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Short Conceptual Overview
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Control of cellular motility by neuropilin-mediated 
physical interactions

Abstract: The neuropilin (Nrp) family consists of multi-
functional cell surface receptors with critical roles in a 
number of different cell and tissue types. A core aspect of 
Nrp function is in ligand-dependent cellular migration, 
where it controls the multistep process of cellular motil-
ity through integration of ligand binding and receptor sig
naling. At a molecular level, the role of Nrp in migration 
is intimately connected to the control of adhesive interac-
tions and cytoskeletal reorganization. Here, we review the 
physiological role of Nrp in cellular adhesion and motility 
in the cardiovascular and nervous systems. We also dis-
cuss the emerging pathological role of Nrp in tumor cell 
migration and metastasis, providing motivation for con-
tinued efforts toward developing Nrp inhibitors.
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Introduction
Neuropilins (Nrp) are essential vertebrate cell surface 
receptors that function to convert extracellular stimuli 
into directional cellular migration in multiple distinct 
cell types [reviewed in refs. (1–6)]. Two physiologically 
important Nrp ligand families include vascular endothe-
lial growth factor (VEGF) and class 3 semaphorins 
(Sema3) (7–9). Underlying its role in regulating cellu-
lar motility and migration is the ability of Nrp to inte-
grate multiple physical mechanisms, including ligand 
binding, cellular activation, adhesion, and cytoskeletal 
reorganization.

At a molecular level, Nrp functions through specific 
physical interactions that include binding to the canoni-
cal ligands Sema3 and VEGF (1), other heparin-binding 
growth factors (10), signaling and adhesive cell surface 
receptors (1, 11–15), and components of the extracellu-
lar matrix (ECM), including glycosaminoglycans (GAGs)  
(16, 17). There are two Nrp genes, Nrp1 and Nrp2, that are 
conserved in all vertebrates (8, 18). Both Nrp homologues 
share the same subdomain organization and, in humans, 
are 44% identical on the amino acid level. Nrp has a large 
extracellular region composed of two calcium-binding 
complement binding factors C1s/C1r, Uegf, BMP1 (CUB) 
domains (a1a2); two coagulation factor V/VIII homology 
domains (b1b2); a Meprin, A5 antigen, receptor tyrosine 
phosphatase μ (MAM) domain (c); a single-pass trans-
membrane domain (TMD) helix; and a short cytoplasmic 
tail (Figure 1). The Nrp extracellular domain directly binds 
to a wide array of molecules that are essential for its versa-
tile function in cellular motility. The TMD has been shown 
to dimerize and is thought to be important for assembling 
active signaling complexes (19, 20). The Nrp intracellular 
domain binds to postsynaptic density 95, disk large, zona 
occludens-1 (PDZ)-domain containing proteins (21) and is 
important for regulating interactions with other receptors 
and the cytoskeleton, thus having an essential role in cel-
lular migration (22–25).

In particular, the extracellular b1b2 domains serve 
a central role in specific binding and competition for a 
large number of ligands (1, 26–28). Thus, for example, it 
has been demonstrated that the VEGF-A C-terminus binds 
to a specific binding pocket formed by the coagulation 
factor loops of the b1 domain of Nrp1 (29). Sema3 engage-
ment is more complex and involves both the Nrp a1 and b1 
domains (26, 30). Current models indicate that the Nrp a1 
domain binds the Sema domain of different Sema3 family 
members, controlling specificity, while the Nrp b1 domain 
binds to the Sema3 C-terminal basic domain, controlling 
high-affinity binding (30–35). This model is affected by 
the recent discovery that the a2 domain of Nrp integrally 
interacts with b1 and b2 domains forming a stable core 
(36). Thus, domain deletion experiments, which generally 
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delete a1a2 or b1b2 in tandem, may have more complex 
interpretations. A recently published structure of Sema3A/
PlexinA2/Nrp1 complex has begun to elucidate the molec-
ular details of the Sema3 signaling machinery. This struc-
ture revealed that the Nrp1 a1 domain cross-braces the 
Sema domains of Sema3A and PlexinA2, assembling them 
to form a dimer of heterotrimers critical for the activation 
of signaling (37, 38).

Regulatory mechanisms controlling Nrp ligand 
binding and the coupling of different domains are an 
active area of research. Post-translational modification 
of Nrp ligands critically regulates their Nrp binding and 
activity. Alternative splicing and proteolytic processing 
of the VEGF family can dramatically alter Nrp binding 
and ligand activity (9, 39–43). Proteolytic processing of 
the C-terminal basic domain of Sema3 family members 
by furin critically regulates binding to the Nrp b1 domain 
(44, 45) and chemotactic activity (46–48). Despite these 
data, the importance of furin processing in physiologi-
cal Sema3 signaling has remained an open question. 
The recent report that Kallmann’s syndrome, a serious 
genetic disease resulting from defects in axon guidance, 
can be caused by mutations in a furin-cleavage site in the 
C-terminal domain of Sema3A (49) argues strongly for 
the physiological importance of furin processing and Nrp 
engagement.

Nrp1 was originally identified as a cell adhesion mol-
ecule (50, 51). It was shown that expression of Nrp1 con-
ferred adhesiveness to fibroblasts through heterophilic 
interaction with a protease-sensitive molecule (51). The 
adhesive function of Nrp was later mapped to the b1b2 
coagulation factor domains (52), and subsequent studies 
demonstrated that the identified region within domain b2 
was also responsible for GAG binding (53). In addition to 
GAG-dependent adhesion, Nrp can couple with other cell 
surface receptors to modulate cellular adhesion. Specifi-
cally, Nrp has been demonstrated to modulate integrin-
dependent cellular motility, where the receptors appear 
to couple through both extracellular and intracellular 

Figure 2 Nrp critically modulates endothelial tip cell function. 
Nrp is highly expressed in endothelial tip cells where it promotes 
branching and directional migration in response to VEGF. In tip 
cells, Nrp serves several essential functions, including ligand 
binding, holocomplex formation, integrin coupling, and recycling of 
co-receptors and components of focal adhesions.

Figure 1 Nrp structure. Nrps contain a large, modular extracellular 
region that facilitates binding to multiple ligand families in both a 
competitive and non-competitive fashion. Ligand binding is coupled 
to intracellular signaling through PDZ-domain-containing adaptor 
proteins that bind the SEA motif of the Nrp cytoplasmic domain.

mechanisms to regulate VEGF-dependent endothelial cell 
migration in angiogenesis (54).

Nrp-dependent VEGF signaling
VEGF-dependent angiogenesis occurs within the context 
of a ligand/receptor holocomplex that includes VEGF, 
Nrp, and the receptor tyrosine kinase, VEGFR (Figure 2). 
As co-receptors in VEGF-dependent angiogenesis, Nrps 
function by directly binding ligand and regulating VEGFR 
signaling and cellular activation [reviewed in refs. (1, 55–
58)]. Nrp1 and Nrp2 transduce signals for different VEGF 
family members. For instance, Nrp1 signaling is critical 
for VEGF-A-dependent angiogenesis (9, 59) and Nrp2 for 
VEGF-C-dependent lymphangiogenesis (43, 60).

Genetic studies have demonstrated the importance 
of Nrp1 within the VEGF-A/VEGFR-2/Nrp1 signaling holo-
complex. Knockout of Nrp1 in mice results in embryonic 
lethality owing to widely distributed defects in vascular 
patterning (61–63) and overexpression of Nrp1, which 
is also embryonic lethal, causing hypervascularization 
within the cardiovascular system (64). The vascular phe-
notype of the Nrp knockout is similar to that of VEGF-A 
heterozygous mice (65, 66) and VEGFR-2 null mutant 
mice (67), although reduced in severity. Interestingly, 
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a detailed study of the Nrp1 knockout mouse demon-
strated that endothelial cell migration, but not prolif-
eration, is defective in the absence of Nrp1 (68). Indeed, 
Nrp1 knockdown in human umbilical vein endothelial 
cells (HUVECs) causes impaired F-actin reorganization 
and focal adhesion distribution during endothelial cell 
attachment to the ECM (69). A number of studies have 
also described an essential role for Nrp in endothelial tip 
cell function (70) (Figure 2). Nrp1 is highly expressed in 
endothelial tip cell filopodia, and VEGF-A stimulates filo-
podia extension from the tip cells resulting in branching 
(71, 72). The same principle has been observed in VEGF-
C-dependent lymphangiogenesis where Nrp2 is highly 
expressed in lymphatic tip cells (73) as well as in tip cell 
filopodia, and selectively modulates VEGFC/VEGFR3-
mediated tip cell extension but not cellular proliferation 
or survival (74).

The Nrp intracellular domain was initially considered 
dispensable for its function in angiogenesis. However, 
it is now understood that the Nrp intracellular domain 
functions to couple ligand binding to downstream 
mediators of angiogenesis. Deletion of the intracellular 
domain leads to impaired arteriogenesis and abnormal 
retinal artery and vein crossover (75, 76). Additionally, a 
chimeric receptor, composed of the extracellular domain 
of epidermal growth factor receptor (EGFR) fused to the 
TMD and cytoplasmic domains of Nrp1, was found to 
mediate EGF-induced HUVEC migration but not prolif-
eration (77). The intracellular adaptor protein RGS-GAIP-
interacting protein C-terminus (GIPC) has been shown 
to bind to the intracellular domain of both Nrp (21) and 
integrin (78). These data suggest a direct mechanism for 
Nrp-dependent modulation of integrin function through 
coupling of intracellular domains. Indeed, α5β1 integ-
rin, which binds GIPC, was shown to mediate endothe-
lial cell spreading on fibronectin through a mechanism 
dependent on the Nrp intracellular domain and GIPC 
(24). Furthermore, it was recently demonstrated that 
the Nrp intracellular domain directly binds and traffics 
protein components of focal adhesions, functioning 
to promote rapid focal adhesion turnover and cellular 
migration (79). Similarly, the Nrp intracellular domain 
has also been found to be essential for ligand-specific 
receptor localization and trafficking. Binding of VEGF-
A165 to Nrp1 induces VEGF-A/VEGFR-2/Nrp1 complex 
formation, receptor internalization, and recycling back 
to the membrane (12). Nrp1 was found to play a specific 
role in recycling as the binding of VEGF-A165b, an alterna-
tive VEGF-A spliceform that does not bind Nrp, results 
in VEGFR-2 degradation through an alternative recycling 
pathway (80).

Nrp-dependent Sema3 signaling
Nrp was initially discovered in Xenopus and was shown 
to be involved in mediating neuronal wiring through cell-
cell adhesion (50, 81). The function of Nrps in the nervous 
system is multifaceted and extends beyond their adhesive 
properties to regulation of both axon guidance and cellu-
lar migration. Nrp functions as an important co-receptor 
for the Sema3 family (Sema3A-G) of axon guidance mol-
ecules, directly physically coupling with plexin receptors 
to mediate signaling and cellular activation [extensively 
reviewed in refs. (1, 5, 8, 13, 82, 83)] (Figure 3).

Nrp1 and Nrp2 have a unique Sema3 binding speci-
ficity and perform distinct biological functions in the 
nervous system (84, 85). Nrp1 null mice show defects 
in neuronal axon pathfinding in both the central and 
peripheral nervous systems (61, 62, 86). Additionally, Nrp1 
knockdown impairs the migration and invasion of cranial 
neural crest cells into the branchial arches, leading to the 
failed development of the peripheral architecture (87). 
Nrp2 null mice (88, 89) have impaired spinal sensory axon 
projection and hippocampal mossy fiber axon projection 
(90), along with abnormal sensory neuronal axon inner-
vation and fasciculation in the olfactory bulb (91). Specific 
signaling is accomplished by tissue-specific expression 
and action of different Sema3, plexin, and Nrp family 
members (30, 88, 89). Additionally, there are exceptions 
to the canonical Sema3/Nrp signaling, with Sema4A 
reported to have Nrp-dependent function in the immune 
system (92) and Sema3E having Nrp-independent func-
tion (93).

Physically, signaling through Sema3 involves interac-
tion in extracellular, membrane, and intracellular regions 
of the cell that control adhesive interactions and cytoskel-
etal dynamics (94) (Figure 3). The intracellular region 
of plexins contains a GTPase-activating protein domain 
(GAP) and directly binds to Rho and Ras family GTPases, 
including, but not limited to, Rnd1, RhoD, R-Ras, M-Ras, 
and Rap1. Rnd1 binding initiates Sema3A-induced actin 
depolymerization, leading to sensory neuron growth cone 
turning and collapse. Conversely, RhoD antagonizes Rnd1 
and inhibits Sema3 function (95). Plexin-mediated regula-
tion of both R-Ras and M-Ras is critical for semaphorin-
mediated signaling in both neuronal and vascular cells 
(96–98). While multiple GTPases interact with the intra-
cellular region of plexin family members, recent work 
demonstrating the dimerization-dependent interaction of 
plexin with Rap1 indicates that multiple physical interac-
tion mechanisms distinguish the different families (99). 
Additionally, plexins bind to molecule interacting with 
CasL (MICALs), an oxidoreductase that functions as an 
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F-actin disassembly factor (100). The cellular response 
to Sema3 stimulation also depends on the intracellular 
environment. For example, the availability of the second 
messenger cGMP has been demonstrated to switch Sema3-
dependent repulsive cues into an attractive response in 
neurons (101). Similar to the discussion above, the cou-
pling of Nrp-dependent function to integrin interactions 
and signaling is an important aspect of the integrated cel-
lular and physiological response to Sema3 signaling.

Nrp function as a versatile co-receptor depends on 
its ability to integrate multiple extracellular cues that can 
result in either stimulation or inhibition of the cytoskel-
etal dynamics (1, 102, 103). For example, VEGF-A stimu-
lates axon outgrowth (104, 105), whereas Sema3F blocks 
endothelial cell migration (106). Thus, Nrp function 
allows cross-talk between different ligand families in dif-
ferent tissues and provides exquisite control of cellular 
migration (107, 108). The nature and regulation of this 
cross-talk involves competitive binding of the two ligands 
to the b1 domain of Nrp and is dependent on the furin pro-
cessing of Sema3 (26, 44, 109, 110). While the binding of 

Figure 3 Nrp critically modulates neuronal growth cone function. 
Nrp is expressed in the axonal growth cone of migrating neurons 
where it couples with plexin receptors in responding to the guid-
ance cue Sema3. Nrp functions by coupling high-affinity ligand 
binding to plexin-dependent cytoskeletal rearrangement through 
different GTPases and MICAL.

the two ligands to Nrp appears to be mutually exclusive 
in most cases, it is theoretically possible to support some 
level of Sema3 binding either to only the Nrp a1 domain 
or, given recent data indicating a bivalent binding mode 
for the Sema3 C-terminal domain with the Nrp b1 domain, 
partial engagement in the absence of processing (111). 
The unique ability of Sema3 family members to inhibit 
cytoskeletal dynamics is seen in both physiological and 
pathological settings. Indeed, Sema3A has been shown to 
disrupt the actin cytoskeleton of breast cancer cells, thus 
decreasing their migration and invasion (112).

Nrp in tumor metastasis
In addition to the important role of Nrp in development 
and homeostasis, aberrant Nrp pathway activation has 
been observed in diverse tumors, including those of the 
prostate, lung, gastrointestinal tract, numerous addi-
tional organs, and even hematopoietic tumors (113, 114). 
Importantly, both Nrp1 and Nrp2 expression contribute to 
the invasiveness and metastatic potential of these tumors. 
For example, Nrp1 functions in an autocrine pathway to 
promote colon carcinoma migration, lymph node metas-
tasis, and tumor cell survival (115). As an additional 
example, Nrp2 expression has been reported in gastro-
intestinal cancer cells but not in the normal surround-
ing mucosa and Nrp2 knockdown leads to decreased 
migration and invasion in vitro (116). Nrp2 expression is 
also observed in salivary adenoid cystic carcinoma and 
is highly correlated with microvessel density, tumor size, 
invasion, and metastasis (117). A number of factors make 
Nrp2 a particularly promising target for therapeutic inter-
vention (Figure 4). Specifically, Nrp2 expression is seen 
in a significant number of tumors where it contributes to 
tumor metastasis and progression. Indeed, use of an Nrp2 
monoclonal antibody has been reported to decrease tumor 
metastasis (73, 117). Additionally, Nrp2 knockout does not 
result in embryonic lethality, indicating that therapeutic 
inhibition of Nrp2 function may be well tolerated in vivo. 
Finally, Nrp2 functions in controlling pathological lym-
phangiogenesis, where it contributes to tumor metastasis 
through both direct and indirect means (114).

Pathological Nrp activation can result from either Nrp 
overexpression or from the deregulation of ligand activ-
ity, such as overactive VEGF or a loss of Sema3 signaling 
(118). Indeed, the relative level of the opposing Sema3 and 
VEGF signals has been shown to regulate Nrp1-dependent 
cancer cell migration (119). The connection to aberrant 
Nrp function extends beyond stimulation by ligands. 
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Coupling between Nrp and integrin was first recognized 
under pathological conditions. Nrp1 is highly expressed 
in pancreatic ductal adenocarcinomas where it associates 
with β1 integrin to promote cellular adhesion and inva-
sion (120). An interaction between Nrp2 and α6β1 integrin 
was demonstrated and was shown to regulate integrin 
interaction with the cytoskeleton and focal adhesion for-
mation on laminin in breast cancer cells (121). Likewise, 
Nrp2 has also been demonstrated to bind α5 integrin and 
mediate tumor cell extravasation, vascular adhesion, and 
metastasis (122).

Given their pathological roles, it is clear that Nrp 
receptors represent a promising therapeutic target. Initial 
attempts at inhibition focused on the production of a series 
of monoclonal antibodies against both Nrp1 and Nrp2. 
Intriguingly, phase I clinical trial results for MNRP1685A, 
a Nrp1 monoclonal antibody, showed unexpected plate-
let activation and thrombocytopenia (123). Other inhibi-
tory modalities have been reported, including peptides 
and small molecules (124–126). Challenges with these 
classes of inhibitors include limited potency and selec-
tivity. However, recent findings suggest that this is not an 
inherent limitation and continued development of diverse 
inhibitory modalities should be pursued (111, 127). Addi-
tionally, labeled Nrp-binding molecules could potentially 

Figure 4 Nrp2 is an important therapeutic target in cancer. Nrp2 is 
highly expressed in a number of different cancers where it promotes 
cellular migration, invasion, and metastasis. Additionally, lymphatic 
vessel expressing Nrp2 provide a route for tumor invasion and local 
metastasis.

be useful for diagnostic purposes. Also, emerging data indi-
cate that Nrp/integrin interactions function as important 
autocrine tumor initiation and survival factors and thus 
inhibition may have additional benefit (3, 120, 128, 129).  
Future biochemical and structural studies will be impor-
tant to guide inhibitor design.

Summary
Nrps function as critical cell surface receptors in the 
physiological and pathological control of cellular motility 
and migration. Initially, Nrp was described as an adhesive 
receptor in the nervous system and has been addition-
ally shown to possess critical roles in the cardiovascular 
system, immune system, and beyond. Nrp functions as a 
versatile co-receptor in these processes by binding to mul-
tiple ligands and facilitating molecular cross-talk between 
the different ligand families. Understanding the nature of 
Nrp activation and receptor coupling is critical for under-
standing its function.

Continued work is needed to define the physiological 
role of the multiple Nrp ligand and co-receptor families 
of proteins, and to understand how these protein fami-
lies physically engage Nrp. The basis for ligand binding 
has been a source of intensive study, and fundamental 
insights about the importance of a C-terminal arginine 
residue have proven fruitful (29, 53, 130–132). However, 
with the identification of a host of potential Nrp ligand 
families, continued work is needed to define the physio
logical role of Nrp signaling by these ligands.

In VEGF signaling, where both VEGFR and Nrp recep-
tors are required, Nrp is intimately connected to the ability 
of endothelial cells to respond to ligand concentration 
gradients leading to directional migration. Similarly, 
Nrp function in the axon growth cone allows directional 
migration in response to Sema3 concentration gradients. 
In these processes, Nrp functions in ligand-dependent 
control of cellular motility and migration. The downstream 
functions of Nrps involve both direct physical coupling 
with integrins and regulation of cytoskeletal dynam-
ics. Finally, Nrp function plays a critical role not only in 
physiological processes but also in pathological cellular 
migration. Aberrant activation of both Nrp1 and Nrp2 are 
associated with tumor aggressiveness and metastasis.

Finally, the basis for receptor/co-receptor coupling 
remains an important area for future research. In particu-
lar, the nature of Nrp binding to signaling receptors in both 
the presence and absence of ligand remains unclear. The 
architecture and differential specific coupling to VEGFR 
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family members, plexins, and other receptors remains to 
be determined. These insights will be particularly impor-
tant in understanding additional fundamental aspects 
of Nrp function. Additionally, while current therapeutic 
strategies focus on blocking ligand binding, inhibition 
of receptor coupling may, in fact, prove superior to tradi-
tional inhibition strategies (133).
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