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Gene amplification: mechanisms and involvement 
in cancer

Abstract: Gene amplification was recognized as a physi-
ological process during the development of Drosophila 
melanogaster. Intriguingly, mammalian cells use this 
mechanism to overexpress particular genes for sur-
vival under stress, such as during exposure to cytotoxic 
drugs. One well-known example is the amplification of 
the dihydrofolate reductase gene observed in methotrex-
ate-resistant cells. Four models have been proposed for 
the generation of amplifications: extrareplication and 
recombination, the breakage-fusion-bridge cycle, dou-
ble rolling-circle replication, and replication fork stalling 
and template switching. Gene amplification is a typical 
genetic alteration in cancer, and historically many onco-
genes have been identified in the amplified regions. In 
this regard, novel cancer-associated genes may remain to 
be identified in the amplified regions. Recent comprehen-
sive approaches have further revealed that co-amplified 
genes also contribute to tumorigenesis in concert with 
known oncogenes in the same amplicons. Considering 
that cancer develops through the alteration of multiple 
genes, gene amplification is an effective acceleration 
machinery to promote tumorigenesis. Identification of 
cancer-associated genes could provide novel and effective 
therapeutic targets.
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Introduction

Gene amplification is defined as an increase in copy 
number of a restricted region of a chromosome arm 
(1). This amplified region is called an ‘amplicon’. Gene 
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amplification plays a crucial role in the normal develop-
mental program, including in the amplification of chorion 
genes in Drosophila melanogaster ovaries (2) and ampli-
fication of rDNA in amphibian oocytes (3). Gene amplifi-
cation in somatic cells was first observed by Breuer and 
Pavan (1955) during a morphological study of salivary 
gland chromosomes of Rhynchosciara americana larvae, 
a species of fly (4). The authors found that certain loci on 
salivary gland chromosomes swelled enormously, produc-
ing ‘DNA puffs’, and that the quantity of DNA in these loci 
increased compared with other loci, either simultaneously 
or after the swelling (5). In 1957, Rudkin and Corlette pro-
vided the first experimental evidence of gene amplifica-
tion in Rhynchosciara angelae by measuring the quantity 
of absorbing material in a chromosome using microspec-
trophotometry (6). Large quantities of these develop-
mental genes encoding rRNAs and structural proteins for 
eggshells and cocoons are necessary during development. 
In recent studies, two additional amplicons encoding a 
variety of proteins, including transporters and proteases, 
were identified in Drosophila follicle cells by a compara-
tive genomic hybridization (CGH) array approach (7). In 
addition to its functions in physiological processes, gene 
amplification has attracted much attention for its involve-
ment in cellular adaptation against cytotoxic drugs and, 
interestingly, in tumorigenesis (1, 8).

The first demonstration of gene amplification in cul-
tured mammalian cells was the amplification of the dihy-
drofolate reductase (DHFR) gene in the AT3000 line of 
methotrexate (MTX)-resistant murine sarcoma 180 cells 
in 1978 (9). DHFR catalyzes the reduction of dihydrofolate 
to tetrahydrofolate, which is used in glycine, purine, and 
thymidylate synthesis. Methotrexate, a 4-amino analog of 
folic acid, inhibits DHFR activity and thus causes arrest 
of DNA replication and cytotoxicity (10). After exposure 
of cells to methotrexate, the surviving cells exhibited an 
increased copy number of the DHFR gene. This phenome-
non was observed in several cell types, including Chinese 
hamster ovary cells as well as the AT3000 cell line. The 
occurrence of gene amplification in drug-resistant cells 
was observed not only with DHFR but also with the car-
bamoyl-synthetase 2 aspartate transcarbamylase and 
dihydroorotase (CAD) gene. Amplification of the CAD gene 
was observed in Syrian hamster cells resistant to N-phos-
phonacetyl-l-aspartate, an inhibitor of aspartate transcar-
bamylase (11).

The amplification mechanism of the DHFR gene in 
MTX-resistant cells has been frequently employed for 
recombinant protein production in mammalian cells (12, 
13). Because the production of protein pharmaceuticals, 
including cytokines and humanized antibodies, requires 

the use of cultured mammalian cells, a robust method for 
the production of large amounts of recombinant protein 
in mammalian cells is critically important. In the general 
method for mammalian cell-mediated production of 
recombinant proteins, the plasmid harboring the recom-
binant gene and a second plasmid containing a selection 
gene are first co-introduced into cells. The DHFR gene is 
the most frequently used selection gene. By adding MTX 
to the cells, the target gene co-amplifies gradually (13). 
Although almost all cells die by MTX treatment, the sur-
viving cells that overproduce DHFR frequently contain 
several hundred to a few thousand copies of the recombi-
nant gene (14). This method allows the production of cells 
that hyper-produce the target gene. Most DHFR-ampli-
fied cells produce up to 10- to 20-fold more recombinant 
protein than unamplified cells (12).

In 1976, Biedler and Spengler analyzed the ampli-
fied DNA in the MTX-resistant mammalian cell line and 
observed elongated chromosomal structures, which 
they named ‘homogeneously staining regions’ (HSRs) 
(15). Trypsin-Giemsa staining was used to visualize the 
differential banding pattern along the length of meta-
phase chromosomes, and staining showed that the 
long chromosome segments in drug-resistant Chinese 
hamster cells did not show any discrete ‘bands’ as did 
normal Chinese hamster cells (15). HSRs were thus easily 
recognizable.

Double minute chromosomes (DMs), which are small 
and often paired extrachromosomal elements, were also 
observed in MTX-resistant Chinese hamster cells (16). DMs 
vary in size among different cell lines and even within 
the same cells. They replicate in the cell cycle without 
centromeres (17). The DHFR gene tends to be amplified 
either on DM or in a HSR configuration, depending on the 
cell line, although the reason for such tendency remains 
unclear (17).

In this review, we first discuss the mechanisms of 
gene amplification and then focus on gene amplification 
in cancer. We will introduce typical oncogenes localized in 
amplicons and discuss their therapeutic potential.

Mechanisms of generation  
of amplicons
As described above, gene amplification is detected in 
two forms: HSRs and DMs. DMs are circular extrachro-
mosomal elements that replicate autonomously and lack 
a centromere and telomeres (18). Although gene amplifi-
cation is often observed in cancer and other degenerative 
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Volkert and Broach (27). Subsequently, a similar system 
was proposed for drug resistance gene amplification (28). 
In 2005, Watanabe and Horiuchi described a novel DRCR 
system of gene amplification based on break-induced 
replications (BIRs) in yeast (29). The authors used engi-
neered yeast, in which a DSB occurs on a chromosome, 
and it yielded products similar to HSRs and DMs observed 
in higher eukaryotes. This system was recently improved 
for yeast and mammalian cells by using the cre-lox system 
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Figure 1 Model of gene amplification generated by extrareplication 
and recombination (17, 37, 105). 
This type of amplification is triggered by aberrant replication in 
a replication fork, resulting from a single additional initiation of 
replication within the replication fork. In this replication fork, there 
is a loop structure including the two free DNA strands (106). These 
strands can form three types of DMs by ligase. Some of these circu-
lar DNAs would be recombined into chromosomes, generating HSRs.

disorders, the mechanisms of amplicon generation 
remain largely unknown. Four hypotheses have been pro-
posed to explain the generation of amplicons: extrarep-
lication and recombination, the breakage-fusion-bridge 
(BFB) cycle, double rolling-circle replication (DRCR), 
and replication fork stalling and template switching 
(FoSTeS).

Extrareplication and recombination

In 1972, Smith and Vinograd found that extrachromosomal 
circles were produced by transient treatment of cultured 
human cells with cycloheximide (19). Later, Woodcock and 
Cooper showed that transient inhibition of DNA synthesis 
by cycloheximide induced aberrant replication in human 
cultured cells, in which some DNA fragments were repli-
cated more than once in normal replication (20). A previous 
study of chromosomes showed that all primary neuroblas-
toma cells had only DMs, although neuroblastoma cell 
lines cultured for a longer period of time had DMs and/
or HSRs (21). These data imply that the primary product 
of amplification is DMs, and that HSRs are then produced 
by DMs. Furthermore, Osheim and Miller discovered multi-
forked chromosomal structures, called ‘bubbles’, in the 
follicle cells of Drosophila, where the chorion gene was 
amplified (22). These studies propose a model of extrarep-
lication and recombination shown in Figure 1.

BFB cycle

The BFB cycle model (Figure 2) was proposed by McClin-
tock using Zea mays in 1951 (23). She confirmed that 
BFB cycles occurred in chromosome 9 following X-ray 
treatment that induced a double-stranded break (DSB). 
BFB cycles could be induced by some clastogenic 
drugs in Chinese hamster fibroblast cells, and clones 
in which gene amplification occurred were resistant to 
these drugs (24). BFB cycles have also been observed in 
human cancer cells. For example, four osteosarcoma cell  
lines showed the existence of anaphase bridges, dicen-
trics, chromosomal anomalies, and multipolar mitotic 
figures (25).

DRCR

The DRCR system (Figure 3) was proposed by Futcher 
in 1986 for amplification of the yeast circular 2 micron 
plasmid (26), and later experimentally confirmed by 
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to induce DRCR (30). The DRCR system also yielded HSR/
DM-type products similar to those of cancer cells. Although 
there is no evidence that DRCR naturally occurs in cancer 
cells, these findings imply a relationship between DRCR 
and gene amplification in tumor cells.

FoSTeS

The FoSTeS model (Figure 4) was proposed by Slack, 
Thornton, Magner, Rosenberg, and Hastings in 2006 

to explain gene amplification in Escherichia coli under 
stress (31). The authors discovered three pieces of 
data supporting FoSTeS. First, the junction sequences 
between amplified regions showed as little homology 
as 4–15 bp, indicating that homologous recombination 
(HR) does not occur, and were separated by 7–32 kb, 
which is too long for amplification to occur within a rep-
lication fork. Second, the 5′ exonuclease domain of DNA 
polymerase I was essential for amplification, suggesting 
that the lagging strand is involved in this amplification. 
Third, the frequency of amplification was reduced by 
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Figure 2 The BFB cycle.  
First, a DSB occurs in a chromosome, such that it loses a telomere (107). By replicating, sister chromatids that lack telomeres are produced. 
The two ends lacking telomeres fuse and form a dicentric chromosome. At anaphase, the two centromeres in the dicentric chromosome 
are pulled apart by kinetochore microtubules and form a chromatid bridge. This abnormal separation of the chromosome causes a random 
position on the chromatid bridge to be broken, and produces a new end lacking a telomere. This end fuses, forming a new dicentric chro-
mosome and produces a new end without a telomere. Repeated cycles generate amplification with inverted repeats (HSR) (A) and extrachro-
mosomal amplicons (DMs) (B) (108).
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If the replication fork arrests (A) or BFB cycles occur (B) and subsequently cause a DSB on a chromosome, BIRs (109) between sequences 
with homology occur in both broken ends, and two replication forks chase each other, facilitating gene amplifications.
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overexpression of the Exo I 3′ exonuclease, indicating 
that the 3′ ends of DNA are important for amplification.  
A previous study suggested that FoSTeS may occur in 
Pelizaeus-Merzbacher disease patients, in which ampli-
fication of the proteolipid protein 1 (PLP1) gene was 
found (32). Furthermore, another study supported the 
FoSTeS model to explain genomic rearrangement and 
sequential complexities of two regions on the short arm  
of human chromosome 17 associated with several dis-
eases: reciprocal Potocki-Lupski microduplication 
syndrome, Smith-Magenis microdeletion syndrome, reci
procal Charcot-Marie-Tooth disease type 1A, and dupli-
cation/hereditary neuropathies with liability to pressure  
palsies (33).

Gene amplification in cancer
Gene amplification, or genomic DNA copy number aberra-
tion, is frequently observed in some solid tumors and has 
been thought to contribute to tumor evolution (1, 34–36). 
Chromosomal aberrations are found in DMs, HSRs, or 
interspersed regions throughout the genome. These occur 
in a wide variety of tumors and appear to be common in 
neoplastic cells and very rare in non-neoplastic cells (35, 
36). Importantly, amplified oncogenes, such as MYC, 
MYCN, epidermal growth factor receptor (EGFR), and 
v-erb-b2 avian erythroblastic leukemia viral oncogene 
homolog 2 (ERBB2), have been found in amplicons (34, 
37). MYC was the first oncogene that was proven to be 
amplified in a variety of tumor cells, including the neu-
roendocrine line derived from colon carcinoma, small-cell 
lung carcinoma, plasma cell leukemia, and murine osteo-
carcinoma (34, 37).

Gene amplification of oncogenes could be detected by 
several methods, including DNA-based techniques (PCR or 
Southern blot), molecular cytogenetic techniques (FISH, 
fluorescence in situ hybridization) with gene-specific 
probes, and comparative genomic hybridization (CGH) 
(38). PCR, Southern blot and FISH are mostly restricted to 
the analysis of known amplified genes (38). In contrast, 
CGH does not show this limitation. Genome-wide scan-
ning of amplified chromosomal regions with CGH enables 
the detection of previously unknown amplified genes (38, 
39), but it has limited sensitivity and resolution (39, 40). 
Therefore, amplification and copy number losses and 
gains can only be detected at limited resolution, in the 
5–10 Mbase, and 2 Mbase levels, by standard CGH tech-
niques if metaphase chromosomes are used as the target 
(39). To overcome this limitation, array-based CGH was 

developed for both detection and mapping of amplified 
genes in 1998 (39, 41). The method of using well-defined 
genomic clones, such as bacterial artificial chromosome 
(BAC), P1 bacteriophage artificial chromosome (PAC), or 
cosmid clones is currently widely used (39, 41).

The use of next-generation sequencing (NGS), copy 
number variation (CNV), and structural variation observed 
in tumors has been recently extensively analyzed. NGS 
demonstrated high sensitivity and high-throughput abili-
ties in terms of types and sizes of variants that can be 
detected (42, 43). Analysis of the cancer genome enables 
the identification of regions of significant CNVs and novel 
oncogene candidates as potential therapeutic targets (44, 
45). Especially, NGS can be used to identify unknown 
fusion genes as diagnostic and therapeutic targets. In the 
following section, typical cancer-associated genes in the 
amplicons are described in detail.

Oncogenes in the amplicons
One of the most investigated amplicons is localized on 
chromosome 17. In the 17q12-q21 amplicon, various can-
cer-associated genes are co-amplified with ERBB2, an 
important ‘driver’ oncogene for breast cancer. Here, we 
refer to the 17q12-q21 amplicon as the ERBB2 amplicon. 
From the clinical perspective, ERBB2 amplification occurs 
in 10–34% of breast cancer and this amplification is a sig-
nificant predictor of relapse and survival in human breast 
cancer (46–48). In breast cancer, gene amplification of 
ERBB2 is well correlated with its protein overexpression. 
Moreover, ERBB2 amplification is observed also in gastric 
and esophageal cancers (49–51). When ERBB2 is ampli-
fied, heterodimer formation between ERBB2 and other 
EGFR family members on the cell surface is promoted. 
Formation of the heterodimer is considered to activate 
proliferation and survival signaling pathways, and thus 
contribute to oncogenesis (52). ERBB2 amplification may 
cause the formation of not only heterodimers but also 
homodimers, and this may also contribute to oncogen-
esis. Thus, ERBB2 has been a target of anticancer agents. 
Trastuzumab, a 95% humanized monoclonal antibody, is 
one of the well-known anticancer agents against ERBB2 
that targets the extracellular domain of the ERBB2 recep-
tor. This drug is effective in breast cancer patients with 
tumors exhibiting high expression or amplification of 
ERBB2.

Recent studies demonstrate that multiple overex-
pressed genes in amplicons, in addition to the typical 
driver oncogenes, also contribute to tumorigenesis. In 
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fact, several genes that are co-amplified with ERBB2 are 
involved in tumorigenesis and progression. GRB7 (growth 
factor receptor-bound protein 7) is known to bind recep-
tor tyrosine kinases and mediate signals to downstream 
effectors (53). Moderate expression of ERBB2 alone did 
not generate transformed foci; however, co-expression of 
GRB7 together with ERBB2 efficiently induced foci (54). 
Moreover, GRB7 was reported to bind ERBB2 with high 
affinity (55). Together, these results support the oncogenic 
cooperation between ERBB2 and GRB7.

Retinoic acid receptor alpha (RARα) is also co-ampli-
fied with ERBB2 in 23–32% of human ERBB2-positive 
breast cancers. The function of RARα in ERBB2-positive 
tumors is somewhat controversial. One report shows that 
RARα is associated with sensitivity to the antiprolifera-
tive/cytodifferentiating action of all-trans retinoic acid, 
which stabilizes the effect of lapatinib, a dual inhibitor of 
EGFR and ERBB2 (56, 57). 

Steroidogenic acute regulatory protein (StAR)-related 
lipid transfer domain containing 3 (STARD3), also known 
as metastatic lymph node 64 protein (MLN64), in the 
ERBB2 amplicon is a protein that independently con-
tributes to the malignant transformation of cancer. Via 
the StAR-related lipid transfer (START) domain, STARD3 
binds cholesterol and promotes steroidogenesis. Overex-
pression of STARD3 thus promotes steroid hormone pro-
duction in cancer cells, which may support the growth of 
hormone-responsive tumors (58, 59).

DNA topoisomerase 2-alpha (TOP2A) shows ampli-
fication independent of ERBB2, despite its vicinity to 
ERBB2 on the chromosome, suggesting that the region 
at the ERBB2 locus is composed of at least two distinct 
amplicons that harbor either ERBB2 or TOP2A (49, 56, 60, 
61). However, more cases with TOP2A aberrations were 
reported for tumors with ERBB2 amplification than those 
without amplification (56). The TOP2A enzyme gener-
ates DNA breaks during cell division, and thus is essen-
tial for the cell cycle (62). TOP2A is targeted by cytotoxic 
agents such as anthracyclines, etoposide, and teniposide 
(52). In breast cancer, TOP2A amplification is a predictive 
marker for response to anthracyclines (63). Together these 
studies show that the significance of gene amplification is 
to simultaneously increase the amount of factors that are 
involved in tumorigenesis or progression either indepen-
dently or cooperatively.

In addition to chromosome 17, amplicons also exist 
in other chromosomes (Figure 5) (64). Microphthalmia-
associated transcription factor (MITF), located on 3p13, is 
a lineage-specific oncogene that is occasionally amplified 
in melanoma (65). MITF targets genes involved in cell-
cycle arrest (p21 and INK4a), cell proliferation (TBX2 and 

CDK2), and cell survival (B-cell CLL/lymphoma 2, BCL2) 
and differentiation (TYR, TYRP1, DCT, MART1, AIM-1, and 
PMEL17) (66). MITF is amplified in approximately 10–20% 
of primary melanoma cases, and the incidence is higher 
in metastatic melanoma. Furthermore, in metastatic mela-
noma, MITF amplification is related to a decrease of five 
years in survival (65). In addition, MITF can be used as 
an epithelioid melanoma marker, but not as a marker for 
rarer desmoplastic and spindle-cell melanoma variants 
(67, 68).

EGFR gene amplification in chromosome 7p12 causes 
many types of cancers, including malignant melanoma, 
breast cancer, colorectal cancer, and lung cancer (64, 
69). EGFR is a member of the receptor tyrosine kinase 
ErbB family that is involved in cell proliferation, apopto-
sis resistance, survival, invasion, and migration. Ligand 
binding to EGFR induces a conformational change of 
the receptor and subsequent homo- or heterodimeriza-
tion with other ErbB family proteins that result in the 
autophosphorylation of a tyrosine residue near the 
C-terminus. Downstream signaling pathways, such as 
RAS-RAF mitogen-activated protein kinase (MAPK) or 
PI3K-Akt pathways, are then activated via the phospho-
rylated tyrosine residues of EGFR (70). In glioblastoma 
multiforme, which accounts for the majority of malignant 
gliomas, EGFR overexpression is correlated with poor 
overall survival (71). EGFR amplification and overexpres-
sion are predictors of EGFR-targeted drugs.

One of the most successful EGFR-targeted therapies 
is the class of small molecule tyrosine kinase inhibitors 
(TKIs), which include gefitinib and erlotinib. TKIs block 
EGFR-mediated signal transduction by competing with 
ATP for binding to the tyrosine kinase domain of EGFR 
(72). In non-small-cell lung cancer, EGFR amplification is 
correlated with better response to gefitinib, which is more 
effective for patients carrying a somatic mutation in the 
EGFR gene (64). Conversely, some aberrations, like MET 
amplification, were reported to confer TKI resistance to 
EGFR-related cancer (73, 74). Therefore, combination ther-
apies that target both EGFR and secondary aberrations 
would be more practical.

Another therapy is the EGFR-specific monoclonal 
antibody cetuximab. Unlike TKIs, cetuximab prevents 
EGFR signaling transduction by interfering with ligand 
binding, resulting in inhibition of EGFR dimerization 
and autophosphorylation. In addition, cetuximab report-
edly induces EGFR internalization and destruction (72). 
Although cetuximab was proven to be efficient for EGFR 
in colorectal cancer, the presence of a KRAS mutation is 
significantly associated with poor response (75). Other 
studies demonstrate that v-Raf murine sarcoma viral 
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Figure 5 Amplicons on various chromosomes.  
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oncogene homolog B (BRAF) mutation and PI3KCA muta-
tion are also related to cetuximab resistance (76, 77). It 
may be necessary to examine not only EGFR amplification 
or mutation, but also the status of other drug resistance-
related genes.

Mouse double minute 2 homolog (MDM2) gene 
amplification in chromosome 12q14 is found in at least 
19 types of tumors, including sarcoma, esophageal 
carcinoma, and neuroblastoma (78). MDM2 is a RING 
domain protein that plays an oncogenic role by inhib-
iting the p53 tumor suppressor. In most tumors, p53 is 
frequently inactivated by point mutation or deletion. 
However, even in cases in which TP53 status is not 
aberrant, MDM2 can abrogate the transcriptional activ-
ity of p53, which results in the increase of tumorigenic 
potential. In fact, transgenic mice that contain multiple 
copies of Mdm2 transgene exhibit 100% incidence of 
tumorigenesis (79). Because cancers caused by MDM2 
amplification do not require the deregulation of p53, 

MDM2 amplification and TP53 aberration tend to be 
mutually exclusive. Namely, MDM2 amplification func-
tions as a surrogate for loss or mutation of p53. Because 
of its critical role in tumor incidence, MDM2 could be 
a therapeutic target. Through chemical library screen-
ing, Nutlin 3a was identified as a small-molecule MDM2 
antagonist (80). Nutlin 3a competes with p53 for binding 
to the MDM2 N-terminus, and therefore disrupts the p53-
MDM2 interaction, which results in the recovery of wild-
type p53. The Nutlin 3a derivative RG7112 is currently in 
clinical trials (81).

The cyclin D1 (CCND1) gene on chromosome 11q13 
that encodes the cyclin D1 protein is amplified in various 
cancers, including breast, head and neck, lung, and 
bladder cancers (82). CCND1 forms a complex with cyc-
lin-dependent kinase (CDK) 4 or 6 and phosphorylates 
retinoblastoma (RB) protein, thereby initiating the G1/S 
cell-cycle transition (83). Furthermore, CCND1 has a CDK-
independent role as a transcriptional regulator. CCND1 
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interacts with various steroid hormone receptors and 
transcription factors, including estrogen receptor-alpha 
(ERα), androgen receptor (AR), peroxisome proliferator 
activated receptor gamma (PPARg), and signal transducer 
and activator of transcription 3 (STAT3) (84). In breast 
cancer, CCND1 amplification is found in 15–20% of tumors 
(64, 84). Most CCND1 amplifications are observed in ER-
positive breast cancer and associated with poor prognosis 
and resistance to tamoxifen therapy (85).

CCND1 amplification is frequently accompanied by 
co-amplification of the chromosome 11 open reading 
frame 30 (EMSY) gene, which is located at the same locus 
as CCND1 11q13. EMSY binds to the transactivation (TA) 
domain of breast cancer 2, early onset (BRCA2) and conse-
quently inhibits its transcriptional activity (86). Therefore, 
EMSY amplification can be a substitute for loss or muta-
tion of BRCA2 in breast cancer. Not only is EMSY amplifi-
cation associated with poor prognosis, but patients with 
co-amplification of EMSY and CCND1 also show worse 
outcomes than those with neither or one of the CCND1 and 
EMSY genes amplified (85). P21 activated kinase 1 (PAK1), 
located at 11q13, also shows occasional co-amplification 
with CCND1 (87). PAK1 phosphorylates ERα, resulting in 
induction of upregulation of ERα-controlled proteins, 
like CCND1 (88). Therefore, PAK1 predicts for tamoxifen 
resistance.

Because CCND1 amplification is one of the most 
common copy number alterations in human cancer (44), 
inhibiting CCND1 function could be an attractive therapy. 
As the well-known role of CCND1 is to induce the G1/S 
transition together with CDK4/6, CDK inhibitors that 
compete with ATP for binding to the active site of the 
kinase have been developed, and some have progressed to 
clinical trials (83). However, although such drugs exhibit 
beneficial effects to some extent, therapies focused on 
inhibiting CDK activity are incomplete, as CCND1 has 
CDK-independent functions. To repress the entire negative 
response caused by CCND1, therapies that regulate CCND1 
at the protein level would be required.

The v-myc avian myelocytomatosis viral oncogene 
homolog (C-MYC) amplification in chromosome 8q24 
is one of the most frequent copy number alterations 
in human cancer (44). C-MYC is a basic-helix-loop-
helix-zipper (bHLHZ) transcription factor that activates 
various genes related to cell proliferation, apoptosis and 
inhibition of differentiation. C-MYC exerts its effect by 
forming a heterodimer with its partner bHLHZ protein 
MYC associated factor X (MAX), followed by binding 
specific DNA sequences called E-box sequences (89). 
In breast, colon, and lung cancers, C-MYC is proposed 
as the driver gene at the 8q24 amplicon (1). In addition, 

patients carrying C-MYC amplification have a two-fold 
increase in risk of relapse and death (90). Because 
C-MYC induces apoptosis, a synergistic action with anti-
apoptotic mechanisms, such as overexpression of BCL2 
or BCL-XL or loss of the tumor suppressor p53, has been 
observed (89).

Owing to the broad range of C-MYC expression in 
human cancer, C-MYC has the potential to be a thera-
peutic target. Indeed, a study using the dominant-nega-
tive MYC mutant Omomyc in a transgenic mouse model 
demonstrated the feasibility of MYC-targeted therapy 
(91). Although developing a therapy that directly targets 
C-MYC is considered to be difficult, two studies have 
proven that the small-molecule bromodomain inhibi-
tor JQ1 exhibits an anti-cancerous effect in multiple 
myeloma and acute myeloid leukemia, in which C-MYC 
is essential for tumor maintenance, both in vitro and in 
vivo (92, 93). Bromodomain-containing 4 (BRD4) binds 
to the acetylated lysine residue on histone proteins, 
resulting in transcriptional activation of cell-cycle-
related genes. Bromodomain inhibition by JQ1 confers 
a repression of C-MYC-induced transcription and, sur-
prisingly, MYC transcription itself. JQ1 has the potential 
to be a useful therapy for other cancers associated with 
C-MYC.

Gene amplification and drug 
resistance
AR gene amplification in chromosome Xq11-13 is found 
in castration-resistant prostate cancers (CRPCs) (94). AR 
is a steroid hormone receptor that regulates cell growth 
and survival. Androgen binding causes a conformational 
change of AR that leads to AR-ligand complex translo-
cation to the nucleus and subsequent gene transcrip-
tion (95). Because all prostate cancers except for rare 
small cell carcinomas express AR at both the mRNA and 
protein levels, androgen ablation therapy has been the 
standard treatment (94). However, many prostate cancers 
are found to acquire resistance during the therapy, and 
such CRPCs have been reported to carry AR gene aberra-
tion. AR amplification is one of the genetic changes that 
occur in CRPCs. Approximately 80% of CRPCs exhibit 
increased AR gene copy numbers, and approximately 
30% have high levels of amplification (94). AR amplifi-
cation is correlated with increased expression, resulting 
in the increase of sensitivity to androgen (95). Interest-
ingly, AR amplification was not observed before andro-
gen ablation therapy in clinical tumors, suggesting that 
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AR amplifying cells that can proliferate under low levels 
of circulating androgen were selected during the therapy 
(96). Although CRPCs can respond to low androgen 
levels, their proliferation and survival are still androgen-
dependent. Accordingly, combined therapy with gonad-
otropin-releasing hormone analogs and anti-androgens 
might be effective (97).

BRAF gene amplification in chromosome 7q34 also 
confers drug resistance. BRAF is a proto-oncogene that 
is mutated in several cancers, including melanomas 
and colorectal cancers (98). BRAF protein is a regulator 
kinase of the MAPK pathway. The most frequent muta-
tion in BRAF, V600E, predicts for sensitivity to AZ628, 
an inhibitor of BRAF and to CI-1040 and its derivative 
PD0325901, both of which are inhibitors of mitogen-
activated protein kinase kinase 1 (MEK), a kinase in the 
MAPK pathway downstream of BRAF (99, 100). Con-
versely, increased activity of CRAF which belongs to the 
same family as BRAF and a point mutation in MEK1 was 
identified as the mechanism that provides the resistance 
for AZ628 and the MEK inhibitor AZD6244 (selumetinib), 
respectively (101, 102). Recently, a colorectal cancer cell 
line model showed that V600E BRAF amplification also 
confers resistance to AZD6244 (103). BRAF amplifica-
tion has been found in clinical colorectal cancer tumors. 
BRAF amplification is also found in 20% of malignant 
melanoma cell lines, although no significant correla-
tion between copy-number increase and BRAF expres-
sion was observed (104). In colorectal cancer cell lines, 
V600E BRAF amplification increased the abundance of 
phosphorylated MEK and hindered the ability of MEK 
inhibitors (103). Interestingly, cells not treated with 
BRAF inhibitors included a small population of BRAF 
amplified cells (103). Therefore, clonal selection of cells 
carrying BRAF amplification might have occurred as a 
result of prolonged exposure to the drug. Because simul-
taneous inhibition of BRAF and MEK restores the sensi-
tivity of BRAF inhibitor-resistant cells (103), a combined 
therapy has the potential to be an effective approach.

Expert opinion and outlook
In this review, we have introduced the model of gene 
amplification and showed several examples of amplicons 

in cancer. A considerable number of oncogenes have 
been identified in amplicons and their functions in 
cancer have been analyzed in detail, which emphasizes 
the significance of gene amplification during tumorigen-
esis. Furthermore, molecular targeted therapies such as 
trastuzumab have been developed to inhibit the func-
tions of amplified oncogenes. Thus, it is reasonable to 
search for novel cancer-associated genes in amplicons 
if gene amplification accelerates the processes of tum-
origenesis and progression. One typical approach is to 
knock down each gene to evaluate its function. We are 
also trying to express all the amplified genes simultane-
ously in a cell, however, novel experimental techniques 
need to be developed for this purpose. Even though 
several models to explain the mechanisms of gene 
amplification have been proposed so far, the complete 
mechanisms remain to be resolved. Understanding of the 
mechanisms may lead to the development of diagnostic 
markers as well as novel therapeutic approaches against 
gene amplification.

Highlights
–– Gene amplification was first discovered in the 

developmental program of Drosophila melanogaster 
and thereafter recognized in the response to cytotoxic 
drugs. Gene amplification is also observed in cancer 
and is one of the major causes of tumorigenesis.

–– There are four models for the mechanisms of 
generation of amplicons: extrareplication and 
recombination, BFB cycle, DRCR and FoSTeS.

–– Oncogenes are often observed in amplicons in cancer, 
and thus analyses have been conducted to identify 
novel oncogenes in amplicons. Several co-amplified 
genes also contribute to tumorigenesis in concert with 
oncogenes. Amplified oncogenes have the potential to 
serve as diagnostic and therapeutic targets.
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