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Circadian angiogenesis

Abstract: Daily rhythms of light/darkness, activity/rest 
and feeding/fasting are important in human physiology 
and their disruption (for example by frequent changes 
between day and night shifts) increases the risk of disease. 
Many of the diseases found to be associated with such 
disrupted circadian lifestyles, including cancer, cardio-
vascular diseases, metabolic disorders and neurological 
diseases, depend on pathological de-regulation of angio-
genesis, suggesting that disrupting the circadian clock 
will impair the physiological regulation of angiogenesis 
leading to development and progression of these diseases. 
Today there is little known regarding circadian regulation 
of pathological angiogenesis but there is some evidence 
that supports both direct and indirect regulation of angio-
genic factors by the cellular circadian clock machinery, 
as well as by circulating circadian factors, important for 
coordinating circadian rhythms in the organism. Through 
highlighting recent advances both in pre-clinical and clin-
ical research on various diseases including cancer, car-
diovascular disorders and obesity, we will here present an 
overview of the available knowledge on the importance of 
circadian regulation of angiogenesis and discuss how the 
circadian clock may provide alternative targets for pro- or 
anti-angiogenic therapy in the future.
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Introduction
Daily cycles of light and darkness on Earth have led to the 
development of highly conserved anticipatory signalling 

processes, which are crucial to prepare most organisms 
from bacteria to human beings for the coming of the day 
and the night (1). These processes couple environmental 
light/darkness to biological functions and are naturally 
oscillating with a period of close to 24 h, thus collectively 
known as circadian rhythms (circa: about; diem: a day). 
Multiple aspects of mammalian physiology are under cir-
cadian regulation. The most obvious circadian rhythms in 
humans are perhaps those of activity/rest (2) and feeding/
fasting (3). However, these rhythms are tightly coupled 
to a number of enabling physiological processes, such as 
regulation of blood pressure (4), heart rate (5), ventilation 
rate (6), metabolism (3), kidney and intestinal activity (7) 
and production of hormones that modulate these pro-
cesses (8).

The importance of circadian signalling for maintain-
ing our health is underscored by increased disease risk in 
people who frequently change their activity pattern from 
being awake during the day or during the night, such as 
people engaged in shift-work (9). Because of increased 
globalization and the 24-h lifestyle found in most major 
cities today, we are experiencing a drastic increase in the 
number of people on shifting working schedules submit-
ting themselves to disrupted circadian rhythms (10). Epi-
demiologic studies have shown that such disruptions are 
coupled to an increased risk of cancer, including breast 
(11), prostate (12) and colorectal cancer (13), metabolic 
disorders including obesity (14), diabetes (15) and car-
diovascular disorder (16) as well as psychiatric disorders 
including depression and various other diseases (17, 18). 
These diseases are for the most part driven by patho-
logical changes to the vasculature (19–23) – in particular 
pathological angiogenesis, i.e., the growth of new blood 
vessels from an existing vasculature – which therefore 
has become a major research focus of the medical indus-
try in recent years (24). In adults the healthy vascula-
ture in most tissues is quiescent, presumably owing to 
the presence of high levels of endogenous angiogenesis 
inhibitors relative to pro-angiogenic factors. However, this 
intimate balance can easily be tipped in favor of angio-
genesis – a process known as the angiogenic switch – 
which often will lead to rapidly progressive disease (21). 
As such, angiogenesis is crucial for solid tumor growth 
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(22), obesity (25–27), arteriosclerotic plaque growth and 
instability (28), regeneration of heart or brain tissue fol-
lowing myocardial infarction (28) or stroke (29), as well 
as for chronic inflammatory diseases such as rheumatoid 
arthritis (19) and neurodegenerative diseases (30) and 
retinopathies, including age-related macular degenera-
tion (31) and diabetic retinopathy (32). This realization 
has led to a surge in the clinical development and use of 
drugs targeting the angiogenic switch and in particular 
the factor vascular endothelial growth factor (VEGF) as 
an anti-angiogenic therapy in cancer and retinopathies 
(31, 33, 34). While such an approach has led to some pro-
gress in the management of these diseases, it is clear that 
more targets are needed in order to overcome resistance 
and increase the response to anti-angiogenic therapy (35). 
The angiogenic switch is regulated at multiple levels, and 
as we will discuss in more detail below, also by circadian 
clock factors. It is therefore pertinent to elucidate how cir-
cadian rhythms may influence angiogenesis and how this 
process could be targeted in order to prevent development 
and progression of angiogenesis-dependent diseases.

Organization of the circadian clock
Light and food are the principal agents responsible for 
coordinating circadian rhythms (36). Light is detected by 
non-vision forming retinal ganglion cells in the retina, 
which convey such day/night information to the suprachi-
asmatic nucleus (SCN) via the retino-hypothalamic tract 
(37). In the SCN, the signals are amplified and coordi-
nated, and from here neuronal and humoral cues are gen-
erated which sets the pace for the coordinated rhythmic 
functions of the rest of the organism (38). Thus the SCN is 
considered to be the master clock and pacemaker. Food, 
the second major circadian timing factor or zeitgeber, is 
crucial for rhythm generation in the liver, which in turn 
regulate metabolic activities in the rest of our organism 
(39). Interestingly, many recent studies have also found 
circadian clocks in many other cell types, which may be 
regulated both by SCN- or liver-derived signals as well 
as other circadian mediators (40, 41). While, the cellular 
clocks within each cell of a tissue are usually coordinated, 
they may be out of sync with clocks in other tissues if 
timing cues are not coordinated with each other. As such, 
the vascular clock may be regulated differently by central 
and peripheral circadian clocks in different vasculatures, 
for example as a result of pathological disruption of blood 
pressure rhythms (42), differences in sympathetic innerva-
tion (43) or expression of receptors for endocrine circadian 

modulators (44), due to disrupted rhythms of blood sugar 
levels (45, 46) or in other ways, which all could be impor-
tant in causing diseases.

Regardless of the input (light, endocrine entrain-
ing factor or other) the molecular clock-work of all cells 
is organized in a very similar fashion (47) and build 
on a remarkably simple transcription-translation feed-
back loop (see Figure 1). Bmal1 is a key element of the 
positive limb of the loop. Bmal1, a member of the basic 
helix-loop-helix, PAS-domain containing family of tran-
scription factors interacts with other members of this 
family, usually CLOCK or Npas2 to form a heterodimeric 
transcriptional activator, which drives transcription 
through binding to E-boxes in the promoters of target 
genes (48). Among these are members of the Period and 
Cryptochrome families (49, 50), which act as transcrip-
tional repressors, inhibiting transcription at both their 
own promoters as well as those of other circadian output 
genes. This simple organization is referred to as the core 
loop, but it is regulated by a number of associated path-
ways that strengthen the system (38). These include ROR/
Rev-Erb factors, D-box and F-box binding factors, protein 
kinases, ubiquitin ligases and multiple co-activators or 
-repressors, etc., factors that are important for conferring 
the right timing on the system, but are not involved in gen-
erating rhythmicity per se.

Mechanisms of angiogenesis
The development and growth of the vascular system is 
mainly achieved through angiogenesis – the sprouting and 
growth of new blood vessels from an existing vasculature 
(23), as opposed to vasculogenesis, which refers to the de 
novo formation of blood vessels and which is principally 
involved in formation of the first major vessels during 
early development (51). Angiogenesis is also important in 
adults during the female reproductive cycle (52), in wound 
healing/regeneration (53, 54) and in tissue (i.e. adipose 
or muscle) growth (55). However, in most adult tissues, 
the vasculature is quiescent and non-growing, but can be 
induced to grow in response to, for example, local tissue 
inflammation (56), hypoxia (21, 57–59) or other cues that 
induce the production of angiogenic factors. Angiogenesis 
is a multi-step process (60), starting with the destabiliza-
tion of the vascular wall by degradation of the basement 
membrane and detachment of vascular mural cells such 
as smooth muscle cells and pericytes. This exposes the 
abluminal side of the endothelium on which a few leading 
tip cells emerge, start to move toward the angiogenic 
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signal and thus form a sprout. Cells located behind the 
tip-cell and thus preserving the connection to the original 
vessel, also known as stalk cells, proliferate, form a lumen 
and start to mature by recruiting new vascular mural cells 
and make the new vessel ready for perfusion once the tip-
cell has found and anastomosed with a second existing 
or new vessel and thereby established a circulation loop 
(60, 61). Each of these steps is regulated by various angio-
genic or vascular maturation factors. For example, base-
ment membrane degradation is achieved by production 
and secretion of matrix metallo-proteinases (62), whereas 
VEGF and Dll4/Notch signalling are important for regulat-
ing organized sprouting (63–65). Patterning factors such 
as netrins and plexins are important for the guidance of 
the growing vessels (66, 67) and PDGF-B is considered a 
major factor involved in vessel maturation and stabili-
zation by recruiting new mural cells to the endothelium 
(68). There are however many other angiogenic and vas-
cular maturation factors that are important [see Cao et al. 
(24) for a recent excellent review on this subject].

Circadian control of angiogenesis in 
zebrafish
Binding sites for circadian transcription factors including 
E-boxes (the most important), D-boxes, F-boxes and ROREs 

are present in the promoters of many different angiogenic 
factors, receptors or guidance molecules. Thus the circa-
dian clock could potentially be important for regulating 
their production and thus for induction and guidance of 
blood vessel growth. If such regulation does in fact occur 
in vivo has, however, not been investigated for the major-
ity of these factors to date. In our group, we have recently 
uncovered a mechanism by which circadian light/dark 
(LD) cycles regulate angiogenesis via production of VEGF 
primarily during the dark phases during zebrafish devel-
opment (69, 70). As the developing zebrafish embryo is 
transparent, and develops outside the womb and thus 
is exposed to environmental LD cycles, all cells includ-
ing endothelial cells and VEGF-expressing myocytes 
are directly responsive to light. We found that exposing 
zebrafish embryos to constant light (LL) from immediately 
after the egg was fertilized and onwards, led to signifi-
cantly inhibited developmental angiogenesis compared 
to embryos exposed to regular LD or constant dark (DD) 
cycles (70). This finding indicate that zebrafish provide an 
excellent system to study circadian regulation of angio-
genesis by LD cycles. The reduced angiogenesis pheno-
type in LL was recapitulated in embryos lacking Bmal1, 
and rescued in LL-exposed embryos lacking Period2, indi-
cating that LL may down-regulate Bmal1 while up-regu-
lating Period2 (70). Indeed we found that the promoter 
activity of Bmal1 was significantly lower in LL while that 
of Period2 was significantly higher, and the same was true 

Figure 1 Scheme indicating the key players in the core circadian transcription-translation negative feedback loop.
Following induction by RORE-binding factors such as ROR-alpha, Bmal1 (shown in purple) will accumulate, enter into the nucleus and bind 
the co-factors Clock or Npas2 (shown in green). The heterodimeric complexes bind to E-boxes in the promoters of target genes, and recruit 
co-factors such as p300 (shown in turquoise) to induce transcription of clock controlled genes (CCGs) such as VEGF, which elicit further 
downstream signalling important for angiogenesis, as well as members of the Period (Per) and Cryptochrome (Cry) families (shown in 
yellow). The latter will negatively feedback onto the Bmal1/Clock/Npas2 complex by repressing their transcriptional activation, thus creat-
ing diurnal oscillations in CCG mRNA levels.
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for the mRNA transcript levels of these genes (70). Using in 
silico analysis, we identified several putative E-boxes that 
could be a substrate for Bmal1, in the promoter regions 
of VEGF from various species including zebrafish, mouse 
and humans, indicating that Bmal1 may directly regu-
late VEGF. Indeed, we found that Bmal1 do bind to these 
E-boxes in the VEGF promoter, and that binding to each 
of these E-boxes contributes to VEGF production as spe-
cific deletion of the E-boxes led to a near-complete block 
of VEGF production during development (70). These find-
ings proved that Bmal1 positively regulates VEGF pro-
duction via E-boxes in the promoter region and that this 
regulation is disrupted in LL as a consequence of reduced 
Bmal1 levels. We further found that both zebrafish Bmal1 
and VEGF cycles with a circadian rhythm in LD, at least 
during the first 6  days of zebrafish development, with 
VEGF levels being elevated during the dark-phase (70). 
As expected, the night-time peak in VEGF levels was abro-
gated in LL conditions (70), lending mechanistic insight 
into how disruption of circadian rhythms by LL could lead 
to reduced angiogenesis.

Regulation of angiogenesis by 
circadian factors in mice
In mice, light has recently been shown to reduce VEGF-A 
levels in the prenatal retina. Interestingly, mice reared in 
constant darkness from embryonic day 15–16 (3–4  days 
before birth) had too much VEGF, and thus impaired 
hyaloid vessel regression coupled with an overgrowth of 
the retinal vasculature at post natal stages (71). While the 
role of circadian transcription factors in this process was 
not investigated, others have shown that Bmal1 positively 
and Period2, Cryptochrome1 and Dec2 negatively regu-
late hypoxia-induced tumor-cell derived VEGF-A in mice 
(72, 73), providing support for the idea that the mecha-
nism behind circadian regulation of VEGF in zebrafish 
could be conserved in mammals. As mice, in contrast to 
humans and zebrafish have elevated production of Bmal1 
during the day, tumor- and cartilage-derived VEGF was 
found to be significantly elevated shortly after light-onset 
compared to during the night (72, 73); a finding that has 
been coroborated in other studies and linked to increased 
sensitivity of anti-angiogenic drugs when these are deliv-
ered during the day, and decreased effects combined 
with increased side-effects when treatment was given 
during the night (74). Disruption of circadian rhythms 
in tumor-bearing mice by exposure to constant light, 
which in zebrafish led to chronically elevated Period2 

levels coupled to a reduction in VEGF production (70), 
has been reported to only slightly decrease the levels of 
tumor VEGF-A (75), although in this particular study LL 
did not lead to inhibited angiogenesis because of a com-
pensatory up-regulation of other pro-angiogenic factors. 
Interestingly, in a carcinogen-induced mouse sarcoma 
model, tumor VEGF levels exhibited a larger peak in 
expression level during the night than during the day (76), 
which could indicate that circadian control of VEGF and 
angiogenesis is context-dependent and differs between 
different tumor types and models. Other studies implicate 
Period2 as an important negative regulator of tumor angi-
ogenesis. Period2-overexpressing tumor cells grow slower 
when implanted in mice (77) and period2 knockout mice 
are prone to develop teratomas following irradiation (78). 
As tumor growth is an angiogenesis-dependent process, 
these findings seem to indicate that Period2 may inhibit 
angiogenesis in mice.

An important regulator of Bmal1 – and therefore the 
positive limb in the core circadian transcriptional regu-
latory network – is retinoic acid receptor-related orphan 
receptor (ROR)-alpha (79). Staggerer mice, which are defi-
cient in ROR-alpha, exhibit elevated induction of angio-
genesis following tissue ischemia (80). However is not 
clear if the exaggerated ischemia-induced angiogenesis in 
these mice is caused by disruption of Bmal1 signalling or 
by other effects of ROR-alpha.

Also, in cell lines, Bmal1, Bmal2 and Clock have been 
found to be important for regulation of VEGF levels and 
for circadian oscillations in VEGF production leading to 
elevated production of VEGF during the subjective night 
in a human cell line (81, 82). In contrast to these findings, 
Period2 has recently been implicated as a pro-angiogenic 
gene, as mice exhibiting a homozygous null mutation in 
the period2 gene, exhibit signs of vascular senescence 
including inhibited VEGF-induced angiogenesis into 
implanted matrigel plugs as well as impaired develop-
ment of collateral arteries in a hind limb ischemia model 
(83). However, this phenotype was not well described from 
a molecular point of view, and could be associated with 
other aspects of circadian disruption including changes 
in eNOS activity (see below), which is known to be highly 
important for induction of senescence (84–86).

The role of the circadian clock in 
human tumor angiogenesis
Disruption of circadian rhythms during cancer treatment is 
clinically relevant. Approximately 50% of colorectal cancer 
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patients, for instance, experience disruption of circadian 
rhythms during chemotherapy treatment. Patients with 
disrupted circadian rhythms as measured by actigraphs 
(wristwatch-style motion detectors) had significantly 
shorter survival times than those with normal circadian 
rhythms (87). Fatigue and weight loss were also higher 
in patients with disrupted circadian rhythms. In another 
study, colorectal cancer patients receiving chemotherapy 
who had good performance status and normal circadian 
rhythms had better survival and response to treatment, 
as well as less fatigue and better quality of life (88). Life-
style adaptations may help patients to entrain circadian 
rhythms of sleep and food intake to normal 24-h cycles; 
these include timing and composition of meals; regula-
tion of consumption of herbal sedatives and stimulants 
and alcohol; timing of exercise and morning exposure to 
sunlight; and mind-body programs that diminish sleep-
disturbing stress, as well as therapies like cognitive-behav-
ioral treatment for insomnia that promote sleep (89, 90).

From a molecular point of view, and in agreement with 
the findings from pre-clinical models, CLOCK was reported to 
be significantly up-regulated and Per2 was down-regulated 
in human colorectal cancer tumors compared to adjacent 
healthy tissue and the levels of CLOCK from different patients 
strongly correlated with the level of VEGF detected in their 
tumor biopsies as well as degree of metastatic dissemination 
of tumor cells and poor prognosis (91, 92). In addition, other 
angiogenic factors have been found to oscillate in a circadian 
fashion, including bFGF, EGF and IGFBP in breast cancer 
patients, where peak plasma levels are generally found 
during the day and low levels in the night (93). Even in non-
malignant disorders, VEGF levels have been found to oscil-
late in a similar manner as in cancer patients (94). As such, 
plasma VEGF levels in a patient with POEMS exhibited circa-
dian oscillations with the highest levels found at night, result-
ing in night-time peripheral oedema, which subsided during 
the day, when VEGF levels had normalized (94). Interestingly, 
in the non-vascularized cornea, anti-angiogenic angiostatin 
is increasing during the dark-phase, in which the eye is closed 
and therefore particularly sensitive to hypoxia-induced angi-
ogenesis (95). This may in such tissues be an intrinsic mecha-
nism to prevent angiogenesis during the night.

Circadian rhythms and NO 
synthesis
Nitric oxide (NO), produced by endothelial cell nitric 
oxide synthase (eNOS), is among the most potent and 
important vaso-active molecules and is also important 

for regulation of angiogenesis (96). The endothelial cell 
clock, and endothelial cell Bmal1 in particular is critical 
for maintaining physiological activity of eNOS. Without 
Bmal1, such as in Bmal1-KO mice, or if Bmal1 signalling 
is deregulated such as in Clock-mutant mice, NO produc-
tion is reduced, indicating inhibited activity alternatively 
that eNOS is uncoupled and produce increased amounts 
of superoxide rather than NO (97, 98). Conversely, NO is an 
important mediator of circadian rhythms in the endothe-
lium as age-related decline in eNOS activity lead to a 
dysfunctional EC circadian clock, which could be pheno-
copied in younger mice by eNOS inhibition and rescued in 
older mice by administering an NO-donor (99). In addition 
to Bmal1/Clock, the negative circadian regulator Period2 
may play an important role in maintaining the size and 
function of the endothelial progenitor cell pool in the 
bone marrow, which in turn is important for physiologi-
cal angiogenic responses to ischemic insults (83). Period2 
mutation also caused reduced NO production (although 
eNOS levels were not changed) as well as increased levels 
of COX-1-derived vasoconstrictors (83, 100), indicating 
that disruption of Bmal1 and Period2 both lead to similar 
changes in regulation of vascular tone despite the fact that 
they exhibit opposite regulation of the circadian clock. 
However, both proteins are crucial for EC clock function 
in general so the deregulated NO production may be a 
result of an impaired clock, and thus related to deregula-
tion of clock-output genes, rather than Bmal1 or Period2 
directly changing eNOS function or activity. In line with 
this hypothesis, both Bmal1 or period1–3 triple knockout 
lead to remodelling and toughening of the vascular wall 
(101), which in turn led to development of atherosclerosis 
in the circadian factor-deficient vessels even when these 
were implanted into wild type mice (102) that exhibited 
normal blood lipid levels and overall circadian rhythms.

Angiogenic functions of circadian 
factors or output molecules
While genetic studies showing direct involvement of circa-
dian transcription factors in regulation of angiogenesis are 
intriguing, disrupted circadian rhythms in patients – who 
are usually not harbouring mutations in circadian clock 
genes – would probably be brought about through deregu-
lated secretion and functions of output molecules, such as 
melatonin or cortisol. Melatonin may either promote (103) 
or inhibit (104) angiogenesis depending on the pathologi-
cal situation. Melatonin inhibits tumor angiogenesis by 
lowering both basal and hypoxia-induced tumor-cell VEGF 
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production (104–106). However, melatonin also promotes 
beneficial angiogenesis in ulcers (103) as well as during 
wound healing (107) and bone repair (108). Furthermore, 
melatonin inhibit blood-retinal barrier breakdown in 
response to hypoxia during progression of proliferative 
retinopathy (109). Melatonin may have both unspecific 
effects as an anti-oxidant, as well as elicit specific signals 
through melatonin receptors, which may be the underlying 
reason for the divergent role of melatonin in different con-
texts. The exact mechanism by which melatonin influence 
hypoxia-induced VEGF production and angiogenesis in 
malignant versus non-malignant cells still remain obscure.

Cortisol (dexamethasone), which is high in the early 
morning, elevated in stressful constant light conditions 
(110) but reported to be both elevated (111) and reduced 
(112) in the morning in shift-workers, possibly depend-
ing on the degree of experienced stress in the individual 
(111), is a more clear-cut inhibitor of angiogenesis. Cortisol 
inhibits pathological VEGF-A production in tumors (113) 
as well as physiological VEGF-A production in growth 
plate chondrocytes (114) and vascular smooth muscle 
cells (115). Cortisol however also inhibits angiogenesis 
via anti-inflammatory effects on leucocytes that are often 
a source of multiple angiogenic factors, including VEGF 
(116). Fibromodullin was recently found to be a potent 
angiogenic factor produced by melanocytes and impor-
tant for pathological angiogenesis in the eye, which could 
be related to inflammation (117). The importance of corti-
sol and fibromodulin in circadian regulation of angiogen-
esis has so far not been investigated.

Prokineticin1 and -2 are important secreted regulators 
of circadian synchronization within the SCN, where they 
inhibit sleepiness and potentiate the light-induced output 
(118). Prokineticin1 is also known as EG-VEGF and is a 
potent angiogenic and vascular permeability factor in the 
adrenal medulla as well as potentially other fenestrated 
vascular beds (119). Even Prokineticin2 – also known as 
Bv8 – is an important ‘alternative’ angiogenic molecule 
in tumors, where it has been found to mediate resistance 
to anti-VEGF therapy (120, 121). More studies are however 
needed to establish if disturbed circadian rhythms may 
lead to deregulated production of prokineticins and if this 
translates to differences in plasma levels of this cytokine, 
which could therefore be important for induction of path-
ological angiogenesis in disease.

Conclusions and perspectives
Angiogenesis is one of the most important processes for 
disease progression and therefore tremendous interest 

has been placed on attempting to modulate angiogen-
esis therapeutically either by anti-angiogenic therapy 
in cancer, retinopathies, metabolic diseases or chronic 
inflammatory diseases alternatively by pro-angiogenic 
therapy in, for example, neurodegenerative disorders, 
myocardial infarction, stroke or diabetic peripheral vas-
cular disorders. Unfortunately some previous efforts to 
target angiogenesis by focusing on blocking or delivering 
VEGF or VEGF-receptors have not provided the significant 
clinical benefits that researchers and patients were hoping 
for, probably because the complexity of the angiogenic 
process cannot be accurately modulated by targeting only 
a single pathway (35, 122). As such, other methods or dif-
ferent targets with broader actions need to be identified. 
Recently the circadian clock has emerged as a potentially 
important regulator of angiogenesis in disease (69). There-
fore, the modern changes in lifestyle, which encompass a 
frequent disruption in these rhythms for a growing number 
of people including shift-workers (10), may explain why 
angiogenesis-dependent diseases including cancer, car-
diovascular disorders, metabolic disorders and chronic 
inflammatory disorders are on the rise (see Figure 2). Cir-
cadian rhythms may affect angiogenesis directly by regu-
lation of pro- or anti-angiogenic factors, which has been 
discussed in detail in this review. However, many indirect 
modes of regulation may be as – or even more – impor-
tant, for example circadian regulation of blood pressure 
and perfusion may cause circadian changes in tissue oxy-
genation/hypoxia (123–125), which could affect the vascu-
lature. Also circadian changes in core body temperature 
have been shown to have pronounced effects on cold-
regulated signalling factors (126), which are important for 
healthy physiological processes, and perhaps also for reg-
ulation of angiogenesis, during the night. Finally, disrup-
tion of circadian changes in blood sugar levels could play 
a major role in vascular pathologies, including induction 
of angiogenesis in diabetic patients, as high blood sugar 
levels have to be coupled with high levels of intracellular 
ROS-scavengers (127), which exhibit circadian regulation 
(128). Shift-work commonly leads to uncoupling of activ-
ity/rest cycles from the LD period, potentially leading to 
circadian disruption of the organism. However, there are 
also other, more subtle ways in which circadian rhythms 
can become deregulated. In patients with sleep apnea for 
example, the quality of sleep may be insufficient to com-
pletely reset the clock and prepare the person for the new 
day, once that person wakes up (129). Also other types 
of sleep disorders as well as stress and worries brought 
about increasing demands from the society on our per-
sonal performance may influence the circadian clock and 
cause disease (130). Furthermore, genetic disruption of 
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the circadian signalling pathways may be a factor behind 
disease-development in humans (131–133). Particularly 
in cancer cells, which have an unstable genome, muta-
tions in the circadian clock genes are not uncommon (133, 
134), and therefore the circadian clock could be locally 

Figure 2 Scheme indicating our hypothesis on how disruptions 
in circadian rhythmicity increase the risk of disease, alternatively 
poorer response to treatment.
Various types of circadian disruption such as shift-work, jet-lag, 
sleep disorders or genetic polymorphisms negatively affect impor-
tant physiological functions, including rhythm generation by the 
central pacemaker in the SCN, metabolism, immune function, physi-
cal activity, cardiovascular functions and intestinal functions. This 
in turn may lead to pathological deregulation of angiogenic factors, 
which may also be directly deregulated by disrupted rhythms of 
circadian transcription factor levels (right). This, in turn, leads 
to pathologic angiogenesis and increased risk of angiogenesis-
dependent diseases in people with disrupted circadian rhythms. 
The micrographs in the image are of healthy (left) or disease (right) 
blood vessels (shown in green) in 3-day-old zebrafish embryos.

disturbed, giving the tumor a metabolic benefit to acquire 
more nutrients at times when the organism in general is 
metabolically inactive (134).

Regardless of whether angiogenesis is directly or 
indirectly regulated by circadian rhythms, it seems impor-
tant that we learn more about how to identify and target 
disruptions of the circadian rhythm in blood vessels in 
humans as a preventive or therapeutic strategy in the 
future (89). Alternatively, manipulation of the circadian 
clock in vascular cells (endothelial or perivascular cells) 
by circulating signals such as melatonin or cortisol may be 
a promising strategy for pro- or anti-angiogenic treatment 
as the vasculature is more exposed to circulating factors 
and drugs compared to other cells.
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