

tion for conserved protein domains. Ig, immunoglobulin; EGF, epidermal growth factor; FN3, fibronectin type III domain; TK, tyrosine kinase 

domain. [The figure has been modified from the review by Lee et al.  (3) .]    
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the contrasting roles of CSPGs. While phosphacan was 

reported to promote neurite outgrowth in rat cortical 

neurons, neurocan inhibited the growth in embryonic 

chick neurons  (34, 58) . Evidence suggests that the stim-

ulatory/inhibitory functions of CSPGs depend on their 

spatiotemporal expression and interactions that are 

defined by their sulfation patterns. 

 The interactions of CS chains with various signaling 

molecules lead to the promotion of neurite growth. RPTP β  

is expressed on migrating neurons and binds to growth 

factors through its CS side chains  (34, 59) . Several studies 

also claim that RPTP β  is associated with CSPG-mediated 

inhibition in the CNS. For example, Shen et al.  (60)  have 

shown that after dorsal column injury, sensory axons 

grow deeper in RPTP β  mutant mice than they do in wild-

type mice. 

 Some mechanistic pathways are emerging from our 

present knowledge on the roles of CS in controlling neu-

ronal outgrowth. For example, blood-brain barrier leakage 

of blood protein fibrinogen containing transforming 

growth factor- β  (TGF- β ) is thought to induce CS produc-

tion in reactive astrocytes by activating the TGF- β /Smad 

signaling pathway  (61 – 64) . Fibrinogen, carrying the latent 

TGF- β  complex, is then responsible for phosphorylation of 

Smad2 in astrocytes, leading to inhibitory scar formation 

and limiting neurite outgrowth  (61) . CS has been reported 

to inhibit axonal growth by interacting with leukocyte 

common antigen-related phosphatase, Nogo receptors 

(NgR1 and NgR3), and the EGF receptors  (65 – 67) . The con-

verging downstream effector of most CSPG-related inhibi-

tory pathways is the activated Rho, a Ras homologue, 

which further activates the Rho-associated protein kinase 

(RhoA/ROCK) pathway. Once activated, ROCK leads to 

actin depolymerization through Lim kinase and cofflin 

stimulation. Actin filament degradation leads to immo-

bility or collapse of growth cones present on the axons, 

leading to termination of axonal outgrowth (Figure  3  ) 

 (68 – 70) . Sivasankaran et al.  (71)  have shown that by block-

ing the RhoA pathway, myelin and CSPG lost their ability 

to activate Rho and inhibit neurite outgrowth in dorsal 

column neurons. However, similar growth enhancement 

was not observed for corticospinal tract neurons in the 

same animals, suggesting that the effect of CSPG signaling 

is specific to the neuronal cell type and region of the CNS.  

  (iv) CNS plasticity 

 HS can alter CNS plasticity by interacting with CNS ligands 

such as NCAM and EGF. Removal of HSPGs can lead to a 

 Figure 3    Intracellular signaling mechanism triggered by CSPG present in the glial scar. 

 CSPGs are thought to be present in axons, although their molecular identity is not well established. Recent studies have shown that CSPG 

can interact with leukocyte common antigen-related phosphatase, Nogo, or EGF receptors and lead to growth inhibition  (65 – 67) . RhoA 

activation eventually leads to actin depolymerization and the growth cone retraction. RhoA activation has also been shown to be associ-

ated with PKC pathway and epidermal growth factor receptor (EGFR) phosphorylation in a calcium-dependent manner  (67, 71) . However, 

the process of calcium influx leading to PKC activation or EGFR activation is not well defined. Dashed arrows suggest that mediators of the 

represented process are yet to be identified.    
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loss in synaptogenic activity of postsynaptically expressed 

PSA-NCAM  (72) . Conversely, loss of the HB-EGF can affect 

fear and spatial learning as well as alter long-term poten-

tiation (LTP) in the hippocampus  (73) . Although these 

studies have documented the importance of GAG chains 

in plasticity, it remains unclear which sulfation patterns 

are required for influencing the plasticity. However, some 

evidence alludes to their importance. For example, mice 

that are lacking the endosulfatases Sulf-1 and Sulf-2 show 

shortcomings in spatial learning. Reduction of Sulf-1 alone 

leads to deficits in synaptic plasticity in the hippocampus 

 (74) . As evidences accumulate for the role of HS-ligand 

interactions in CNS plasticity, it becomes important to 

delineate how specific sulfation patterns can regulate CNS 

plasticity. 

 At the end of the critical period of development, loss 

of neuroplasticity is seen in the CNS. The critical period 

refers to the stage until which neuronal properties and 

connections can be highly modulated by experience. It 

has been shown that perineuronal net (PNN) formation 

coincides with the end of the critical period, and other 

evidences suggest that CSPGs have a critical role in regu-

lating neuronal plasticity ( 75 – 78,  and references therein). 

Aggrecan, brevican, and neurocan are major CSPGs that 

interact with hyaluronan and tenacins to form the PNN, 

which are areas of condensed ECM that surround neu-

ronal cell bodies and dendrites  (79, 80) . (The role of PNN 

in neuroprotection has been widely studied and is dis-

cussed under the neurological disorders section.) 

 A widely studied model for CNS plasticity is the ocular 

dominance shift in the visual system, whereby the non-

deprived eye becomes more represented in the visual 

cortex as a result of deprivation of the other eye. It has 

been reported that increase in the 4 S /6 S  sulfation ratio of 

the CSPGs present in brain ECM leads to the termination 

of the critical period of ocular dominance in mouse visual 

cortex  (81) . Normally, the capability of plastic shift exists 

only until the termination of the critical period. However, 

an ocular dominance shift toward the non-deprived eye 

can also be seen in the mature CNS following treatment 

with chondroitinase ABC (ChABC), suggesting that CS-

mediated loss of plasticity may be reversible  (75) . CSPGs 

are furthermore implicated in regulating memory forma-

tion in the CNS. The cellular correlates of memory forma-

tion are  ‘ upward ’  or  ‘ downward ’  shifts in the synaptic 

strengths of neurons in response to altered inputs, termed 

LTP and long-term depression, respectively  (82) . It was 

observed that ChABC treatment in the CA1 region of the 

mice hippocampus led to a reduction in LTP as well as LDP 

processes at the pyramidal cell synapse  (83) . Altogether, 

these findings suggest that, in addition to controlling their 

growth/migration, GAGs influence synaptic network sta-

bilization and formation of novel synapses, thereby con-

trolling CNS plasticity and memory formation.   

  GAGs in CNS injury 
 Even though the contribution of HS and CSPGs in the CNS 

is evident, in the absence of highly sensitive molecular 

and analytical techniques, it has been difficult to estab-

lish their structure-function relation. HSPGs interact with 

a diverse array of growth factors and often serve as nec-

essary co-factors stabilizing their signaling complex  (3) . 

However, little is known about the role of HS in CNS injury. 

As noted earlier, as HS chains have various functional 

implications on CNS development, HS-mediated signal-

ing can possibly be associated with axonal regeneration 

or CNS healing linked to other neurological disorders. 

However, the majority of research on the role of GAGs in 

CNS injury has mostly been focused on CSPGs. 

 After CNS injury such as SCI, axonal regeneration 

at the affected site is inhibited owing to the formation 

of glial scars by the reactive astrocytes  (52) . Glial scars 

in the CNS restrict the regenerative capability of injured 

neurons. CSPGs, which are upregulated at the injury site, 

are among the major components of the inhibitory scar 

tissues, functioning as a barrier to neuronal pathfind-

ing ( 4 ,  84 – 86 , and references therein). Neurocan and 

phosphacan are the two major CSPGs present in the scar, 

whereas BEHAB (brain enriched hyaluronan binding)/

brevican expression has also been found to be upregu-

lated by reactive astrocytes  (87, 88) . Enzymatic removal 

of CSPGs after injury using ChABC has resulted in partial 

recovery in several  in vivo  studies  (89 – 91) . Yick et al. 

 (91)  found that enzymatic digestion of CS at the lesion 

site led to the regeneration of Clarke ’ s nucleus neurons 

into peripheral nerve grafts implanted at the site. These 

studies suggest that the upregulation of CS in CNS inju-

ries is the major cause for limited axonal regeneration 

and therefore is the most thoroughly studied manifesta-

tion of CS in the CNS. 

 In the context of SCI, CS is mostly reported to have 

an inhibitory effect on neuronal regeneration. However, 

as described in the sulfation patterns section below, some 

CS variants were found to promote neurite outgrowth 

and control polarization  (55 – 57, 92) . Therefore, as further 

discussed in the section on the role of GAGs in sulfation 

patterns, one cannot draw a simplistic conclusion about 

the molecular role of CSPGs during CNS injury without a 

closer examination of their discrete sulfation patterns.  
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  GAGs in neurological disorders 
 One of the most well-studied neurological disorders asso-

ciated with GAGs is Alzheimer ’ s disease (AD), in which 

patients show signs of cognitive deficits such as memory 

loss, inability to learn, and confusion  (93) . PGs appear to 

play both pathological and neuroprotective roles in AD. 

The disease is caused by the accumulation of neuritic 

plaques and neurofibrillary tangles (NFTs) in the cortex. 

One of the major components of the neuritic plaques is 

aggregated amyloid- β  (AB) peptides in the brain. Highly 

sulfated HS has been found to be co-localized with these 

deposits. Less sulfated HS mediates uptake and degra-

dation of AB in non-disease states; however, the highly 

sulfated HS inhibits this cellular uptake of AB ( 93 – 95,  

and references therein). These deposits of highly sulfated 

HS can be substantially degraded by Sulf-1 and Sulf-2, 

suggesting the presence of 6- O  sulfates in significant 

amounts  (96) . It has also been shown that the source of 

this highly sulfated HS is the nearby neuronal population 

and that HS is important for the regulation of Alzheimer ’ s 

 β -secretase (BACE1)  (97) . Studies have reported that HS 

and heparin, which is similar to HS except that it is more 

heavily charged, bind to BACE-1 and inhibit cleavage of 

amyloid precursor protein (APP)  (97) . Other GAG chains, 

including CS and DS, are also found within these plaques 

and may contribute to plaque formation and the overall 

progression of the disease. Previous research also showed 

that HS, CS, and KS can all interact with AB peptides and 

enhance the shift of AB42 peptides to the  β -sheet con-

firmation  (95) . GAGs have been shown to be involved in 

aggregation and precipitation of amyloid fibrils, leading 

to increase in neurotoxicity  (98) . Low molecular weight 

heparin can compete with endogenous HS for binding to 

AB and inhibit the formation of fibrils  (95) . The sulfation 

patterns present on the HS thus seem to be important for 

the formation and progression of these neuritic plaques. 

Non-sulfated GAGs such as hyaluronic acid have no effect 

on fibril formation and aggregation  (95) . 

 Sulfated GAGs have also been implicated in Alzhei-

mer ’ s-like changes seen in the  τ  protein. Incubation of 

this protein with heparin results in the formation of Alz-

heimer ’ s-like filaments and promotes the phosphoryla-

tion of  τ . This phosphorylation prevents the binding of 

the  τ  protein to stabilized microtubules and results in the 

rapid disassembly of microtubules assembled from  τ  and 

tubulin. The effects seen from a variety of GAGs is propor-

tional to the extent of sulfation present on the GAG chain 

 (99) . 

 PGs also play a significant role in gliomas. The neural 

ECM is naturally resistant to cell and neurite motility. 

As discussed in earlier sections, a major component of 

these inhibitory regions of the ECM is CS. Upregulation 

of BEHAB/brevican has been reported in gliomas ( 100 , 

 101 , and references therein). The tumor-specific BEHAB/

brevican is differentially glycosylated and is cleaved by 

metalloproteases promoting cell motility and invasion in 

glioma  (102, 103) . Neurocan, versican, and tenascin-c are 

also implicated in the invasiveness of gliomas  (104, 105) . 

HSPGs are also upregulated in some gliomas and interact 

with factors that promote glioma growth and invasion. 

Specifically, several HSPGs have been found to promote 

the signaling and mitogenic properties of FGF-2  (106) . 

 Sulfation of GAGs can alter the behavior of glioma 

cells. Studies have examined how sulfation density 

affects glioma proliferation and invasion; for example, 

reduction of sulfation using sodium chlorate treatment on 

glioma cells resulted in lower levels of cell proliferation 

 (107) . Intracerebral inoculation of glioma cells pretreated 

with sodium chlorate also lead to a decrease in size and 

instances of glioma, resulting in longer survival of the 

treated animals  (108) . Changes were also seen in specific 

sulfations on HS. Enhanced FGF-2 activity was correlated 

with higher sulfation levels in the HS present in gliomas 

with a higher amount of 2- O  and 6- O  sulfates  (106) . Sulf-2 

expression was reported to regulate receptor tyrosine 

kinase signaling pathway through PDGFR α  activation in 

glioblastoma cells as well as primary tumors. Knockdown 

of Sulf-2 in human glioblastoma cells or generation of 

gliomas from  Sulf2   -/-   resulted in decreased growth  in   vivo  

in mice  (109) . These results indicate that endosulfatases 

expressing gliomas could respond to various external 

growth factors, and such factors can serve as potential 

therapeutic targets in such disorders. 

 Alterations in GAGs are seen in a variety of neuro-

logical disorders, including autism, epilepsy, Parkinson ’ s 

disease, and schizophrenia (Table  2  ). A mouse model 

for autistic behavior, the BTBR T + tf/J mice, was recently 

reported to show alterations in HS associated with fractal 

structures of the subventricular zone (SVZ), specifically 

the third and lateral ventricles  (110 – 112) . This fractone-

associated  N -sulfated HS is thought to be involved in 

growth factor sequestering and in modulating glutamater-

gic synapses  (110 – 112) . Furthermore, eliminating HS in 

postnatal neurons in mice resulted in autistic symptoms. 

After conditionally inactivating  Ext 1 , an enzyme involved 

in HS biosynthesis in the brain after birth, there were no 

morphological changes; however, these mice showed 

stereotyped and repetitive behavior and had impaired 

social interactions  (113) . In a recent study, Pearson et al. 

 (114)  report reduction in  N -sulfated HS in the ECM from 

the SVZ of brain lateral ventricles in postmortem tissue of 
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autistic individuals. These studies implicate that decrease 

in  N -sulfated HS in specific regions of the brain could be 

contributing to the etiology of autism and may serve as a 

biomarker for the disorder. 

 CS chains play an etiological role in epilepsy. This is 

likely due to the ability of CS to stabilize synapses, reduce 

plasticity, and interact with GABAergic interneurons. A 

variety of CSPGs are thought to be involved in the onset 

and progression of epilepsy. Neurocan, which is primar-

ily expressed during development, shows a renewed 

expression following status epilepticus (SE) in the adult 

hippocampus  (115) . Aggrecan has also been examined in 

relation to PNN remodeling after SE. After SE, the hip-

pocampus showed a decrease in aggrecan expression 1 

week post-SE, specifically in the dentate gyrus, followed 

by a decrease in aggrecan-labeled PNNs. Additionally, 

the remaining PNNs show a loss of structural integrity 

 (116) . 

 Both HS and CS appear to play a role in Parkinson ’ s 

disease (PD). Agrin, an ECM and transmembrane HSPG, 

has been implicated in fibril formation in AD and PD 

 (117) . NG2, a CSPG, has also been implicated in PD. In a 

study examining two rat models of PD, NG2-positive cells 

expressed calcium-binding adaptor molecule 1 and GDNF 

 (118) . It has also been seen that subcutaneous injection 

of a cytokine mixture containing granulocyte macrophage 

colony-stimulating factor and interleukin-3 ameliorated 

the loss of dopaminergic neurons in one of these rat PD 

models. One possible mechanism for this reduction of 

degradation is thought to be the increase in NG2-positive 

glia found in treated animals  (118, 119) . Hence, NG2-posi-

tive glia seems important for the survival of dopaminergic 

 Table 2      Association of various PGs and GAGs with neurological disorders.  

PG (GAG) Disorder Observed effects References

Neurocan (CS) Bipolar disorder and schizophrenia SNP overlap was found in neurocan gene ( NCAN )  (211) 

Brevican (CS) Episodic falling syndrome, related to 

human paroxysmal exercise-induced 

dyskinesia episodic ataxias

Deletion reported in brevican gene ( BCAN )  (212) 

Nauroparin (HS) AD Protected neurons against cholinergic lesions; 

increased arborization and reduced septal caspase 3 

and  τ  immunoreactivity

 (181, 182, 

213, 214) 

Perlecan (HS) AD Disordered processing was associated with 

amyloidosis

 (215) 

(HS, DS, CS) AD Identified in AD lesions, amyloid deposits, and 

neurofibrillary tangles

 (216 – 218) 

Apican (CS) AD APP acted as its core protein, was found in human and 

rat brain

 (219) 

(HS) AD  O -GlcNAc glycosylation was upregulated  (220) 

(HS/CS) AD Promoted formation of paired helical filaments  (221) 

CSPG HIV-1 infection Facilitated infective entry of virus; PNN damage was 

observed in AIDS victims

 (222, 223) 

Neurocan, 

phosphacan, 

brevican (CS)

Epilepsy Full-length neurocan was deposited after seizures, 

associated with axonal sprouting; phosphacan-

positive PNN decreased; cleaved brevican increased 

in the temporal lobe and hippocampal regions of the 

rat brain

 (224, 225) 

Aggrecan, versican, 

phosphacan, 

brevican (CS)

Stroke Plasticity increased in peri-infarct and remote regions 

with reduction in aggrecan, versican, and phosphacan, 

and accumulation of neurocan

 (226, 227) 

HSPGs Gerstmann-Straussler syndrome, 

Creutzfeldt-Jakob disease, and 

scrapie

Sulfated GAGs were found to be present in amyloid 

plaques

 (228) 

HSPGs/CSPGs Parkinson ’ s disease Lewy bodies were found to contain PGs  (218, 229) 

Brevican, versican 

(CS)

Glioma Overexpressed and promoted tumor growth, 

vascularization, and invasiveness

 (100, 101, 

230) 

CSPGs Monocular deprivation and 

amblyopia

ChABC led to complete recovery in rats and moderate 

recovery in cats

 (231, 232) 

HSPGs Pick ’ s disease Involved in extinction of Pick bodies  (233) 

HSPGs Autism Reduction in  N- sulfated HS in SVZ  (114) 
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neurons and presents NG2 as a possible therapeutic target 

for PD. 

 PGs have also been implicated in schizophrenia. 

Upon examining postmortem brains, researchers found 

an increase in CSPG-positive glial cells in specific brain 

nuclei of the schizophrenic patients. The increase was pri-

marily seen in the deep amygdala and entorhinal cortex. 

A decrease in PNNs was observed in different areas of the 

amygdala and entorhinal cortex as well  (120) . However, 

there was no change in the presence of parvalbumin-pos-

itive GABA neurons that are most commonly associated 

with PNNs in the entorhinal cortex or the amygdala  (121) . 

Changes have been seen in fear learning and extinction 

in schizophrenia patients. This may be directly influenced 

by alterations in the PNN present in the amygdala, as pre-

vious studies have shown that enzymatic degradation of 

this structure disrupted fear learning  (122, 123) . This pre-

sents evidence that CS could play a key role in develop-

ment of schizophrenia and its overproduction in certain 

areas while disruption in others may lead to improper 

neural functionality. 

 GAGs are altered in many neurological disease states; 

however, it remains unclear what is the exact mecha-

nism of their involvement. Although GAGs have been 

implicated in several CNS pathological processes, there 

are ample evidences to suggest their neuroprotective 

role as well. Brain samples from patients with sporadic 

Creutzfeldt-Jakob disease revealed that PNN surrounding 

parvalbumin-IR neurons of the cerebral cortex disappear 

before these cells die. Following their death, this zone 

becomes occupied with protease-resistant prion protein 

(PrP), which then spreads into the space and interacts 

with other GAGs to form protease-resistant aggregates 

 (124, 125) . Likewise, cortical neurons associated with PNN 

were found to be resistant to neurofibrillary changes and 

 τ  pathology in AD  (126, 127) .  In vitro  experiments suggest 

that CSPGs protect PNN-associated neurons against glu-

tamate toxicity, which also plays a role in AD  (128) . CS 

chains were also found to elicit neuroprotective effects in 

an  in vitro  model of calcium-dependent excitotoxicity in 

a sulfation-dependent manner. Treatment of rat cortical 

neurons with CS-E reduced cell death by  N -methyl- d -as-

partate (NMDA), ( S )- a -amino-3-hydroxy-5-methyl-4-isox-

azolepropionic acid, or kainate, whereas other sulfation 

variants of CS or HS had no such protective effect  (129) . 

Dopaminergic neurons are associated with the patho-

physiology of PD and undergo significant reorganization 

in their aggrecan-based ECM, leading to degeneration 

 (130) . It has been suggested that polyanionic GAGs asso-

ciated with PNN contribute to the reduction in local oxi-

dative stress by scavenging redox-active ions  (131) . Taken 

together, these studies suggest a paradoxical role of PGs 

in neurodegenerative diseases. For example, while several 

evidences suggest strong interaction between GAGs and 

amyloid deposits and NFTs  (132, 133) , CSPGs containing 

PNNs are known to protect cells from degeneration. There-

fore, it is evident that GAG structures must play different 

roles in various states of damaged CNS. Our understand-

ing about the specific roles of PGs in CNS disorders is still 

growing, and we have summarized observations on their 

associations with various CNS pathologies in Table 2 and 

Figure 4.  

  The role of GAG sulfation patterns 
in the CNS 
 The elaborate molecular interactions of the HSPGs/

CSPGs are tightly controlled by their sulfation patterns, 

which provide their ligands unique selectivity for binding 

(Table  3  ). Diverse sulfations are found in both HS and CS 

 (134) . Wang et al.  (43)  reported that highly sulfated HS-like 

polymers, in comparison with unsulfated HS, increased 

error in median fiber tract axonal pathfinding of pioneer 

axons in cockroach embryo. Furthermore, genetic studies 

done by deleting various sulfotransferase enzymes have 

shown the importance of sulfation. For example, muta-

tion in the  N -deacetylase- N -sulfotransferase gene in  Dros-
ophila  inhibited activation of the MAPK pathway and led 

to defects in cell migration during embryogenesis  (135) . 

Different sulfotransferase isoforms of CS have been asso-

ciated with specific regions of the brain  (136) . With the 

alternating sulfotransferase activity, the sulfation pat-

terns of HS and CS keep changing during embryonic brain 

development  (137, 138) . Therefore, it is understood that 

sulfated domains of HS and CS are highly regulated by 

the spatiotemporal expression of various sulfotransferase 

and endosulfatase enzymes. 

 HS sulfotransferase enzymes are expressed differen-

tially in the cerebrum during neural development. During 

mouse embryonic development, significant 3OST and 

NDST expression was observed in the ventricular zone and 

the cortical plate  (139) . NDST was also expressed in other 

brain areas such as the marginal zone and subplate  (139) . 

In juveniles, 3OST and 6OST expression was found to be 

more widespread, being found in the ventricular zone, 

layers V/VI, intermediate zone, and cortical plate. 3OST 

expression in adults was found in layers II/III and V of the 

cortex, and 3OST-2 and 3OST-4 were found abundantly in 

trigeminal ganglion neurons. 6OST showed expression 

in layers I and II/III. NDST expression in juveniles was 
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 Table 3      Different GAG sulfation patterns and their effects related to the CNS.  

GAG Sulfation Observed effects References

HS 2 S Binding of FGF1 and FGF8 to several FGFRs. These interactions were 

associated with neural plate patterning, neurogenesis, gliogenesis, cell 

migration, axonal pathfinding, and neuronal regeneration

 (145, 234, 

235) 

HS 6 S Binding of FGF1 and FGF8 to several FGFRs, associated with effects stated 

in the row above

 (145, 235) 

HS 2 S /3 S /6 S Associated with Slit protein binding  (236) 

HS IdoA(2 S )-Glc(NS) Associated with bFGF binding  (237) 

HS NS2 S 6 S Netrin 1 and semaphorin 5B binding; NS6S was preferred by Slit 2; NS2S 

was preferred by ephrin A1 and ephrin A2

 (238) 

HS Totally desulfated/

NS

Failed to bind basic FGF  (239) 

CS-A GlcA-GalNAc(4 S ) Provided negative guidance cues to cerebellar granule neurons  (163) 

CS-C GlcA-GalNAc(6 S ) Expressed in tissues acting as barrier to axonal advancement in chick 

embryo; upregulated after CNS injury; upregulation led to axonal 

regeneration; associated with Schwann cell motility

 (159, 160, 167, 

240) 

CS-E GlcA-GalNAc(4 S ,6 S ) Stimulated outgrowth in dopaminergic, hippocampal, and DRG neurons; 

associated with FGF-2, FGF-10, FGF-16, FGF-18, MK, PTN, TNF- α , BDNF, 

HB-EGF binding; inhibited rat cortical cell binding; inhibited DRG neurite 

outgrowth through PTP σ  pathway; assembled neurotrophin-Trk complex

 (148, 150, 151, 

154, 156, 162, 

166, 241) 

CS-D/CS-E GlcA(2 S )-

GalNAc(4 S )/GlcA-

GalNAc(4 S ,6 S )

Promoted growth in rat hippocampal neurons  (242, 243) 

CS-B/CS-E IdoA-GalNAc(4 S )/

GlcA-GalNAc(4 S ,6 S )

Interacted with PTN; promoted neurite outgrowth in hippocampal neurons 

by interacting with PTN

 (1, 244) 

CS-A/CS-D/CS-E Stimulated neurosphere formation through an EGF-dependent pathway  (29) 

CS-B/CS-D/CS-E Promoted FGF-2-mediated proliferation of rat embryonic neuronal stem 

cells

 (30) 

Figure 4 Observed and potential associations of PGs and GAGs with neurological diseases in various regions of the human brain.

This diagram represents a coronal section of the human brain and highlights evidence reported about the involvement of GAGs in various 

CNS disorders. Observations made in non-human brain samples may suggest that such effects persist in the human brain as well.
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seen in layers II/III and V, whereas expression was seen 

in a manner similar to that of 3OST in adults  (139, 140) . 

In adults, 3OST expression can also be induced by envi-

ronmental cues. Dramatic changes in the expression of 

various 3OST and 6OST isoforms were observed in a spati-

otemporal manner in developing zebrafish  (141, 142) . The 

HS fine structure in the pineal gland showed differences 

when assessed in light versus dark conditions  (143) . The 

differential expression in development as well as changes 

in sulfotransferase expression due to environmental cues 

such as light implies that control of specific HS sulfation 

is important to normal development and neural function. 

 GAG functions are controlled by their sulfation 

pattern as well as density. The specificity of HS sulfation 

in determining their binding affinity for different isoforms 

of FGF has been investigated extensively. IdoA2S-GlcNS 

was found to increase the binding affinity of HS with basic 

FGF, and the affinity increased with increasing sulfation 

density  (144) . Sulfates seem to impart a defined structure 

to the HS microdomains, thus controlling their selectivity 

for binding to various ligands. Many such ligand recep-

tor interactions, such as FGF-FGFR, play crucial roles in 

various CNS processes, such as neural plate patterning, 

neurogenesis, gliogenesis, axonal pathfinding, and regen-

eration during injury. Further details on the role of FGFs in 

CNS can be found in the review by Guillemot and Zimmer 

( 145  and references cited therein). 

 Although several distinct roles have been proposed for 

HS- and CS-mediated signaling, the existence of overlap in 

their CNS interactions cannot be excluded completely. In 

fact, crystallographic analysis of RPTP σ  revealed a shared 

binding site for HS and CS  (146) . In fact, Coles et al.  (146)  

proposed that both HS and CS can bind to RPTP σ  and still 

mediate their differential response on neurons. The com-

putational model suggested that due to the difference in 

their sulfation densities, HS and CS are able to differently 

affect RPTP σ  signaling. The discretely sulfated domains of 

HS may promote RPTP σ  clustering, resulting in compro-

mised phosphatase activity and hence enhanced life of 

neurite-promoting phosphorylated proteins. In contrast, 

the uniformly sulfated domain of CS results in higher 

phosphorylase activity mediated by RPTP σ , leading to 

neuronal inhibition  (146) . Others have also observed 

the contrasting roles of HS and CS mediated by RPTP σ . 

The role of RPTP σ  as a CSPG receptor is well known 

 (60) . RPTP σ  have also been reported to promote growth 

in chick retinal ganglion cell axons in response to basal 

lamina, which contains HSPG ligands  (147) . Although the 

presence of IdoA imparts very distinct structural features 

to HS, the presence of IdoA in certain other CS variants 

(CS-B and CS-D) can likely enhance their binding with 

HS binding proteins. This suggests that the HS and CS 

structure may regulate their CNS interactions in two ways. 

Owing to the gross structural similarity between HS and 

CS, they may interact with common receptors. However, 

owing to the distinct, fine differences in their sulfation, 

the outcomes of such interactions can vary widely. 

 Distinct sulfated motifs of CS have been shown to 

control neuronal outgrowth differently. Tully et al.  (148)  

have shown that surface-immobilized CS-E tetrasaccharide 

can promote outgrowth of hippocampal neurons. Highly 

sulfated CS structures such as CS-D and CS-E are known to 

bind many proteins, including FGFs, MK, PTN, EGF, brain-

derived neurotrophic factor (BDNF), and chemokines (see 

Table 3)  (149 – 151) . The CS-E motif is enriched in a develop-

ing rat brain  (136) ; interacts with several PGs; and acts in 

association with appican, syndecan-1, syndecan-4, neuro-

glycan C, and phosphacan  (136, 152, 153) . In the study by 

Gama et al.  (151) , it was shown that BDNF selectively binds 

to the CS-E motif with a 20-fold preference over those of 

CS-A and CS-C at physiologically relevant concentrations. 

Moreover, surface plasmon resonance experiments show 

that CS-E bound to MK as strongly as heparin, which was 

followed by other GAGs  (154) . Similarly, exogenously 

added CS-E and CS-D were seen to block pleiotrophin-

RPTP β  interaction, resulting in abnormal morphogenesis 

of Purkinje cell dendrites  (155) . The observations made 

on binding of highly sulfated CS with HS-binding growth 

factors such as MK further strengthens the hypothesis that 

a combination of gross and fine structural features medi-

ates the interactions of HS and CS with common recep-

tors. Furthermore, the high sulfation density of CS-D and 

CS-E might structurally be more similar to HS in terms 

of charge distribution and the presence of 2 S -containing 

IdoA (in CS-D). Hence, these subtle features may enhance 

the binding of CS motifs to HS-binding growth factors, 

leading to similarity in their growth-promoting outcomes. 

 In spite of evidences demonstrating the influence of 

distinct CS motifs on neurons, the underlying mechanis-

tic pathways are not yet fully understood. Rogers et al. 

 (156)  demonstrated another aspect of CS-E signaling by 

modulating the neutrophin (NT)-tyrosine receptor kinase 

(Trk) interactions. CS-E, but neither CS-A nor CS-C, was 

shown to assemble the NT-Trk complex, which led to the 

formation of CS-E-nerve growth factor (NGF)-TrkA and CS-

E-BDNF-TrkB complexes  (156) . NT-Trk binding mediates 

neurite outgrowth, differentiation, and survival through 

the extracellular signal-regulated kinase, phosphatidylin-

ositol 3-kinase, and phospholipase C γ  pathways  (157, 158) . 

Multiple signaling pathways may regulate CS-mediated 

neuronal growth or inhibition; thus, CS-E-dependent 

NT-Trk binding presents another way in which CS-E plays 



V.P. Swarup et al.: Sugar glues for broken neurons       245

a role in neuronal growth and proliferation. Although 

NT signaling is mediated by Trk receptor dimerization, 

the possibility of CS-E in dimerizing Trk itself cannot be 

excluded completely. 

 In contrast to highly sulfated units, the monosulfated 

CS-A and CS-C were shown to have inhibitory influences on 

neuronal growth. The composition of three barrier tissues 

between the spinal cord and hind limb of the chick embryo 

illustrates the expression of peanut agglutinin and CS-C at 

the time when they are avoided by growing axons  (159) . 

In a more recent study, it was shown that CS-C synthesis 

is upregulated in CNS after injury  (160) . The study also 

analyzed mRNA levels of the enzyme chondroitin 6- O -sul-

fotransferase 1 (CS-6OST1) and showed its upregulation in 

most glial cells around cortical injuries. Although these 

results indicate that CS-C acts as an inhibitor for axonal 

regeneration, others have suggested CS-E or CS-A to be the 

inhibitory component of the glial scar  (161 – 163) . 

 The role of GAGs in enhancing amyloid aggregation 

revealed the following order: heparin  >  HS  >  CS  =  DS, sug-

gesting that highly sulfated GAGs such as heparin were 

most effective in forming plaques. Furthermore, in the 

case of heparin, the order was found to be heparin  >   N -des-

ulfated  N -acetylated heparin  >  completely desulfated 

 N -sulfated heparin  >  completely desulfated  N -acetylated 

heparin. These results clearly show that the sulfate moiety 

of GAGs plays a critical role in the amyloid- β  fibril forma-

tion  (164, 165) . Table 3 summarizes various evidences on 

the influence of CS and HS sulfation patterns in relation 

to the CNS. 

 Although there are a growing number of evidences 

that suggest distinct roles of different sulfation patterns of 

CS on neurons, a consensus is still lacking. For example, 

there is overwhelming evidence on the neurite-promoting 

activity of CS-E; however, Brown et al.  (166)  have recently 

shown that CS-E inhibits neurite outgrowth of dorsal root 

ganglion (DRG) neurons. Likewise, Karumbaiah et al.  (161)  

reported that CS-E is upregulated in rats after SCI and is 

inhibitory for the growth of cortical neurons. Similarly, 

some studies point out the growth-promoting effects of 

6- O -sulfation. Lin et al.  (167)  reported that highly 6- O -sul-

fated CS (CS-C motifs) in glial scar formed after CNS injury 

promoted axonal regeneration in nigrostriatal axons. 

Overall, contradictory evidence on the role of distinct CS 

motifs have been shown in the recent literature, and it 

seems plausible that the influence of such motifs depends 

on the neuronal cell type, site, and developmental stage 

of the CNS. Therefore, a systematic characterization of 

a library of CS variants is required to examine the rela-

tive influence of various sulfation patterns on neuronal 

growth and plasticity. 

 Owing to the variations in the chain length and the 

sulfation pattern of the CS chains used in different studies 

that also involved different neuronal models/sources, an 

understanding on the role of specific sulfation patterns is 

currently lacking. Although many studies utilize CS struc-

tural variants isolated from natural sources, these chains 

do not contain uniform sulfation patterns. Most of the com-

mercially available CS chains are classified on the basis of 

the dominant sulfation motif present on them. We there-

fore characterized the sulfation profiles of five major CS 

variants found in the mammalian brain: CS-A, dermatan 

sulfate (CS-B), CS-C, CS-D, and CS-E, and assessed their 

influence on embryonic day 18 rat hippocampal neurons. 

Structural analysis of CS chains revealed a vast diversity 

in their sulfation content. Surface-immobilized CSs were 

used in the neurite growth assay by conjugating CS chains 

to the poly- l -lysine-coated surfaces. Single CS plain-field 

patterns revealed differential inhibitory potential of the 

CS variants. Interestingly, over the three time points of 

24, 48, and 72 h, we observed that the neurite length and 

the number of neurites per cell were maximum in neurons 

growing over CS-D surfaces, whereas CS-C surfaces were 

the most inhibitory (unpublished data). These findings 

support previous reports on the inhibitory role of CS-C 

toward neuronal growth  (160, 168) . As already mentioned, 

disulfated CS chains have been reported to promote neu-

ronal adhesion, migration, and neurogenesis. Likewise, 

we observed relatively better neuronal growth for both 

CS-D and CS-E among the CS chains tested. Interestingly, 

the neurite length and the number on CS-D-coated sur-

faces were significantly higher than in the other CS vari-

ants used (unpublished data). Most importantly, the study 

demonstrated that sulfation pattern variation could lead 

to diverse cell response to the GAGs, which might be the 

basis of the opposing roles of CSPGs in the CNS.  

  Expert opinion 
 It is clear that GAGs play a major role in CNS development 

and maintenance. The goal for the future will be to exploit 

these GAGs as therapeutic agents in CNS disorders. From 

the reported evidence, we understand that bimolecular 

interactions mediated by GAGs are influenced by the fine 

sulfation patterns present on HS and CS chains. Multiple 

approaches are being explored to utilize these molecules 

for developing solutions for the neurological injuries and 

disorders discussed earlier. Presently, the efforts on devel-

oping therapies for CNS injury/disorders are headed in 

three directions: (i) removing inhibitory CSPGs from the 
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injury site  (85) ; (ii) delivering neurotrophic factors for 

stimulating regeneration  (169) ; and (iii) using stem cells to 

support neuronal regeneration  (170) . However, as none of 

these approaches have shown complete functional resto-

ration independently, there is a need to design combinato-

rial therapies that modulate the complex neuroinhibitory 

environment present at the scar/disease site to facilitate 

neuronal regeneration. 

 Digestion of CSPGs at the scar site after injury is one 

of the most widely investigated therapeutic approaches 

for CNS injuries. Several studies have demonstrated the 

therapeutic efficacy of combining the digestion of CSPGs 

with infusions of neurotropic factors  (171 – 174) . However, 

ChABC treatment results in compete degradation of CS 

chains and may lead to loss of growth-promoting or 

guiding motifs. Therefore, digestion of specific CS chains 

using enzymes such as ChAC or ChB should be explored 

to selectively remove inhibitory motifs and lead to better 

therapeutic outcomes than ChABC. Such an approach 

may also be beneficial in AD and schizophrenia, where 

upregulation of HS or CS leads to disease progression. 

Partial or complete digestion of such GAG structures with 

combinations of chondroitinases, heparitinases, or endo-

sulfatases could be explored for functional effective resto-

rations recovery in such disorders. 

 In spite of promising results of ChABC, delivery of the 

active enzyme for prolonged periods has practical limita-

tions. ChABC has been reported to be thermally unstable, 

decreasing its activity significantly at body temperature 

 (175) . Therefore, Lee et al.  (90)  have reported the use of tre-

halose to thermostabilize ChABC for prolonging its activ-

ity. The stabilized enzyme could digest CS chains  in vivo  

up to 2 weeks after injury. Another potential approach to 

circumvent the limitations of ChABC could be to modulate 

GAG biosynthesis using xylosides. As xylosides are small 

molecules, they can be efficiently targeted and delivered 

at the scar site to alter the production of inhibitory CS 

chains. Previously, click-xylosides, containing various 

aglycone residues, were shown to prime a variety of dif-

ferent GAGs in Chinese hamster ovary (CHO) cells  (176) . 

Additionally,  β - d -xylosides have been used on astrocytes 

to enhance neuronal growth  (177) . Moreover, 4-deoxy-4-

fluoro xylosides (fluoro-xylosides) could be exploited to 

inhibit GAG production at the affected region. A number 

of fluoro-xylosides have been found to inhibit GAG bio-

synthesis in CHO and endothelial cells  (178, 179) . Small 

molecular inhibitors of GAG sulfotransferases are yet 

another option that can be used to modulate the HS or 

CS sulfation pattern at the damage site. By selectively 

targeting one or more sulfotransferase enzymes, highly 

specific HS or CS motifs can be generated to stimulate 

neuronal regeneration. As GAGs may enhance formation 

of protease-resistant plaques, inhibiting this binding may 

increase the turnover of these pathological aggregates 

by prolonged exposure to proteases. Polysulfonated GAG 

mimetics have been used for this purpose and were found 

to be protective against amyloid fibril-induced effects 

 (180 – 182) . Furthermore, 4-deoxy- N -acetyl glucosamine 

was shown to attenuate plaque formation and improve 

effects of AD  (183) . Therefore, several permutations and 

combinations of small molecular inhibitors of GAG bio-

synthesis could be utilized to create clinically applicable 

solutions for degrading or modifying pathological PGs in 

the CNS. 

 GAG-based approaches may pose some limitations 

as GAGs have multifunctional roles in CNS injury and 

pathology. First, even though PGs bind to amyloid fibrils 

through GAGs, an additional role of the protein core of 

PGs cannot be excluded. Next, although the use of ChABC 

or fluoro-xylosides may promote short-term neuronal 

recovery or plasticity by PNN degradation, it is uncertain 

whether such non-specific degradation or inhibition of 

CSPGs will be beneficial for the CNS in the long term. It 

has been shown that scar formation may have a beneficial 

role of limiting the injury and restricting the infiltration 

of inflammatory cells  (184) . Therefore, limited or transient 

degradation of CSPGs may be required for optimal recov-

ery, thus making the time window of therapeutic interven-

tion an equally important factor. 

 Various growth-stimulating factors such as neuro-

trophin-3, cyclic adenosine-mono-phosphate, and sonic 

hedgehog have been used to stimulate axonal regenera-

tion at scar sites  (169, 185) . Many such factors target endog-

enous progenitor cells that can be stimulated to produce 

neurons and associated cell members at the injury site. 

In addition, spinal cord-derived neuronal stem/NPC cells 

can be transplanted to improve the regenerative capacity 

of the spinal cord, and to facilitate the functional recov-

ery of experimental models  (170, 186) . To provide a stimu-

lus for these stem cells to differentiate, they are generally 

seeded in polymeric scaffolds that mimic the architecture 

of the healthy spinal cord  (170) . However, instead of using 

synthetic polymers, GAG-based natural polymers can be 

developed to enhance the functionality of the scaffolds 

and to reproduce the molecular signals found in the devel-

oping CNS. HA is an excellent candidate for such appli-

cations because of its biocompatibility and its ability to 

maintain tissue organization, facilitate ion transport, and 

promote cell proliferation and differentiation  (187) . HS and 

CS have numerous effects on neurogenesis and neurodif-

ferentiation, which can be exploited in conjunction with 

growth factor delivery. Heparin-PEG hybrid hydrogel has 
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 Figure 5    Use of sugar glues for broken neurons and GAG-based therapies for injured CNS. 

 (A) Neuronal injury results in overexpression of inhibitory CSPGs from reactive astrocytes. (B) Degrading CS chains to stimulate neuronal 

growth. ChABC is widely studied for this application; however, unspecific digestion of GAGs can damage growth-promoting motifs and 

other important structures such as PNN. Selective digestion can be done using ChAC and ChB enzymes. (C) Designing GAG-based bridging 

device to guide regenerating axons. Surface presented HS, CS, DS, KS, or HA domains can be used to direct axonal pathfinding. (D) Using 

small molecules to modulate GAG production at the scar site. Xylosides would change the composition or sulfation pattern of the GAGs 

secreted from reactive astrocytes. Addition of fluoro-xylosides would inhibit GAG biosynthesis and result in generation of core protein 

without inhibitory GAG chains. Sulfotransferase inhibitors can be used to stop production of inhibitory sulfation patterns present in CSPGs 

released from reactive astrocytes. (E) Bioactive scaffolds can be designed by using GAGs such as HA, HS, CS, DS, or KS. Such scaffolds can 

be used to deliver stem cells or neurotropic factors at the scar site. A combination of two or more such approaches can be utilized to create 

effective therapies for neurological disorders.    

been used to explore its applicability toward neuronal 

cell replacement strategies  (188) . Although the functions 

of KS are largely unknown, KS chains are shown to be 

associated with some critical aspects of the CNS  (189) . KS 

is downregulated in AD  (190) , is the predominant GAG in 

the cornea of eye  (191) , and is involved in glial scar forma-

tion  (192) . The coming years will reveal more about the 

biology of KS and it is likely that all GAG types will become 

indispensible in therapies for many neurological disorders 

including AD. As discussed earlier, the influence of sulfa-

tion patterns of GAG in the CNS is highly dependent on 

the neuron type and the state of the CNS. Therefore, dif-

ferent sulfation motifs or GAG combinations may lead to 

enhanced neuronal regeneration or recovery for different 

sets of disorders and injury conditions. 

 Besides enhancing growth and regenerating neurons, 

it is imperative to guide axons across the scar site to 

reform severed neuronal wiring. One proposed treatment 

involves creating a neuronal bridging device that can 

facilitate connections of the spinal cord regions separated 

by the wound site. For this approach to succeed, a growth-

supporting biomaterial must act as a conduit for the direc-

tional growth of neurons. To provide guidance cues for 

neuronal pathfinding, the bridging scaffold can be  ‘ sugar 

coated ’  with HS and CS chains to create a directional 

gradient of the growth-promoting ligands. Previously, 

protein micropatterning techniques have been utilized 

to create patterns for directing neuronal outgrowth  (193, 

194) . By utilizing an array of differentially sulfated GAG 

structures, one can create unique signaling combinations 
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that enhance regeneration, functionality, and directed 

growth of neurons. 

 It is clear that GAGs can influence neuronal develop-

ment through their structural heterogeneity; however, 

obtaining structurally uniform GAG chains has been a 

challenging task. As we present the concept of exploiting 

sulfation patterns to modulate the outcome of GAG-neuron 

interactions, obtaining uniform structures with defined 

sulfation motifs is a prerequisite. Significant advances 

have been made recently in this direction with the devel-

opment of various chemoenzymatic processes to obtain 

defined oligosaccharide and polysaccharide structures 

of HS chains  (195 – 197) . Tully et al.  (148)  have utilized 

chemically synthesized CS structures in various neuronal 

assays. These processes can further be extended to create 

several uniform GAG structures of HS, CS, DS, or KS back-

bones for use in various CNS applications. Figure  5   sum-

marizes various GAG-based therapies that can be utilized 

to develop clinical solutions for CNS disorders. It is hence 

clear that the biology of sulfation patterns in HS and CS 

chains has finally begun to take shape. The structure-func-

tion relations of GAG-mediated interactions can now be 

utilized to understand CNS signaling mechanisms and to 

design novel therapies for several neurological disorders.  

  Highlights 
 –     GAGs play pivotal roles in CNS development, injury, 

and diseases.    

 – Sulfation patterns of GAG chains have a major influence 

on the regulation of GAG-protein interactions in the 

CNS.

 –     There are ample evidences that suggest the sulfation 

pattern of HS and CS chains affect the development 

and maintenance of CNS.    

 – The presence of remarkable heterogeneity in sulfation 

patterns of naturally occurring GAG chains is a major 

impediment in deciphering the role of GAG sulfation 

patterns in the CNS.

 –     Recent advances in GAG synthesis and analysis have 

set the stage for defining and exploiting the sulfation 

pattern of GAG chains to enhance CNS regeneration.    

 – We propose various promising therapeutic 

approaches to tackle CNS disorders, including the 

use of GAG-degrading enzymes in combination with 

molecular scaffolds that modulate GAG biosynthetic 

pathways to facilitate functional regeneration.

 –     The coming decade is expected to witness novel GAG-

based therapeutic approaches for treating several 

debilitating neurological conditions.      
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