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Notch signaling in the pathologic adult brain

Abstract: Along the entire lifetime, Notch is actively 
involved in dynamic changes in the cellular architecture 
and function of the nervous system. It controls neurogene­
sis, the growth of axons and dendrites, synaptic plastic­
ity, and ultimately neuronal death. The specific roles of 
Notch in adult brain plasticity and neurological disorders 
have begun to be unraveled in recent years, and pieces of 
experimental evidence suggest that Notch is operative in 
diverse brain pathologies including tumorigenesis, stroke, 
and neurological disorders such as Alzheimer’s disease, 
Down syndrome, and multiple sclerosis. In this review, 
we will cover the recent findings of Notch signaling and 
neural dysfunction in adult human brain and discuss its 
relevance in the pathogenesis of diseases of the central 
nervous system.
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Introduction
Along the entire lifetime, Notch is actively involved in 
dynamic changes in the cellular architecture and function 
of the nervous system. Most of Notch target genes encode 
transcription regulators, many of which are critical in 
central nervous system (CNS) development. However, cell 
fate determination or other events influenced by Notch 
signaling can also result in the absence of transcriptional 
activation. In the CNS, Notch protein and ligands are not 
only present in the embryonic stages but also continuously 
in the adult nervous system. Recent studies have led to the 
recognition of the role of the Notch pathway in learning 
and memory, as well as late-life neurodegeneration. Notch 
controls neurogenesis, the growth of axons and dendrites, 
synaptic plasticity, and ultimately neuronal death. In the 
following, we review the cellular processes in the patho­
logic adult brain in which Notch signaling is involved and 
its impact on brain functionality.

Notch signal transduction
Notch signaling is unidirectional, with a ‘signal-sending 
cell’ that presents the Notch ligand to the ‘signal-receiving 
cell’, which expresses the Notch receptor. Notch recep­
tors are single-pass transmembrane proteins with differ­
ent domains that maintain the receptor as inactive in the 
absence of ligands (1, 2). These receptors are covered with 
a variety of glycans, and it is now clear that glycans modu­
late Notch signaling; however, it is not clearly known how 
this occurs (3). The Notch pathway in adult brain com­
prises multiple subtypes of ligands and receptors with 
differential expression patterns, which are summarized 
in Table 1. Mechanistically, Notch ligands are presented 
on the cell membrane and are subsequently endocytosed. 
These ligands can be ‘activated’ by an as-yet-unknown 
mechanism and re-presented to the membrane. Notch 
receptors are synthesized as a single peptide and then 
cleaved in the Golgi compartment to form a heterodimer 
that is presented on the cell membrane. Once on the mem­
brane, the ligand can bind Notch. It was proposed that 
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the Notch heterodimer is pulled apart through the force 
of endocytosis in the signal-sending cell, and then, the 
Notch extracellular domain (NECD) is endocytosed. The 
Notch domain that remains on the signal-receiving cell is 
sequentially cleaved by α-secretase, via A disintegrin and 
metalloproteinase (ADAM) 10 (4) and by the γ-secretase 
complex to release the Notch intracellular domain 
(NICD). Through a convergence of genetic, pharmacologi­
cal, protein, and cell biology studies, it is now clear that 
γ-secretase is a multisubunit aspartyl protease that cleaves 
more than 70 type 1 transmembrane proteins within their 
transmembrane domains. Presenilin 1 and Presenilin 2 
(PS1 and PS2) form the catalytic core of γ-secretase and 
three accessory proteins, anterior pharynx-defective 1 
(APH-1), nicastrin (Nct), and presenilin enhancer protein 2 
(PEN2), are required to complete the γ-secretase complex 
(5). The precise location of the γ-secretase cleavage is 
controversial, with some data indicating the endosome 
as the major site although there is some evidence sug­
gesting that cleavage can also take place at the plasma 
membrane, leading to different NICD molecules. Nuclear 
responses due to Notch activation are tightly regulated by 
various posttranslational modifications that affect NICD 
trafficking, half-life, and transcriptional activity, thereby 
contributing to signaling diversity (6). Over the past 
decades, important progress has been made in decipher­
ing Notch signal transduction and identifying processes 
that are influenced by Notch (1). The emerging picture 
posits that in the ‘canonical’ signaling pathway (Figure 1), 
most Notch-dependent physiological and pathological 
processes rely on the ability of nuclear NICD to convert the 

Table 1 Notch signaling in the adult brain: ligands, receptors, and 
expression patterns.

Receptor Expression pattern 
(References)

Ligand Expression pattern 
(References)

Notch 1 Post-mitotic neurons DLL-1 Neuronal progenitors
Astrocytes (100, 101)
Precursor cells Postmitotic neurons
Endothelium (98)
(96–99)

Notch 2 Precursor cells DLL-3 Neuronal progenitors
Notch 3 (96, 100) (100, 101)

DLL-4 Endothelium
(102)

Notch 4 Endothelium JAG-1 Precursor cells
(103) (97, 98, 104)

DNER Postmitotic neurons JAG-2 Postmitotic neurons
(105) (103)

DLL, δ-like ligand; DNER, δ and Notch-like epidermal growth factor-
related receptor; JAG, Jagged (Serrate-like ligand).
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Figure 1 Canonical Notch signal transduction.The Notch receptor 
in the ‘signal-receiving cell’ is activated by binding to canonical 
ligands (DSL/DOS) presented by a ‘signal-sending cell’. Endocytosis 
and membrane trafficking regulate ligand and receptor availability 
at the cell surface. Ligand endocytosis is also thought to generate 
sufficient force to promote a conformational change that exposes 
Notch to cleavage by ADAM metalloproteases. Juxtamembrane 
cleavage generates the membrane-anchored Notch extracellular 
truncation (NEXT) fragment, which is a substrate for the γ-secretase 
complex. γ-Secretase complex cleaves the Notch transmembrane 
domain to release NICD and Nβ peptides. In the absence of NICD, 
the DNA-binding protein CSL associates with ubiquitous corepres-
sor (Co-R) proteins and histone deacetylases (HDACs) to repress 
transcription of target genes. When NICD enters the nucleus, its 
binding to CSL may trigger an allosteric change that facilitates 
displacement of transcriptional repressors. Mastermind (MAM) then 
recognizes the NICD/CSL interface, and this tri-protein complex 
recruits coactivators (Co-A) to activate transcription.

DNA-binding protein CSL from a transcriptional repres­
sor into an activator. This regulation involves the forma­
tion of a stable ternary complex composed of CSL, NICD, 
and mastermind-like family of coactivators (MAML) (7, 8). 
Deciphering how this complex orchestrates transcrip­
tional activation and how diversity in the transcriptional 
program is established depending on the cellular context 
is a major challenge in the field. The most studied Notch 
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targets are the hairy and enhancer of split-related genes, 
which are members of the bHLH family of transcriptional 
repressors (9). However, many additional genes have been 
recently identified as Notch targets (10). In addition, NICD 
can also signal in the absence of transcriptional activa­
tion presumably through protein-protein interactions, a 
pathway collectively known as ‘noncanonical’ signaling 
(11). Noncanonical Notch signaling can be either ligand-
dependent or independent. The better-described function 
of the latter is the antagonism of Wnt/β-catenin pathway, 
an evolutionary conserved mechanism that defines the 
main body axis of vertebrates (12–16). Wnt signaling 
is activated by the binding of Wnt protein (the ligand) 
to a frizzled family receptor, which passes the biologi­
cal signal to the protein dishevelled inside the cell. The 
three best-characterized Wnt signaling pathways are the 
canonical, the noncanonical planar cell polarity, and 
the noncanonical Wnt/calcium, respectively. The differ­
ence among them is that the canonical pathway involves 
the protein β-catenin. Stabilized β-catenin can enter the 
nucleus and activate several genes that induce dorsal cell 
characteristics (13). The link between Notch and β-catenin 
was confirmed in Drosophila and Xenopus (17–19) sug­
gesting that Notch antagonizes Wnt signaling by promot­
ing β-catenin degradation. Notch/β-catenin interaction 
is important in the development to control the size and 
anterior-posterior pattern of the brain (20) supporting the 
noncanonical function of Notch as a downregulator of 
constitutive Wnt activity (17, 19). Regarding noncanonical 
ligand-dependent Notch signaling, it was demonstrated 
that its major impact is on axon patterning through NICD 
interaction with the AbI cytoplasmic pathway (21–24). 
Molecularly, NICD binds to and suppresses the effects of 
two cofactors of Abl tyrosine kinase (23, 25, 26) controlling 
the actin structure and dynamics in the growth cone (22).

Notch activation and neurogenesis 
in adult brain
Notch pathway components are expressed in the neuro­
genic ‘niches’, specialized cellular microenvironments 
that modulate stem cell properties, including cell number, 
self-renewal, and fate decisions. In the adult brain, 
‘niches’ that maintain a source of neural stem cells (NSCs) 
are the subventricular zone (SVZ) of the lateral ventricle 
and the dentate gyrus (DG) of the hippocampus. Persis­
tence of neurogenesis in adulthood was identified more 
than a decade ago (32) and refers to the process by which 
new neurons are produced from NSCs in the adult brain. 

Physiologically, in the neurogenic ‘niche’, NSCs produce 
transient intermediate precursors (IP), which generate 
neuroblasts that exit the cell cycle and differentiate into 
neurons. The precise dynamics of neuron production from 
the NSCs remains controversial. Notch signaling is a key 
mediator of NSCs maintenance, suppressing the expres­
sion of proneural genes including Ascl1 and supporting 
the progenitor cell survival. The opposing states of qui­
escence vs. proliferation are controlled by Notch levels 
and seem to be cell-dependent: low levels of Notch lead to 
proliferation of NSCs and high levels, growth arrest (34). 
However, it was reported that neural progenitors are less 
responsive to Notch and more sensitive to environmental 
factors for the regulation of proliferation (27). If levels of 
Notch signaling remain low and growth factors are with­
drawn, cells exit the cycle and differentiate into neurons. It 
was recently demonstrated that after the initiation of neu­
rogenesis, cells remain at the immature neuron stage for 
weeks or months, allowing them to adapt to physiological 
or pathophysiological stimuli that may affect their matu­
ration and differentiation (28). It has become increasingly 
evident that NSC self-renewal and differentiation in the 
SVZ and hippocampus are regulated by factors secreted 
by non-neuronal cell types, including microglia (35), 
endothelial cells (36, 37) or astrocytes (38–41) and that 
differences in the microenvironment and signaling path­
ways govern the two adult neurogenic niches (42–44). 
A schematic representation of NICD role in NSC renewal, 
cell cycle progression, and cell fate decision is depicted in 
Figure 2. In addition to neurogenic niches, Notch is also 
expressed throughout the adult brain, pointing at addi­
tional functions beyond its role in stem cell maintenance 
and differentiation. It was demonstrated that activation 
of the mammalian Notch pathway occurs reiteratively 
in migratory and postmitotic neurons, supporting that 
Notch acts as a master regulator of plasticity and neuronal 
migration.

Notch activation and neural 
dysfunction
The importance of Notch signaling for normal human 
adult brain function is demonstrated by its implica­
tions in neurological diseases as diverse as the Alagille 
syndrome, a developmental disorder associated with 
mental retardation (29), cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencepha­
lopathy (CADASIL) (30), and certain types of schizophre­
nia (31). All of them show functional mutations in key 
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components of the Notch pathway. Late onset CADASIL 
and the Alagille syndrome are associated with mutations 
in, respectively, Notch3 and Jagged1 genes, while a 
NOTCH4 polymorphism is strongly associated with sus­
ceptibility to schizophrenia. In addition, gene expression 
and immunohistochemical studies show that Notch is 
overexpressed in neurogenic and non-neurogenic regions 
in sporadic Alzheimer’s disease (AD) (32, 33) and adult 
Down syndrome (DS) brains (34, 35). Moreover, pieces of 
experimental evidence associate Notch signaling with the 
progression of brain injury after stroke (36) and progno­
sis of certain brain tumors (37). Regardless of the cause 
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Figure 2 Role of NICD in NSCs renewal, proliferation and linage 
selection in adulthood. In the central nervous system, NICD medi-
ates self-renewing divisions, and it has also been implicated in 
regulating quiescence of neural stem cells (NSCs). In progenitors, 
NICD is important for proliferation and de-differentiation. The most 
well-known role of Notch is the inhibition of neuronal differentiation 
of NSCs and progenitors. The activation of the canonical Notch sign-
aling (CS) delays myelination, while the activation of the noncanoni-
cal pathway (NCS) leads to OPC maturation into oligodendrocytes 
(OL) and myelination of axons. By contrast, the role of NICD in the 
switch from neurogenesis to gliogenesis to generate astrocytes still 
presents controversies (dotted line).

of these diseases, AD, DS, and multi-infarct dementia 
present cognitive impairments and/or a neurodegenera­
tive phenotype, which highlight the importance of altered 
Notch signaling in the adult brain as a contributing factor 
to neuronal dysfunction. The roles of Notch signaling in 
CNS injury and disease are complex, involving multiple 
cell types (neurons, glial cells, vascular cells, and lym­
phocytes), and either detrimental or beneficial actions on 
the pathogenic process and functional outcome have been 
reported. In the following section, we will discuss the role 
of Notch in nongenetic neurological diseases.

Brain ischemia

In ischemia or stroke, there is an increased neurogenesis 
mediated by the Notch signal in the SVZ and CA1 region 
of the hippocampus (38), which is subsequently down­
regulated to promote neuronal differentiation. In addi­
tion, Notch signaling is also involved in the angiogenic 
process after ischemia as its activation is important in the 
reorganization of blood vessels branching during reper­
fusion (39). Specifically, Notch regulates angiogenesis by 
controlling endothelial cell proliferation, migration, and 
adhesion (40). It was demonstrated that after Notch inter­
action with δ and Jagged/Serrate (Table 1), these ligands 
are cleaved similarly to the Notch receptor producing 
an intracellular domain, which inhibits endothelial cell 
proliferation but do not affect endothelial migration, 
sprouting angiogenesis or cell adhesion as shown for 
NICD (40). The effect of NICD is regulated by its polyubiq­
uitination and proteasomal degradation. This process 
involves Fbxw7, an F-box protein that acts as a substrate-
recognizing component of a type E3 ubiquitin ligase (41). 
In Fbxw7 loss-of-function models, the lifetime of NICD is 
prolonged leading to a general slowdown in angiogene­
sis, sprouting, and proliferation of endothelial cells (42). 
Vascular endothelial growth factors (VEGFs) have impor­
tant roles in the development and function of the circula­
tory and nervous systems, and their expression increases 
shortly after ischemia (43). It has been suggested that 
decrements of Notch signaling allows an upregulation 
of VEGFR3 activity, which is proangiogenic in endothe­
lial cells and mimics aspects of cancer cells growth (44). 
Brain ischemia is also characterized by an inflammatory 
response, and it is known that the Notch pathway modu­
lates the activation of inflammatory cells, such as lym­
phocytes and microglia. Increasing evidence indicates 
that Notch plays an important role in regulating the dif­
ferentiation of activated T cells into distinct types of effec­
tor T cells (45). The trigger of Notch signaling induced by 
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cerebral ischemia produces the activation of microglia by 
increasing NF-κB activity (46). In summary, Notch signal­
ing might be beneficial as a stimulator of proliferation of 
NSCs for repair, but might also impair the outcome by the 
inhibition of differentiation toward neurons and its parti­
cipation in the inflammatory response (36). The roles of 
Notch during ischemia are complex, and the potential 
therapeutic benefits of inhibition or activation of the 
pathway require further studies.

Alzheimer’s disease (AD) and Down 
syndrome (DS)

In postmitotic neurons of the adult brain, Notch mole­
cules are coexpressed and interact physically and func­
tionally with presenilins (PSs), the catalytic component 
of the γ-secretase complex to generate NICD (as described 
above). The same γ-secretase complex is also implicated 
in the proteolytic processing of the amyloid precursor 
protein (APP) to originate the amyloid β (Aβ) peptide 
(47), which accumulates in the brain of AD (48) and DS 
patients (49). Mutations in PSs genes are responsible 
for rare familial Alzheimer’s disease (FAD) cases (50, 51) 
characterized by an increased proportion of the more 
amyloidogenic form of Aβ peptide (Aβ42) or increased 
levels of the less amyloidogenic form of Aβ peptide 
(Aβ40) in the brain. A very recent report showed that 
expression of several FAD PS1 mutants in NSCs leads to 
impaired NSC self-renewal due to a reduced γ-secretase 
cleavage of Notch (52) suggesting that inhibition of Notch 
signaling may have a direct impact on the neurodegen­
erative phenotype observed in FAD brain. It was recently 
reported that neurogenesis and NSC renewal are both 
γ-secretase activity-dependent processes; however, the 
data showed that NSC renewal relays not only in Notch 
signaling but also on other substrates of γ-secretases 
(33). Post mortem studies on the status of neurogenesis 
in human AD patients have been contradictory with 
reports showing an increase in hippocampal neurogen­
esis (53) and others finding no differences (54). Addi­
tionally, a potential decrease in progenitor cell numbers 
in AD (55) was associated with cortical cholinergic loss. 
Thus, AD may cause depletion of progenitor cells by 
pushing their cell fate to immature neurons or glial 
cells. It is plausible that decreased activity of NSCs in the 
SVZ of AD brains decreases the potential for spontane­
ous replacement of lost neurons in the cerebral cortex 
of AD brain. Neurogenesis has also been investigated 
in DS neurospheres isolated from post-abortion fetal 
tissue. Considerably fewer neurons emerged after in vitro 

differentiation of neurospheres derived from the brain of 
DS compared to controls, while the numbers of glial cells 
remained unchanged. It is unclear though whether the 
number of neurons generated from these neurospheres 
was decreased due to increased apoptosis or due to a 
preferential differentiation of neurosphere cells into glia 
(56). The lack of mutations and overexpression of APP 
in sporadic AD and in DS patients, respectively, sug­
gests that disturbances in Aβ clearance may be relevant 
to cerebral amyloid deposition in both diseases. In this 
context, it was recently demonstrated that Notch acti­
vation represses the transcription of insulin-degrading 
enzyme (IDE), the major metalloprotease involved in the 
proteolysis of Aβ peptide in the brain (57) providing a 
novel functional link between Notch activation and Aβ 
accumulation in sporadic AD and DS cases (58). These 
results are in agreement with pieces of experimental 
evidence showing that γ-secretase-mediated Notch sign­
aling worsens brain damage and functional outcome in 
ischemic stroke (59), suggesting a potential role for Notch 
signaling in the pathogenesis of AD given that the inci­
dence of AD and vascular dementia is greatly increased 
following cerebral ischemia and stroke. The opposite 
activity of Notch in FAD compared to sporadic AD rein­
forces the striking differences between both clinical enti­
ties as suggested (60).

Multiple sclerosis

As previously described, Notch plays a critical role 
in the development of oligodendrocytes (OL) and has 
become a focus of attention in neurodegenerative dis­
eases where oligodendrocytes are lost and axons demye­
linated such as multiple sclerosis (MS). In the absence 
of pathology, Notch stimulates Schwann cell precursor 
differentiation and accelerates Schwann cell formation 
and proliferation in perinatal nerves during embryo­
genesis, but delays myelination in development and in 
adulthood (99). In the developing rat optic nerve, the 
differentiation of oligodendrocyte precursor cells (OPCs) 
is inhibited by Notch activation. Notch1 is expressed in 
OPCs and Jagged1 in axons, and it has been proposed 
that the expression of Jagged1 is downregulated to allow 
myelination (89). Thus, in this scenario, Notch seems to 
act as a restrictive rather than an instructive signal to 
keep the cells in their current developmental stage. On 
the contrary, the activation of the noncanonical Notch 
pathway by F3/contactin leads to OPC maturation and 
myelination via NICD/deltex interaction (61, 62, 100). 
MS is a neuroinflammatory disease associated with 
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demyelination that results in axonal degeneration. The 
process called remyelination can occur as a spontane­
ous regenerative process following demyelination. NSCs 
could be a potential source of OL, and it was demon­
strated that Notch signaling maintains the pool of NSCs 
in their undifferentiated state enabling the formation of 
OL (63, 64). In demyelinating diseases, there is activa­
tion of astrocytes with increased JAG-1 expression, and 
this signal blocks OPC differentiation and myelination 
(65). Moreover, JAG-1 is absent in remyelinated lesion, 
suggesting that JAG 1-induced Notch signaling needs to 
be ended to allow myelin repair. Why the remyelinating 
processes fails in demyelinating diseases needs further 
study. However, Nakahara et al. (66) suggested that the 
problem in remyelination could be related to a failure 
of NICD nuclear transport after F3/contactin activation 
of Notch1 receptor in OPCs. In chronic demyelinated 
lesions, it was found that an increase in the expression 
of TAT-interacting protein 30 kDa (TIP30), a direct inhibi­
tor of importin β, is the mediator of nuclear translocation 
of NICD (66). These dual roles of Notch signaling through 
canonical and/or noncanonical pathways in the demy­
elinating and remyelinating process needs to be fully 
elucidated to assess its real therapeutic value.

Brain tumors

Gliomas (ependymomas, oligodendrogliomas, and astro­
cytomas) and medulloblastoma (brain tumor of the cere­
bellum) are the most common primary brain tumors 
in adults and children, respectively. These tumors are 
thought to arise from glial cells in which Notch signaling 
plays a fundamental role during development. Recent 
findings have shown that deregulated Notch signaling 
contributes to the malignant potential of these tumors 
(67–69). Growing pieces of evidence point toward an 
important role for cancer stem cells in the initiation and 
maintenance of glioma and medulloblastoma. The study 
of human glioma specimens showed that Notch1 mRNA 
and protein expression were increased in the glioma 
cells compared with adjacent or normal tissue (67). More­
over, this upregulation correlates with the severity of the 
disease (67). Glioma cells share growth characteristics 
and gene expression patterns with normal NSCs. Several 
Notch ligands have been postulated to be responsible 
for the activation of Notch signaling within the glioma. 
A possible source of Notch ligands are endothelial cells 
adjacent to receptor-positive cancer cells (70, 71). The 
extracellular matrix might also provide ligands for 
Notch, such as Fibulin-3, a matrix protein that is absent 

in normal brain but upregulated in gliomas. Fibulin-3 
expression correlated with expression levels of Notch-
dependent genes (72). Notch signaling is also involved 
in tumor angiogenesis regulating VEGF actions (as 
described above). During development, VEGF stimu­
lates angiogenesis and lymphangiogenesis through the 
VEGFR-2 and VEGFR-3 tyrosine kinases expressed in 
endothelial cells. However, VEGFR-3, whose expression 
is restricted to the lymphatic endothelium in adulthood, 
is upregulated in the microvasculature of tumor. It was 
suggested that VEGF induces the Notch ligand (DLL-4) in 
endothelial cells and that Notch signaling activation by 
DLL-4 reduces VEGF-3 gene expression and endothelial 
sprouting (73, 74). In addition to Notch signaling upreg­
ulation, increase in Sonic hedgehog (Shh) activity has 
been identified in medulloblastomas (75). As Notch sign­
aling, Shh pathway has been implicated in a range of spo­
radic tumors in various organs and tissues (76). Shh has 
a widespread expression pattern, and similarly to Notch, 
it plays an important role in differentiation and prolifera­
tion during development (77). Shh signaling is primarily 
responsible for the dramatic expansion of the granule 
cell progenitor precursor pool in the cerebellum due to its 
mitogenic effect (78). Likewise, Notch signaling also stim­
ulates granule cell proliferation through the upregulation 
of Hes1 (69). Moreover, Hes1 expression is also induced by 
Shh in a noncanonical signaling, suggesting a common 
downstream effector of these two pathways (79). Indeed, 
the inhibitions of Shh and Notch pathways showed a 
reduced tumor progression (80).

A summary of the consequences of Notch signal­
ing activation in diseased adult brain is summarized in 
Table 2.

Inhibition of Notch signaling as a 
therapeutic target in neurological 
diseases
The Notch pathway is dysregulated in different neuro­
logical diseases, and its pharmacological modulation 
may be a potential therapeutic target. Compounds cur­
rently described as modulators of Notch signaling include 
inhibitors of ADAM10 or γ-secretase activity (which are 
necessary for Notch processing) and small molecules that 
act as posttranscriptional inhibitors of Notch. As ADAM10 
is implicated in the shedding of dozens of substrates 
that drive cancer progression and inflammatory disease, 
including E-cadherin, EGF, ErbB2, and inflammatory 
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cytokines, it has become the focus of intense interest as a 
potential drug target for disease treatment.

Different α-secretase inhibitors (ASI) and γ-secretase 
inhibitors (GSIs) were tested for the inhibition of glioblas­
toma growth, and pieces of experimental evidence showed 
that: 1) the treatment of cultures obtained from glioma 
samples with GSIs reduced the proliferation of the cells 
and induced their differentiation (81), 2) In vitro studies 
on medulloblastoma growth demonstrated that treatment 
with GSIs did not deplete the totality of the cells, but a 
population required for tumor xenograft formation (82). 
In contrast to these data, in vivo studies have pointed out 
that in Shh pathway-driven medulloblastomas, Notch 
signaling is not essential for the initiation, engraftment, 
or maintenance of the tumor, and that inhibition of the 
Notch pathway might not be the most suitable therapeu­
tic approach (83); 3) Local nanoparticle delivery of ASIs, 
but not GSIs, increased the survival time significantly 
in a glioblastomas stem cell xenograft treatment model, 
decreased tumor size, and Notch activity (84). This work 
indicates ASIs as an alternative to GSIs for treatment of 
glioblastomas and possibly other cancers as well. The 
potential of inhibition of Notch activity for the therapy of 
different brain tumors is currently under analysis in dif­
ferent preclinical assays (85).

GSIs have also been tested in animal models of AD 
(86) in an attempt to treat patients by blocking the pro­
duction of Aβ peptides and subsequent plaque forma­
tion. Given that the potential patient population for the 
treatment of Alzheimer’s disease is elderly, the profound 
effects of Notch disruption seen in embryonic and fetal 
development may not be of concern. However, it is now 
known that Notch signaling plays an important role in the 
ongoing differentiation processes of the immune system 
and the gastrointestinal tract. As a result, it may be nec­
essary to separate γ-secretase activity on APP from Notch 
processing activity to achieve an adequate safety margin 
for clinical development of a GSI therapeutic agent for 
Alzheimer’s disease. Additionally, GSIs were also tested 

for their potential utility in the treatment of ischemia. In 
this context, experiments in animal models showed that: 
1) the administration of a GSI increased the number of 
newly generated hippocampal neurons in the CA1 region 
(87) reinforcing the concept that Notch signaling contrib­
utes to the regulation of neurogenesis in the adult brain 
after ischemia; 2) treatment of microglia with GSIs reduces 
NF-κB/p65 nuclear translocation, together with a decrease 
in microglia proliferation and expression of IL-1β and TNF-
α, critical inflammatory cytokines in the damage after the 
ischemic insult (88).

While these studies highlight the significant progress 
in the development and potential efficacy of synthetic 
ASIs and GSIs, there are still many challenges to over­
come. For example, some in vitro studies have shown 
stimulus-dependent redundancy for the ADAMs involved 
in specific shedding events, which if recapitulated in vivo, 
may limit the effectiveness of treatment with specific 
ADAM10 inhibitors (89). Regarding GSIs, it is important 
to note that γ-secretase is an unconventional aspartyl 
protease that resides and cleaves its substrates within 
the lipid bilayer. In fact, γ-secretase complex belongs to 
a group of proteases called intramembrane cleaving pro­
teases (I-CLiPs) that are membrane-embedded enzymes. 
These enzymes hydrolyze transmembrane substrates, 
and the residues essential for catalysis reside within the 
boundaries of the lipid bilayer. γ-Secretase displays poor 
substrate specificity, but a functional γ-secretase cleavage 
has been clearly demonstrated for some substrates such 
as Notch, N-cadherin, and ErB4. Proteolysis of N-cadherin 
leads to degradation of the transcriptional factor CREB-
binding protein (CBP), and cleavage of ErB4 inhibits 
astrocyte differentiation by interacting with repressors 
of astrocyte gene expression. The fact that GSIs block 
the processing of different proteins may be the main 
cause of toxicity in preclinical testing and represents a 
major source of concern in clinical trials. The discovery 
that some small organic molecules and some nonsteroi­
dal anti-inflammatory drugs may modulate the cleavage 

Table 2 Consequences of Notch activation in neurological diseases.

Disease Result of Notch activation Reference

Ischemia Proliferation of progenitors (106)
Inhibition of terminal differentiation (87, 106)
Participation in microglial activation (46, 88)

AD Interference in APP and Aβ metabolism (47, 58)
MS Canonical pathway: proliferation of NSC and restrained differentiation (63–65)

Noncanonical pathway: OPC differentiation (61, 62)
Brain tumor Glial cell overproliferation (67–69, 79) (82)

AD, Alzheimer disease; MS, multiple sclerosis.



472      P. Mathieu et al.: Notch signaling and neural dysfunction

activity of γ-secretase on APP without interfering with the 
cleavage of other substrates has led to intensive efforts in 
designing γ-secretase modulators that appear much more 
attractive from a safety point of view than traditional GSIs 
in the treatment of Alzheimer disease (90).

Emerging evidence implicates microRNAs (miRNAs) 
as being intimately involved in the regulation of Notch 
signaling and different neurological disorders such as 
tumors (acting as either oncogenes or tumor suppres­
sors), stroke, and hypoxia. MiRNAs are small noncoding 
RNA molecules that participate in all cellular processes 
of the organism, including development, differentiation, 
metabolism, and programmed cell death, among others 
(91, 92). Pieces of experimental evidence showed that: 1) 
a particular miRNA, miR-146a, acts as a tumor suppressor 
in gliomas through the inhibition of Notch1 posttranscrip­
tionally. miR-146 seems to be able to integrate informa­
tion from various pathways to detect whether they are 
moving in a protumorigenesis direction and then coun­
teract that trend if necessary (93); 2) miR-124a is preferen­
tially expressed in neurons and specifically binds to JAG-1 
mRNA suppressing its expression. Following a stroke, 
this miRNA is downregulated allowing JAG1 expression in 
the NSCs and promoting NSC proliferation by the Notch 
pathway activation (94); and 3) upregulation of miR-210, a 
hypoxia-specific miRNA, may activate the Notch pathway 
and promote vessel formation (95). Knowledge acquired 
on miRNA function, expression, and deregulation has 
opened up new opportunities for therapeutic interven­
tion. Emerging preclinical studies are demonstrating the 
feasibility of inhibiting overexpressed miRNAs or restor­
ing the expression of lost miRNAs. The therapeutic use of 
miRNAs as single agents or in combination with current 
treatments may offer technical advantages over other 
approaches. However, in order to accelerate the transla­
tion of this knowledge into the clinics, several aspects 
must be improved and considered such as standardiza­
tion of pharmacological preparations, pharmacokinetic 
and pharmacodynamic analysis to ensure that therapeutic 
doses of miRNAs are achieved in target tissues, the inter­
action with the host immune system, as it may improve 
or weaken the therapeutic effects of a particular miRNA 
and the consequences of long treatment periods in human 
clinical settings.

Conclusions
The first description by J.S. Dexter of a Notch gene muta­
tion in Drosophila was made in March 1913 and now after 
nearly a century of research on Notch signaling, emerg­
ing concepts in the last years suggest that the develop­
mental functions of the Notch signaling pathway may 
be reused throughout life to guarantee brain adaptation. 
However, we still have much to learn about the many 
roles of Notch in neural functionality and the structure 
of axons and dendrites in adulthood. There has been an 
impressive recent progress in the comprehension that this 
simple signaling mechanism produces such a bewilder­
ing array of downstream consequences, including com­
pletely different effects in the same cell at different times. 
However, further in  vivo experiments are necessary to 
better understand the relevance of the two Notch signal­
ing mechanisms (canonical and noncanonical), the dual 
roles of Notch signaling as a homeostatic factor both in 
health and disease. Conceptually, the identification of a 
link between two apparently distant physiopathological 
processes such as neurodevelopment and neurodegenera­
tion provides new perspectives in the pathophysiology of 
Notch-related neurodegenerative diseases. However, due 
to the multiplicity of gene targets and cellular processes 
regulated by Notch, it is difficult to speculate about how 
its activation may impact upon the disease course. In 
summary, it is not inconceivable that future developments 
of genetic methods to manipulate Notch signaling in adult 
brain will provide pieces of novel evidence to encourage 
Notch modulation as an accepted target for medical treat­
ment of human diseases.
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