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The Jumonji family: past, present and future  
of histone demethylases in cancer

Abstract: The first Jumonji gene was cloned in 1995 by 
Takeuchi et  al. [Takeuchi T, Yamazaki Y, Katoh-Fukui Y, 
Tsuchiya R, Kondo S, Motoyama J, Higashinakagawa T. Gene 
trap capture of a novel mouse gene, jumonji, required for 
neural tube formation. Genes Dev 1995; 9: 1211–22.]. Several 
genes sharing similar biological features have since been 
discovered, and are currently grouped into the JMJ family. 
Interestingly, their deregulation has been associated with 
cardiac disease, obesity, neurological disorders and cancer. 
One of the mechanisms underlying their function is gene 
expression modulation via histone post-translational modi-
fications (PTMs). Increasing evidence of Jumonji deregula-
tion in tumours such as colon, prostate, haematological 
and breast cancer is continually emerging, hence the need 
to acquire a better understanding. The Genesapiens.org 
database of patient arrays allows target expression levels 
to be investigated in a wide range of cancers, corroborating 
and extending the role of the JMJ family. Here, we provide 
an overview of the expression profile and regulation of JMJ 
family members in cancer, examining the most recent lit-
erature in the light of analyses drawn from this database.
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B-cell acute lymphoblastic leukaemia; B-CLL,  B-cell 

chronic lymphocytic leukaemia; DNMTs, DNA methyl-
transferases; NOC1b, N-oxalyl-D-cysteine 1b; HDACs, 
histone deacetylases; JMJs, jumonji demethylases; KDMs, 
lysine (K)-demethylases; NOG, N-oxalylglycine; NSCLC, 
non-small cell lung carcinoma; OSX, osterix; PBIT, N-phe-
nyl-benzisothiazolinone; PHD, plant homeodomain; PHF, 
plant homeodomain finger; PTMs, post-translational 
modifications; RMS, rhabdomyosarcoma; T-ALL, T-cell 
acute lymphoblastic leukaemia; TS, tumour suppressor; 
α-KG, a-ketoglutarate.

Introduction
It is now well established that nucleosomes are the 
unit of measurement for chromatin. In cells, chromatin 
exists in either an open or closed configuration, par-
tially accounting for protein accessibility in nucleus 
(2). Recently, the scientific community has focused sig-
nificant attention on the role of epigenetics in pathway 
regulation of healthy and diseased cells. Both differen-
tiation of embryonic stem cell and several human dis-
eases, including cancer and atherosclerosis, have in fact 
been associated with epigenetic deregulation (3–6). In 
contrast to genetic lesions, epigenetic changes – involv-
ing mainly cell structure and function alterations medi-
ated by histone post-translational modifications (PTMs) 
– are biochemically reversible (7). Epigenetic modifica-
tions include, but are not limited to, DNA methylation, 
histone PTMs, nucleosome remodelling and non-coding 
RNAs.

DNA methylation, which occurs by the covalent modi-
fication of cytosine residues in CpG dinucleotides con-
centrated in so-called CpG islands (8, 9), correlates with 
transcriptional repression. CpG methylation pathways are 
altered in cancer contributing to tumour suppressor (TS) 
gene inactivation (10). Histone PTMs may include meth-
ylation at lysines and arginines (11), lysine acetylation, 
ubiquitylation and SUMOylation, or serine and threonine 
phosphorylation (8, 9). Lysine acetylation is often linked 
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to transcriptional activation, while lysine methylation 
is associated with activation or repression depending 
on location and methylation level (8, 12, 13). Chroma-
tin modification patterns are regulated by enzymes that 
add (writers), remove (erasers) or read (readers) covalent 
modifications (5, 14, 15). Histone acetyltransferases, lysine 
(K)-acetyltransferases and lysine (K)-methyltransferases 
add acetyl and methyl groups to lysines (9). Histone dea-
cetylases (HDACs) and histone lysine (K)-demethylases 
(KDMs) remove acetyl and methyl groups. Moreover, 
readers of epigenetic information generally possess effec-
tor domains, such as the plant homeodomain (PHD) (9). 
Given their deregulation in cancer and the importance of 
their function, HDACs and KDMs are targets for therapeu-
tic intervention. Chemical modulation of these enzymes, 
mainly by inhibitors, is therefore considered a priority in 
cancer research. Some of these inhibitors, so-called epid-
rugs (drugs targeting chromatin-modulating enzymes 
or factors), have already been approved by the US Food 
and Drug Administration for the treatment of cancer (2) 
in some selected settings or are currently in clinical trials 
(16).

Here, we discuss the structure, function and deregu-
lation in cancer of Jumonji proteins, one of the major 
KDM sub-families. In addition, we provide an overview of 
Jumonji histone demethylase-targeting molecules.

Jumonji demethylases
The JmjC family comprises 30 members that share a JmjC 
domain. To date, 18 of these have been shown to possess 
demethylase activity towards H3K4, H3K9, H3K27, H3K36 
and H4K20 (8, 17–31). Based on their homology and the 
presence of different domains, the 30 members can be 
further classified into sub-families that often share sub-
strate specificity. Figure 1 illustrates the structure, domain 
and known PTMs of this family based on the UniProt data-
base (www.uniprot.org). As well as sharing a JmjC domain, 
all members react with α-ketoglutarate (α-KG) in an Fe(II) 
ion-dependent manner (Figure 2). However, not all have 
been shown to be catalytically active. In addition, other 
domains may also mediate demethylase activity indepen-
dently of the JmjC domain.

Jumonji (JMJ) demethylases have been reported to 
act as transcriptional repressors and stimulators of cell 
growth, and to play a critical role in cardiac develop-
ment (32). Several studies have been performed in mice 
with an altered expression of one of the JmjC members, 
including JMJD1A (JHDM2A/TSGA and KDM3A) (33–35), 

JMJD2A (JHDM3A and KDM4A) (36), JMJD2D (JHDM3D and 
KDM4D) (37), JARID1A (RBP2 and KDM5A) (37), JARID1B 
(PLU1 and KDM5B) (38, 39), JARID2 (JMJ) (40), JMJD6 
(RDP and PTDSR1) (41–43), FBXL10 (JHDM1B and KDM2B) 
(44), JMJD5 (44), JMJD3 (KDM6B) (40) and UTX (40). Many 
different effects were observed, ranging from spermato-
genetic defects (JMJD2D) (37), to obesity and male infer-
tility (JMJD1A) (33–35), haematological and behavioural 
disorders (JARID1A) (29), and lethality (JMJD6) (42, 43) 
(JARID2) (40).

Mutations, deletions or amplifications of JmjC-con-
taining demethylases have been associated with cancer 
development and aggressiveness. Moreover, FBXL10, 
JMJD2A, JMJD2B, JMDJ2C and JARID1B demethylases have 
been suggested as potential targets for cancer therapy, 
although the effectiveness of possible treatment and their 
role remain to be investigated.

Jumonji sub-families
To help avoid confusion, Table 1 provides a detailed list 
of gene names, symbols and synonyms currently used in 
the literature.

JmjC sub-family classification

FBXL family

FBXL10 (KDM2B/JHDM1B) removes methyl groups from 
H3K36me2/1, but not from H3K36me3. Whether FBXL10 
also acts on H3K4me3 is currently debated (27, 45). In 
addition to the JmjC domain, this enzyme contains an 
F-box and two LRR domains (27). Studies have described 
its involvement in BLM protein mutation and its implica-
tion in lymphoma (46), as well as its silencing in human 
brain tumours (27). KDM2B promotes pancreatic cancer 
via polycomb-dependent and -independent transcrip-
tional programs (47). In addition, data from Genesapiens.
org suggest an overexpression in testicular cancer (semi-
noma and non-seminoma) and in B-cell acute lympho-
blastic leukaemia (B-ALL), and a down-regulation in T-cell 
lymphoma (Figure 3).

FBXL11 (JHDM1A/KDM2A) is another member of the 
demethylase family, belonging to the class of H3K36me1 
and H3K36me2 histone demethylases (26). This demethy-
lase trimethylates histone residues (8, 17, 19, 20, 22, 23, 
25, 29). Overexpression in non-small cell lung carcinoma 
(NSCLC) was shown (48). In addition, KDM2A causes 
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Figure 1 Schematic representation of JmjC family proteins based on UniProt database information showing structural domains, motifs, 
PTMs and secondary structures.
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Table 1 Gene names, symbols and synonyms of JmhC proteins.

Gene name   Gene 
symbol

  Gene synonyms

Jumonji domain containing 7   JMJD7   FLJ20543; FLJ20656; FLJ20807; FLJ77014; FLJ78330
Hypoxia-inducible-factor 1, alpha subunit inhibitor  HIF1AN   DKFZp762F1811; FIH1; FLJ20615; FLJ22027
Hairless homolog (mouse)   HR   ALUNC; AU; FLJ98880; HSA277165; MUHH; MUHH1
HSPB (heat shock 27kda) associated protein 1   HSPBAP1   FLJ22623; FLJ39386; PASS1
Jumonji, AT rich interactive domain 2   JARID2   JMJ
Jumonji C domain containing histone demethylase 
1 homolog D (Saccharomyces cerevisiae)

  JHDM1D   KDM7A; KIAA1718

Jumonji domain containing 1C   JMJD1C   DKFZp761F0118; FLJ14374; KIAA1380; RP11–10C13.2; TRIP8
Lysine (K)-specific demethylase 4A   JMJD2A   JHDM3A; JMJD2; KDM4A; KIAA0677
Lysine (K)-specific demethylase 4B   JMJD2B   FLJ44906; KDM4B; KIAA0876
Lysine (K)-specific demethylase 4C   JMJD2C   bA146B14.1; FLJ25949; GASC1; JHDM3C; KDM4C; KIAA0780
Lysine (K)-specific demethylase 4D   JMJD2D   FLJ10251; KDM4D; MGC141909
Lysine (K)-specific demethylase 4E   JMJD2E   KDM4E
Lysine (K)-specific demethylase 4F   JMJD2F   KDM4F
Lysine (K)-specific demethylase 6B   JMJD3   KDM6B; KIAA0346
Jumonji domain containing 4   JMJD4   FLJ12517; MGC129896
Jumonji domain containing 5   JMJD5   KDM8; FLJ13798
Jumonji domain containing 6   JMJD6   KIAA0585; PSR; PTDSR; PTDSR1
Jumonji domain containing 8   JMJD8   C16orf20
Lysine (K)-specific demethylase 2A   KDM2A   CXXC8; DKFZp434M1735; FBL11; FBL7; FBXL11; FLJ00115; 

FLJ46431; JHDM1A; KIAA1004; LILINA
Lysine (K)-specific demethylase 2B   KDM2B   CXXC2; Fbl10; FBXL10; JHDM1B; PCCX2
Lysine (K)-specific demethylase 3A   KDM3A   DKFZp686A24246; DKFZp686P07111; JHDM2A; JHMD2A; JMJD1; 

JMJD1A; KIAA0742; TSGA
Lysine (K)-specific demethylase 3B   KDM3B   5qNCA; C5orf7; JMJD1B; KIAA1082; NET22
Lysine (K)-specific demethylase 5A   KDM5A   JARID1A; RBBP-2; RBBP2; RBP2
Lysine (K)-specific demethylase 5B   KDM5B   CT31; FLJ10538; FLJ12459; FLJ12491; FLJ16281; FLJ23670; 

JARID1B; PLU-1; PLU1; PUT1; RBBP2H1A
Lysine (K)-specific demethylase 5C   KDM5C   DXS1272E; JARID1C; MRXJ; MRXSJ; SMCX; XE169
Lysine (K)-specific demethylase 5D   KDM5D   HY; HYA; JARID1D; KIAA0234; SMCY
Lysine (K)-specific demethylase 6A   UTX   bA386N14.2; DKFZp686A03225; KDM6A; MGC141941
MYC induced nuclear antigen   MINA   DKFZp762O1912; FLJ14393; MDIG; MINA53; NO52
Chromosome 14 open reading frame 169   NO66   C14orf169; FLJ21802; MAPJD
PHD finger protein 2   PHF2   GRC5; JHDM1E; KIAA0662; MGC176680
PHD finger protein 8   PHF8   DKFZp686E0868; JHDM1F; KIAA1111; MRXSSD; ZNF422
Ub. Transc. Tetratricopeptide repeat gene, y-linked  UTY   DKFZp686L12190; UTY1

The most commonly used alternative names are shown in bold.

transcriptional repression of histone deacetylase 3 (HDAC3) 
by removing methyl groups from dimethylated H3K36 (49).

KDM4 family

JmjC domain containing histone demethylase 3A 
(JHDM3A) (JMJD2A/KDM4A) is the most studied member 
of the KDM4 family, which includes JMJD2B (KDM4B) 
and JMJD2C (KDM4C). KDM4A demethylates H3K9 and 
H3K36, acting on H3K9me3 around 5-fold more effi-
ciently than H3K36me3. In addition, KDM4A is more 
efficient in demethylating tri- as opposed to dimethyl-
ated H3K9/H3K36 (24, 25, 50). More specifically, KDM4A 

demethylates H1.4K26me3 (51). KDM4A can stimulate or 
repress gene transcription. To exert its repressive func-
tion, KDM4A is often associated with HDACs (52, 53) or 
with TSs such as p53 (53). Dynamic histone modifica-
tions are critical in controlling neural crest gene expres-
sion. KDM4A is expressed in forming neural folds, thus 
regulating neural crest formation (54). Overexpression 
of KDM4A may block DNA repair and induce genomic 
instability by suppressing the recruitment of 53BP1 and 
promoting tumorigenesis (51, 55). KDM4A can also inhibit 
Tip60 acetyltransferase, which is involved in the repair 
of double-stranded DNA. KDM4A interacts with activa-
tor protein 1 (AP1), which is able to regulate cell prolif-
eration, apoptosis and differentiation. Furthermore, it 
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Figure 3 Significant variations in mRNA expression levels of some JmjC proteins in healthy vs. cancer patient samples array (based on 
the Genesapiens.org database). Dots are representative of individual array value. Box plots represent the data integration of individual 
experiments.
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promotes AP1 binding with JUN and FOSL promoters, 
maintaining AP1 activation (56) and inducing cellu-
lar transformation by repression of the TS, CHD5 (57). 
KDM4B and KDM4C are structurally very similar to 
KDM4A and show similar target specificity and compara-
ble enzymatic activity in vitro (50, 51). However, they may 
play different roles. KDM4C specifically demethylates 
H3K9me2 and H3K9me3 (50, 51). KDM4B and KDM4C are 
overexpressed in breast cancer, squamous cell carcinoma 
(22, 58), prostate and oesophageal cancer, and are associ-
ated with mucosa-associated lymphoid tissue lymphoma 
(59–61). KDM4B promotes epithelial-mesenchymal tran-
sition and consequently gastric cancer metastasis (62). 
Its silencing induces DNA damage response via STAT3 
pathway in colorectal cancer (63). Based on data from 
Genesapiens.org, KDM4C seems slightly overexpressed 
in respiratory cancer and in B-cell chronic lymphocytic 
leukaemia (B-CLL). KDM4B shows up-regulation in B-CLL 
and deregulation in breast cancer (Figure 3). KDM4C 
overexpression may in fact contribute to tumour forma-
tion in ER-negative breast cancers, while KDM4B is more 
highly expressed in ER-positive tumour cells. Further-
more, KDM4B and KDM4C are involved in the genesis of 
ER-positive tumours (55) and prostate cancer (51), respec-
tively. KDM4B is overexpressed in stomach, bladder, lung 
and colorectal cancers (51). The fact that KDM4C is trans-
located in Hodgkin’s B-cells leads to its overexpression 
(64). Although these findings support the role of KDM4B 
and KDM4C as oncogenes, it is still debated whether their 
overexpression is a cause or consequence of tumorigen-
esis. KDM4C is considered to be an oncogene in many 
cancers, and is thus a potential target for anti-tumour 
epidrugs. In addition, KDM4C is able to demethylate PC2, 
thus promoting tumorigenesis in a potentially independ-
ent manner (64). The KDM4 family also includes JMJD2D 
(KDM4D), which has only been found in placental tissues 
(65). Bioinformatic analyses have also revealed the exist-
ence of JMJD2E (KDM4E) and JMJD2F (KDM4F), which are 
very similar to KDM4D (51, 66). In several studies, KDM4D 
has been associated with stimulation of the androgen 
receptor (AR) and colon cancer cell growth, suggesting 
its oncogenic function. KDM4D can stimulate cell pro-
liferation and survival, indicating that it could be used 
as a target in anti-cancer therapy. Activation of p53 may 
be one of the mechanisms contrasting its pro-oncogenic 
functions (18). The fact that demethylation of H3K9 by 
KDM4D is involved in the TNF-α response (67) indicates 
that it may influence tumorigenesis as well as mediat-
ing inflammatory responses (67). JARID1 (KDM5) belongs 
to a demethylase sub-family of four members that use 
H3K4me2 and H3K4me3 as substrates.

KDM5 family

JARID1A (KDM5A/RBP2) is overexpressed in gastric cancer 
and its inhibition leads to cellular senescence of human 
gastric and cervical cancer cells (68). KDM5A inhibition 
has already been used in NSCLC models (69). The Gene-
sapiens.org database shows that KDM5A is up-regulated 
in B-ALL, intestine and non-seminoma testicular cancer, 
while it is down-regulated in pancreatic cancer.

JARID1B (KDM5B) is highly expressed in ductal breast 
cancer and is associated with breast and prostate carcino-
mas (70, 71). KDM5B can also act as a transcriptional co-
activator for AR (28, 70). KDM5B involvement in hormone 
signalling is consistent with high expression levels in testis, 
and in ovary and mammary gland of pregnant females (28).

JARID1C (KDM5C) has been implicated in X-linked 
pathologies (8, 72), but has also been associated with 
human papilloma virus tumorigenesis (73). Further-
more, KDM5C, which encodes an H3K4me2 and H3K4me3 
demethylase, has been linked to embryonic development 
and neuronal function (74–77).

KDM6 family

UTX (KDM6A) and JMJD3 (KDM6B) remove di- and tri-
methyl H3K27, and contrast PcG-mediated modifications 
(20, 30). KDM6A is associated with MLL3/4 complexes 
(30, 78), and was the first demethylase found mutated 
in cancer. Moreover, cell proliferation and invasion are 
mediated by KDM6A-modulated gene expression (79, 80). 
Studies report that KDM6A seems to act as a TS in mul-
tiple myeloma (80). KDM6A-inactivating mutations were 
observed in renal carcinoma cells (81). A recent genome-
wide study found RB-binding protein to be a target of 
KDM6A (82). The KDM6B-MLL3/MLL4 complex is involved 
in cell signalling pathways, including NF-κB and TGF 
(17, 83). KDM6B is up-regulated in prostate cancer and its 
expression is even higher in metastatic prostate cancer (84).

PHD finger (PHF) and zinc finger (ZF) protein 
family

JHDM1D (KDM7A/KIAA1718) is a member of the PHD 
finger (PHF) protein family, and is involved in epigenetic 
regulation. PHF2 recognizes histone H3K4me3 through its 
PHD, and this interaction is essential for histone H3K9me1 
demethylation. PHF8 demethylates H4K20me1 with 
additional H3K9me1 and H3K9me2 demethylase activity 
(85). While PHF2 and PHF8 are known to be involved in 
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development of the neural tube and ganglia, the role of 
KDM7A in cancer progression remains unclear (85). Some 
evidence of a slight down-regulation in B-ALL and T-cell 
acute lymphoblastic leukaemia (T-ALL) can be found in 
the Genesapiens.org database. The same database shows 
that PHF8 is highly overexpressed in seminoma, slightly 
up-regulated in prostate cancer, and down-regulated in 
T-ALL (Figure 3). PHF2 is down-regulated in breast and 
ovarian cancer, but overexpressed in neuroblastoma and 
lung cancer (Figure 3).

A recent study showed that KDM7A suppresses 
cancer by acting on angiogenesis. Cancer cells express-
ing KDM7A appear to grow more slowly than cells in 
which the protein is poorly expressed. This reduction in 
cancer cell growth rate was associated with a decrease in 
formation of CD31+ cells and reduced expression of mul-
tiple angiogenic factors. These findings provided the first 
evidence that increased expression of KDM7A suppresses 
cancer growth (85).

JMJD7 is a JmjC protein whose function has not yet 
been identified. It is thought to be a novel splice form of the 
phospholipase PLA2G4B, which is located downstream.

A study on acute promyelocytic leukaemia showed 
that KDM3B was down-regulated during differentiation 
through recruitment of a co-repressor complex. In addi-
tion, KDM3B suppressed differentiation of leukaemia cells, 
and was up-regulated in acute lymphoblastic leukaemia 
(ALL) patients. KDM3B might therefore play a key role in 
leukaemogenesis, although more studies are needed to 
support this preliminary hypothesis (86). Another statisti-
cal study conducted in breast cancer reported that over-
expression of KDM3B/KDM5A and KDM6A is associated 
with improved and poor prognosis, respectively. Although 
these finding require further investigation, they suggest 
that rebalancing protein methylation levels might repre-
sent a new avenue for cancer therapy (86).

JMJD1C has been proposed as an AR co-activator (87). 
Recently, JMJD1C expression was found altered in breast 
cancer (88), and was shown to be involved in establish-
ment of mouse lymphoid leukaemia (89).

JMJD family

JMJD6 is reported to be an arginine histone demethylase (90) 
and has been found increased in various human cancers. It 
also seems to affect alternative splicing through the regula-
tion of splicing factors such as U2 small ribo-nucleo-protein 
auxiliary factor 65-kDa subunit, U2AF65 (91).

The results of a recent study investigating JMJD6 
expression and its involvement in lung adenocarcinoma 

progression suggest that JMJD6 plays a key role and may 
therefore represent a new therapeutic target and prog-
nostic marker for this tumour. A separate study identified 
JMJD6 as a driver in breast cancer with functional implica-
tions in tumour cell migration and growth (92).

JMJD5 (KDM8) is a histone demethylase that specifi-
cally removes methyl moieties from dimethylated lysine 
36 on histone H3 and exerts a pro-proliferative effect on 
breast cancer cells (93). KDM8 seems to be essential during 
embryonic development. It also appears to act as a repres-
sor of p53 expression, suggesting its oncogenic activity. 
JMJD5 is up-regulated in leukaemia and breast cancer 
(93). In addition, it plays an important role in cell cycle 
progression, circadian rhythms and embryonic cell pro-
liferation, and has also been shown to act on H3K36me2 
demethylation (94). A comparison between the structures 
of KDM8 and FIH, a well characterized protein hydroxy-
lase, showed that human KDM8 may also act as a protein 
hydroxylase. The interaction between KDM8 and core 
histone octamer proteins indicates that histone proteins 
could be potential substrates (94).

Tetratricopeptide repeat domain (TPR) family

UTY is a UTX homolog. Both are reported as H3K27 demethy-
lases. However, while UTX can demethylate H3K27, UTY does 
not seem to exert strong enzymatic action. A study conducted 
on mice suggests that UTX and UTY regulate gene activity 
through mechanisms possibly not involving demethylation 
(95). Another report based on the identification of differen-
tially expressed genes related to changes in the characteris-
tics of mouse teratocarcinoma stem cells identified several 
targets, including UTY, suggesting that UTY may play a key 
role in the early phase of mouse teratocarcinoma (96).

MINA family

MINA is involved in multiple physio- and pathologi-
cal conditions, including pulmonary inflammation, cell 
proliferation, cancer and immunity. Levels of MINA are 
subject to genetic variation linked to single nuclear poly-
morphisms (97). Preliminary pharmacological studies 
suggest that MINA may regulate genes in a tissue-specific 
manner, but its precise role is still unclear (97).

NO66 is inhibited by osterix (OSX), a transcription 
factor required for osteoblast differentiation and bone for-
mation. Decreased levels of NO66 lead to rapid differentia-
tion of osteoblasts and bone mineralization. NO66 seems 
to act as an H3K4me and H3K36me demethylase in vitro 
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Table 2 JmjC family implication in cancer.

Histone demethylase   Association with cancer
JMJD7   N.A.
HIF1AN   Hypoxia-inducible factor-1 (HIF-1) has led to an increasing understanding of the mechanism of tumour hypoxia 

(115)
HR   N.A.
HSPBAP1   N.A.
JARID2   Deletions of JARID2 in chronic myeloid malignancies (116). Overexpression in AML, ALL and testicular cancer 

(Figure 3)
JMJD1C   N.A.
JMJD2A   Silencing/down-regulation in bladder and overexpression in breast (117) cancer (118)
JMJD2B   Overexpression in malignant peripheral nerve sheath tumour (40) and B-CLL; regulation in breast cancer 

(Figure 3)
JMJD2C   Amplification in oesophageal cancer, breast cancer and medulloblastoma; translocation in lymphoma (40) 

Up-regulation in B-CLL, lung carcinoid tumour (Figure 3)
JMJD2D   Regulation in several cancers (51)
JMJD3   Regulation in breast cancer pathways. Overexpression in various cancers including lung and liver carcinomas and 

several haematological malignancies, primarily Hodgkin’s lymphoma (40, 119–121)
JMJD4   N.A.
JMJD5   Overexpression in breast cancer (122)
JMJD6   Overexpression in poor prognostic breast and lung cancer (88, 89)
JMJD8   N.A.
KDM2A   Overexpression in NSCLC depending on cell line (48)
KDM2B   Overexpression in various leukaemias (45), and testicular cancer (47); promotion of pancreatic cancer (Figure 3)
KDM3A   Overexpression in malignant colorectal cancer, metastasized prostate adenocarcinoma, renal cell carcinoma, and 

hepatocellular carcinoma (40)
KDM3B   Up-regulation in ALL (92)
KDM5A   Deregulation in prostate cancer (71)
KDM5B   Overexpression in bladder, prostate and breast cancer (40)
KDM5C   Mutation in renal carcinoma (40). Depletion induces cellular senescence in human colorectal cancer (123)
KDM5D   Deletion in prostate cancer (40)
KDM7A   Regulation in ALL, and slight down-regulation in non-seminoma cancer (Figure 3)
MINA   Overpression in aggressive hepatocellular carcinoma. Significant expression in lung, and gastric cancer (124, 

125)
NO66   N.A.
PHF2   Mutation or silencing/down-regulation in breast carcinoma, and head and neck squamous cell carcinoma (40) 

Down-regulation in breast and ovarian cancer. Overexpression including carcinoid tumour and neuroblastoma 
(Figure 3)

PHF8   Overexpression in prostate cancer, testis, seminoma; slight down-regulation in leukaemia (Figure 3)
UTX   Mutation in multiple tumour types including multiple myeloma, oesophageal squamous cell carcinoma, renal 

clear cell carcinoma, transitional cell carcinoma, and chronic myelomonocytic leukaemia; overexpression in 
breast cancer (40)

UTY   N.A.

N.A., indicates that findings are not yet well reported.

and in vivo. Interactions between NO66 and OSX regulate 
OSX target genes in osteoblasts by modulating methyla-
tion states (98).

To date, one study identifying two novel genes, DIRC2 
and DIRC3, which span chromosome 2 and 3 breakpoints, 
found that the first two exons of DIRC3 can splice to the 
second exon of HSPBAP1, a JmjC-Hsp27 domain gene that 
maps proximal to the breakpoint on chromosome 3. This 
splice may affect normal HSPBAP1 function, concomi-
tant chromatin remodelling, and positive stress response 
signals in kidney T-cells. This study therefore suggests a 

role for DIRC3-HSPBAP1 in familial renal cell cancer devel-
opment (99).

JARID2 family

JARID2 (JMJ) is involved in rhabdomyosarcoma (RMS), 
which most commonly affects soft tissues in children 
(100). In RMS, the fusion protein PAX3-FOXO1 contrib-
utes to the phenotype of undifferentiated myogenic cells. 
JARID2 is overexpressed in RMS in the presence of the 
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PAX3-FOXO1 complex. Moreover, higher JARID2 levels 
are associated with metastasis independently of the state 
of the fusion protein. JARID2 therefore seems to act as a 
direct transcriptional target of the fusion protein PAX3-
FOXO1 and as a downstream effector of PAX3-FOXO1, able 
to maintain a non-differentiated myogenic phenotype in 
RMS. Thus, JARID2 may represent a therapeutic target for 
the treatment of RMS patients (100).

To date, JARID1D, HR, HSPBAP1, JMJD7, HIF1AN, 
JMJD5, JMJD4, JMJD8, KDM3B, JMJD1C, UTY, MINA AND 
NO66, and JARID2 (Figure 1; Table 1) have been poorly cor-
related with cancer in literature.

Using the Genomatix software (www.genomatix.de), 
we summarised signal transduction pathway associations 
and potential interactions implicated in diseases involv-
ing JmjC family members (Table 2).

Targeting Jumonji demethylases with 
epidrugs: a window on the future

While targeting of HDACs and DNA methyltransferases 
(DNMTs) has advanced to the stage where drugs have 
entered the clinic, only a limited number of anti-cancer 
drugs against Jumonji demethylases have been developed 
(none of which have reached clinical trials). KDM inhibitors 
include molecules that act preferentially on KDM4A and 
KDM3A sub-families. Based on the finding that Jumonji 
demethylases exploit Fe2+ and α-KG as cofactors to cata-
lyse demethylation, an α-KG analogue, N-Oxalylglycine 
(NOG) (Figure 4A,B) was generated and used in vitro (22), 
showing a weak inhibition of KDM4A and KDM4C (22). 

Another α-KG analogue inhibitor, the oncometabolite 
hydroxyglutarate (Figure 4C), targets KDM4A, KDM4C and 
KDM2A (101). Recently, hydroxamic acids were identified 
as JMJD2 demethylase inhibitors (102). For example, caffeic 
acid (Figure 4D) seems to non-selectively inhibit KDM4C, 
and also acts on HDACs and DNMTs. A series of N-oxalyl-
D-tyrosine derivatives were investigated for the inhibition 
of KDM4 (103). In addition, 4-hydroxypyrazole A (Figure 
4E) inhibits KDM4C. A hydroxamate analogue based on the 
crystal structure of KDM4A (Figure 4F) acts as a more potent 
inhibitor (104). In addition, a selective JMJD2 inhibitor able 
to modulate cell growth in oesophageal carcinoma was 
synthesized and tested (105). Compounds that remove the 
zinc ion, including disulfiram and ebselen, inhibit JMJD2A 
(105). JMJD2A was also found to be specifically inhibited by 
the disruption of its zinc binding site (105).

Various inhibitors have been created based on N-Oxa-
lyl-D-Cysteine 1b (NOC1b), a NOG analogue which seems 
to inhibit both JMJD2E and KDM4A (106). GSK-J1 (Figure 
4G) is a small molecule that targets KDM6B, while GSK-J4 
is another drug that appears to block pro-inflammatory 
cytokines produced by human macrophages (107).

The structure of KDM6A was defined by X-ray crystal-
lography (108), leading to the design of a small molecule 
that acts by inhibiting KDM6A (108). Initial studies on this 
inhibitor demonstrated that it reduces the production of 
pro-inflammatory cytokines by macrophages, a process 
that depends on both KDM6B and UTX. Recently, Dami-
nozide (Figure 4H) was found to be a selective inhibitor of 
JHDM1B and PHF8 (107).

Progress towards the development of potent inhibi-
tors for the Jumonji family is very slow because of the 
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Figure 4 Chemical structure of JmjC inhibitors.
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Table 3 Signal transduction pathway associations and potential interactions of JmjC proteins in human diseases.

Pathway component   Signalling pathway

HIF1AN
 HIF1A (115)   Hypoxia-inducible-factor-1, alpha subunit (basic helix-loop-helix transcription factor) (Genomatix BioCarta)
 NOTCH (116)   Notch (Genomatix BioCarta STKE KEGG)
 PI3K (117)   Phosphatidylinositol (Genomatix BioCarta STKE KEGG)
 PKC (117)   Protein kinase c (Genomatix BioCarta)
 VEGF (117)   Vascular endothelial growth factor (Genomatix BioCarta KEGG)
JMJD6
 APOPTOSIS (42, 118)   Apoptosis
 RAC (119)   Small gtp binding protein rac (Genomatix BioCarta KEGG)
 TFRC (120)   Transferrin receptor (p90, cd71) (BioCarta)
KDM2B
 ANTIAPOPTOTIC (121)   Antiapoptotic
 APOPTOSIS (45)   Apoptosis
 NFKB (45)   Natural factor kappa b (Genomatix BioCarta)
 PROLIFERATION (45)   Proliferation
 RB1 (45)   Retinoblastoma 1 (Genomatix BioCarta)
 TP53 (45)   Tumour protein p53 (Genomatix BioCarta BioCarta)
KDM2A
 NFKB (122)   Natural factor kappa b (Genomatix BioCarta)
KDM6B
 CDKN2 (123)   Cyclin-dependent kinase inhibitor 2
 GSK (124)   Glycogen synthase kinase (Genomatix BioCarta)
 IL4 (125)   Interleukin 4 (Genomatix BioCarta)
 NFKB (124)   Natural factor kappa b (Genomatix BioCarta)
 ONCOGENIC (123)   Oncogenic
 PKC (126)   Protein kinase c (Genomatix BioCarta)
 SMAD (125)   Mothers against dpp homolog (Genomatix BioCarta STKE KEGG)
 STAT (127)   Signal transducer and activator of transcription (Genomatix BioCarta STKEK EGG)
 TP53 (128)   Tumour protein p53 (Genomatix BioCarta)
C14ORF169
 PROLIFERATION (129)   Proliferation
JARID2
 PROLIFERATION (129, 130)   Proliferation
 DIFFERENTIATION (131)   Differentiation
 NOTCH (132)   Notch (Genomatix BioCarta STKE KEGG)
KDM5B
 E2F1 (133)   e2f transcription factor 1 (Genomatix BioCarta)
 PROLIFERATION (133)   Proliferation
 RB1 (133)   Retinoblastoma 1 (Genomatix BioCarta)
 SMAD (116)   Mothers against dpp homolog (Genomatix BioCarta STKE KEGG)
 TGF BETA (116)   Tgf beta (Genomatix BioCarta BioCarta STKE KEGG)
KDM5C
 SMAD (134)   Mothers against dpp homolog (Genomatix BioCarta STKE KEGG)
 TGF BETA (134)   Tgf beta (Genomatix BioCarta STKE KEGG)
KDM5A
 IGF1 (69)   Insulin-like growth factor 1 (Genomatix BioCarta)
PHF8
 DEVELOPMENTAL (135)   Developmental
HR
 WNT (136)   Wingless type (Genomatix BioCarta STKE KEGG)
KDM3A
 HIF1A (137)   Hypoxia-factor-1, alpha subunit (basic-helix-loop-helix transcription factor) (Genomatix BioCarta)
 MAPK (138)   Mitogen-activated protein kinase (Genomatix BioCarta STKE KEGG)
 SPRY (138)   Sprouty homolog (drosophila) (Genomatix BioCarta)
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lack of structural information. KDM4 family inhibi-
tors will likely require a much more detailed chemical 
and biochemical analysis and longer preclinical trials. 
Although several chemically different inhibitors have 
been proposed, X-ray crystal structures of at least some 
Jumonji targets have demonstrated an indirect effect, 
likely mediated by alteration of complex composition (41, 
109–111). The availability of other X-ray crystal structures 
will represent a crucial step in the development of novel 
Jumonji modulators. More potent and selective inhibitors 
of histone demethylases are expected to be synthesized 
in the coming years (112–114). Recently, KDM5B inhibi-
tors have been developed, including N-Phenyl-Benzi-
sothiazolinone (PBIT) (Figure 4I). This molecule is able 
to inhibit JARID1 and KDM5B, but not KDM6B and UTX. 
Further investigations are required to clarify the mecha-
nism of PBIT inhibitors. A molecule called JIB-04 spe-
cifically inhibits Jumonji histone demethylase activity 
in cancer (115), and acts only on tumour cells, blocking 
their vitality. This small molecule may therefore represent 
an important tool for treatment of breast cancers overex-
pressing Jumonji demethylases with significantly lower 
survival rates (115, 116) (Table 3).

Summary and outlook
Histone modifications are key epigenetic mechanisms 
modulating fate decisions both in healthy and diseased 
cells. Epigenome-based deregulations, together with 
genome alterations, causally contribute to tumorigenesis. 
The scenario in cancer is highly complex. On one hand 
there exists a plethora of alterations that can progress 
throughout malignancy and may crosstalk with each other. 
On the other hand, the context cannot be ‘generalized’: 
cancer should be considered as ‘a disease of the individ-
ual’ and treatments should be (or should become) as tai-
lored as possible. Emerging high-throughput sequencing 
technologies applied to cancer provide a valuable tool to 
allow the personalized study of ‘individual’ diseases. The 
fact that chromatin-modulating enzymes can be pharma-
cologically targeted makes them an exciting field of inno-
vative intervention in human diseases, including cancer.

At this stage, pharmacological modulation is very 
complex as interference with so-called ‘readers’ might 
prove to be much more difficult than canonical competi-
tive inhibition. An additional level of complexity is given 
by the fact that epigenetic-based deregulations are gen-
erally marked by protein complexes, and epidrugs may 
likely indirectly influence the content of these regulators. 

Convincing evidence of the deregulation of histone 
demethylases, including the Jumonji family, indicates that 
they may undoubtedly become important diagnostic and 
prognostic tools.

However, Jumonji-targeting drugs acting in the low 
micromolar range or selective for specific enzymes are 
still required. The growing body of knowledge within the 
scientific community needs to be supported by greater 
mechanistic insights. To date, it is still unclear whether 
pure epigenetic effects are beneficial against cancer. 
The difficulty in both defining a hierarchy of effects and 
understanding causal roles of some anti-cancer readouts 
adds still further complexity. Only a long-term approach 
will help to distinguish more precisely between cause and 
effect, and to clarify some of the current issues.
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