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Short Conceptual Overview

Judith Estevez-Herrera, Marta R. Pardo, Natalia Dominguez, Daniel Pereda, Jose D. Machado 
and Ricardo Borges*

The role of chromogranins in the secretory 
pathway

Abstract: Chromogranins (Cgs) are acidic proteins impli-
cated in several physiological processes, including the bio-
genesis and sorting of secretory vesicles, the generation of 
bioactive peptides, and the accumulation of soluble spe-
cies inside large dense core vesicles (LDCV). Indeed, Cgs 
are the main protein component of the vesicular matrix 
in LDCV, and they are involved in the concentration of 
soluble species like neurotransmitters and calcium. Exper-
iments using electrochemical techniques such amperome-
try, patch amperometry, and intracellular electrochemistry 
have clarified the functional roles of Cgs in the accumula-
tion and release of catecholamines. We have focused this 
review at a single event of exocytosis of chromaffin cells 
from three mouse strains lacking Cgs. Accordingly, in this 
brief review, we will focus on the role of Cgs in maintaining 
the intravesicular environment of secretory vesicles and in 
exocytosis, bringing together the most recent findings from 
studies on adrenal chromaffin cells.
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Introduction

In the mid-sixties, chromogranin A was discovered in 
the large dense core vesicles (LDCV) of chromaffin cells 
(also called chromaffin granules) (1), and it proved to be 
the first member of the subsequently identified granin 
family. A number of granins have since been described 
including chromogranin B (CgB or SgI), secretogranins II 
(SgII or CgC), SgIII (or 1B1075), SgIV (or HISL-19), SgV (or 
7B2), SgVI (or NESP55), SgVII (or VGF), and SgVIII (or pro-
SAAS). These other members of the family are found in a 
variety of tissues, such as the pituitary gland and islets of 
Langerhans, as well as in neurons (2).

The chromogranins have been implicated in the bio-
genesis of LDCV and in their sorting mechanisms (3–5). In 
addition, chromogranins (Cgs) are prohormones that con-
stitute a source of bioactive peptides [reviewed in (2, 6, 7)] 
and recently, Cgs were proposed to be directly involved 
in the development of some neurological diseases like 
schizophrenia, epilepsy, or neurodegenerative diseases, 
including Parkinson’s, Alzheimer’s disease, and amyo-
trophic lateral sclerosis (8).

Chromogranins as key intravesicular 
proteins for the aggregation of 
soluble species
The first function assigned to Cgs involved their contri-
bution to the concentration of catecholamines and other 
solutes within the LDCV of secretory cells. The ability 
of Cgs to bind catecholamines is thought to help reduce 
osmotic pressure and prevent the swelling vesicles from 
bursting (9). This hypothesis regarding the adsorption 
of catecholamines to Cgs received strong support when 
amperometric recordings became available. Amperom-
etry showed that the release of catecholamines during 
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single secretory events occurs very slowly, suggesting that 
a functional matrix retains these solutes.

A typical chromaffin cell contains 12,000 to 30,000 
LDCV, although only a small fraction of these are suitable 
for immediate release. The adrenal-medullary response to 
stress involves the secretion of large amounts of catechola-
mines and peptides into the bloodstream. The intravesicu-
lar cocktail (10) contains surprisingly high concentrations 
of catecholamines, close to the molar range, and in addi-
tion, vesicles contain large amounts of ATP, Ca2+, ascor-
bate, as well as ill-defined amounts of biopeptides, other 
nucleotides, dopamine-β-hydroxylase, and H+. All of these 
components, together with Cgs, seem to form the con-
densed vesicle matrix that establishes an inner acidic pH 
of ≈5.5, and the theoretical osmolarity of this mixture is 
around 1500 mOsm. Hence, to maintain the homeostasis 
of LDCV and avoid their disruption due to osmotic stress, 
it is necessary to functionally aggregate soluble species. 
As Cgs are quantitatively the most important granins in 
the LDCV, they are the main candidates to facilitate the 
condensation of soluble species required to generate the 
dense core that is evident by electron microscopy. Indeed, 
the vesicular content of Cgs in bovine chromaffin LDCV is 
estimated to be ≈1800 μM of chromogranin A (CgA), ≈200 
μM of CgB, and ≈30 μM of SgII (11), although their relative 
amounts vary depending on the species.

One mole of CgA is thought to bind 32 mol of adrena-
line, with a Kd of 2.1 mM (12), and Cgs can also bind Ca2+ 
≈50 mol/mol of Cg, with a Kd of 1.5 to 4 mM depending on 
the type of granin. All mobile compounds of the vesicu-
lar cocktail (amines, ascorbate, H+, Ca2+, and ATP) are in 
asymmetric equilibrium with the cytosol and the matrix, 
and as such, the strength of this association is a candidate 
for regulating the kinetics of exocytosis. It should also 
be taken into account that several drugs like α-methyl-
norepinephrine and tyramine, or weak bases like amphet-
amines (13), hydralazine (14), antipsychotic drugs, or 
β-adrenergic blockers (15), accumulate in a pH-dependent 
manner in LDCV, reducing the quantum size by displacing 
catecholamines. Although frequently ignored, the seques-
tering of drugs into acidic secretory organelles could 
produce drastic changes in their composition.

The optimal capacity of Cgs to bind soluble species 
is at the pH of the vesicles (≈5.5) (9). Maintaining this pH 
gradient depends on the activity of a vesicular ATPase H+-
proton pump (V-ATPase), which continuously pumps H+ 
to acidify the vesicle. This H+ gradient across the vesicle 
membrane provides counterions for the carriers of amines, 
Ca2+, and ATP. A crucial tool to study the pH gradient is 
the V-ATPase blocker bafilomycin, which reduces the 
quantum size of vesicles and slows down catecholamine 

release by exocytosis, as readily observed by amperom-
etry (16).

Several second messenger cascades affect the kinetics 
of exocytosis, probably by reducing the pH gradient across 
the LDCV membrane (16). This is the case of the activation 
by NO of the cGMP/PKG pathway, which slows down cat-
echolamine release through single exocytosis (17). Similar 
results were found after activation of the cAMP/PKA 
pathway, although strong stimulation of this kinase also 
causes a notable increase in quantum size (18, 19). Other 
drugs like estrogens also slow down exocytosis through a 
nongenomic mechanism that involves cAMP (20).

The release of adrenaline following single LDCV 
fusion events occurs at least two to three orders of mag-
nitude slower than that predicted by the diffusion coef-
ficient of catecholamines in aqueous media (21, 22). The 
retention of catecholamines inside the fused vesicle could 
be due to distinct properties: the diameter of the fusion 
pore, the slow diffusion of solutes from the LDCV matrix 
(23), and/or the presence of extracellular polysaccharides. 
Patch amperometry, which combines amperometry with 
cell-attached capacitance measurements, revealed that 
the arrival of catecholamines to the carbon fiber electrode 
was delayed even when the fusion pore is supposedly 
dilated (24). This would suggest the direct involvement of 
the vesicle matrix in the slow release of amines observed 
once vesicle fusion has taken place.

Secretory vesicles from chromaffin and mast cells 
respond identically to changes in temperature and ionic 
composition, despite their distinct compositions (25). 
Indeed, it is likely that the chromaffin matrix of LDCV 
swells and shrinks in a similar fashion to the matrix from 
mast cells in beige mice (26). Exocytosis is also largely 
delayed in the presence of cross-linking agents like gluta-
raldehyde or formaldehyde, which, after entering through 
the fusion pore during exocytosis, would freeze the dis-
sociation of catecholamines from Cgs (27). By contrast, 
the opposite was observed in chromaffin cells cultured in 
astrocyte-conditioned media, where exocytosis is drasti-
cally accelerated (28), suggesting a close relationship 
between the presence of vesicular matrix and the kinetics 
of exocytosis.

Exocytosis in mice lacking 
chromogranins
We have studied the kinetics of exocytosis and the cargo 
capacity of LDCV from mice lacking CgA, CgB, or both. 
CgA-KO mice, which were reported to be viable and fertile 
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in homozygosis (29), provided the first opportunity to 
study exocytosis in the absence of one of the ‘immobile 
components’ of chromaffin vesicles. This alteration pro-
duces drastic effects in the LDCV of adrenal chromaffin 
cells, and the lack of CgA was associated with the overex-
pression of CgB (Figure 1A and B). Despite the proposed 
role of CgA in granule biogenesis and sorting, chromaf-
fin cells from CgA-KO still produce functional secretory 
granules that release adrenaline by exocytosis. Using 
amperometry, we found that depolarizing stimuli provoke 
the release of ≈40% less catecholamines in CgA-KO cells 
(Figures 1C and D). However, the number of spikes from 
the WT and CgA-KO cells was similar, even though the net 
content of catecholamines per quantum (Q) was reduced 
by 34%. Indeed, kinetic analysis of secretory spikes 
showed that exocytosis occurred faster in CgA-KO cells, in 
which such kinetic changes mainly affect the later part of 
the spikes [Figure 2, data from (24)].

The catecholamine precursor L-DOPA penetrates chro-
maffin cell membranes, and it is rapidly converted into 
dopamine, which is in turn transformed into noradrenaline 
by dopamine-β-hydroxylase. In WT mice, L-DOPA increases 
the vesicular content of catecholamines (30), although the 
LDCV from CgA-KO chromaffin cells cannot take up more 
amines. If catecholamines cannot be taken up by LDCV, 

Anti-CgA

Anti-CgB

Anti-CgB

CgA-KO

A B

C D E

12

60
0.8

0.4

30
 p

A

5 pC

0

40

20

T
ot

al
 s

ec
re

tio
n 

(p
C

)

S
pi

ke
 c

ha
rg

e 
(p

C
)

0

8

4

0Im
ag

e 
de

ns
ity

 (
a.

u.
)

WT

WT

(10)
3 s

(10)

(9)
(9)

KO

WT KO WT KO

Figure 1 Secretory characteristics of the CgA-KO mouse.
(A) Western blot of the adrenal medulla confirming the lack of 
CgA and the overexpression of CgB. (B) Quantification of CgB in 
the WT and CgA-KO as the average from six different analyses 
(means ± SEM). (C) Fragment from a typical amperometric trace from 
a KO chromaffin cell (units expressed in pAmperes – gray trace) with 
the cumulative secretion evident by integrating the original super-
imposed trace (expressed in pCoulombs – black trace). (D) Analysis 
of cumulative secretion over a 2-min recording (mean ± SEM). (E) The 
net spike charge from WT and KO animals (Q, expressed in pC). The 
number of cells in each condition is shown in brackets: *p < 0.05; 
**p < 0.01 Mann-Whitney test. Modified from (24).
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Figure 2 Kinetic profiles of amperometric spikes from Cg-KO chro-
maffin cells.
The traces illustrate the kinetic changes observed in exocytosis 
from cells lacking Cgs. The spikes were constructed by averaging 
the spikes from WT, CgA-, CgB-, and CgA/B-KO chromaffin cells, and 
then normalizing them to the Imax (100%) of their own control cells 
(C57BL/6). Discontinuous lines show the ascending slopes obtained 
by the linear fit of the 25–75% segment of the ascending portion of 
the spikes. Modified from (34).

they should remain present in the cytosol. Intracellular 
electrochemistry can provide access to the cytosol in order 
to measure cytosolic amines. Cell incubation with L-DOPA 
produces a large increase in cytosolic catecholamines in 
CgA-KO chromaffin cells compared to WT cells. Hence, the 
newly synthesized amines appear to be unable to enter 
the LDCV as the saturated matrix leaves no room for new 
catecholamines. Using patch amperometry, we found that 
the vesicular concentration of catecholamines drops from 
870 mM in WT to 530 mM in the CgA-KO (24).

The effect of vesicular CgB has been analyzed in 
chromaffin cells from CgB-KO mice (31), and as in the 
CgA-KO, this mouse overexpressed the complementary 
CgA (Figures 3A and B). Amperometry recordings show 
that chromaffin cells from WT and CgB-KO mice exhib-
ited similar secretory patterns, with no differences in the 
number of spikes (Figure 3C). However, the total amount 
of catecholamines released was again reduced by 33% 
(Figure 3D), roughly coinciding with the amount released 
per quanta (Figure 3E). A careful analysis of the kinetic 
properties of secretory spikes revealed a slowing of exo-
cytosis that, by contrast to that observed in the CgA-KO 
mouse, largely affected the first (ascending) part of the 
spikes (32) (Figure 2).

As what occurs in CgA-KO cells, L-DOPA overloading 
demonstrated that LDCV from CgB-KO mice cannot take 
up more catecholamines, and amines that are unable to 
enter the vesicles remain in the cytosol. However, cells are 
still competent to maintain a similar frequency of secre-
tory events than WT cells, even though they are associated 
with a drastic reduction in quantum size of individual 
events. This latter reduction produced an important fall 
in the total secretory response of chromaffin cells. In addi-
tion, the kinetics of exocytosis is affected during the initial 
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part of the spikes (Figure 2), and the LDCV from CgB-KO 
cells have their storage mechanisms saturated.

Given that we have CgA-KO and CgB-KO mice, we gen-
erated the double CgA/B-KO mouse that was both viable 
and fertile in homozygosis (33). With a few exceptions, 
what we have observed in this double Cg-KO mouse is an 
exacerbation of the phenotype observed with the individ-
ual Cg-KOs (Figure 2). In other words, the quantum size 
was halved, the ability of granules to take up amines was 
impaired, and the cytosolic amines that accumulated in 
response to L-DOPA exposure rose. By contrast to the CgA- 
or CgB-KO, the frequency of exocytosis was also reduced 
in the double CgA/B-KO, affecting the total catechola-
mines released (34).

Electron microscopy revealed the presence of giant 
and highly altered secretory vesicles with a poor electron-
dense inner matrix. However, in the absence of Cgs, which 
proteins are responsible for the generation of even this 
impoverished electron-dense matrix? Proteomic analysis 
of the enriched LDCV fraction from the adrenal medulla 
of the CgA/B-KO mouse (33) shows no significant changes 

in the amount of SgII or other Cgs. Yet, surprisingly, sig-
nificant amounts of fibrinogen are detected, of which the 
three chains (α, β, and γ) are only present in the LDCV of 
the CgB- and CgA/B-KO mice. In addition to its crucial role 
in clot formation, fibrinogen has been associated with 
the sorting of constitutive vesicles, and indeed, no other 
protein appears to be capable of fulfilling the functional 
role of Cgs as a matrix condenser for soluble intravesicu-
lar components. Nevertheless, even in the total absence of 
Cgs, the quantum catecholamine content is halved, and 
the remaining amines are still above isotonic concentra-
tions in the cytosol. As such, we cannot rule out the possi-
bility that other components of the vesicular cocktail, such 
as ATP (35) or Ca2+, could be contributing to the mainte-
nance of isotonicity and permitting amine accumulation.

Since the first description of Cgs, new functions 
have been proposed from those initially assigned. In this 
review, we have addressed some functional features of 
the roles of Cgs in exocytosis from LDCV. The generation 
of mice strains lacking Cgs has opened the possibility to 
study the role of such ‘immobile components.’ New data 
have highlighted the role of Cgs in maintaining ‘mobile 
components’ inside the LDCV (11), where CgA and CgB 
proteins exhibited clear differences in their ability to bind 
and release neurotransmitters (11, 24, 32).

Our current view about the role of Cgs in the secretory 
process can be resumed as follows: (i) Secretory events 
persist even in the complete absence of Cgs indicating 
that granins are not necessary for the biogenesis or for 
the maintenance of the secretory function. (ii) The lack 
of Cgs impairs the vesicular accumulation of CA, suggest-
ing that the capacity of vesicles to store catecholamines is 
saturated. (iii) The protein analysis of the secretory vesicle 
fraction showed the compensatory overexpression of one 
Cg when the other is absent. (iv) Other proteins appar-
ently unrelated to the secretory process were present in 
the vesicular fraction of CgA/B-KO animals.
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Figure 3 Secretory characteristics of the CgB-KO mouse.
(A) Western blot showing the absence of CgB and the overexpres-
sion of CgA. (B) Quantification of CgA expression in WT and CgB-KO 
animals from three different experiments, the densitometry 
analysis is expressed in arbitrary units. (C) Temporal distribution of 
secretory spikes over a 2-min recording. (D) Cumulative secretion 
obtained as described in the legend to Figure 1. (E) The net spike 
charge (Q, expressed in pCoulombs) from WT and KO animals: 
*p < 0.05; **p < 0.01 Mann-Whitney test. Modified from (32).
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