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Review

Takenori Onaga*

Tachykinin: recent developments and novel roles 
in health and disease

Abstract: Over 80 years has passed since the discovery of 
substance P (SP), and a variety of peptides of the tachy-
kinin (TK) family have been found and investigated. SP, 
neurokinin A (NKA), and neurokinin B (NKB) are repre-
sentative peptides in mammalian species. SP and NKA 
are major excitatory neurotransmitters in the peripheral 
nervous system, while NKB is primarily involved in the 
central nervous system (CNS). Moreover, TK peptides play 
roles not only as neurotransmitters but also as local factors 
and are involved in almost all aspects of the regulation of 
physiological functions and pathophysiological processes. 
The role of SP as a mediator of pain processing and inflam-
mation in peripheral tissues in coordination with tran-
sient receptor potential channels is well established, while 
novel aspects of TKs in relation to hematopoiesis, venous 
thromboembolism, tendinopathy, and taste perception 
have been clarified. In the CNS, the NKB signaling system 
in the hypothalamus has been shown to play a crucial role 
in the regulation of gonadotropin hormone secretion and 
the onset of puberty, and molecular biological studies 
have elucidated novel prophylaxic activities of TKs against 
neurogenic movement disorders based on their molecular 
structure. This review provides an overview of the novel 
aspects of TKs reported around the world in the last 5 
years, with particular focus on nociception, inflammation, 
hemopoiesis, gonadotropin secretion, and CNS diseases.
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Introduction
Tachykinins (TKs) are a family of neuropeptides widely 
distributed throughout the animal body. The three major 
TKs in mammalian species are substance P (SP), neurok-
inin A (NKA), and neurokinin B (1–3) (NKB), while other 
types of TK peptides have also been identified, i.e., neuro-
peptide K (NPK) (4), neuropeptide γ (NPγ) (5), hemokinin-1 
(HK-1), and endokinin (EKs) (6) (Table 1). SP, NKA, NPK, 
and NPγ are encoded in the Tac1 (pre-pro-tachykinin A, 
Ppt-a) gene. NPK and NPγ are forms of NKA with N-termi-
nal extensions of 26 and 11 amino acids residues, respec-
tively (3, 5). NKB and neuropeptide F (NKF) are encoded in 
the Tac3 (pre-pro-tachykinin B, Ppt-b, or Tac2 in rodents) 
gene (7, 8), while HK-1 and EKs are encoded by the Tac4 
(pre-pro-tachykinin C, Ppt-c) gene (6, 9, 10). Tac4 encodes 
HK-1 in the mouse and rat, whereas Tac4 is spliced into 
four variants (α to δ) in humans to produce EK-A to EK-D, 
respectively (10). Although human EK-A and EK-B are 
amino (N)-terminal elongated forms of hHK-1 (6), the 
amino acid sequence of hHK-1, except for the N-terminal 
six residues, differs from that of mouse and rat HK-1.

A characteristic structure common to TKs is a five-
amino acid sequence at the amidated carboxyl(C)-termi-
nus (4), i.e., FxGLM-NH2, whereas the fourth amino acid 
(x; a hydrophobic residue) varies in different peptides 
(11) (Table 1). The three major TKs can bind to neurokinin 
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receptor (NKR) type 1 (NK1R, TACR1), NKR type 2 (NK2R, 
TACR2), and NKR type 3 (NK3R, TACR3), which are classi-
fied in the rhodopsin family of G protein-coupled recep-
tors (GPRs) (12). SP, NKA, and NKB have higher affinity to 
NK1R, NK2R, and NK3R, respectively (13). HK-1 is an NK1R 
agonist with equipotent activity to SP in terms of in vivo 
cardiovascular effects (14) and the immune system (15). As 
NPK and NPγ have C-terminal structure identical to that of 
NKA, they also bind to NK2R, and NPγ selectively binds 
to NK2R more potently than does NKA (16). The C-termi-
nus of NPK, NKγ, and NKA forms an α-helix structure 
and binds to the transmembrane region of the receptor, 
while the N-terminus of NPK appears to interact with an 
extracellular loop of the receptor for stabilization of the 
C-terminus (17); that is, the C-terminus is the ‘message’ 
domain concerned with receptor activation, while the 
N-terminus plays an ‘address’ function in determining 
receptor subtype specificity (18).

In the past three decades, TKs have been actively 
investigated as neurotransmitters in the central (CNS) and 
peripheral nervous system (PNS), and considerable knowl-
edge on neural TKs has been accumulated, with a detailed 
review on a variety of aspects published (19). Therefore, 
this review addresses recent developments in TK and NKR 
biology over the last 5 years, with particular focus on noci-
ception, inflammation, hemopoiesis, gonadotropin secre-
tion, and neurogenic diseases associated with the CNS.

TKs and peripheral afferent nerves

Roles of TKs in nociception

Neural TKs are released from nonmyelinated C-fibers that 
consist of primary afferent nerves (PANs) of the sensory 

nervous route of the systemic and autonomic nervous 
systems (20) (Figure 1). PANs are very sensitive to cap-
saicin, a ligand of the transient receptor potential (TRP) 
vanilloid-1 (TRPV1) (21), previously called the vanilloid 
receptor-1. Among the TRPs, TRPV1, TRP vanilloid-4, and 
TRP ankyrin-1 (TRPA1) play crucial roles as polymodal 
nociceptors-sensing chemical, mechanical, and thermal 
stimuli (21, 22). The neurons involving TKs are related to 
nociception and axon reflex, and they primarily express 
TRPV1. Low-dose capsaicin treatment in rats was shown 
to increase mRNA expression of TRPV1, SP, and NK1R in 
the sensory nerves in the spinal cord (23). In a rat model 
of gout, monosodium urate caused nociception and 
edema, and the responses were abolished by TRPV1 and 
NK1R antagonists (24). In studies of local inflammation 
in mice, TRPV1 knockout was shown to increase cytokine 
release and apoptosis of mononuclear cells in response to 
endotoxin lipopolysaccharide (LPS), resulting in impaired 
macrophage-associated defense mechanisms, with a par-
ticular decrease in NK1R-dependent phagocytosis by mac-
rophages (25). These observations indicate that the TRPV1 
and SP-NK1R axis acts as a defense against damage from 
sepsis. SP- and NK1R-containing PANs were shown to be 
involved to some extent in hypersensitivity to surgical 
pain in rats (26). PANs in the rat spinal cord co-express μ- 
and δ-opioid receptors, and agonists of both opioid recep-
tors potently inhibited capsaicin-induced SP release (27). 
These μ- and δ-opioid receptors in the spinal cord serve as 
crucial action points for pain control by analgesics.

In the CNS, the rostral ventromedial medulla (RVM), 
a central relay in the bulbospinal pathways that modu-
lates nociception, contains high concentrations of SP 
and NK1R. Microinjection of SP at picomole levels in the 
RVM produced a concentration-dependent increase in the 
number of discharges in distal dendrites of RVM neurons 

Table 1 Tachykinin family peptides and gene, high-affinity receptor, and amino acid sequence.

Tachykinin   Gene   High-affinity  
receptor

  Amino acid sequence   References

Substance P (SP)   Tac1 (Ppt-a)-α, β, γ, δ  NK1R (TAC1R)   RPKPQQFFGLM-NH2   (1)
Neurokinin A (NKA)   Tac1 (Ppt-a)-β, γ   NK2R (TAC2R)   HKTDSFVGLM-NH2   (2)
Neuropeptide K (NPK)  Tac1 (Ppt-a)-β   NK2R (TAC2R)   DADSSIEKQVALLKALYGHGQISHKRHKTDSFVGLM-NH2   (3)
Neuropeptide γ (NPγ)   Tac1 (Ppt-a)-γ   NK2R (TAC2R)   DA - - - - - - - - - - - - - - - - GHGQISHKRHKTDSFVGLM-NH2   (2)
Neurokinin B (NKB)   Tac3 (Ppt-b)   NK3R (TAC3R)   DMHDFFVGLM-NH2   (3)
Neurokinin F (NKF)   Tac3 (Ppt-b)   NK3R (TAC3R)   YNDIDYDSFVGLM-NH2   (7)

      YDDIDYDSFVGLM-NH2   (7)
Hemokinin-1 (HK-1)   Tac4 (Ppt-c)   NK1R (TAC1R)   (mouse/rat) SRTRQFYGLM-NH2   (5)

      (human) TGKASQFFGLM-NH2   (8)
Endokinin (EK)-A   Tac4 (Ppt-c)     DGGEEQTLSTEAETWVIVALEEGAGPSIQLQLQEVKTGKASQFFGLM-NH2   (5)
EK-B   Tac4 (Ppt-c)     DGGEEQTLSTEAETW - - - - - - EGA - - - - QLQLQEVKTGKASQFFGLM-NH2   (5)

Broken lines incidate lacking amino acid residues. Ppt-a, preprotachykinin A; Ppt-b, preprotachykinin B; Ppt-c, preprotachykinin C.
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Figure 1 Substance P (SP)-containing primary afferent nerves and 
nociception.
The illustration shows peripheral tissue lesions and nociception. 
Irritant stimulus activates TRPA1 and TRPV1, which generates action 
potential (AP) in primary afferent nerves (PANs) that contain SP and 
carcitonin gene-related peptides (CGRP). AP causes an axon reflex 
in PANs releasing SP and CGRP. SP triggers degranulation of mast 
cells releasing histamine and protease and increasing vascular 
permeability through NK1R. Activation of both μ- and δ-receptors 
attenuate peripheral pain, and activation of CCK receptors attenuate 
itch and degranulation of mast cells. TRP, transient receptor poten-
tial; TRPA1, TRP ankiin-2; TRPV1, TRP vanilloid-1; NK1R, neurokinin 
receptor type-1; PAR2, protease-activated receptor type-2.

that were immunoreactive for NK1R (28). This effect was 
attenuated by an NK1R antagonist, suggesting the involve-
ment of the SP-NK1R axis in the afferent pathway in the 
CNS.

TKs and itch

Intradermal injection of SP induces itch and scratching 
behavior through stimulation of the C-fibers via chemical 

mediators such as leukotriene B4 (29). Recently, SP/gluta-
mate or SP/gastrin-releasing peptide (GRP) co-expressing 
neurons have been shown to be the focus of the spinal 
neurotransmission of histamine-dependent and -inde-
pendent itch (30) (Figure 1). A majority of GRP immuno-
positive fibers in dorsal root ganglion (DRG) cells express 
SP, CGRP, and TRPV1 (31, 32). A recent in vivo study dem-
onstrated that SP, glutamate, and GRP each partially 
contributes to histamine-independent itch (33). Patch 
clamp recordings using slices of spinal cord from rats 
and mice revealed that a portion of dorsal horn neurons 
receiving input from PANs showed an increased firing 
frequency of action potential in response to GRP appli-
cation (34). However, the population of GRP-sensitive 
neurons was as high as 10% DRG cells, and neurotrans-
mission between the neurons was shown to be primarily 
mediated by glutamate, not by GRP (34). Subpopulations 
of chloroquine- and/or histamine-sensitive DRG neurons 
were immunopositive for SP and/or GRP, and more than 
80% of them were immunopositive for vesicular gluta-
mate transporter type 2 (35). Co-administration of NK1R 
and α-amino-3-hydroxy-5-methyl-4-isoxazole proprionate 
acid (AMPA)-glutamate receptor antagonists was more 
effective in abolishing scratching behavior in response to 
histamine, indicating that histamine-evoked itch is medi-
ated primarily by SP and glutamate, with GRP playing a 
lesser role. Accordingly, the co-application of NK1R and 
AMPA receptor antagonists may prove more beneficial 
than the application of GRP receptor antagonists in treat-
ing chronic itch.

Interestingly, topical application of a duodenal 
peptide cholecystokinin (CCK) to the back skin reduced 
scratching frequency of an SP-induced response in mice in 
vivo and degranulation of skin-derived mast cells via CCK 
receptors type 2 in an in vitro study (36) (Figure 1). Visceral 
C-fibers, particularly vagal afferent fibers, are sensitive not 
only to TRPV1 agonist capsaicin but also to CCK, inducing 
satiety and inhibiting gastric emptying (37), whereas it 
remains unknown whether epidermal C-fibers are sensi-
tive to CCK and attenuate SP-induced itch behavior. The 
aforementioned report suggests that epidermal C-fibers 
also express CCK receptors. This novel effect of CCK may 
help in the suppression of the itch and the development of 
a novel antipruritic drug.

TKs and inflammation
Neurogenic inflammation, characterized by vasodilata-
tion and increased capillary permeability, is induced 
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both in the mucosa and skin through the axon reflex in 
PANs expressing TKs and TRPV1 (38). Released SP acti-
vates NF-κB in leukocytes and the release of proinflam-
matory cytokines (39). Desensitization to SP-evoked 
current was exhibited in almost all SP-responsive DRG 
neurons in control rats, while desensitization diminished 
in a larger proportion (two thirds) of DRG neurons in rats 
with inflammation (40). In addition, pretreatment with 
SP potentiated the N-methyl-d-asparate (NMDA)-evoked 
cytosolic calcium transient response in DRG PANs, and 
this response was blocked by an NK1R-antagonist (41). The 
reports suggest that the SP-NK1R axis not only activates 
postsynaptic dorsal horn neurons but also contributes to 
DRG sensitization in DRG PANs; that is, they develop and 
maintain inflammatory pain.

A novel gas-transmitter, hydrogen sulfide (H2S) was 
shown to exert cardiovascular effects in septic shock 
(42). Recently, it was also demonstrated that H2S reg-
ulates TRPV1-mediated neurogenic inflammation in 
polymicrobial sepsis triggered through the enhance-
ment of SP production and activation of the ERK-NF-κB 
pathway (43), indicating that the TRPV1 and SP-NK1R 
axes are involved in systemic inflammatory response 
and multiple organ dysfunction in cases of sepsis. H2S 
donor treatment to the isolated mouse pancreas caused 
inflammation and increased expression of the Tac1 and 
NK1R genes in the tissue (44). This observation sup-
ports the notion that the SP-NK1R axis has a crucial 
role as a primary mediator of H2S-induced deleterious 
responses.

TRPA1, a major mediator of inflammatory pain and 
mechanical hyperalgesia (22), is activated by exogenous 
alimentary and environmental irritants, which cause 
the release of SP and CGRP from the PANs (45). Further, 
proteases released from the surrounding tissue, particu-
larly from mast cells stimulated by the axon reflex, are 
potent mediators of inflammation and pain and activate 
protease-activated receptor 2 (PAR2), which in turn sen-
sitizes TRPV1 and stimulates SP secretion in the PANs  
(46, 47) (Figure 1). This feedback loop further amplifies 
inflammatory pain.

A recent report described an opposite effect, with 
TRPV1 knockout causing impaired macrophage-associ-
ated immunoresponses in a mouse sepsis model, induced 
by cecal ligation and puncture, in which NK1-dependent 
phagocytosis and bacterial clearance decreased and 
plasma cytokines increased (25). This report indicates that 
TRPV1 has a protective effect against local inflammation 
in sepsis, implying the existence of a dual role for TRPV1 
in inflammation.

Role of TKs in inflammation in the skin

The chemical sensors TRPV1 and TRPA1 are abundantly 
distributed in PANs containing TKs in the skin, and the 
SP-NK1R axis is involved in chronic dermal inflammatory 
diseases (48). Indeed, SP and HK-1, but not NKA and NKB, 
were shown to switch CD4+ memory T cells into Th17 cells 
that may act locally on memory T cells in cooperation 
with proinflammatory cytokines such as interleukin(IL)-
1β secreted from monocytes, resulting in amplification of 
inflammatory responses (49). Further, TKs stimulate secre-
tion of proinflammatory cytokines from keratinocytes 
through NK2R activation (50), which further enhances 
inflammation.

Inflammation itself increases the peptide content of 
DRG PANs (51). Interestingly, exposure of mice to sonic 
stress for 24  h increased SP+ and CGRP+ neurons in the 
DRG innervating the skin, indicating neural plasticity 
in response to stress (52). In mice with atopic eczema, 
the number of SP nerves decreased in those chronically 
stressed with atopic-like eczema, whereas the mRNA 
expression of NK1R tended to increase, together with the 
number and degranulation of mast cell, suggesting that 
chronic stress changes sensitivity and SP signaling system 
outcomes in the skin (53).

Roles of TKs in chemically induced inflamma-
tory colitis

Colonic cancer results in high mortality in Western coun-
tries, and many studies have revealed that chronic inflam-
mation of the colon, such as irritable bowel syndrome, 
is associated with colonic cancer. However, the detailed 
mechanisms underlying inflammation-derived colonic 
cancer remains obscure. Although bacterial products and 
toll-like receptors (TLR) are probably involved in colonic 
inflammation, several lines of study have indicated that 
intramural primary afferent neurons (IPANs) express-
ing TKs are involved in the neuroimmuno-interaction 
of inflammation between nociceptive receptors and 
cytokines.

Trinitrobenzene-sulfonic-acid (TNBS), dextran-sul-
fate-sodium-salt (DSS), and oxazolone are representa-
tive chemical tools for the induction of inflammatory 
colitis. In TNBS-induced inflammatory colitis in rats, the 
myenteric expression of pan-neural marker protein gene 
product 9.5 significantly increased in association with 
elevation in SP, NPK, and galanin immunoreactivity (54). 
In TNBS-induced colitis in mice, a similar TNBS-induced, 
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TRPA1-dependent and sustained depolarization and 
release of SP and CGRP in colonic sensory neurons was 
observed (55). Both TNBS- and DSS-induced colitis was 
inhibited or reduced in TRPA1 knockout mice as well as by 
the application of a pharmacological inhibitor of TRPA1. 
Further, TNBS-induced colitis increased the mechanical 
hypersensitivity of the mice, whereas the knockout of the 
Trpa1 gene abolished the response (22). Taken together, 
TRPA1 can be seen to trigger TK secretion in the visceral 
sensory neurons, which subsequently exaggerates inflam-
matory colitis and hyperalgesia. Thus, TRPA1 agonists are 
a good candidate for the therapeutic treatment of colitis.

In mice, capsaicin- and acid-induced SP and CGRP 
release from the inflamed distal colon in DSS-induced 
colitis was significantly higher than that from the nonin-
flamed colon (56). During DSS-induced colitis, the propor-
tions of TRPV1 expressed in DRGs neurons and the relative 
content of TRPV1 mRNA were significantly increased in 
DRGs projecting to the inflamed distal colon compared 
to those receiving vehicle treatment. Systemic pretreat-
ment with resiniferatoxin (an ultrapotent TRPV1 agonist) 
desensitizes the entire capsaicin-sensitive population of 
sensory neurons. DSS-induced colitis was ameliorated 
by resiniferatoxin treatment and in SP-/- knockout mice 
but not in wild-type or CGRP-/- knockout mice, suggest-
ing that the responsiveness of TRPV1- and SP-expressing 
neurons to inflammatory factors determines the severity 
of DSS-induced colitis in mice. Although SP and CGRP 
were released from identical IPANs in the gastrointesti-
nal tract, they exerted opposite actions in mice with oxa-
zolone-induced colitis; that is, SP-/- knockout protected 
against colitis, whereas CGRP-/- knockout increased sus-
ceptibility to colitis compared to that in wild-type mice 
(57). SP-/- knockout simultaneously decreased inflamma-
tory cytokine production, including IL-4, IL-5, and IL-11, 
by monocytes in the colonic lamina propria, indicating 
neuro-immuno interactions via SP and the involvement 
of these cytokines. Thus, the augmented release of SP 
increases cytokine production and leads to further inflam-
mation. TRPV1-triggered SP release was shown to be more 
abundant in the distal colon and rectum than in the proxi-
mal colon in mice and rats (57, 58). The density gradient 
coincided with severity of inflammation in the animals 
with DSS-induced colitis. This observation strongly sug-
gests that a neural mediator gradient underlies the 
distribution of sites susceptible to inflammation and, pre-
sumably, to intestinal cancers.

Chronic inflammatory colitis is known to be a factor 
in the induction of colonic cancer. An immunohistochemi-
cal study on human chronic ulcerative colitis revealed 
that the total density of NK1R increased by 40% and 80% 

in cases of high-grade dysplasia and carcinoma, respec-
tively, whereas mRNA expression of the truncated form of 
NK1R differed more than tenfold between the high-grade 
dysplasia and carcinoma groups (59). These data suggest 
that not only overexpression of NK1R but also structural 
abnormalities in NK1R may contribute to the deterioration 
of chronic colitis to colonic cancer. The C-terminal-trun-
cated form of the receptor was shown to lack phosphoryla-
tion sites interacting with β-arrestin, a mediator of NKR 
trafficking in the cells, so they appear to be resistant to 
desensitization (19). In addition, as the truncated form 
does not couple to intracellular messenger, such as Ca2+ 
and NK-κB (60, 61), they appear to send different signals 
to the cells.

Roles of TKs in gastritis and gastric cancers

The NK1R antagonist was shown to exert antitumor 
action in human gastric adenocarcinoma cell lines (62). 
This report coincides with the observation that SP appli-
cation accelerated proliferation and migration of the 
human poorly differentiated adenocarcinoma MKN45 
cell line in vitro (63). Therefore, SP neurons appear to be 
involved not only in the carcinogenic process but also 
in the proliferation and invasion of gastric carcinoma 
cells. It is worth noting that the density of SP-expressing 
nerves increased in inverse proportion to the differen-
tiation of tumor cells in human gastric cancer (63), indi-
cating an undefined inverse relationship; that is, a high 
density of SP-positive nerves may inhibit tumor differen-
tiation. Such a protective effect of PANs has been demon-
strated in human chronic gastritis by using low doses of 
capsaicin (64). In patients with gastritis, the neuronal SP 
level decreased in normally appearing mucosa, whereas 
nonneuronal SP increased in the diseased area in gastri-
tis and ulcer patients (65), with Helicobactor pylori infec-
tion further decreasing neuronal SP levels. The decrease 
in SP, a gastroprotective factor, appears to predispose 
patients to mucosal cellular damage in cases of gastri-
tis. In the CNS, an intracerebroventricular (ICV) injec-
tion of SP inhibited the formation of ethanol-induced 
gastric ulcers, although intravenously (IV) injected SP 
had no effect (66). The protective effect of central SP was 
inhibited by pretreatment with antagonists of the three 
NKR subtypes, as well as μ-opioid receptor and endo-
morphin-2 antagonists. In addition, centrally injected 
SP reversed the ethanol-induced reduction of gastric 
mucosal CGRP content. Hence, SP may induce centrally 
initiated gastric mucosal protection through the periph-
eral action of CGRP.
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Role of TKs in hypersensitivity and  
inflammation in airway

Neurogenic inflammation in the airway has been reviewed 
(67, 68) and, as regards asthma, it was demonstrated that 
SP and NKA released from airway sensory nerves cause 
bronchoconstriction through NK2R in humans (69) and 
plasma exudation through NK1R in guinea pigs (70). 
Elevation of tracheal temperature by humidified warm 
air induced bronchospasms in ovalbumin-sensitized 
rats, and this response was abolished by NK1R and NK2R 
antagonists (71). In another study, it was shown that 
hypochlorite-ovalbumin-induced hypersensitivity was 
not induced in TRPA1 knockout mice (72). These reports 
imply that TRPA1 and bronchopulmonary vagal C-fibers 
releasing SP and NKA are key mediators of airway hyper-
sensitivity in asthma. Moreover, nasal antigen exposure 
rapidly induced bronchial hyper-responsiveness through 
SP release and binding to NK1R without direct stimulation 
of the bronchial mucosa by antigens in mice (73), imply-
ing that united but remote interactions can be triggered 
between the upper and lower airways through TK release, 
presumably mediated by the vagal C-fibers.

TKs have been shown to be involved in the regula-
tion of the immunological process of inflammation in the 
airways and immuno-mediating cells, such as lympho-
cytes and mast cells, express NKRs (74). SP was shown to 
be a potent chemoattractant for basophils through NK1R 
activation in a human in vitro study (75). With regard to 
environmental pollution and its biological effect on the 
airway, diesel exhaust particles were shown to induce 
edema in the rat trachea and bronchus via the up-reg-
ulation of TRPV1, NK1R, and NK2R (76), implying that 
treatment with receptor antagonists can ameliorate the 
symptoms caused by air pollutants such as particulate 
matter  < 2.5 μm.

Role of TKs in inflammation in the brain

SP is abundant not only in peripheral PANs but also in 
the CNS, where it was shown to regulate inflammation 
(77). NK1R is predominantly distributed in glial cells 
and astrocytes, and inflammatory cytokines released 
from these cells after bacterial exposure were shown to 
be inhibited by an NK1R receptor antagonist both in vivo 
and in vitro (78). Moreover, in response to streptococcal 
infection in the CNS of mice in vivo, a nonlethal dose of 
bacteria increased the permeability of the blood-brain 
barrier (BBB) in wild-type mice, while no such response 
was induced in NK1R knockout mice (79). Pretreatment 

with an NK1R antagonist abolished the BBB response and 
attenuated the release of inflammatory cytokines such as 
TNF-α and IL-6, as well as further augmented the release 
of the immunosuppressive cytokine IL-10. Thus, NK1R is 
definitely involved in the modulation of BBB permeabil-
ity in sepsis, suggesting the possibility of the prophylactic 
use of NK1R inhibition for encephalitis induced by bacte-
rial infection.

Acute brain injury, such as neurotrauma or stroke, 
increases intracranial pressure (ICP), which causes 
perivascular accumulation of SP in association with 
increased BBB permeability and formation of vasogenic 
edema. Administration of an NK1R antagonist was found 
to reduce potently the increase in BBB permeability and 
edema formation (80). Therefore, NK1R antagonists 
seem to be an effective candidate for a novel therapeu-
tic approach to the treatment of acute brain injury. A 
secondary increase in ICP within 2  h of subarachnoid 
hemorrhage (SAH) was followed by brain edema. In a rat 
model of SAH, the administration of the NK1R antagonist 
n-acetyl-tryptophan (NAT) after 30 min did not improve 
any outcome parameters. However, NAT administration 
at 4 h after ischemic stroke in rat was effective in reduc-
ing BBB permeability and cerebral edema (81), suggest-
ing that the SP-NK1R axis makes a crucial contribution 
to cerebral edema after ischemic stroke, presumably 
in association with temporal changes in its degree of 
contribution.

NK1R antagonists have the potential to promote recov-
ery following traumatic brain injury (TBI) (82). Infusion of 
SP promoted cellular proliferation in the subventricular 
zone and dentate gyrus following TBI in rats, which was 
largely associated with microglial proliferation but did 
not correspond with any functional improvements (83). 
As NAT treatment reduces microglial proliferation and 
improves motor outcome, NAT appears to be an effective 
neuroprotector following TBI. Although the neuroprotec-
tive effect of NAT was limited to 5  h after TBI, adminis-
tration of a highly lipid soluble NK1R antagonist L-732,138 
provided effective neuroprotection even after a delay of 
12 h in rats (84). This suggests that SP is involved in the 
pathogenesis of TBI and that NK1R antagonist treatment 
may ameliorate TBI, although the lipid solubility of chem-
icals greatly influences the efficacy of the antagonists.

Craniotomy and associated injury to the somatosen-
sory cortex was shown to cause transient periorbital allo-
dynia and elevate nociceptive neuropeptides, such as SP, 
CGRP, and glial fibrillary acidic protein, in the brainstem 
of mice without change in macrophage/microglial cells 
(85). Therefore, the mechanism underlying persistent 
allodynia does not appear to involve activation of these 
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cells, and the source of the elevation of neuropeptides 
remains to be clarified.

In contrast to the brain, no comparable changes in 
the blood-spinal cord barrier after spinal cord injury 
were induced by NAT (86), and SP immunoreactivity was 
decreased in the injured spinal cord (87) in contrast to the 
cerebrum. Hence, the involvement of the SP-NK1R axis in 
inflammation presumably differs between the brain and 
the spinal cord.

Remodeling of tendon and TKs in 
tendinopathy
SP synthesis has been found in nonnervous cells. Tendon 
primarily consists of tenocytes, which play a crucial role 
in tendinopathy. The overloading of tendons induces ten-
dinopathy leading to their thickening, with a subsequent 
induction of tenocyte proliferation. Primary cultures of 
human tenocytes were immuno-positively stained for SP, 
and mechanical load flexion on the cells increased SP 
mRNA expression while decreasing NK1R mRNA expres-
sion (88). SP application to the cells accelerated tenocyte 
proliferation through activation of NK1R, suggesting the 
presence of an autocrine positive feedback loop in teno-
cytes in response to mechanical load.

Thickening of tendon associated with tendinopathy 
involves remodeling of the interstitial matrices. Interest-
ingly, in a three-dimensional culture of human tenocytes, 
SP treatment induced an enhanced mRNA expression of 
collagen type III, smooth muscle actin, and matrix-met-
alloproteinase type 3 (MMP-3), which was blocked by an 
NK1R antagonist (89). As collagen type III is a substrate of 
MMP-3, this observation implies that SP induces the accel-
eration of interstitial collagen matrix remodeling in the 
tendon. It is possible that autocrine feedback regulation 
via the SP-NK1R axis underlies human tendinosis involv-
ing tenocyte proliferation. Conversely, SP injection into 
rabbit tendon increased tendon blood vessel formation 
and reduced peritendinous inflammation (90).

TKs and hematopoiesis
The majority of TKs are expressed in neurons, whereas 
some TKs are expressed in nonneuronal tissues such as 
blood cells. According to an in vitro study in humans, SP 
and NKA exert opposite, that is, stimulatory and inhibi-
tory effects on hematopoiesis through NK1R and NK-2R, 

respectively (91). A study showed high levels of Tac4 
expression in the thymus and bone marrow (9), imply-
ing a possible relation to lymphocyte functions. Tac4 
encodes HK-1 and EK, and HK-1 is a full agonist of NK1R 
in immunoresponses (15). As for lymphocyte functions, 
HK-1 was shown to enhance the proliferation of T-cell pre-
cursors and increase the number of thymocytes in fetal 
thymus organ cultures (92). As the proliferation of T-cell 
precursors in the fetal thymus is important to subse-
quent selection of T-cells in ontogenesis, HK-1 appears to 
play a crucial role in the development of T-cell-mediated 
acquired immunity. Moreover, HK-1 was reported to be an 
activator of B-cell proliferation and survival through the 
synergic action of the mitogen-activated protein kinase 
(MAPK) cascade in response to TLR signals such as LPS in 
mice (93). In humans, the expression of hHK-1 and NK1R, 
but not SP, was similarly detected in B cells, and in con-
trast to SP, hHK-1 was able to induce human pre-B-cells 
proliferation through an NK1R-independent mechanism 
(94). By contrast, the knockout of Tac4 (Tac4-/-) increased 
the pro-B-cell population twofold in mouse bone marrow 
in vivo and in in vitro culture (95). HK-1 application to cell 
cultures of long-term reconstituting stem cells led to a 
more than 80% decrease in de novo generated pro-B cells 
(in terms of absolute cell number), without inducing cell 
death. Therefore, the effects of HK-1 on B-cell hematopoie-
sis remain controversial. Indeed, hHK-1 was up-regulated 
in B cells from chronic lymphocytic leukemia and non-
Hodgkin’s lymphoma, whereas it was down-regulated in 
cells from acute lymphoblastic leukemia. The role of HK-1 
in each pathological process remains, therefore, to be 
clarified.

In a long-term bone marrow repopulation study, a cell 
culture taken from Tac1r -/- knockout mice showed a lower 
population of B and T cells (96), implying that NK1R has 
a role in hematopoiesis. However, B- and T-cell engraft-
ment deficiencies in Tac1r-/- knockout mice in vivo indicate 
that NK1R signaling has a role in hematopoiesis of lym-
phocytes, although this role is not indispensable as Tac1r-/-  
knockout mice are still capable of repopulation with B and 
T cells.

Bone marrow supplies progenitor cells (PCs) to 
peripheral blood. In mice, sympathetic sensory nerve 
fibers containing SP innervate the bone marrow and 
mediate a variety of responses related to injury via the 
release of TKs (97). The sympathetic fibers accelerate 
migration of PCs from the bone marrow to the peripheral 
blood (98), and inflammatory pain causes the migration of 
PCs into the circulation (99). The sympathetic fibers in the 
bone marrow express SP, and topoietic cells in the bone 
marrow abundantly express NK1R (100). An in vivo study 
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in mice demonstrated that artificial myocardial infarction 
increased the levels of SP in the circulation and NK1R-
positive granulocytes in the blood, and a single treat-
ment with systemic injection of SP increased granulocytes 
in the blood (99). Thus, SP in association with ischemia 
appears to increase the number of granulocytes in circula-
tion. Morphine treatment attenuated the mobilization of 
cell in circulation, and NK1R-/- knockout cells transplanted 
into wild-type mice did not show any increase in granu-
locytes, supporting the notion that pain and NK1R have 
roles in cell mobilization (99).

It is worthy of note that pretreatment to cultured 
human mesenchymal stem cells with SP led to a decrease 
in apoptotic cells after irradiation (101), implying the 
potential therapeutic use of SP pretreatment in minimiz-
ing radiation damage to patients.

TKs and venous thromboembolism
TKs, particularly SP and EKA/B, play crucial roles in the 
regulation of platelet functions, and they are known to 
stimulate platelet aggregation, presumably through NK1R 
and NK3R activation and intracellular Ca2+ mobilization 
(102). Among the various TKs, SP was shown to be stored 
in platelets (103), and SP acts in an autocrine or paracrine 
manner on aggregation (102).

Prevention of thromboembolism is crucial not only to 
the surgical treatment and postoperative care of patients 
but also to venous thrombosis after long-haul flights 
(traveler’s syndrome) (104) and long hours of seden-
tary office work common to the modern lifestyle among 
urban workers. Regarding clot formation, SP was shown 
to accelerate platelet-dependent clot formation via NK1R 
(105), while an NK1R antagonist upregulated tissue-plas-
minogen activator, enhancing cleavage of clots (106). 
SP and NK1R knockout reduced thrombus formation in 
response to immobilized collagen (107). Taken together, 
these facts indicate that the blockade of SP-NK1R can 
prevent clot formation. Moreover, full-length transcript 
variants of NK1R mRNA are known to have a higher affin-
ity for SP than the truncated form (108). The expression 
ratio of the full-length form of NK1R is lower than that 
of the truncated form, and the full-length form was not 
observed in every sample (109). In fact, clot formation 
was enhanced in people who express the full-length form 
of the mRNA. Therefore, the full-length variant of NK1R 
has the potential to be a biomarker for clot formation in 
humans and could aid in the prevention of thromboem-
bolism (109).

TKs and taste cells
Taste receptors (TRs) are classified into type I (T1R) and 
type II, with the former further classified into subtypes 
T1R1, T1R2, and T1R3 (110). A heterodimer of T1R1 plus T1R3 
functions as an umami receptor, while a heterodimer of 
T1R2 plus T1R3 functions as a sweet receptor. Taste cells are 
also classified into type I (glial cells), type II (taste cells), 
and type III (presynaptic cells), and TRs are located in type 
II cells. Ca2+ imaging of isolated taste cells demonstrated 
that SP in a nanomole range induces cytosolic fluctuations 
of Ca2+ in some populations of taste cells, and the response 
was inhibited by an NK1R antagonist and, to a lesser 
extent, by an NK2R antagonist at higher concentration 
ranges (111). Although mouse taste cells express both NK1R 
and NK2R mRNA, single-cell reverse transcription and 
polymerase chain reaction revealed that a Ca2+ response 
was induced in type-I glial cells and type-II umami-recep-
tor cells, suggesting that spicy foods stimulate SP release 
to enhance umami taste. The involvement of TKs in taste 
cells implies the revolutionary development of TK neurons 
not only as irritant receptor against risk factors and toxins 
but also to play a role in the palatability of foods.

NKB and gonadotropin secretion
Pulsatile secretion of gonadotropin-releasing hormone 
(GnRH) triggers the onset of puberty in males and females 
(112). GnRH pulses gradually potentiate the secretion 
of pituitary gonadotropins, luteinizing hormone (LH), 
and follicle stimulating hormone, which stimulate estra-
diol (E2) synthesis and secretion in the gonadotroph to 
elicit humoral and behavioral changes in animals. E2 
regulates feedback to the hypothalamus, whereas E2 has 
dual actions on the hypothalamus either to reduce or to 
enhance gonadotropin secretion depending on the stage 
of the ovarian cycle.

Previous reports concerning the regulation of GnRH 
secretion in the hypothalamus are summarized in  
Figure 2. In immunohistochemical studies, estrogen 
receptor α (ERα) was found in NKB-immunopositive 
neurons proximally to GnRH neurons in the mouse and 
ovine arcuate nucleus (ARC) where the GnRH pulse gen-
erator exists (113). The number of NKB-positive cells is 
high in the ARC of females, implying that NKB has a role 
as an epistatic factor in the regulation of GnRH secretion. 
Indeed, the NK3R agonist senktide has been shown to 
increase LH secretion after IV and ICV injection in mice 
(114), rats (115), sheep (116), and monkey (117).
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The Kiss1 gene product kisspeptin1 and its G-protein-
coupled receptor type 54 (GPR54) (118) also plays a crucial 
role in the regulation of GnRH secretion (119) (Figure 2). 
Kisspeptin has a potent stimulatory effect on GnRH secre-
tion in the male mouse (120), and a mutant of GPR54 
causes hypogonadtropic hypogonadism (HH) in mice 
(121).

The cell bodies of GnRH neurons are in the preoptic 
area (POA) of the hypothalamus and extend fibers to the 
median eminence (ME) (Figure 2). NKB-immunopositive 
neurons are abundant in the caudal ARC (113), and they 
possess kisspeptin and dynorphin (Dyn) (122–124). Thus, 

kisspeptin-, NKB-, and Dyn-positive neurons, referred to 
as KNDy neurons, have been shown to play a central role 
in the ARC for the central regulation of GnRH secretion. 
As KNDy neurons are in contact with cell bodies and the 
nerve fibers of GnRH neurons, kisspeptin and NKB can 
stimulate both cell bodies and the nerve fibers of GnRH 
neurons through GPR54 and NK3R, respectively (125). 
However, as an exception, NKB cannot stimulate the cell 
bodies of GnRH neurons in sheep, because NK3R is not 
found there (126). Moreover, KNDy neurons can contact 
each other via the varicosities of nerve fibers to form a 
feedback loop in the ARC (125).

Figure 2 A model for the regulatory mechanism of GnRH secretion in the hypothalamus.
The upper illustration shows the hypothetized regulatory mechanism of the negative feedback loop during the follicular phase by low 
levels of peripheral estradiol or the interval period of GnRH neuron discharge. The lower illustration shows the mechanism of the positive 
feedback loop during the luteinizing hormone (LH) surge by high levels of peripheral estradiol or the discharge period of GnRH neurons. 
The colored symbols indicate the activated forms of receptors. Localizations of ERα remain speculative. ER α, estrogen receptor α; GnRH, 
gonadotropin releasing hormone; GPR54, G-protein coupled receptor 54 (as kisspeptin receptor); KOR, κ-opioid receptor; Kp, kisspeptin; 
NK3R, neurokinin receptor type 3; NMDA, N-methyl-d-asparate; PrR, progesterone receptor; ARC, arcuate nucleus; ME, median eminence, 
POA, preoptic area.
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KNDy neurons possess both NK3R and κ-opioid recep-
tors (KOR) (127). In general, hypothalamic NKB neurons 
enhance GnRH secretion, which has been supported 
by observations that mutations of the Tac3 (Ppt-b) gene 
encoding NKB play a role in HH in humans (128). Further, 
NKB neurons in the hypothalamus have been shown to 
possess Dyn immunoreactivity (127), and Dyn was shown 
to inhibit electrical bursts in the ARC in sheep and goats 
(129, 130), suggesting inhibitory autocrine regulation of 
KNDy neurons. Taken together, it can be said that NKB 
triggers a positive excitatory feedback loop of KNDy 
neurons, while Dyn triggers a negative inhibitory feed-
back loop (Figure 2). The former accelerates GnRH secre-
tion, whereas the latter reduces it. As KNDy neurons are 
abundant in the ARC (123), there is presumably a number 
of neuron pairs forming feedback loops. Non-kisspeptin 
interneurons presumably relay acceleration of the positive 
feedback loops in rats and sheep (131).

In mice, kisspeptin neurons in the ARC are inhibited 
by Dyn via KOR and stimulated by NKB. However, the 
effect of NKB has been shown to be blocked by a mixture 
of three NKR subtype antagonists, not only by those NK3R 
antagonists that inhibit the effect of senktide in the male 
mouse (132), suggesting that NKB activates kisspeptin 
neurons through multiple subtypes of NKR in the male 
mouse. In addition, the three major tachykinin peptides 
directly activate nearly all kisspeptin neurons in the ARC, 
indicating the existence of a complex regulatory system 
for GnRH secretion.

Although it remains unclear as to what initiates the 
positive and negative feedback loops as epistatic factors to 
KNDy neurons in the ARC, recent studies have revealed a 
peripheral feedback system to KNDy neurons. The knock-
out of aromatase, which synthesizes E2 in the female 
mouse, was shown to reduce kisspeptin expression in the 
rostral periventricular region of the third ventricle (133), 
suggesting that E2 input to the hypothalamus potentiates 
kisspeptin neurons, presumably to generate the pre-ovu-
latory LH surge in the adult female mouse. Kisspeptin is 
expressed in NKB- and Dyn-negative neurons in the hypo-
thalamus, particularly in the POA in ewes (124), and such 
a neuron may relay the E2 excitatory signal to the GnRH 
neurons in the POA or KNDy neurons in the ARC immedi-
ately before the LH surge, as is the case of rodents (133). In 
contrast to kisspeptin, E2 inhibits the expression of NKB 
in the ARC in mice (127) and ovarinectomized goat (130), 
suggesting that the NKB-NK3R axis is, in part, involved 
in the negative feedback regulation of GnRH secretion by 
E2. As ERα is found abundantly in KNDy neurons, periph-
eral E2 signals from the ovary are likely to inhibit or acti-
vate the feedback loop (Figure 2); that is, low levels of 

E2 stimulate the negative feedback loop in the follicular 
phase, and high level of E2 stimulates the positive feed-
back loop leading to the LH surge. Progesterone receptors 
(PrR) found in KNDy neurons are likely to be involved in 
the stimulation of the negative feedback loop in the luteal 
phase and, presumably, in pregnancy (134).

Figure 2 shows the hypothesized model of the rela-
tion between KNDy neurons in the ARC and peripheral 
feedback signals, and it is drawn as if different types 
of KNDy neurons receive the inhibitory and excitatory 
input of E2 at low and high levels, respectively, although 
this is based simply on the notion that E2 and progester-
one inhibits GnRH secretion in early follicular phase and 
luteal phase, respectively, while a high level of E2 accel-
erates GnRH secretion in late follicular phase. However, 
it is possible that identical neurons in the ARC receive 
all of these signals. A very high percentage of the KNDy 
neurons possess both the receptors (124, 135), whereas it 
remains unclear which KNDy neurons receive E2 signals 
that trigger either the positive or negative feedback loop in 
the ARC. At present, no dimorphism of KNDy neurons that 
respond differently to E2 depending on levels have been 
distinguished by immunohistochemical studies, and their 
morphological distinction remains uncertain. It is possi-
ble that there are functional differences in KNDy neurons 
in the ARC (Figure 2), while another possibility is that 
other NKB-positive neurons from outside the ARC trigger 
the positive response leading to the LH surge, because 
NKB-immunoreactivity is also concentrated in other hypo-
thalamic regions (113, 131), and ERα and PrR are located 
in hypothalamic neurons other than KNDy neurons in 
the ARC (135). Further investigations are needed to eluci-
date the superior signals for the hypothalamic regulatory 
mechanism underlying GnRH secretion.

Central administration of senktide evoked LH secre-
tion during prepuberty in male and female rats (136), 
while the response was abolished in the postpubertal 
male rat only. Gonadectomy without sex steroid supple-
mentation in adult mice reversed the effects of senktide in 
both sexes. Thus, the sex steroids can be seen to influence 
the responsiveness of GnRH neurons to NKB, and these 
neurons maintain their positive responsiveness to NKB in 
females but not in males after the onset of puberty. On the 
other hand, neonatal E2 treatment reduced the number of 
NKB-immunopositive neurons in the ARC as well as the 
level of LH circulating in both sexes in rats, whereas sen-
ktide injection recovered the LH level to the normal range 
in both sexes (136). These results imply that the NKB-
NK3R axis has a key role in facilitating GnRH secretion 
and, simultaneously, the fragility of the signal system to 
exposure to sex steroids and presumably environmental 
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hormones in neonates. Indeed, ICV injection of senktide 
increased LH secretion during diestrus and proestrus 
phases of the menstrual cycle in intact female rats (that is, 
it triggers a premature LH surge). However, recent studies 
have also revealed an opposite action; that is, ICV injec-
tion of senktide reduces the plasma concentration of LH 
in ovarinectomized rats (115, 137). Conversely, senktide 
increases LH secretion in male mice (114, 138), whereas 
it inhibits LH secretion in ovarinectomized female mice 
(127). In sheep, senktide implantation in the retrochi-
asmatic area elevates plasma LH concentration in the 
anestrous and follicular phases of ewes, although it has 
no effect in the luteal phase (116). In contrast, senktide 
was found to inhibit LH secretion but increase frequency 
of electrical impulses in the ARC in ovarinectomized goats 
(130). These conflicting effects imply that the NKB-NK3R 
axis modulates GnRH secretion via multiple pathways, 
depending not only on animal species but also on gender 
and the hormonal background of the follicular cycle (139).

In sheep, prenatal testosterone treatment reduces the 
number of NKB-, Dyn-, and progesterone-positive cells in 
the female ARC to levels comparable to those in normal 
males but does not affect the number of kisspeptin cells 
(135). Prenatal exposure of the brain to testosterone is 
known to play a key role in sex differentiation and the 
maintenance of the response to the negative feedback of 
progesterone. In normal adult rams, the number of KNDy 
neurons in the ARC decreases to half of that in adult 
females in association with a decrease in responsiveness 
to the feedback of progesterone. Hence, the aforemen-
tioned report implies that persistent kisspeptin cells might 
maintain responsiveness to progesterone in females, thus 
salvaging GnRH secretion.

The postnatal development of the kisspeptin-GPR54 
signaling system was reviewed by Clarkson et  al. (140). 
Although both NKB and kisspeptin stimulate GnRH secre-
tion in mice, the individual roles remain to be clarified. 
The expression of Kiss1 mRNA encoding for kisspeptin 
increased in the ARC prior to the onset of puberty in GnRH/
sex steroid-deficient hpg mice, whereas Tac3 encoding 
NKB increased at puberty in both wild-type and hpg mice 
(141), suggesting that neurons involved in negative feed-
back regulation have different sensitivities to sex steroid. 
Indeed, E2 administration revealed that Kiss1 gene expres-
sion was more sensitive than Tac2 expression in the ARC 
(141). However, the prepubertal treatment of wild-type 
and hpg mice with an NK3R antagonist did not alter the 
onset of puberty. Thus, the NKB-NK-3R axis alone seems 
insufficient to induce puberty in mice. On the other hand, 
whereas acute ablation of kisspeptin neurons inhibits fer-
tility in adult female mice, neither ablation of kisspeptin 

neurons nor that of GPR54-expressing neurons in knock-
out mice altered the onset of puberty or fertility in female 
mice (142). Thus, compensation for the kisspeptin-GPR54 
axis might occur via genetic ablation, but not via acute 
ablation, at an early stage of development in the female 
mouse.

The role of the NKB-NK3R axis was recently evaluated 
in male and female mice in relation to postnatal nutrient 
status (143). Body weight of pups increased depending 
on the amount of feed before and after weaning, and the 
density of kisspeptin and NKB-immunopositive neurons 
in the median preoptic nucleus projecting to the hypotha-
lamic regions was lower in the under-nourished group at 
32 days and in adult diestrus female mice, indicating that 
the ARC circuits are highly plastic and develop in response 
to food availability. The observation confirmed the impact 
of nutrition status at the early neonatal stages on the plas-
ticity of the hypothalamic neural circuits regulating mam-
malian reproduction in adults.

Pheromone exposure, by the introduction of male 
sheep, caused an elevation in LH level in ewes during sea-
sonal anestrus; however, pretreatment with a kisspeptin 
antagonist into the lateral ventricles in the ewes abol-
ished this elevation in LH (144). After male exposure, Kiss1 
mRNA was increased in the ARC, whereas NKB mRNA 
was decreased. These observations imply that kisspep-
tin neurons, but not NKB neurons, mediate the effect of 
pheromone on the activation of GnRH and LH secretion.

Distribution and roles of TKs in the 
brain stem
The brainstem plays a crucial role in the regulation of the 
autonomic nervous system innervating a variety of organs 
and tissues. The distribution of SP and NKA encoded by 
the same Tac1 gene has been reported in the human brain-
stem, and, in general, these two TKs show quite similar 
distributions (145).

The paratrigeminal respiratory group in the brainstem 
is related to the rhythm generation of respiration in lam-
preys, in which the glutamatergic neurons are surrounded 
by SP-immunopositive neurons (146). A glutamate recep-
tor blockade induces apnea, whereas microinjection of 
SP into this region restored respiratory rhythm, indicat-
ing that SP contributes to the generation of respiratory 
rhythm in vertebrates.

TKs, SP in particular, are known to be cough induc-
ers in the CNS, and NKR antagonist treatment has been 
shown to suppress cough in several species (147). Cough 
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is induced by a series of complex mechanisms involving 
integration of peripheral sensory input from the airways 
and reconfiguration of inspiratory and expiratory motor 
neuron firing patterns (148). Various endogenous and 
exogenous factors are involved in the cough reflex, with 
afferent C-fiber activation in the airways being insufficient 
itself to induce the cough reflex. However, the micro injec-
tion of SP in the commissural subnucleus of the nucleus of 
the solitary tract (NST) enhances cough reflex sensitivity 
to topical citric acid exposure in the guinea pig trachea 
(149), indicating that signals inducing the cough reflex 
through C-fibers coming from the airways converge in the 
NST, and NKR is involved in the regulation of the reflex 
threshold.

In comparison with SP and NKA, which are widely dis-
tributed in both the CNS and PNS, NKB is predominantly 
distributed in the CNS (150). The distribution of NKB is 
restricted to 19 nuclei/regions of the brainstem (151) with 
the major focus being the pons. Moderate distribution 
has also been in the reticular formation, periaqueductal 
central gray, inferior salivatory nucleus, NST, gelatinosa 
trigeminal nucleus, and spinal trigeminal nucleus. This 
distribution pattern implies the functional involvement of 
NKB in the regulation of the cardiovascular, respiratory, 
and gastrointestinal systems. However, the roles of NKB in 
the brainstem remain to be determined.

Roles of TKs in neurogenic diseases

Schizophrenia

NK3R modulates the activity of dopaminergic neurons of 
the ventral tegmental area. Systemic administration of the 
dopaminergic receptor agonist, apomorphine, was shown 
to induce human schizophrenia-like behavior in rats, 
in which internalization of NK3R was induced (152). An 
NK-3R antagonist SB222200 prevented the apomorphine-
induced increase in cytosolic density of NK3R, implying a 
potential therapeutic use of NK3R antagonists in the treat-
ment of schizophrenia.

Alzheimer’s disease (AD)

AD is a neurodegenerative disorder in which a character-
istic amyloid plaque in the brain is formed by aggregated 
β sheets (fibrils) of amyloid β (Aβ). Aβ is a peptide consist-
ing of approximately 40 amino acid residues and exhibits 
neurotoxicity. TKs are known to inhibit the toxicity of Aβ. 

Although the precise mechanism of TK activity remains 
unknown, the similarity of residues 25–35 region of Aβ to 
those of the three major TK peptides (SP, NKA, and NKB) 
suggest that it plays a crucial role (153). In particular, 
residues 31 and 33–35 are identical; that is, FxGLM-NH2 
(with a hydrophobic x residue), which contributes to its 
amyloidogenicity through strong aromatic amino acid 
interactions. Indeed, the addition of tryptophan (W) to 
the carboxyl terminal of TKs effectively attenuates the 
formation of Aβ fibrils (153), implying that modification 
of the three TK peptides could lead to the development of 
anti-AD compounds.

On the other hand, because the NK2R gene is located 
in the linkage region for AD on chromosome 10p21, it was 
regarded as a candidate gene for AD. However, gene anal-
ysis has demonstrated that it has no association with AD 
(154). Hence, the NK2R gene was excluded as a risk factor 
for AD.

Huntington’s disease (HD)

The amygdala may be involved in the development of 
motion sicknesses such as HD. In rats, hypergravity-
induced motion sickness increases Tac1 mRNA, but not 
NK1R mRNA, in the amygdala and NST, whereas motion 
sickness was inhibited by the systemic administration of 
the NK1R antagonist CP-99,994 (155). This suggests that SP 
neuron stimulation by hypergravity in the amygdala may 
be involved in the development of motion sickness in this 
rat model.

TKs and metal ions in the CNS

The redox-active metals such as copper are known to 
increase in concentration with aging, and they have 
been shown to be the cause of various neurological dis-
eases (156). The inhibition of copper uptake appears to 
protect against copper-induced intracellular calcium fluc-
tuations. Although SP does not exert any copper-binding 
activity, a novel protective role of NKB in AD was recently 
demonstrated (157); that is, two NKB molecules can bind 
a copper ion, preventing copper from entering astrocytes. 
In the cerebrospinal fluid of HD, free copper ion concen-
tration was shown to increase, while copper/superoxide 
dismutase (SOD) activity decreased according to the stage 
of the disease (158). The latter change increased oxida-
tive stress, resulting in tissue damage. Recently, NPK as a 
major TK in the cerebral cortex and hippocampus was also 
shown to be able to bind copper ions (159), implying that 
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local changes in NPK in the brain may alter copper con-
centrations as a potential causative factor for neurological 
disease such as HD. Indeed, SP, NKA, NKB, and NPK were 
decreased in the substantia nigra of the HD (160). NPγ also 
binds copper ions with increased pH (161).

Conclusions
While the roles of TKs have been investigated for over 80 
years, the frontiers of TK study around the globe continue 
to expand. In the last decade, the physiological roles of 
hypothalamic NKB in relation to puberty and GnRH secre-
tion have been determined in several mammalian species, 
although they have yielded conflicting results and the 
mechanisms have not yet been theoretically integrated. 
Other physiological and pathophysiological roles of TKs in 
the CNS are not sufficiently clarified, though their locali-
zation has been determined. Thus, further investigations 
are needed and are expected to elucidate the roles of TKs. 
On the other hand, the representative role of the SP and 
NK1R axis in pain and inflammation seems to be more or 
less established, and many NK1R antagonists have been 
shown to have potential therapeutic uses in the control of 
disease. However, they have not yet fulfilled the criteria for 
establishment as clinical drugs, and no NK1R antagonist 
has yet emerged as a clinically available drug other than as 
an antiemetic. This is presumably in part due to the range 
of activities of most TKs, which can lead to adverse effects. 
The situation with TKs contrasts markedly with that of 
other drugs, such as cyclooxygenase inhibitors, opioids 
agonists, and NMDA receptor antagonists currently avail-
able for clinical use for the control of pain and inflamma-
tion. Thus, further development of selective and safe NKR 
antagonists is needed as part of the future study of TKs. 
Although much hard work is yet required, future studies 
on the physiological and pathophysiological roles of TKs 
should simultaneously be beneficial, and it will simultane-
ously open the door to the clinical use of TK antagonists.

Highlights
–– SP plays crucial roles in pain processing and 

inflammation in the peripheral tissue in cooperation 
with TRP and in the regulation of BBB permeability 
and microglia in inflammation in the CNS.

–– TKs are involved in hematopoiesis in the bone marrow, 
and the molecular structure of NKR influences the 
onset of venous thromboembolism.

–– NKB binds copper ions in the CNS, which may be 
helpful for the prevention of neurogenic movement 
diseases such as AD and HD.

–– KNDy neurons in the positive and negative feedback 
loops in the ARC might consist of neuron couples and 
regulate GnRH secretion from the ME.
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