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  Endothelin systems in the brain: involvement in 
pathophysiological responses of damaged nerve 
tissues   
  Abstract:   In addition to their potent vasoconstriction 

effects, endothelins (ETs) show multiple actions in vari-

ous tissues including the brain. The brain contains high 

levels of ETs, and their production is stimulated in many 

brain disorders. Accumulating evidence indicates that 

activation of brain ET receptors is involved in several 

pathophysiological responses in damaged brains. In this 

article, the roles of brain ET systems in relation to brain 

disorders are reviewed. In the acute phase of stroke, pro-

longed vasospasm of cerebral arteries and brain edema 

occur, both of which aggravate brain damage. Studies 

using ET antagonists show that activation of ET 
A
  receptors 

in the brain vascular smooth muscle induces vasospasm 

after stroke. Brain edema is induced by increased activity 

of vascular permeability factors, such as vascular endothe-

lial growth factor and matrix metalloproteinases. Activa-

tion of ET 
B
  receptors stimulates astrocytic production of 

these permeability factors. Increases in reactive astrocytes 

are observed in neurodegenerative diseases and in the 

chronic phase of stroke, where they facilitate the repair of 

damaged nerve tissues by releasing neurotrophic factors. 

ETs promote the induction of reactive astrocytes through 

ET 
B
  receptors. ETs also stimulate the production of astro-

cytic neurotrophic factors. Recent studies have shown 

high expression of ET 
B
  receptors in neural progenitors. 

Activation of ET 
B
  receptors in neural progenitors promotes 

their proliferation and migration, suggesting roles for ET 
B
  

receptors in neurogenesis. Much effort has been invested 

in the pursuit of novel drugs to induce protection or repair 

of damaged nerve tissues. From these studies, the phar-

macological significance of brain ET systems as a possible 

target of neuroprotective drugs is anticipated.  
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   Introduction 

 Since their discovery as a novel peptide family  (1) , the 

functions of endothelins (ETs) have been intensively inves-

tigated in the circulatory system, because of their potent 

vasoconstriction effects. However, soon after their dis-

covery, it was shown that ET ligands and ET receptors are 

present in various tissues, and multiple functions for ET 

systems were postulated  (2) . Accumulating evidence indi-

cates regulatory roles for ETs in functions other than vascu-

lar tone, such as hypertrophy, fibrosis, inflammation, and 

various other physiological and pathological functions. 

Several ET receptor agonists and antagonists have been 

developed (Table  1 ). At present, there are many selective 

ET agonists and antagonists, some of which are now used 

clinically  (3, 4) . Since the discovery of ETs, ET ligands and 

their receptors have been known to be highly expressed in 

the brain  (5, 6) . Therefore, specialized roles for ET systems 

in the nervous system have been postulated. In addition to 

roles in neurotransmission and embryonic development, 

investigations of brain ET systems have shown their sig-

nificance in brain disorders including Alzheimer ’ s disease 

(AD) and stroke  (7 – 9) . Development of effective treatments 

for brain dysfunctions in neurodegenerative diseases and 

stroke is still greatly needed. Many neuroscientists are 

engaged in searches for novel targets of neuroprotective 

drugs. In this article, recent studies examining the pos-

sible roles of brain ET systems in the pathophysiological 

responses of damaged brains are reviewed.  

  ET ligands 

 The ET peptide family consists of three isopeptides: ET-1, 

ET-2, and ET-3 (Figure  1 ). These endogenous ET ligands 

have a structural similarity; they comprise 21 amino 

acids with two disulfide bonds. In humans, ET-1, ET-2, 

and ET-3 are encoded as large precursor proteins, prepro-

ETs, by distinct genes. The biological actions of ETs are 
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mediated by two types of receptors: ET 
A
  and ET 

B
  receptors. 

Because ET-1 is the most abundant isopeptide in many 

tissues, many investigations of ET ligands have focused 

on ET-1. ET-1 activates both ET 
A
  and ET 

B
  receptors, and 

induces biological effects including vasoconstriction and 

proliferation  (2 – 4) . ET-2 differs from ET-1 by two amino 

acids, but has similar receptor selectivity to ET-1. ET-2 is 

highly expressed in intestine, ovary, and pituitary glands 

 (10 – 12) . Owing to similar receptor selectivity, the biologi-

cal actions of ET-2 were originally thought to overlap with 

ET-1. However, recent studies have shown that ET-2 has 

distinct actions from ET-1  (13, 14) . ET-3, which differs from 

ET-1 by six amino acids, is abundant in the intestine, lung, 

and brain  (2, 7) . ET-3 has high affinity for ET 
B
  receptors, 
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 Figure 1      Biosynthesis of human ETs from prepro-ETs. 

 ET-1 is translated as an inactive precursor protein called prepro-ET-1. Prepro-ET-1 is cleaved by dibasic pair-specific endopeptidases and 

converted to big-ET-1. Specific processing of big-ET-1 by endothelin-converting enzymes (ECEs) results in production of mature ET-1. There 

are three distinct ET family peptides, ET-1, ET-2, and ET-3, all of which consist of 16 amino acids and two intramolecular disulfide bonds and 

are produced by a similar process to ET-1.    

 Table 1      Agonists and antagonists for ET receptors.  

Agonists Antagonists

ET non-selective ET-1 SB209670, bosentan, 

TAK-044, tezosentan

ET 
A
  selective Sarafotoxin 6b BQ123, darusentan, 

ambrisentan, 

sitaxsentan, 

clazosentan, S-0139,

SB234551, Ro-61-

1790

ET 
B
  selective Sarafotoxin 

6c, IRL-1620,

BQ788, IRL-2500,

BQ3020, 

Ala 1,3,11,15 -ET-1

A-192621, RES-701-1
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but not ET 
A
  receptors, indicating that it is an endogenous 

ET 
B
  ligand. Gene knockout of either ET-3 or ET 

B
  receptors 

in mice results in a similar impairment in enteric neuron 

development  (15, 16) . These mouse phenotypes resem-

ble Hirschsprung ’ s disease, and in accordance with this, 

patients with Hirschsprung ’ s disease have a mutated ET 
B
  

receptor gene  (17 – 19) .  

 As occurs for many peptide hormones, the active 

forms of ETs are produced by cleavage of their precursor 

peptides (Figure  1 ). For human ET-1, the 212 amino acid 

inactive precursor protein (prepro-ET-1) is translated from 

its mRNA. Prepro-ET-1 is cleaved by a dibasic pair-specific 

endopeptidase at Lys 51 -Arg 52  and Arg 92 -Arg 93  to produce a 

38 amino acid precursor, big-ET-1. The active form of ET-1 

is produced from big ET-1 after processing at Trp 21 -Val 22  by 

specific proteases called endothelin converting enzymes 

(ECEs). Although the three ET isopeptides are encoded by 

distinct genes, production of ET-2 and ET-3 is mediated by 

a similar process to ET-1 (Figure  1 )  (20, 21) .  

  Regulation of ET production 

 In vascular endothelial cells, mature ET-1 is continu-

ously released through a constitutive pathway. The 

rate-limiting step of ET production is therefore thought 

to be at transcription of the prepro-ET-1 gene. Human 

prepro-ET-1 genes have five exons and a 5 ′ -flanking region, 

spanning approximately 6.8 kb of DNA (Figure  2 A)  (22) . 

Examination of regulation of ET-1 expression showed that 

transcription of prepro-ET-1 mRNA is regulated by various 

bioactive substances released by damaged tissues, includ-

ing cytokines and hormones. Transforming growth factor 

 β  (TGF β ), thrombin, bradykinin, and tumor necrosis factor 

 α  (TNF α ) stimulate transcription of the prepro-ET-1 gene 

in vascular endothelial cells  (23 – 27) . Some physiological 

and pathological conditions, such as hypoxia  (28)  and 

mechanical stress  (29) , also upregulate prepro-ET-1 mRNA 

levels. The ET-1 gene is under the transcriptional control of 

a TATA box at the position of 31 bases upstream from the 

transcription start site. Analysis of the 5 ′ -flanking region 

revealed that the ET-1 gene has consensus sequences 

for binding of various transcription factors, including 

activator protein-1 (AP-1), GATA-2, Smad, hypoxia induc-

ible factor-1 α  (HIF1 α ), and nuclear factor  κ B (NF κ B)  (30) . 

These transcription factors coordinately couple intracel-

lular signals triggered by extracellular stimuli to tran-

scription of the prepro-ET-1 gene.  

 Inoue et al. reported that prepro-ET-1 mRNA in vascu-

lar endothelial cells is rapidly degenerated with a half-life 

of approximately 15  min  (22) . Expression of prepro-ET-1 

mRNA is also regulated by alterations of mRNA stability. 

Human prepro-ET-1 mRNA has an AU-rich element (ARE) 

in the 3 ′ -untranslated region  (22) , which is required for 

ARE-binding proteins to degenerate transcripts. ARE-

binding proteins, such as AU-binding factor 1 (AUF1) and 

glyceraldehyde-3-phosphate dehydrogenase (G3PDH), 

induce a rapid degradation of prepro-ET-1 mRNA  (31, 32) . 

Regulation by AUF1 and G3PDH are suggested to be 

involved in ET-1 production induced by heat shock and 

oxidative stress, respectively  (31, 32) . Recent studies 

proposed that expression of prepro-ET-1 mRNA is also 

regulated by microRNAs (miRNAs). Analysis of the 

3 ′ -untranslated region of prepro-ET-1 mRNA revealed 

the presence of complementary binding sequences for 

miRNAs. Yeligar et  al. found that overexpression of 

miR199 and miR155 in endothelial cells reduced expres-

sion of prepro-ET-1 mRNA  (33) .  

  ET receptor subtypes 

 Receptors for ETs are classified into ET 
A
  and ET 

B
  types 

(Figure  3 ). These ET receptors differ in their selectivity 

for ET ligands. ET 
A
  receptors have ligand preferences 

of ET-1  =  ET-2  >    >  ET-3, whereas ET 
B
  receptors show equal 

selectivity for the three ET ligands. High expression of 

ET 
A
  receptors is observed in the vascular smooth muscle 

and cardiocytes  (4) . Activation of vascular ET 
A
  receptors 

is responsible for the potent vasoconstriction caused by 

ETs. ET 
B
  receptors are abundantly expressed in the vas-

cular endothelium, kidney, lung, and brain. Activation 

of ET 
B
  receptors in endothelial cells causes vasodilata-

tion by releasing nitric oxide (NO) and prostacyclins  (34) . 

ET 
A
  and ET 

B
  receptors are therefore suggested to have 

opposing roles in the regulation of vascular tone  (35) . 

Both ET receptor subtypes are G-protein-coupled recep-

tors. Through G-protein-mediated mechanisms, ETs 

induce activation of phospholipase C and increased 

cytosolic Ca 2 +    (36) , which are the main signaling path-

ways for the regulation of vascular tone. ETs also 

activate mitogenic and survival signals in various 

cell types. These signal molecules include mitogen- 

activated protein kinases (MAPKs), Akt, and Src  (36) . 

Daub et al. first reported that stimulation of ET recep-

tors activates epidermal growth factor (EGF) receptors 

by EGF-independent mechanisms  (37) . Such  ‘ trans-

activation ’  of growth factor receptors by ETs has been 

observed in glomerular mesangial cells  (38) , vascular 

smooth muscle cells  (39) , and ovarian cells  (40) . The 

transactivation is thought to be involved in the action 

of ETs as mitogenic and survival factors.    



338      Y. Koyama: Roles of brain endothelins

Enhancement of 
astrocytic functions  

(astrogliosis)

Astrocyte

Brain microvessels
(endothelial cells)

Thrombin

 Stroke
ET-1

A

B

NFκB
NFAT

Smad
GATA-2

HIF-1
AP-1

TATA
TATA

ARE

Exon1 

prepro-ET-1

mRNA

ET-1 gene

TNFα
IL-1β HypoxiaTGFβ

Thrombin
ETs

Oxidative 
stress

5' 3'
2 3 4 5

3'5'

miR155
miR199

ET-1

TNFα, TGFβ,
IL-1β

ETB-R

Inflammatory cells

 Figure 2      Signaling mechanisms stimulating ET-1 production. 

 (A) Transcriptional and post-transcriptional regulation of ET-1 gene expression. In the 5 ′ -promoter region of the human ET-1 gene, recogni-

tion sites for several transcriptional factors, including NF κ B, NFAT, GATA, HIF α , TATA, and AP-1, are present. Signaling molecules stimulating 

ET-1 production in vascular endothelial cells and astrocytes are indicated, along with transcription factors mediating their actions. In the 

3 ′ -untranslated region of prepro-ET-1 mRNA, an AU-rich element (ARE) and complementary sequences for microRNAs are present. Expres-

sion levels of prepro-ET-1 mRNA are also regulated by alteration of stability by ARE-binding proteins and microRNAs. (B) Expression of ET-1 

in stroke. In the early stage of stroke, inflammatory cells enter nerve tissues across the disrupted blood – brain barrier. TNF α , IL-1 β , and TGF β  

are produced by blood-derived inflammatory cells. Increases in these cytokines, together with thrombin, stimulate ET-1 production in brain 

endothelial cells and astrocytes. Hypoxia following stroke induces brain ET-1 production. Increases in ET-1 stimulate several functions of 

astrocytes through ET 
B
  receptors, including astrocytic ET production via an autocrine mechanism.    
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  The ET system in the central 
nervous system 

  ET production in the brain 

 Nerve tissues abundantly express ET-1 and ET-3  (6, 7) . 

In normal brain, immunohistochemical observations 

have shown the presence of ET-containing neurons in 

the spinal cord  (41) , perivascular neurons of the basilar 

artery  (42) , and in the hypothalamic-neurosecretory 

system  (43) . ET-1 induces excitation of neurons in the 

spinal cord and trigeminal system  (44, 45) . These find-

ings suggest roles for ETs in neurotransmission, which 

Dashwood and Loesch recently presented a detailed 

review  (46) . Increases in brain ETs are observed in nerve 

injury animal models  (47, 48) . In human brain, increased 

levels of ET-1 in cerebrospinal fluid (CSF) are reported in 

stroke, head trauma, and neurodegenerative diseases 

 (8, 49, 50) . Because of their increased production in brain 

disorders, pathophysiological roles of ETs have also 

been examined. Immunohistochemical observations of 

damaged brains have shown that ETs are produced by 

brain microvessel endothelial cells and astrocytes  (9) . 

Factors such as TNF α , interleukin-1 β  (IL-1 β ), and throm-

bin, as well as hypoxia, which results in brain damage, 

induce ET-1 production in brain microvessel endothelial 

cells  (51)  and astrocytes  (52 – 54) . ETs are also known to 

stimulate astrocytic ET-1 production  (55) . ET-induced ET 

production indicates that astrocytic ET production is 

potentiated by an autocrine mechanism, via astrocyte-

derived ET-1 (Figure  2 B).  

ETB receptor ETA receptor

ET-1 ET-3ET-2

Vascular smooth muscle 
Cardiocytes

Vascular endothelium
Kidney
Lung
Brain

 Figure 3      Ligand selectivity of ET receptor subtypes. 

 ET 
A
  receptor subtype, which is predominantly expressed in smooth 

muscle cells and cardiocytes, has ligand selectivity for ET-1 and 

ET-2. ET 
B
  receptors are expressed in the vascular endothelium, 

kidney, lung, and brain. Ligand selectivity of ET 
B
  receptor is different 

from that of ET 
A
  type; ET-1, ET-2, and ET-3 equally activate it.    

  ECEs in the brain 

 Big-ETs are cleaved by ECEs to become active ETs. There 

are two subtypes of ECEs: ECE-1 and ECE-2, which share 

59% amino acid homology  (56) . ECE-1 is widely expressed 

in various tissues including nerve tissues. In contrast to 

the ubiquitous expression of ECE-1, ECE-2 expression is 

restricted to nerve tissues. Rodriguez et  al. found high 

levels of expression of ECE-2 mRNA in the midbrain, pitui-

tary, hypothalamus, and cerebellum of mammalian brains 

 (57) . ECEs can also cleave other bioactive peptides, such 

as neuropeptides and amyloid  β  (A β ) proteins. Based on 

this substrate selectivity, roles for brain ECEs other than 

ET production have been proposed. Accumulation of A β  

proteins, components of the amyloid plaques observed 

in brains of AD patients, is considered to be a pathogen-

esis of AD. Deletion mutations of either ECE-1 or ECE-2 

increase A β  
1 – 40

  and A β  
1 – 42

  proteins in mouse brain  (58) . 

ECE-2 knockout mice show impaired learning and 

memory  (57) . In addition, upregulation of ECE-2 expres-

sion is reported in brains of AD patients  (59) . On the basis 

of these findings, brain ECEs are thought to regulate A β  

protein turnover and be involved in the pathogenesis of 

AD  (60) . Neuropeptides such as bradykinin, neurotensin, 

and substance P are also substrates of ECEs. Roosterman 

et  al. proposed a novel hypothesis that degradation of 

neuropeptides by ECEs in endosomes promotes recycling 

and resensitization of internalized neuropeptide receptors 

 (61) . These neuropeptides cleaved by ECEs cause neuro-

genic inflammation. In fact, inhibition of ECEs is shown 

to decrease substance P-induced plasma extravasation 

in rats, suggesting that ECE inhibitors impair neurogenic 

inflammation by reducing resensitization of neuropeptide 

receptors  (62) .  

  ET receptors in the brain 

 Both ET 
A
  and ET 

B
  receptors are present in the brain, 

although with different cellular distributions. Brain ET 
A
  

receptors are expressed in the vascular smooth muscle 

and mediate the potent vasoconstriction effects of ETs. 

Local application of ET-1 to the cerebral artery induced pro-

longed vasoconstriction and reduction of cerebral blood 

flow in rat and pig, through ET 
A
  receptors  (63, 64) . Owing 

to the likelihood of hypoxia, reduction of cerebral blood 

flow often leads to brain dysfunction. Taking advantage 

of its vasoconstriction effect, application of ET-1 to animal 

brains is used as a model for ischemic brain injury  (63) . 

In several brain disorders, production of ETs is increased 

 (7, 8) . ET 
A
  receptor-mediated reduction of cerebral blood 
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flow is believed to play a role in the aggravation of brain 

dysfunction caused by ischemia in many brain disorders 

(see below). In some populations of neurons, ET 
A
  recep-

tors have been shown to modulate neural transmission. 

For example, in isolated primary sensory neurons, ET-1 

causes excitation and increases in cytosolic Ca 2 +   through 

ET 
A
  receptors  (65) . Consistent with ET-induced excitation 

of sensory neurons, administration of ET-1 caused pain-

like behavior in rats, and the effect was antagonized by 

BQ123, an ET 
A
  antagonist  (66) . This action of ET-1 suggests 

a novel role of ETs, potentiating transduction of pain 

signals in somatosensory systems  (67, 68) . 

 ET 
B
  receptors are the prominent type in the brain. 

High expression of brain ET 
B
  receptors is observed in 

astrocytes  (69 – 71) . In addition, expression of astrocytic 

ET 
B
  receptors is upregulated after brain injury  (70) , which 

indicates that the roles of ETs in astrocytes are more sig-

nificant in brain pathologies. ETs are known to be a potent 

mitogen of astrocytes; in cultured astrocytes, ETs induce 

cell cycle progression through ET 
B
  receptors  (72, 73) . 

Activation of ET 
B
  receptors also causes morphological 

alterations, accompanied by cytoskeletal reorganiza-

tion  (74, 75)  and reduction of gap junctional communi-

cation  (76, 77) . Astrocytes produce and release various 

bioactive substances, for example, neurotrophic factors, 

cytokines, chemokines, NO, and vascular permeability 

factors, through which they interact with neurons and 

brain microvessels  (78) . Production of astrocyte-derived 

molecules is stimulated by activation of astrocytic ET 
B
  

receptors  (79) . ET 
B
  receptors are also expressed in other 

brain cells. Recent studies have proposed roles for ETs 

in the development of oligodendrocytes and neurons 

 (80, 81) . Nishikawa et al. reported high expression of ET 
B
  

in embryonic cortical neuronal progenitors  (82) .   

  Roles of ETs in brain pathology 
 Because expression of brain ET ligands and receptors 

increases in brain pathologies, many investigations of ETs 

have focused on brain disorders. There is accumulating 

experimental evidence that modulation of ET systems has 

beneficial effects on brain dysfunction in stroke and neu-

rodegenerative diseases. 

  Vasospasm and brain edema 

 The concentration of ET-1 in CSF is increased after stroke 

 (50, 83) . Franceschini et al. reported a correlation between 

Productions of 
vascular permeability factors

Disruption of BBB 

Formation of brain edema

Stroke,  Head trauma

Increases in Brain ET production

Brain vessels

Astrocytes

Aggravation of brain damage

Vasospasm of 
cerebral artery

Brain ischemia

ETB receptorsETA receptors

 Figure 4      Involvement of ET receptors in vasospasm and brain 

edema formation after stroke. 

 In the early stage of stroke, increased ETs activate ET 
A
  receptors 

in the brain vascular smooth muscle and induce vasospasm. 

Prolonged vasospasm leads to brain ischemia. ETs also stimulate 

ET 
B
  receptors in astrocytes. Activation of ET 

B
  receptors increases 

production of vascular permeability factors (VEGF and MMPs) in 

astrocytes. ET-induced production of astrocytic vascular perme-

ability factors induces disruption of the BBB, which results in brain 

edema formation. Thus, in the early stage of stroke, ETs are thought 

to aggravate brain damage by inducing vasospasm and brain 

edema.    

ET-1 concentration in CSF and brain infarct volume after 

subarachnoid hemorrhage (SAH)  (84) . Vasospasm of the 

cerebral artery often occurs after stroke. Because pro-

longed cerebral vasospasm aggravates ischemic brain 

damage, inhibition of vasospasm is a possible therapeutic 

strategy for neuroprotective drugs. In animal models of 

brain ischemia, ET 
A
  receptor antagonists prevent reduc-

tion of cerebral blood flow and improve ischemic brain 

damage  (85 – 88) . These findings indicate that activation of 

brain ET 
A
  receptors induces cerebral vasospasm in brain 

insults (Figure  4 ). After SAH and head trauma, vasogenic 

brain edema also occurs. Vasogenic brain edema is caused 

by influx of blood proteins across the disrupted blood -

 brain barrier (BBB). Accumulation of brain edematous 

fluid elevates intracranial pressure, which disrupts neu-

ronal function and can result in death. In normal condi-

tions, the BBB is maintained by low permeability of brain 

microvessel endothelial cells. The permeability of brain 

microvessels is not static, but is dynamically modulated 

by various permeability factors. In brain pathologies, 
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such as SAH and head trauma, the actions of permeabil-

ity factors are increased. By excess actions of permeabil-

ity factors, the barrier functions of brain microvessels are 

disrupted, which results in vasogenic brain edema  (89) . 

Vascular endothelial growth factor (VEGF) and matrix 

metalloproteinases (MMPs) are the main factors which 

increase permeability of vascular endothelial cells. In 

brain pathologies, astrocytic production of MMPs and 

VEGF is increased  (90) . ETs stimulate production of MMPs 

and VEGF in cultured astrocytes and rat brain through ET 
B
  

receptors  (91 – 94) . On the basis of these findings, ETs are 

proposed to be important factors in the development of 

vasogenic edema after stroke (Figure  4 ). Consistent with 

this idea, brain edema formation in rat models of brain 

ischemia and head trauma is reduced by ET antagonists 

 (85, 95) .  

 As described above, studies using animal models 

suggest that administration of ET antagonists has ben-

eficial effects on neuronal damage in the acute phase of 

stroke. On the basis of these results in animal models, 

clinical trials of ET antagonists in SAH patients have been 

conducted. Clazosentan, an ET 
A
  selective antagonist, was 

reported to reduce vasospasm and delayed ischemic neu-

rological defects in SAH patients  (96, 97) . TAK-044, a non-

selective ET antagonist, lowered the incidence of delayed 

neurological defects in SAH patients 3  months after the 

onset of symptoms  (98) .  

  Induction of reactive gliosis 

 In brain ischemia, head trauma, and neurodegenerative 

diseases, phenotypic conversion of astrocytes to the reac-

tive type occurs, which is known as reactive gliosis  (90) . 

Reactive astrocytes are characterized by hypertrophy of 

the cell body and glial processes due to reorganization 

of cytoskeletal proteins. Conversion to reactive astrocytes 

is accompanied by functional alterations of astrocytes. 

Reactive astrocytes produce various bioactive substances, 

including neurotrophic factors, cytokines, chemokines, 

and proteases  (78) . Because these astrocyte-derived sub-

stances regulate neuronal viability, neuroinflammation, 

and repair of nerve tissues, preventing the induction of 

reactive astrocytes is a potential therapeutic target for many 

brain disorders. In addition to the enhanced production of 

bioactive substances, reactive astrocytes show a prolifera-

tive phenotype. Hyperplasia of reactive astrocytes leads to 

glial scar formation in damaged nerve tissues. Glial scars 

inhibit the repair of the damaged nervous system, by pre-

venting axonal elongation and acting as a physical barrier 

to synaptogenesis. Administration of Ala 1,3,11,15 -ET-1, an ET 
B
  

selective agonist, increased the number of reactive astro-

cytes in rat brain  (99, 100) . Induction of reactive astrocytes 

in stab wound brain injury was reduced by BQ788, an ET 
B
  

antagonist  (101) . These findings indicate that, in brain dis-

orders, activation of astrocytic ET 
B
  receptors is involved in 

phenotypic conversion to reactive astrocytes. Activation 

of ET 
B
  receptors reproduces functional alterations of reac-

tive astrocytes  in vitro . Proliferation of cultured astrocytes 

was stimulated by activation of ET 
B
  receptors  (72, 73) . 

In cultured astrocytes, ETs also induced reorganization 

of cytoskeletal proteins and altered morphology  (74, 75) , 

actions considered to be related to hyperplasia and hyper-

trophy of reactive astrocytes, respectively  (79) . 

 Expression of cyclin D proteins is increased in the late 

G1 phase and promotes G1/S phase cell cycle progression. 

Expression of astrocytic cyclin D1 and D3 was stimulated 

by activation of ET 
B
  receptors  (77, 102) . Examination of ET 

B
  

receptor signals showed that different mechanisms play 

a role between astrocytic cyclin D1 and D3 expression. 

ET-induced astrocytic cyclin D1 expression was inhibited 

by disruption of cytoskeletal actin, suggesting an involve-

ment of cell adhesion-independent mechanisms  (102) . 

In cell adhesion-independent mechanisms, extracellular 

signal-regulated kinases and protein kinase C mediated 

astrocytic cyclin D1 expression by ETs  (102) . By contrast, 

ET-induced expression of astrocytic cyclin D3 required 

integrity of cytoskeletal actin  (77) . ETs activated focal 

adhesion kinase (FAK), a key tyrosine kinase in cell adhe-

sion-dependent proliferation, in cultured astrocytes  (103) . 

Expression of dominant-negative FAK mutants in cultured 

astrocytes prevented ET-induced G1/S cell cycle progres-

sion and cyclin D3 expression  (102, 104) . These findings 

indicate that ETs stimulate cyclin D3 expression and pro-

liferation of cultured astrocytes through FAK-mediated 

adhesion-dependent mechanisms. Thus, ETs can activate 

both cell adhesion-dependent and -independent mecha-

nisms in astrocytes. This cooperative action of two distinct 

signal pathways may underlie the potent mitogenic effects 

that ETs have on astrocytic proliferation.  

  Neuronal survival and neurogenesis 

 In addition to during development, the viability of neu-

ronal cells in the adult brain is maintained by various 

trophic factors. A decline of these trophic signals 

increases the vulnerability of neuronal cells to other det-

rimental factors and cause neuronal death by apoptosis. 

Apoptotic neuronal death underlies the deficits in brain 

function in stroke and neurodegenerative diseases. In 

ET 
B
 -deficient rats, increases in apoptotic neurons were 
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observed in the cerebellum  (81)  and dentate gyrus  (105) . 

Activation of ET 
B
  receptors showed antiapoptotic actions 

in cultured neurons of the olfactory bulb and cerebrum 

 (106 – 108) . As for mechanisms underlying the antiapop-

totic actions of ET 
B
  receptor-triggered signals, inhibition 

of caspase-3 and voltage-dependent L-type Ca 2 +   chan-

nels was suggested  (106 – 108) . A histological observation 

on the dentate gyrus of rabbit and human meningitis by 

Ehrenreich et al. showed that increases in apoptotic death 

of dentate neurons were associated with reduction of 

neuronal ET 
B
  receptors  (105) . These findings indicate that 

activation of ET 
B
  receptors directly triggers trophic signals 

in some populations of neurons. In the hippocampus and 

subventricular zone of the lateral ventricle, new neurons 

are continuously generated from neural precursor cells. 

Recently, evidence has emerged that neurogenesis in the 

adult brain plays an important role in the repair of nerve 

tissues in brain disorders  (109) . Progenitors of cortical 

neurons show high levels of ET 
B
  receptors. Activation of 

ET 
B
  receptors in neural progenitors stimulated their pro-

liferation and migration, indicating that ETs promote neu-

rogenesis by directly acting on neural progenitors  (82) . 

These actions of ETs on neurons and neural progenitors 

suggest that activation of ET 
B
  receptors promotes repair of 

nerve tissues in the chronic phase of stroke and neurode-

generative diseases (Figure  5 ). 

 Viability of neurons and repair processes of damaged 

nerve tissues are supported by neurotrophins and glial 

cell-derived neurotrophic factor (GDNF). Neurotrophin 

family proteins, including nerve growth factor (NGF) and 

brain-derived neurotrophic factor (BDNF), which are pro-

duced by subpopulations of neurons in normal conditions, 

support the viability of cholinergic neurons in the basal 

forebrain, motor neurons, and hippocampal neurons 

 (110) . Recent studies showed that BDNF stimulates neuro-

genesis of the adult brain  (111) . GDNF supports survival of 

mid-brain dopaminergic neurons and has been suggested 

to have beneficial actions on patients with Parkinson ’ s 

disease  (110) . In neurodegenerative diseases and stroke, 

production of these neurotrophic factors is increased, 

where astrocytes are the main source of neurotrophic 

factors  (78) . Because of their potent ability to support 

neuronal viability, potentiation of neurotrophic factor 

production has been a promising therapeutic strategy 

ET-1

Regeneration of 
nerve tissues

Neuroprotection

Recovery of brain functions impaired 
by neurodegenerative diseases, stroke, 

and head trauma

Damaged neurons

Neurogenesis

Astrocyte

Production of 
neurotrophic factors

Neural progenitor

Proliferation 
and

Migration

Survival
and

Axonal elongation

 Figure 5      Possible roles of ET 
B
  receptors in survival and regeneration of damaged nerve tissues. 

 In some neuronal cells, direct activation of ET 
B
  receptors has been shown to induce antiapoptotic actions. Neuronal survival and regenera-

tion is promoted by neurotrophic factors. Production of neurotrophic factors is stimulated by activation of astrocytic ET 
B
  receptors. Neural 

progenitors express ET 
B
  receptors. Proliferation and migration of neural progenitors are stimulated by ETs. These actions raise the possibility 

that activation of ET 
B
  receptors promotes repair of damaged nerve tissues in neurodegenerative diseases and in the chronic phase of 

stroke.    
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for neuronal dysfunction in neurodegenerative diseases 

and stroke. Administration of Ala 1,3,11,15 -ET-1 into rat brain 

increased production of NGF, BDNF, neurotrophin-3, basic 

fibroblast growth factor, and GDNF in reactive astro-

cytes  (100, 112) . The effects of ETs on neurotrophic factor 

production were also observed in cultured astrocytes 

 (100, 112 – 115) . As well as having direct actions on neurons 

 (106 – 108) , ET-induced neurotrophic factor production 

suggests a possible role of astrocytic ET 
B
  receptors in sup-

porting the viability and repair of damaged nerve tissues 

(Figure  5 ). A recent report by Leonard et al. showed that 

IRL1620, an ET 
B
  agonist, reduced neuronal damage and 

neurological defects in a rat brain ischemia model  (116) .    

  Outlook 
 For several decades, neuroscientists and pharmacolo-

gists have invested much effort into the invention of novel 

drugs to provide protection or repair to nerve tissues 

impaired by brain disorders. However, at present, it is not 

possible to say that effective drug treatments for many 

neurodegenerative diseases and brain insults have been 

established. Recent studies of brain ETs have clarified the 

involvement of ET systems in various pathophysiological 

responses of damaged brains. As a target of neuroprotec-

tive drugs, brain ET receptors could have two possible 

clinical applications in different states of brain patholo-

gies. One possible application is to block brain ET 
A
  and 

ET 
B
  receptors in the acute phase of stroke. Blockage of 

brain ET 
A
  receptors ameliorates vasospasm of cerebral 

arteries and ischemic brain damage after stroke. In addi-

tion to ET 
A
  receptors, blockage of ET 

B
  receptors in astro-

cytes impairs brain edema formation by reduced pro-

duction of VEGF and MMPs. The beneficial effects of ET 

antagonists have been shown in clinical trials for SAH 

patients. The other possible application of ET systems is to 

activate ET 
B
  receptors in the chronic phase of brain insults 

and in neurodegenerative diseases. In these states, pro-

motion of nerve repair processes, that is, axonal elonga-

tion, synaptogenesis, and neurogenesis, is therapeutic, to 

allow recovery of brain functions. Beneficial actions of ET 
B
  

agonists in chronic brain disorders can be supported by 

the findings that activation of brain ET 
B
  receptors caused 

production of neurotrophic factors, antiapoptotic effects 

in neuronal cells, and proliferation of neuronal progeni-

tors. Already, many agonists and antagonists for ET recep-

tors have been developed. Thus, it is expected that a novel 

drug for treatment of brain disorders may be discovered 

among these ET receptor agonists and antagonists.  

  Highlights 
 –     ET systems are involved in pathophysiological 

responses of damaged brain.  

 –   Brain microvessels and astrocytes produce ETs in 

response to brain injury.  

 –   ECEs cleave A β  proteins and neuropeptides.  

 –   Activation of ET 
A
  receptors induces vasospasm of 

cerebral arteries after stroke.  

 –   ET antagonists have beneficial actions on neurological 

defects in SAH patients.  

 –   Activation of ET 
B
  receptors in astrocytes promotes 

conversion to reactive astrocytes.  

 –   Activation of ET 
B
  receptors stimulates production of 

astrocytic neurotrophic factors.  

 –   ETs stimulate proliferation and migration of neural 

progenitors.  

 –   Brain ET systems are expected to be a novel target of 

neuroprotective drugs.      
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