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  MicroRNA biogenesis and variability    
  Abstract:   MicroRNAs (miRNAs) are cell-endogenous small 

noncoding RNAs that, through RNA interference, are 

involved in the posttranscriptional regulation of mRNAs. 

The biogenesis and function of miRNAs entail multiple 

elements with different alternative pathways. These con-

fer a high versatility of regulation and a high variability 

to generate different miRNAs and hence possess a broad 

potential to regulate gene expression. Here we review the 

different mechanisms, both canonical and noncanoni-

cal, that generate miRNAs in animals. The  ‘ miRNome ’  

panorama enhances our knowledge regarding the fine 

regulation of gene expression and provides new insights 

concerning normal, as opposed to pathological, cell dif-

ferentiation and development.  
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   Introduction 
 MicroRNAs (miRNAs) are small noncoding RNAs [ ≈ 21 – 23 

nucleotides (nt)] that act through RNA interference as 

posttranscriptional regulators of gene expression and 

play important roles in many developmental and cellular 

processes of eukaryotic organisms. Although the miRNA 

biogenesis pathways are similar in different phyla, there 

exist some differences between plants and animals that 

require a different study with respect to either biogenesis 

pathway  (1) . We will focus in this review on the biogenesis 

of the miRNAs associated with the animal kingdom. 

 MicroRNAs negatively regulate gene expression  via  

base pairing with complementary mRNA sequences 

through RNA interference. The interaction between 

miRNAs and their mRNA targets blocks the regular transla-

tion or induces the degradation of targeted mRNAs. Micro-

RNAs might regulate about 60% of mammalian coding 

genes and show specific profiles of expression at the level 

of cell types and developmental stages. Genes coding for 

miRNAs are scattered throughout mammalian genomes 

in intragenic and intergenic positions. At present, 1600 

miRNA precursor molecules, which generate 2042 mature 

forms, have been identified in the human genome [accord-

ing to miRNA databases (miRBase) release 19]  (2, 3) . Mouse 

and rat genomes encode 1281 and 723 mature miRNAs, 

respectively  (2, 3) . However, it is possible that the exist-

ing difference with respect to the size of the human and 

rodent  ‘ miRNomes ’  results from a more exhaustive quest 

for human miRNAs. In fact, miRNAs are well conserved in 

eukaryotic organisms  (4)  and are thought to be the result 

of a vital and evolutionarily ancient component of genetic 

regulation. 

 The binding of mature miRNAs to their target mRNAs 

occurs through a specific miRNA region of about 6 – 8 nt in 

length. This region is termed the  ‘ seed region ’  and allows 

for each of these small RNAs to regulate the expression 

of hundreds of genes, generally by binding to the mRNA 

3 ′  untranslated region (UTR). MicroRNAs that share a 

similar  ‘ seed region ’  belong to the same miRNA family. 

In general, members of a miRNA family regulate related 

genes or are involved in the regulation of similar biologi-

cal events. Several families of miRNAs in mammals have 

been described, some of which are related to mechanisms 

of differentiation and self-renewal and thus have been 

suggested as possible biomarkers for these types of pro-

cesses. For example, the  let-7  or  miR-30  families promote 

differentiated cell fates, whereas  miR-290  family members 

are associated with self-renewal events. 

 Although miRNAs are the best characterized small 

noncoding RNAs, some aspects of their biogenesis still 

remain to be uncovered. Recent studies  (5 – 11)  have revealed 

alternative mechanisms of biogenesis and recycling of 

miRNAs. This review will mainly focus on the mecha-

nisms of miRNA biogenesis generated by both canonical 

and noncanonical pathways. Furthermore, we will review 

the miRNA recycling mechanisms and posttranscriptional 
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modifications due to the alternative processing of precur-

sors and editing processes. Recycling mechanisms allow 

the production of new mature miRNA molecules without a 

need to generate new miRNA precursors.  

  The canonical miRNA biogenesis 
pathway 
 Typically, miRNA biogenesis is directed through a spe-

cific promoter or as part of a host gene in which miRNA 

is usually enclosed within intronic regions. Some miRNAs 

are closely located in a genome and are transcribed as 

part of a common transcript (cluster of miRNAs) similar to 

polycistronic units  (12, 13) . RNA polymerase II transcribes 

miRNA genes as large polyadenylated RNA molecules 

named primary miRNAs (pri-miRNAs)  (14 – 16)  ( Figure  1  ). 

These pri-miRNAs contain complementary sequence 

regions capable of materializing stem loops that include 

bulges and mismatches. Pri-miRNAs are processed in the 

nucleus by a protein complex containing the RNase III 

enzyme double-stranded RNA-specific endoribonuclease 

nuclear type III (DROSHA, also known as RNASEN) and 

microprocessor complex subunit DiGeorge syndrome criti-

cal region 8 (DGCR8)  (17, 18) . As a result of this processing, 

pri-miRNAs are cleaved into smaller double-stranded RNA 

(dsRNA) molecules known as pre-microRNAs. In mammals 

and other vertebrates, together with flies, pre-miRNAs are 

exported to the cytoplasm by exportin 5 (XPO5)  (19 – 21) . In 

the cytoplasm, pre-microRNAs are cleaved and despoiled 

of their loops by the RNase III enzyme cytoplasmic endori-

bonuclease with dsRNA  ‘ dicing ’  activity (DICER), which, 

through interaction with the protein TRBP, produces 

dsRNAs characterized by overhangs of 2 – 3 nt at both 

ends  (22, 23) . These processed products are known as 

miRNA duplexes, as functional mature miRNAs are single 

stranded. The last processing step requires the active par-

ticipation of a ribonucleoprotein complex known as RNA-

induced silencing complex (RISC), which can unwind both 

strands. Although either strand of the miRNA duplex could 

potentially act as a mature miRNA, usually only one of the 

strands is incorporated into the RISC complex to induce 

mRNA silencing  (24, 25) . The strand selection process 

is still a subject of study full of recurrent controversies 

 (24 – 29) . The specificity of either strand has been associ-

ated with different cell types and developmental stages 

 (30) . Once loaded, RISC mediates in the recognition of the 

mRNA to be targeted. 

 The key components of the RISC complex are the 

Argonaute (AGO) family proteins  (31 – 34) . AGO proteins 

bind to the different types of small noncoding interfer-

ence RNAs such as miRNAs, endogenous small inter-

fering RNAs (endo-siRNAs), and piwi-interacting RNAs 

(piRNAs). In mammals, seven AGO family proteins have 

been described. These proteins have been classified in 

two subfamilies known as the AGO subfamily and the 

PIWI subfamily  (31 – 34) . The proteins encompassed in 

the AGO subfamily (AGO1 – 4) are involved in the miRNA 

and the endo-siRNA pathways; nonetheless, only AGO2 

displays endonuclease activity  (35 – 37) . On the contrary, 

PIWI proteins are only involved in the piRNA pathway.  

  The noncanonical biogenesis of 
miRNAs 
 In the past few years, alternative sources of miRNAs have 

emerged. The biogenesis of such miRNAs entails some 

elements belonging to the canonical pathway, but the 

genomic origin differs from that of the classical miRNAs 

( Figure 1 ). Although most miRNAs are located in intergenic 

regions, some are derived from intragenic segments. A 

particular miRNA type derived from intratranscribed loci 

is that known as mirtron, together with its variant called 

a sintrom. Mirtrons, localized in the intronic regions of 

mRNAs, can generate double-stranded loop structures as 

do the regular miRNAs but are processed to pre-miRNAs 

by the spliceosome machinery ( Figure 1 ). Their biogenesis 

pathway is DROSHA/DGCR8 independent as was demon-

strated in  Drosha  mutants  (38)  and  DGCR8  knockout cells 

 (39, 40) . The existence of mirtrons, initially discovered in 

 Caenorhabditis elegans  and  Drosophila melanogaster   (41, 

42) , has been demonstrated in different organisms, from 

plants to mammals  (43 – 45) . Following the resolution of 

the intron lariat, the RNA product of splicing adopts a 

pre-miRNA-like form, which can be further processed as a 

canonical pre-miRNA bound to XPO5 then be transferred 

to the cytoplasm to continue with the canonical pathways 

( Figure 1 ). The usual concept regarding a mirtron entails 

that the pre-miRNA-like mirtron is generated by the direct 

cleavage and excision within the splice donor and accep-

tor sites of the mRNA. That is, the splisosome machinery 

generates both prime ends of the pre-mirtron. However, 

not in all pre-mirtrons do the ends of the double-stranded 

regions coincide with the ends of the intron. Some pre-

mirtrons retain a single-stranded tail at the 3 ′  or 5 ′  end 

 (39, 41, 46)  that has to be processed before proceeding 

to the cytoplasmic export and cleavage by DICER. Such 

trimming is carried out by the action of the RNA exosome 

components, such as the Rrp6 nuclear exonuclease at the 



J. Garc í a-L ó pez et al.: MicroRNA biogenesis      369

 Figure 1      MicroRNA biogenesis, degradation, storage, and recycling. 

 The figure illustrates the different pathways to generate functional miRNAs.    

3 ′  tail, which stops its action at the secondary structure 

of the double-stranded stem of the pre-mirtron  (46) . In 

vertebrates, 5 ′ -end-tailed mirtrons have been identified 

 (39, 47, 48) , whereas 3 ′ -tailed pre-mirtrons have only been 

detected in  Drosophila . Specific exonuclease trimming 

of the 5 ′ -end-tailed pre-mirtrons has not been identified 

yet. Identification by deep sequencing of mirtrons in 

mammals  (44)  and the differences detected from those 

found in insects suggest a relatively late evolutionary 

diversification of mirtrons. 
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 Recently discovered mirtron variants are the splicing-

independent mirtron-like miRNAs, termed simtrons  (49) . 

The main characteristics of this new variant of noncanoni-

cal miRNA biogenesis are the spliceosome-independent 

but DROSHA-dependent processing of the pre-simtrons 

together with an XPO5 lack of dependence for transport to 

the cytoplasm. Replacement of DICER processing by AGO2 

slicing of miRNAs was reported as a noncanonical alter-

native to the miRNA biogenesis of particular miRNA  (36, 

50 – 52) . However, simtron processing is independent of 

DICER or AGO2. This novel type of mirtron-like microRNA 

enhances the mechanisms that control the regulation of 

miRNA biogenesis, and as a consequence, the functional 

role of specific miRNA originated from such alternative 

mechanisms. 

 Other sources of miRNAs bypassing canonical bio-

genesis have also been described. Some small nucleolar 

RNAs can render miRNAs  (53, 54) , which are similar to 

mirtrons substrates for processing in a DICER-dependent 

and DROSHA/DGCR-independent pathway  (55) . Transfer 

RNAs can also generate miRNAs that have to be sliced 

by DICER  (56) . We have also recently identified some 

piRNAs in oocyte and sperm mouse cells with poten-

tial mRNA targets, in other words, with functional roles 

similar to miRNAs (Garc í a-L ó pez J, Hourcade J, Alonso L, 

 C á rdenas  DB, del Mazo J, Characterization and paren-

tal contribution of piRNAs and endo-siRNAs to mouse 

zygotes, unpublished data).  

  Regulatory mechanisms involved in 
the miRNA biogenesis pathway 
 The main regulatory mechanisms that operate in the 

canonical miRNA biogenesis pathway act on three levels: 

first, during the transcription of pri-microRNAs; second, 

by means of the editing mechanisms that can disrupt the 

processing of precursors; finally, through the regulation of 

the processing machineries such as the DROSHA/DGCR8 

complex or DICER. 

 With regard to the pri-microRNA regulation of tran-

scription, in a manner similar to that of coding genes, it 

is mediated by transcription factors that are specific to 

cell types, respond to environmental stimuli, or are nec-

essary to trigger developmental pathways. For example, 

transcription factors OCT4 and SOX2, which are involved 

in stem cell maintenance, in turn regulate the transcrip-

tion of the  mmu-miR-302  miRNA cluster  (57 – 59) . Both 

OCT4 and SOX2 proteins bind to the conserved promoter 

region of  miR-302  in a manner that  miR-302  and their 

cluster partners are expressed in the same cells or tissues 

and at the same time as  Oct4  and  Sox2   (60 – 62) . Another 

example is the regulation of  pri-miRNA-34  transcription 

by the P53 protein  (63, 64) . In response to DNA damage, 

P53 is activated and acts on the promoter of  miR-34 , thus 

activating expression. It is thought that  miR-34  induces 

the stop signals of the cell cycle pathway. Additionally, 

similar to protein-coding genes, the methylation of pro-

moter regions can affect miRNA expression. For example, 

miRNAs involved in tumor suppression such as  miR-148 , 

 miR-34b/c , or  miR-9  undergo aberrant hypermethylation 

patterns that have been associated with cancer  (65 – 67) . 

The fact that the methylation of regulatory genome regions 

can also operate on the regulation of miRNA expression 

implies that the epigenetic modifications of the genome at 

miRNA loci can induce additional checkpoints with refer-

ence to epigenome regulatory mechanisms. 

 Precursor miRNAs (pre-RNAs) can suffer sequence 

modifications by  ‘ editing ’  before they are processed. The 

elicitors of the editing mechanisms are the protein family of 

the adenosine deaminases acting on RNA (ADAR)  (68 – 71) . 

The members of this family act on dsRNAs, includ-

ing miRNAs, by modifying their nucleotide sequences. 

The editing process involves the specific deamination 

of one or more adenosine nucleotides by transforming 

adenosine into inosine ( Figures 1  and  2  )  (68 – 71) . Inosine 

is recognized by the translation machinery and in the 

RNA-RNA binding as nucleotide guanosine. However, it 

has been reported that editing can disrupt the recogni-

tion of pri- and pre-miRNA through the DROSHA/DGCR8 

and DICER processing machineries  (72, 73) . Alterna-

tively, when editing affects the seed sequence of mature 

miRNA, it can cause a phenomenon known as retarget-

ing  (74, 75) . The editing mechanism will be discussed in 

detail later. 

 Finally, the activity of DROSHA/DGCR8 and DICER 

can be regulated during the biogenesis of some miRNAs. 

For example, the ribonucleoprotein hnRNPA1 binds to the 

loop region of  pri-microRNA-18a  to facilitate its process-

ing by DROSHA/DGCR8 well ahead of their miRNA cluster 

partners ( miR-17-92  cluster)  (76, 77) . Meanwhile, the acti-

vation of the ERK protein mediates the phosphorylation 

of TRBP by stabilizing the binding of pre-microRNAs with 

DICER  (78) . As a result of this phosphorylation, the pre-

cursor molecule processing efficiencies are increased. 

Another example is the regulation of the  let-7  biogenesis. 

The protein LIN28 represses both the processing of pri-

microRNA to pre-microRNA of the  let-7  microRNA as well 

as the  pre-microRNA-let-7  processing by DICER  (79 – 81) . 

Through a feedback mechanism,  let-7  also regulates the 

translation of  Lin28  mRNA  (82) .  
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  Bioavailability and miRNA recycling 
 The global bioavailability of miRNAs is presumably 

related to the availability of the different elements of 

the miRNA biogenesis machinery. Changes in the levels 

of expression of the genes encoding for the biogenesis 

and function of miRNAs can be modulated during devel-

opment or cell type differentiation  (83) . Key element 

depletion in the biogenesis pathway could condition 

the stop in production of new mature miRNAs. Such 

switch-off mechanisms can comprise functional roles 

during cell differentiation and development, which 

drive the reprogramming of the miRNA-mediated gene 

expression. For example, the suppression of the mater-

nal program to initiate the zygotic activation program 

is one of the biological processes that occur during the 

early stages of embryo development after fertilization. 

The suppression of the miRNA activity during these 

stages in mammals was suggested by studies in  Dgcr8  -/-  

mutant mice. Following this line, we have also reported 

on the global decay of expression of genes involved in 

the canonical biogenesis pathway from fertilization to 

blastocyst mouse embryos  (5) . However, a global lack 

of new miRNA biogenesis does not necessarily imply an 

absence of specific miRNA availability. We have previ-

ously demonstrated that in early embryo stages in which 

 Figure 2      Schematic representation of the different types of possible modifications to generate variations with respect to a hypothetical 

canonical sequence (22 nt).    



372      J. Garc í a-L ó pez et al.: MicroRNA biogenesis

the expression of genes encoding proteins involved in 

the biogenesis of miRNAs was dramatically downregu-

lated, specific miRNAs such as  mmu-miR-292-3p  and 

 mmu-miR-292-5p  could be preserved as double-stranded 

molecules through the  ‘ protection ’  from the binding to 

mRNA targets, pseudogenes, duplex passenger strands, 

or other types of RNA-specific reservoirs  (5)  ( Figure 1 ). A 

similar miRNA protection by their heteroduplex cognate 

mRNA targets has also been reported in  C. elegans   (84) . 

Recent articles corroborate on the existence of such 

mature miRNA reservoirs in cells  (7, 8, 85) . These reser-

voirs have the capacity to capture mature miRNA mole-

cules to inhibit the miRNA silencing activities ( Figure 1 ). 

Some of these reservoirs are in fact RNA molecules that 

have a circular shape and can act as miRNA  ‘ sponges ’  in 

which the miRNAs could be stored until their hypotheti-

cal recycling  (6) . This new type of RNA molecule has 

been termed circular RNAs (circRNAs)  (7, 8) . 

 The functional bioavailability of specific miRNAs can 

also be modulated by the regulation of endogenous ele-

ments able to  ‘ sequester ’  miRNA molecules. This hypoth-

esis has been demonstrated by the regulated expression 

of pseudogenes that share the 3 ′  UTR of their correspond-

ing coding genes, allowing the binding of miRNAs that 

are naturally involved in the posttranscriptional negative 

regulation of the coding genes. This fact has been reported 

in the upregulation of  PTEN  caused by the over expression 

of  PTENP1 , a known  PTEN  pseudogene, resulting in the 

suppression of cell growth. In turn,  PTEN  mRNA can act 

as a decoy for miRNAs that would downregulate  PTENP1  

transcripts  (86) . 

 An as yet poorly characterized aspect of miRNA activity 

is the fate of these small RNA molecules after eliciting the 

mRNA silencing. Furthermore, how the miRNA-induced 

suppression finalizes still remains an enigma. MicroRNAs 

have an unexpectedly long half-life and can reach high 

cell concentrations  (9) , even when key miRNA biogenesis 

elements such as DROSHA/DGCR8 or DICER are absent 

 (87)  or show very low expression levels  (5) . The existence 

of miRNA recycling pathways following the regulation of 

their targets facilitates their turnover. 

 One of the main features of miRNAs is their capac-

ity to regulate multiple mRNA targets. However, the 

number of target transcripts in a cell often exceeds the 

number of miRNAs capable of regulating their tran-

scripts  (88) . It remains extremely difficult to explain 

how a relatively low number of miRNAs can downreg-

ulate a high number of transcripts. The constant recy-

cling of miRNAs derived from loci where mRNA target 

degradation is being actively carried out could explain 

the efficiency of miRNAs with regard to their gene 

silencing activities. Recycling exponentially increases 

the capacity of each mature miRNA molecule to regu-

late even hundreds of mRNA molecules without requir-

ing a new processing of the miRNA precursor molecule. 

Nevertheless, where and how these miRNAs are stored 

until use remains poorly understood. The existence 

of molecular miRNA reservoirs, as mentioned above, 

could explain some of the peculiarities of the functional 

miRNA dynamics. Before the discovery of circRNAs, the 

possibility that mRNA targets could act as active res-

ervoirs of the miRNAs that regulate them had already 

been suggested  (5) . 

 In general, recent data have suggested that the inter-

action between miRNAs and their mRNA targets could be 

driven by dynamic ways. If the miRNA/mRNA interaction 

is the cause of target degradation, the miRNA could bind 

again to another, similar or different, mRNA target mole-

cule. Nonetheless, if the binding between the miRNA and 

its target inhibits translation without an mRNA cleavage, 

then the miRNA could keep being attached to the mRNA 

target and the mRNA would act as a reservoir of miRNAs. 

Finally, other types of RNAs such as pseudogene-coded 

mRNAs or circRNAs could capture itinerant miRNAs, 

thus avoiding the interaction between miRNAs and their 

potential mRNA targets, which, in response to demand, 

could directly provide many functional and mature 

miRNAs.  

   ‘ One for all and all for one ’ : 
enhancing versatility 
 Based on the principles of miRNA-target recognition, 

on average, each miRNA can recognize about 100 – 200 

potential target sites of the transcriptome  (89 – 91) , con-

sidering only the seed region of the miRNAs and the 

3 ′  UTRs of the mRNAs, although additional interaction 

sites occur  (92) . In turn, each transcript has various 

predicted and functional miRNA sites  (89, 93, 94) . More 

than 50% of the human protein-coding genes contain 

conserved miRNA targeting sites  (95) . This implies that 

the number of combinatorial miRNA-mRNA interactions 

enormously enhance regulatory possibilities. Moreover, 

this potential variability is further expanded if we con-

sider the alternative transcription of genes coding for 

mRNA targets [such as single-nucleotide polymorphism 

(SNPs), alternative polyadenylation sites, and alternative 

splicing products) along with all the different alternative 

modifications that result from the miRNA alternative bio-

genesis mechanisms.  
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  MicroRNA editing 

 As dsRNAs, miRNA precursor molecules are targets of 

ADAR proteins. Recent evidence indicates that A-to-I 

editing of miRNA precursors (pri- and pre-miRNAs) 

affects both the miRNA function and biogenesis  (96 – 98) . 

The editing of miRNA precursor molecules can alter the 

DROSHA/DGCR8 and DICER/TRBP recognition and pro-

cessing. Initially, evidence on miRNA editing was first 

observed during the processing of  miR-22   (99)  and was 

later also detected during the biogenesis of other miRNAs. 

Although, in the beginning, it was suggested that miRNA 

precursor editing acted as a negative modulator of miRNA 

biogenesis, it has recently been demonstrated that the 

edited mature miRNAs can coexist with canonic mature 

miRNA molecules in the cell  (73, 74, 100) . Actually, it has 

not been well established how the editing mechanisms 

trigger the elimination of miRNAs  via  Tudor staphylococ-

cal nuclease (TUDOR)  (97, 101)  or, alternatively, modify 

miRNA precursors by changing their nucleotide sequence 

to generate the alternative mature miRNA isoforms  (74) . It 

seems that both routes act simultaneously. For example, 

research on miRNAs by deep sequencing in oocytes and 

zygotes revealed that mature miRNAs such as  miR-376a , 

 let7-g ,  miR-27a , and  miR-411  contained a considerable 

number of A-to-I sequence editing. In contrast, the editing 

levels of other miRNAs, for instance,  miR-151 ,  miR-379 , or 

 miR-376b  (-5p form), were low  (74) . 

 In general, the outcome of ADAR editing varies 

according to where the edited nucleotides are located. 

It has been established that the editing can impinge on 

the processing by DROSHA/DGCR8 and DICER/TRBP 

 (98, 101) . However, is not yet clear whether editing results 

in a change of any recognition sequence into miRNA pre-

cursor molecules or if, on the contrary, the spatial con-

formation of miRNA molecules is changed. As dsRNA 

molecules, the pri- and pre-microRNA adopt tridimen-

sional structures that could determine the accessibility of 

proteins involved in miRNA biogenesis. Secondary struc-

tures are also determined by the nucleotide sequence. 

In this manner, A-to-I editing can modify the secondary 

structure of precursor molecules, hampering DROSHA/

DGCR8 and DICER/TRBP recognition and in consequence 

hindering miRNA precursor processing. 

 The fate of the edited precursor molecules that are not 

processed has not been firmly established so far. Hypo-

thetically, edited miRNA precursors could be maintained 

in cell reservoirs until needed for use, as occurs in mature 

miRNAs. Nevertheless, the degradation of the edited non-

processed miRNA precursor molecules is the only mode 

reported so far  (102) . For example, the editing of  miR-142  

precursor molecules blocks the DROSHA/DGCR8 pri-

microRNA cleavage  (98) . It has been observed that  pri-

miRNA-142  sequences displayed multiple A-to-I changes. 

These hyperedited miRNA precursors were degraded  via  

TUDOR-SN. This endonuclease recognizes inosine resi-

dues in dsRNAs and induces their cleavage  (98, 101, 102) . 

Consequently, ADAR proteins could mark the miRNA pre-

cursor molecules that must be cleaved by hyperediting 

their adenosines. It has not been well established how 

many A-to-I changes are necessary to promote the degra-

dation of pre-RNA molecules by TUDOR-SN. However, it 

was recently suggested that this degradation could occur 

for specific cytoplasm domains that have been named 

T-bodies (TUDOR-SN bodies)  (74) . 

 Nevertheless, editing can also modify the mature 

sequence of miRNAs. Such editing probably alters the func-

tion instead of the miRNA biogenesis. Due to the precise 

recognition requirement between the miRNA seed region 

and its specific target, A-to-I editing, which affects the 

seed region, can generate miRNA retargeting. However, in 

both mice and humans, editing and other poly morphisms 

are not promiscuously detected in the seed regions 

 (74,  103) , suggesting a strong selective constraint on the 

miRNA/mRNA recognition site. Finally, ADAR proteins 

can act directly on mRNAs by modifying the recognition 

site where the miRNAs potentially bind  (104) . This could 

also have an effect on the binding between the miRNA and 

their targets with regard to mRNA. 

  IsomiRs 

 Usually, miRNAs are annotated as a single defined 

sequence  (105) . Using RNA sequencing, it has been 

observed that a pre-miRNA often gives rise to more than 

one mature miRNA sequence  (105 – 107) . These variants 

are named isomiRs and almost all of these molecules 

were initially considered to be artifacts  (105, 108 – 110) . 

Currently, the capacity of isomiRs to be associated with 

RISC and the translational machinery of polysomes has 

been demonstrated, further indicating that they could 

also interact with mRNAs  (108, 111) . These miRNA vari-

ants can encompass substitutions, insertions, or dele-

tions (polymorphic isomiRs), 3 ′ -isomiRs, and 5 ′ -isomiRs. 

5 ′ - and 3 ′ -isomiRs include nontemplate additions and 5 ′ -

3 ′  cleavage variations  (105, 108)  ( Figure 2 ). 

 In terms of the number of miRNAs and their overall 

abundance, the most common type of isomiR in animals 

and plants consist of the 3 ′  isomiRs  (111 – 114) . As in regular 

miRNAs, isomiRs vary among different cells or tissues 

and according to specific biological stimuli  (112 – 115) . This 
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suggests that the presence of some isomiRs could be regu-

lated according to different cell functions.  

  5 ′  and 3 ′  Template modifications 

 It has been assumed that DICER needs a defined pre-

miRNA distance of 22 nt from the 5 ′  to the 3 ′  end to be able 

to cleave both strands to produce a miRNA duplex  (116 –

 119) . However, a high proportion of the identified isomiRs 

containing 5 ′  and 3 ′  modifications were derived from pro-

cessing variations in the cleavage position of the precur-

sor molecules by the DROSHA or DICER enzymes  (105, 

120, 121) . The most abundant isomiRs have been found to 

differ only by 1 or 2 nt at the 5 ′  or 3 ′  end of their sequences 

 (121) . These results have indicated that DROSHA is more 

specific than DICER during the cleavage process. Con-

sequently, more variations with regard to cleavage sites 

occur near the loop as compared with the base of the 

stem in pre-miRNA hairpins. DICER ’ s cleavage impreci-

sion can be explained by the simultaneous DICER protein 

recognition of the RNA recognition protein domain and 

the RNAse III domain. DICER ’ s dual recognition permits 

to adopt a relatively flexible structure that accommodates 

pre-miRNA substrates, whereas the RNA recognition asso-

ciated with DROSHA cleavage is provided only by protein 

DGCR8  (122, 123) . 

 Changes in miRNA templates could also be associ-

ated with exoribonucleases. MicroRNAs bound to AGO 

proteins could be modified by nucleolytic trimming at 

the 3 ′  ends to generate isomiRs. For example, in the 

 Drosophila  miRNA biogenesis pathway, Liu et  al.  (124)  

found that  mir-34  displays multiple isoforms that differ 

at the 3 ′  end. These isoforms are produced by the action 

of the 3 ′  → 5 ′  exoribonuclease CG9247/NIBBLER. Trim-

ming of miRNA at the 3 ′  ends occurs after the removal 

of the passenger miRNA strand from the pre-RISC and 

may be the final step of the RISC assembly, ultimately 

enhancing the target  (125) .  

  5 ′  and 3 ′  Nontemplate modifications 

 The 3 ′  ends of mature miRNAs are highly heterogene-

ous, whereas the 5 ′  ends, which correspond to the seed 

regions, are relatively invariable. The patterns and sources 

of heterogeneity seem to vary depending on the miRNA 

species and according to the cell type. The 3 ′  ends often 

contain one to three extra nucleotides that do not match 

with the genomic DNA sequences. Sequence alterations of 

miRNAs can occur by the addition of nontemplate nucleo-

tides to the miRNA termini  (109, 126) . The first descrip-

tion of a 3 ′ -end modification of small RNA was rendered 

in the  hen1  mutant of  Arabidopsis   (127) . HEN1 is a methyl 

transferase that adds a methyl group to the 2 ′ -OH at the 

3 ′  end of the RNA  (128) . The addition of nucleotides is 

performed by a group of nucleotidyl transferases  (129) . 

In humans, there are 12 nucleotidyl transferases, seven 

of which are implicated in isomiR generation [reviewed 

by Neilsen et al.  (105) ]. In both humans and mice, these 

enzymes have uridyltranferase and/or adenyltransferase 

activity, which explain the most frequent nontemplate 

modifications such as insertions of single or multiple U 

(uridylation) or A (adenylation)  (130) . Uridylation plays 

a significant role in the control of miRNA biogenesis. In 

mammalian embryonic stem cells,  let-7  biogenesis is sup-

pressed by the LIN28 protein, which binds to the terminal 

loop of  let-7  precursors  (131, 132) . Of special interest is the 

fact that LIN28 induces the 3 ′  uridylation of  pre-let-7  by 

recruiting the terminal nucleotidyl transferase TUT4  (133) . 

The oligo U-tail added by TUT4 blocks the DICER process-

ing mechanism and facilitates the decay of  pre-let-7 . In the 

case of the mammalian  miR-122 , which is adenylated by 

cytoplasmic poly (A) polymerase GLD-2 (or also TUTase2), 

3 ′ -end adenylation is also implicated in its stabilization 

 (134) . Deep sequencing of the AGO-associated small RNAs 

has shown that adenylated miRNAs are relatively depleted 

in the AGO2 and AGO3 complexes, thereby suggesting that 

adenylation may interfere with AGO loading.   

  Single-nucleotide polymorphisms 

 Genetic variations range from large chromosomal anom-

alies to single-nucleotide changes. SNPs are the most 

frequently identified variants of DNA sequences. SNPs 

affecting miRNAs could potentially affect the matura-

tion process of miRNAs, the silencing machinery, the 

structure or the expression level of mature miRNA, and 

the base pairing to target sites. Polymorphisms at a level 

of single nucleotides may also have functional roles in 

relation to miRNA-mediated gene regulation  (135, 136) . 

Screening by numerous bioinformatics analyses has 

so far demonstrated only a very low density of SNPs in 

miRNA profiles  (103, 137) . Polymorphisms in pre-miRNA 

may have an effect on miRNA maturation and thereby 

modulate miRNA expression. Several groups have tried 

to identify SNPs within or flanking pre-miRNA sequences 

using experimental or bioinformatics approaches. In one 

study, 173 human pre-miRNAs pertaining to 96 Japanese 

individuals were sequenced, identifying 10 SNPs in 10 



J. Garc í a-L ó pez et al.: MicroRNA biogenesis      375

pre-miRNA hairpins  (138) , yet another study identified 

12 SNPs located within 227 human pre-miRNA sequences 

 (139) . Borel et al.  (140)  detected 65 SNPs in 49 pre-miRNAs 

but only in the case of three pre-miRNAs ( hsa-miR-125a , 

 hsa-miR-627  and  hsa-miR-662 ) were the SNPs located 

within the seed region  (140) , thus demonstrating that 

SNPs within miRNA seed regions are very rare ( ∼ 6%). Fur-

thermore, a G-to-U polymorphism, located at the eighth 

nucleotide within the mature sequence  of miR-125a , has 

been functionally characterized to block the processing 

of pri-miRNA into pre-miRNA, altering the translation 

suppression of the mRNA target,  Lin28   (139) . All of the 

above are good examples of the importance of the miRNA-

related SNP. 

 Recently, the role of SNPs has been analyzed with 

reference to miRNA processing of cancer cells. For 

example, the  hsa-miR-146a  SNP (rs2910164) within the 

 pre-miR146a  sequence consists of one of the most thor-

oughly studied cases  (135) . This SNP reduces both the 

amount of  pre-miR146a  and mature  hsa-miR-146a , ulti-

mately affecting the DROSHA/DGCR8 cropping step, 

with consequent multiple associations to papillary 

thyroid carcinoma, familial/sporadic breast cancer, 

ovarian cancer, prostate cancer, and hepatocellular car-

cinoma  (141 – 146) . In addition, SNPs of mRNA located in 

the 3 ′  UTR region of the specific binding site of miRNAs 

induce regulation pattern changes of the corresponding 

transcript. An SNP located in the  KRAS  3 ′  UTR induces 

the overexpression of  KRAS , which has been correlated 

to an increased risk to acquire non-small-cell lung 

cancer due to the lack of miRNA  let-7  binding  (147) . All of 

these studies have further contributed to the knowledge 

on miRNA binding site SNPs and cancer susceptibility; 

nonetheless, the need remains to carry out systematic 

studies to understand the role that SNPs play in connec-

tion to biological processes.  

  Expert opinion 
 The continuous progress in the quest to understand 

gene expression regulation mediated by small noncod-

ing RNA, including miRNAs, is deeply revolutionizing 

our concepts in relation to the dynamics of functional 

genomics. The ubiquitous presence of these actors in 

the panorama of most biological processes, including 

pathologies, is offering new visions, new experimental 

approaches, and new perspectives with regard to the 

study of cellular and developmental biology. The multi-

ple variants of the  ‘ miRNome ’  are enhancing the world 

of fine regulation, the diversity, and the response to envi-

ronmental changes experienced by biological systems. 

However, both the biogenesis and the real functionality 

of some of the described and annotated miRNAs depos-

ited in the miRBase will need a further redefinition as 

has been recently proposed  (148) . The comprehension of 

the functional roles and possibilities of gene regulation 

by miRNAs has only just started.   
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