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  Abstract:   Sterol regulatory element-binding proteins 

(SREBPs) are transcription factors that regulate a wide 

variety of genes involved in cholesterol and fatty acid 

synthesis. After transcription, SREBPs are controlled at 

multiple post-transcriptional levels, including proteolytic 

processing and post-translational modification. Among 

these, proteolytic processing is a crucial regulatory step 

that activates SREBPs, which are synthesized as inac-

tive endoplasmic reticulum membrane proteins. In this 

review, we focus on recent progress with regard to signal-

ing pathways and small molecules that affect activation of 

SREBPs by proteolytic processing.  
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   Introduction 
 In humans, cholesterol is derived from two main sources: 

diet and  de novo  synthesis in the liver. Cholesterol homeo-

stasis is tightly regulated at transcriptional, transla-

tional, and post-transcriptional levels, and its disruption 

increases the risk of atherosclerotic disease. Initially, 

sterol regulatory element-binding proteins (SREBPs) were 

thought to be transcriptional regulators of cholesterol 

homeostasis  (1) , comprising the transcription factors 

SREBP-1a, SREBP-1c, and SREBP-2  (2, 3) . SREBP-1a and 

SREBP-1c are produced from the same gene but are tran-

scribed from different promoter and transcription start 

sites, and the resulting proteins have different target 

genes. SREBP-2 preferentially regulates the expression of 

genes involved in cholesterol synthesis, whereas SREBP-1c 

basically regulates genes of fatty acid biosynthetic path-

ways. SREBP-1a has been shown to regulate genes of cho-

lesterol and fatty acid synthesis  (4, 5) . All three SREBPs 

are synthesized as membrane proteins of the endoplas-

mic reticulum (ER) and contain N-terminal transcrip-

tion factor domains and C-terminal regulatory domains 

(Figure  1  ). These domains are located in the cytosol and 

are separated by two transmembrane domains. Therefore, 

SREBPs require liberation from N-terminal halves to func-

tion as transcription factors in the nucleus. This activation 

by proteolytic processing is tightly regulated by the inter-

action with ER membrane proteins, SREBP cleavage-acti-

vating protein (SCAP), and insulin-induced gene (Insig). 

SREBPs form a complex with SCAP, which functions as a 

cholesterol sensor through an interaction between each 

C-terminal domain. When the cells are depleted of sterols, 

SCAP binds to the COPII proteins Sar1 and Sec23/24, 

resulting in the incorporation of SCAP/SREBPs complexes 

into COPII-coated vesicles. Consequently, SREBPs enter 

the Golgi and are processed by site-1 and site-2 proteases 

(S1P and S2P, respectively). With increases in the ER cho-

lesterol content, SCAP binds to cholesterol, which induces 

conformational changes, and gets attached to Insig. The 

interaction between Insig and SCAP results in inhibition 

of SCAP binding to COPII proteins, and SRBEPs remain on 

the ER membrane as inactive precursors (Figure 1). Regu-

lation of proteolytic processing of SREBPs by cholesterol 

has been described in more detail in another review  (1) . 

 Under conditions of low cholesterol, SREBPs are 

activated by proteolytic processing and their isoforms 

are then stimulated to activate respective target genes. 

Although nuclear SREBP-1 is increased under these con-

ditions in cultured cells, treatment with a bile acid-bind-

ing resin (colestipol) and a cholesterol synthesis inhibi-

tor (mevinolin), which lowers total plasma cholesterol 

levels and decreases nuclear SREBP-1 despite increasing 

nuclear SREBP-2 in hamster liver cells  (6) . Therefore, cho-

lesterol levels are not a prominent factor in the activation 

of SREBP-1 in the living animal liver. Interestingly, the 
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 Figure 1      Regulation of SREBP proteolytic processing by intracel-

lular cholesterol levels. 

 Under conditions of low cholesterol (Low sterols), SCAP/SREBPs 

complexes are incorporated into COPII-coated vesicles and are 

transported to the Golgi. Subsequently, SREBPs are cleaved by S1P 

and S2P within the Golgi. With increased ER cholesterol content 

(High sterols), Insig binds to SCAP and retains SCAP/SREBPs on the 

ER membrane as an inactive precursor.    

expression of SREBP-1c is increased in the livers of dia-

betic animals, and its overactivation is associated with 

hepatic steatosis  (7) . In this review, we discuss the reg-

ulation of SREBP-1c activity, with a focus on proteolytic 

processing. 

 In addition to proteolytic processing, SREBP activities 

are controlled by multiple transcription, translation, and 

protein degradation factors (Figure  2  ). Of note, SREBP-

1c and SREBP-2 promoters are autoregulated by SREBPs 

 (8, 9) . Furthermore, rapid degradation of active nuclear 

SREBPs by the ubiquitin-proteasome system is triggered 

by GSK-3-mediated phosphorylation  (10) . The activities of 

nuclear SREBPs are also controlled by post-translational 

modifications, such as phosphorylation, acetylation, and 

SUMOylation  (11 – 15) . Although many reports identify sign-

aling pathways and small molecules that regulate SREBP 

activities, these multiple modes of regulation are often 

indistinguishable from each other. Several well-designed 

experiments have recently revealed signaling pathways 

and small molecules other than cholesterol that regulate 

proteolytic processing of SREBPs.  
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 Figure 2      Multiple modes of SREBP regulation.    

  Regulation of SREBP-1c by insulin 
signaling pathway 
 In rodent livers, SREBP-1c mRNA and active nuclear 

SREBP-1 protein levels are upregulated following re-

feeding  (16) , and lipogenic gene expression and  de novo  

lipogenesis are subsequently increased. SREBP-1c expres-

sion in the rat liver reduces after treatment with strepto-

zotocin, which destroys pancreatic  β -cells and leads to 

acute insulin deficiency. However, SREBP-1c expression 

returns to normal levels when diabetic rats are treated 

with insulin, indicating that insulin mediates the increase 

in SREBP-1c expression after re-feeding  (17) . In agree-

ment, wortmannin, a potent inhibitor of phosphoinositide 

3-kinase (PI3K), blocks induction of SREBP-1c by insulin 

 (18)  and activation of Akt then induces SREBP-1c expres-

sion  (19) , confirming the involvement of insulin/PI3K/

Akt signaling in the induction of SREBP-1c. Akt signaling 

also activates SREBP-2  (20, 21) , and this issue has been 

described in detail in another review  (22) . 

 The SREBP-1c-activating actions of insulin are numer-

ous and complex (Figure  3  ). Akt directly phosphorylates 

precursor SREBP-1c, which stimulates its proteolytic pro-

cessing by enhancing the affinity of the SCAP/SREBP-1c 

complex for Sec23/24 proteins of COPII vesicles  (23) . Other 

studies show that ERK1/2-mediated phosphorylation of 

nuclear SREBPs stimulates their transcriptional activities 

 (11, 24, 25) . Moreover, the ubiquitin ligase Fbw7 has been 

shown to ubiquitinate and degrade nuclear SREBPs fol-

lowing phosphorylation by GSK-3  (10) . 

 A recent study revealed that PI3K/Akt-mediated 

induction of nuclear SREBP-1 protein is abolished by treat-

ment with the mTORC1 inhibitor rapamycin in human 

retinal pigment epithelial cells  (26) . Furthermore, insulin-

induced SREBP-1c expression is abolished by rapamycin 
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 Figure 3      Multiple effects of insulin signaling on SREBP activation.    



J. Inoue and R. Sato: SREBP activation by proteolytic processing      419

in primary cultured rat hepatocytes  (27) , indicating that 

the Akt/mTORC1 pathway is involved in insulin activation 

of SREBP-1c. Indeed, constitutive activation of mTORC1 

by TSC1/2 complex disruption leads to increased expres-

sion of SREBP-1c in mouse embryonic fibroblasts  (28) . 

However, contrary to expectations, constitutive activation 

of mTORC1 reduces SREBP-1c expression in TSC1-deficient 

mouse hepatocytes  (29) . These reductions in SREBP-1c 

expression follow mTORC1-driven inhibitory feedback 

mechanisms that attenuate Akt signaling  (29, 30) . Insulin 

inhibits the expression of Insig2a, which is a predominant 

liver-specific isoform of Insig2, and results in proteolytic 

processing of SREBP-1c  (31) . Impairment of Akt signaling 

by constitutive mTORC1 activation results in maintenance 

of high levels of Insig2a gene expression, thereby inhib-

iting SREBP-1c activation. Indeed, si-RNA-mediated sup-

pression of Insig2a in TSC1-deficient hepatocytes restores 

insulin-stimulated induction of SREBP-1c  (29) , indicating 

tissue-specific activation of SREBP-1c. 

 Peterson et  al. reported the involvement of lipin1, 

which functions as a phosphatidic acid phosphatase and 

transcriptional co-activator, in the mTORC1-mediated acti-

vation of SREBP-1c  (32) . In particular, mTORC1 directly 

phosphorylates lipin1 and promotes its cytoplasmic local-

ization, which results in increased nuclear SREBP pro-

teins through an unknown mechanism. Therefore, lipin1 

localization may contribute to mTORC1-mediated activa-

tion of SREBP-1c. 

 Because insulin triggers an increase in nuclear SREBP-1 

protein levels in the livers of living animals and in freshly 

isolated hepatocytes, it was hypothesized that insulin 

may stimulate proteolytic processing of SREBP-1. Using 

an elegant assay system that eliminated transcriptional 

effects of insulin, Owen et al. expressed an insulin-insen-

sitive epitope-tagged human apoE promoter/enhancer-

driven SREBP-1c expression cassette in rats  (33) . In these 

animals, exogenous nuclear SREBP-1c was decreased 

during fasting and increased on re-feeding, without a 

change in exogenous SREBP-1c mRNA, suggesting that 

proteolytic processing of SREBP-1c is regulated by feeding. 

This mode of regulation was recapitulated by insulin treat-

ments of primary hepatocytes from these transgenic rats. 

Treatment with the proteasome inhibitor MG132 caused 

an increase in nuclear SREBP-1c, which increased further 

with insulin, indicating that insulin increases the produc-

tion of the nuclear form rather than blocking degradation. 

Importantly, this insulin-mediated increase in SREBP-1c 

proteolytic processing was blocked by the kinase inhibi-

tors wortmannin (PI3K inhibitor), rapamycin (mTORC1 

inhibitor), and LYS6K2 (S6K inhibitor). Interestingly, wort-

mannin and rapamycin inhibited the effects of insulin on 

endogenous SREBP-1c mRNA whereas LYS6K2 did not, 

indicating the varying involvement of these kinase signal-

ing pathways in insulin-mediated SREBP-1c gene expres-

sion and proteolytic processing. At present, it is unclear 

how this S6K inhibitor blocks insulin-mediated increases 

in SREBP-1c proteolytic processing. A putative target is 

phosphorylated by S6K and then stimulates SREBP-1c 

proteolytic processing by enhancing transport of SCAP/

SREBPs from ER to the Golgi. Insulin may stimulate trans-

port of SCAP/SREBPs from ER to the Golgi through direct 

phosphorylation of SREBPs by Akt, whereas inhibition 

of S6K blocks the activities of proteases such as S1P and 

S2P. It will be necessary to determine whether inhibition 

of S6K affects insulin-induced transport of SCAP/SREBPs.  

  SREBP-1c regulation by AMP-
activated protein kinase (AMPK) 
 AMPK, a major cellular energy sensor, plays a key role in 

maintaining energy homeostasis. When the intracellular 

AMP/ATP ratio is increased, AMPK is activated following 

phosphorylation by the upstream kinase LKB1. Activated 

AMPK regulates several metabolic processes, including 

gluconeogenesis, fatty acid and cholesterol synthesis, 

and fatty acid oxidation, by phosphorylating various 

downstream substrates  (34) . Previous studies suggest that 

AMPK activation leads to decreased SREBP-1c expression 

in mouse livers and rat hepatoma cells  (35 – 37) . Recent 

studies have demonstrated that the induction of SREBP-

1c gene expression and nuclear localization of SREBP-1 by 

high-fat and high-sucrose diets is completely reversed by 

treatment with the synthetic polyphenol S17834, which 

activates AMPK in the livers of low-density lipoprotein 

(LDL) receptor-deficient mice  (38) . Similar observations 

were made in HepG2 hepatoma cells. In particular, nuclear 

SREBP-1 increases after treatments with glucose and 

insulin, and this effect is abolished by S17834. Moreover, 

dominant-negative AMPK abrogates the ability of S17834 

to repress glucose and insulin-mediated accumulation of 

nuclear SREBP-1 in HepG2 cells, suggesting that S17834 

inhibits activation of AMPK. Furthermore, AMPK directly 

phosphorylates nuclear SREBP-1c at Ser372, leading to 

decreased activity  (38) . The effects of AMPK activation 

on proteolytic processing of SREBP-1c were examined 

in HEK293T cells expressing exogenous epitope-tagged 

SREBP-1c. In these experiments, exogenous nuclear 

SREBP-1c decreased with AMPK activation in the presence 

of the proteasome inhibitor ALLN, suggesting that AMPK 

acts by decreasing production of the nuclear form rather 



420      J. Inoue and R. Sato: SREBP activation by proteolytic processing

than by stimulating its degradation. Although it has been 

demonstrated that active AMPK decreases nuclear SREBP-

1, the mechanisms by which AMPK suppresses proteolytic 

processing of SREBP-1c remain unclear. AMPK physi-

cally associates with SREBP and directly phosphorylates 

precursor and nuclear SREBP-1c at Ser372. Potentially, 

phosphorylation of SREBP-1c at Ser372 inhibits the trans-

port of SCAP/SREBP-1c complexes from ER to the Golgi. 

Indeed, active AMPK may suppress proteolytic processing 

of SREBP-1c by inhibiting mTORC1 activity through direct 

phosphorylation of both TSC2 and raptor [ (39) ; Figure 3]. 

This interpretation is supported by suppression of Akt-

induced nuclear SREBP-1 by activated AMPK  (26) .  

  SREBP regulation by small 
molecules 
 Several small molecules other than cholesterol have 

been reported to regulate proteolytic processing of 

SREBPs. Among these, unsaturated fatty acids  –  such 

as oleate, linoleate, and arachidonate  –  downregulate 

nuclear SREBP-1 by suppressing transcription and pro-

teolytic processing of SREBPs  (40) . Unsaturated fatty 

acids inhibit proteasomal degradation of ubiquitinated 

Insig-1  (41) . A recent report revealed that the primary 

mechanism for polyunsaturated fatty acid-mediated 

suppression of SREBP-1 involves the inhibition of proteo-

lytic processing and that this in turn leads to decreased 

transcription of SREBP-1c through an autoregulatory 

mechanism  (42) . 

 Grand-Perret et al. showed that the steroid-like analog 

GW707 and the non-steroidal compound GW300 stimu-

late transcription of LDL receptors  (43) . These molecules 

increased nuclear localization of exogenous SREBPs in 

CHO cells transfected with plasmids encoding precursor 

SREBP-1a or SREBP-2. Because these compounds bind 

SCAP, they are referred to as SCAP ligands that stimulate 

the proteolytic processing of SREBPs. However, a subse-

quent report showed that GW707 stimulates SREBP target 

genes independent of SCAP-binding activity. Treatment 

with GW707 leads to the accumulation of free lysosomal 

cholesterol even in the absence of SCAP, which in turn 

disturbs appropriate cholesterol-mediated suppression of 

SREBP proteolytic processing  (44) . 

 Betulin, which is abundant in birch bark, suppresses 

SREBP activity by directly binding to SCAP and then 

stimulating an interaction between SCAP and Insig-1 

that suppresses proteolytic processing of SREBPs  (45) . 

Choi et al. showed that the small molecule diarylthiazole 

derivative fatostatin, formerly known as 125B11, inhibits 

insulin-induced adipogenesis in 3T3-L1 cells  (46) . Fato-

statin inhibits proteolytic processing of SREBPs and 

binds SCAP. However, the mechanism by which fatosta-

tin inhibits proteolytic processing of SREBPs remains 

unclear  (47) . 

 We performed luciferase reporter assays with promoter 

regions of SREBP target genes and found several small 

molecules that regulate SREBP activities. Among these, 

glutamine and resveratrol stimulated, and 4 ′ -hydroxyfla-

vanone suppressed SREBP activities  (48 – 50) . Glutamine is 

the most abundant free amino acid in the body that plays 

an important role in cell proliferation  (51) . Glutamine 

accelerates proteolytic processing of SREBPs by increas-

ing PI3K/Akt-mediated transport of the SCAP/SREBPs 

complex from ER to the Golgi. Interestingly, a PI3K inhibi-

tor, but not an mTORC1 inhibitor, blocked glutamine-stim-

ulated proteolytic processing of SREBP-1  (48) . As it is well 

known that activation of SREBP stimulates the synthesis 

of lipids, glutamine-mediated induction of lipid synthesis 

may be, at least in part, responsible for the effects of glu-

tamine on cell proliferation. The polyphenol resveratrol is 

present in a variety of plant species and exhibits a wide 

range of health benefits. Although resveratrol increases 

the activity of AMPK and inhibits proteolytic processing of 

SREBP-1  (38) , our data showed that resveratrol stimulates 

proteolytic processing of SREBPs  (49) . At present, this 

conflict of observations is unexplained. However, we also 

observed increased activity of AMPK in the presence of 

resveratrol, indicating stimulation of proteolytic process-

ing of SREBPs under AMPK-activated conditions.  

   In vivo  effects of small molecules 
that inhibit proteolytic processing 
of SREBPs 
 Fatostatin treatment produces several metabolic benefits 

in obese  ob/ob  mice  (47) . Among these, expression of lipo-

genic genes in the liver, activities of enzymes such as ACC 

and FAS, and liver triglycerides and cholesterol are signifi-

cantly lowered by fatostatin. Interestingly, despite sup-

pression of liver LDL receptor mRNA, which is an SREBP-2 

target gene that mediates endocytosis of lipoproteins con-

taining apolipoproteins B and E, particularly LDL, serum 

LDL cholesterol levels are significantly lowered in the 

presence of fatostatin. This discrepancy may be explained 

by reduced  de novo  synthesis of cholesterol and VLDL 
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secretion. Proprotein convertase subtilisin/kexin type 9 

(PCSK9) is another SREBP-2 target gene that stimulates 

LDL receptor protein degradation  (52) . Impairment of 

SREBP-2 activity by fatostatin may cause suppression of 

PCSK9 and LDL receptor gene expression, in turn stabi-

lizing LDL receptor protein and reducing serum LDL cho-

lesterol. Clinically, fatostatin prevents increases in body 

weight and blood glucose in obese  ob/ob  mice. Accord-

ingly, fatostatin-treated  ob/ob  mice have increased serum 

ketone bodies, indicating a significant increase in fatty 

acid oxidation. 

 The effects of betulin on atherosclerosis and type II 

diabetes were investigated in Western diet-fed mice  (45) . 

In this study, dietary betulin reduced nuclear SREBP-1 

and lipogenic gene expression in the livers of the mice, 

indicating that proteolytic processing of SREBPs is 

inhibited by betulin  in vivo . Treatment with betulin led 

to decreased triglycerides and cholesterol in the liver, 

decreased serum LDL cholesterol, and increased serum 

high-density lipoprotein cholesterol. While LDL receptor 

gene expression was not altered, other SREBP-2 target 

genes such as HMG-CoA synthase, HMG-CoA reduc-

tase, and PCSK9 were suppressed by betulin in the liver. 

Hence, betulin improved diet-induced insulin resist-

ance and ameliorated atherosclerosis in LDL receptor-

deficient mice. 

 Small molecules that block proteolytic processing of 

SREBPs, such as fatostatin and betulin, exhibit excellent 

efficacy against diet-induced obesity, insulin resistance, 

and atherosclerosis (Figure  4  ). However, both compounds 

produced additional effects that were not related to sup-

pression of SREBPs. In particular, treatment with fatosta-

tin caused increases in fatty acid oxidation and dietary 

betulin stimulates adiponectin mRNA expression in white 

adipose tissue through unknown mechanisms. In addi-

tion to improvements in lipid metabolism, suppression of 

SREBPs activities may indirectly lead to further beneficial 

effects. In any case, it is clear that small molecules that 

suppress SREBPs are promising therapeutic agents for 

metabolic diseases.  

  Conclusion 
 SREBPs are transcription factors that regulate the expres-

sion of genes involved in lipid metabolism after proteo-

lytic processing. However, further studies are urgently 

required to precisely determine the mechanisms of 

proteolytic processing of SREBPs. In particular, little is 

known of regulatory differences between SREBP-1 and 

SREBP-2, despite knowledge of their target gene speci-

ficity. With the exception of unsaturated fatty acids, the 

small molecules described above equally regulate pro-

teolytic processing of SREBP-1 and SREBP-2. However, 

further studies will be required to determine whether 

SREBPs isoforms are differentially regulated at the pro-

teolytic processing level and to define the mechanisms 

involved.   
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