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Abstract: Alzheimer’s disease (AD) is a neurodegenerative 
condition characterized by the formation of amyloid-β 
plaques, aggregated and hyperphosphorylated tau pro-
tein, activated microglia and neuronal cell death, ulti-
mately leading to progressive dementia. In this short 
review, we focus on neuroinflammation in AD. Specifi-
cally, we describe the participation of microglia, as well 
as other factors that may contribute to inflammation, in 
neurodegeneration.
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Introduction
Alzheimer’s disease (AD) is the most common cause of 
dementia in the elderly. It is characterized by the pres-
ence of two aberrant structures within the patient’s brain, 
namely senile plaques and neurofibrillary tangles (NFTs). 
In addition, it causes the loss of neuronal function and 
neuronal death in the later stages of the disease (1).

The main component of senile plaques and NFTs are 
amyloid beta (Aβ) peptide and tau proteins (2), respec-
tively. Aβ is cleaved from the larger amyloid precursor 
protein (APP) (3). In the familial type of AD (FAD), which 
has an incidence below 5%, mutations in APP and in pre-
senilin 1 and 2 genes can lead to increased levels of Aβ, 
which may be related to the onset of the disease (4). For 
the remaining cases of (sporadic) AD, which typically 

develops later than familial AD, the cause is largely 
unknown. Given that the degenerative process of the two 
forms of the disease are similar, it is thought that they 
share the same underlying mechanism.

On the basis of these observations, Aβ has become 
a major pharmacological target for the treatment of the 
disease. The amyloid cascade-inflammatory hypothesis 
has been put forward to explain the mechanism underly-
ing Aβ toxicity in AD (5–11). This hypothesis proposes that 
Aβ induces an inflammatory response that is enhanced by 
the presence of tau. An excess of soluble Aβ species, as 
well as aggregated Aβ and hyperphosphorylated tau pro-
teins, interferes with neuronal function and triggers the 
inflammatory activity of microglia, some of the primary 
events being those that initiate AD pathology. It has even 
been discussed whether a pro-inflammatory process 
could precede AD (12, 13). The inflammatory response 
is driven mainly by activated microglia (14). The activa-
tion of these cells has been reported in both AD patients 
and animal models of this disease (15), and it is accom-
panied by increased levels of specific chemokines and 
cytokines (16). In addition, the protective effects of non-
steroidal anti-inflammatory drugs (NSAIDs) against AD 
development (17) further support the neuroinflammation 
hypothesis of AD (5). Finally, as the disease progresses, 
neurodegeneration ensues, interfering with the proper-
ties of the central nervous system (CNS) and thus affecting 
neuronal function, as well as the structure and survival of 
the neurons themselves.

Microglia

Microglia are glial cells located in the CNS. They play a 
macrophage-like role in the immune defense of this 
system (18–21). These cells were named by the Spanish 
neuroscientist Pío del Río Hortega about a century ago (22, 
23). He postulated that microglia serve as macrophages by 
phagocytosing toxic elements in the CNS.

The origin of microglia differs from that of other types 
of brain glia or macroglia. In the mouse brain, microglia 
originate from myeloid progenitors in the yolk sac that 
migrate into the brain during early embryonic stages, 
before the blood-brain barrier is formed (24). Under 
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physiological conditions, microglia proliferate through-
out embryogenesis and self-renew constantly throughout 
life to maintain cell numbers, without a contribution from 
bone marrow-derived macrophages (25).

Recent evidence shows that microglia are highly 
dynamic. Under both physiological and pathological 
conditions, they monitor their environment and regulate 
tissue homeostasis through scavenging functions (26). 
Therefore, resident microglia have functions related to 
immune surveillance (27); adult neurogenesis and refine-
ment of synaptic networks such as synapse pruning, 
promotion or removal apoptosis, secretion of growth 
factors, among others (28). During the regulation of brain 
homeostasis, microglia can undergo changes in their 
metabolism and morphology (24, 29). In this regard, two 
main microglia types, namely resting and activated, have 
been described (Figure 1A–D). The former show long cyto-
plasmic extensions that are in continuous movement. The 

latter change shape to become an activated and mobile 
amoeboid, which can be recognized by the expression 
of ionized calcium binding adapter molecule 1 (Iba1) or 
cluster of differentiation (CD) 68 (CD68) markers. The 
transition of a microglial cell from the resting to the acti-
vated type and the resulting changes in morphology are 
promoted by various extracellular cytokines or factors 
such as lipids or lipopolysaccharides (LPS) (30, 31). Also, 
a transition to senescent glia could take place in some 
pathologies like AD (13).

Activated microglia, like peripheral macrophages, are 
often classified into inflammatory (M1) and alternatively 
activated (M2) phenotypes (32) (Figure 1A). However, 
these cells show high levels of diversity and plasticity 
and their classification into an M1 or M2 polarized state 
may be an oversimplification (14, 33, 34). Recently, it 
has been proposed that microglia switch continuously 
between phenotypes (35, 36). However, the M1 phenotype 
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Figure 1: Diagram of polarization states of microglia.
(A–B) Resting microglia may turn into distinct phenotypes depending on the signals that they receive. (C) M1 classical state releases pro-
inflammatory cytokines and cytotoxic substances inducing neurological damage. On the other hand, the M2 alternative state produces 
trophic factors and anti-inflammatory cytokines that have a neuroprotective role in the CNS. (D) Several proteins have been proposed as 
specific markers to differentiate between M1 and M2 states. During the progression of neurodegenerative diseases, there is an imbalance 
of M1/M2 populations, the M1 phenotype being more predominant at late stages. Moreover, it is known that the functions and morphology 
of microglia are altered during aging. For example, phagocytic capacity in AD is decreased due to the increasing amounts of Aβ and tau. 
NSAIDs have been studied as a therapeutic treatment to reduce the M1/M2 imbalance, by decreasing pro-inflammation and attenuating 
neuron loss. AD, Alzheimer’s disease; ARG1, arginase 1; Aβ, amyloid β peptide; CCL7, chemokine (C-C motif) ligand 7; CD, cluster of differ-
entiation; CNS, central nervous system; Cox1, cyclooxygenase1; DAMPs, damage-associated molecular patterns; ECM, extracellular matrix; 
FIZZ1, found in inflammatory zone 1; Iba1, ionized calcium-binding adapter molecule 1; IFN-γ, interferon γ; IGF-1, insulin growth factor 1; IL, 
interleukin; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; MHC II, major histocompatibility complex II; NO, nitric oxide; 
NSAIDs, nonsteroidal anti-inflammatory drugs; PAMPs, pathogen-associated molecular patterns; RNS, reactive nitrogen species; ROS, reac-
tive oxygen species; TGF-β, transforming growth factor β; TLR, toll-like receptor; TNF-α, tumor necrosis factor α; YM1, chitinase-like 3.
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is induced by means of interferon (IFN)-γ and LPS stimu-
lation, among others, and the M2 phenotype by means 
of interleukin (IL)-4, IL-10, and IL-13 (31, 37), etc. (Figure 
1B). M1 microglia are associated with the production and 
release of pro-inflammatory cytokines, namely tumor 
necrosis factor (TNF)-α, IL-6, IL-23, IL-1β, IL-12, nitric 
oxide (NO), and chemokines, among others (38) (Figure 
1C). In contrast, M2 microglia express anti-inflammatory 
molecules, such as IL-10 and transforming growth factor 
(TGF)-β, and extracellular matrix molecules (39). In addi-
tion, it has been proposed that M1 microglia predominate 
at the site of injury under pathological situations, whereas 
M2 microglia appear later at a stage more related to repair 
processes (34). In most cases, microglia in AD patients 
exhibit mixed activation phenotypes. Indeed, cortical 
tissue from the Tg2576  mouse and individuals with AD 
show a mixed profile of alternative activation and classi-
cal activation genes (40).

Neurodegenerative diseases are associated with 
elderly people. In this regard, it has also been hypoth-
esized that aging leads to the dysfunction or dystro-
phia of these cells (34). Nevertheless, a larger reduction 
in process length and arborized area in AD compared 
to aged-matched control microglia has recently been 
described (41).

Activation of microglia

Bacterial LPS is the major outer surface membrane com-
ponent present in almost all Gram-negative bacteria, and 
it is an extremely strong stimulator of innate or natural 
immunity. LPS can bind to microglia to induce the M1 
phenotype, which secretes pro-inflammatory cytokines 
(31) that promote the inflammatory response. The secre-
tion of these molecules can be prevented by anti-inflam-
matory therapeutic agents, specifically by NSAIDs (42) 
(Figure  1A). NSAIDs exert their effects by inhibiting the 
activity of cyclooxygenase (COX) enzymes COX1 and COX2 
(43). Ibuprofen is a NSAID and therefore has the capacity 
to inhibit COX1 and COX2. In this regard, the potential of 
ibuprofen to inhibit the effects of LPS in mouse models has 
been addressed (44). COX1 is expressed mainly in micro-
glial cells and COX2 in neurons (45). COX protein expres-
sion has not been reported in astrocytes (46). However, 
the inhibition of COX1 does not totally block the inflam-
matory response.

This observation suggests that NSAIDs could initiate 
other elements involved in the inflammatory response. 
One such element is the multi-protein complex known as 
the inflammasome (47–49). Inflammasomes have been 

linked to a variety of auto-inflammatory and auto-immune 
diseases, including neurodegenerative diseases and meta-
bolic disorders (50). Therefore, the inflammatory cytokine 
IL-1β secreted by activated microglia is synthesized as an 
inactive precursor and it requires the action of caspase 
1 to become active (51). Increased amounts of cleaved 
caspase-1  have been reported in hippocampal and corti-
cal lysates from AD patients compared to controls. This 
finding is consistent with chronic inflammasome activa-
tion (47). The best characterized inflammasome-forming 
pattern recognition receptor and the one most commonly 
associated with AD is NLRP3 (NLR family, pyrin-domain 
containing 3) (47). Previous activation of caspase-1 requires 
the NLRP3 inflammasome (52). The NLRP3/caspase-1 axis 
plays an important role in AD pathogenesis, and therefore 
inhibition of the NLRP3 inflammasome emerges as a novel 
therapeutic intervention for neurological diseases that 
course with inflammation.

Role of Aβ in brain inflammation

In animal models overexpressing Aβ, inflammatory 
responses to amyloidosis could take place (53, 54). In this 
amyloidosis microglia could exert neuroprotective activity 
by degrading Aβ (55). In AD, these cells have a reduced 
capacity for Aβ clearance, which results in additional 
accumulation of this peptide (56). Microglia-mediated 
clearance of Aβ occurs through the TLR4, the same recep-
tor that is used for LPS action (57). Thus, Aβ (mainly in 
an aggregated form) is a TLR4 ligand, and chronic expo-
sure of this receptor to Aβ can result in TLR signaling 
dysfunction and inflammation (57, 58). Aβ aggregates 
interact with other microglial receptors like CD14, CD36, 
CD47, the receptor for advanced glycation end products 
(RAGE), and some integrins (59–62). It has been proposed 
that the binding of Aβ to CD36 regulates inflammasome 
activation (63). In addition, Aβ peptide may activate the 
NLRP3 inflammasome in microglia (64). More recently, 
it has been reported that Aβ activates microglia through 
its interaction with the APP present in the membrane of 
these cells (65). This finding defines a novel function of 
APP in microglial regulation of the inflammatory response 
in AD (65).

Role of tau in brain inflammation

Tau is a neuronal microtubule-associated protein whose 
main function is to stabilize microtubules (66). The 
pathological aggregations of hyperphosphorylated tau 
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are the defining histopathological features of AD and 
other tauopathies. Recent research has shown that NFTs 
themselves are not the most toxic form of tau, but rather 
the smaller aggregates, called tau oligomers, which are 
likely to initiate neurodegeneration in tauopathies. Oli-
gomeric tau can be released into the extracellular space 
and can spread throughout the brain. Activated micro-
glia are frequently present in the proximity of NFTs in the 
hippocampus of AD patients, thereby indicating a close 
relationship between the inflammatory response and tau 
neurofibrillary lesions. Furthermore, tau can be phago-
cytosed by microglia (67). This finding would support the 
notion that impaired clearance of extracellular tau (by 
microglia) contributes to the spread of pathological tau, 
as shown in AD (68).

In animal models of tauopathies, tau dysfunction may 
result in changes in neuroinflammatory gene regulation 
(69). Deficits in tau function affect various neuronal func-
tions, such as the secretion of proteins like fractalkine 
(CX3CL1) (70, 71). CX3CL1 secreted by neurons can bind to 
its receptor in microglia (CX3CR1), and this process main-
tains microglia in an ‘off’ state (72), thereby inhibiting the 
release of inflammatory cytokines (73, 74). The deficiency 
of CX3CR1 in microglia results in increased secretion 
of IL-1β. This pro-inflammatory cytokine interacts with 
neurons, thereby enhancing tau neuronal pathology via 
p38MAPK (75).

A main tau modification, occurring in AD, is its phos-
phorylation. Tau hyperphosphorylation could be toxic, 
independently if it forms toxic aggregates or could remain 
in soluble form (76). In this way, tau toxicity could result 
in an inflammatory process that could be prevented by 
the inhibition of tau kinases, like GSK3 (77). However, 
tau phosphorylation at different residues could result in 
different toxicity levels and even a site-specific phospho-
rylation of tau could inhibit amyloid toxicity, in a mouse 
model (78).

Other factors modulate inflammation

In recent years, genome-wide association studies (GWAS) 
have identified a large number of risk genes for AD. In 
this regard, the R47H mutation in Triggering receptor 
expressed on myeloid cells 2 (TREM2) has been reported 
as a risk for this disease. TREM2 is a transmembrane gly-
coprotein that is expressed exclusively by immune cells in 
the brain. Mutations in TREM2 are associated with micro-
glial dystrophy, decreased phagocytosis, and an increased 
pro-inflammatory reactive phenotype. These features 
increase the risk of AD, as previously described (79, 80). 

It has been shown that TREM2 deficiency increases LPS-
induced IL-6 and IL-1β mRNA levels in microglia. This 
observation thus indicates that TREM2 restrains microglia 
activation (81).

Environmental factors contribute to the regulation of 
microglia. An example of this is the communication from 
gut to brain (29, 30, 82). The human intestine contains 
many microbial cells that secrete factors, which, after 
crossing the blood-brain barrier, reach the CNS to inter-
act with microglia. In this way, microbiota could have 
the capacity to modulate behavioral and physiological 
abnormalities associated with neuronal disorders (30).

Allergic diseases are generally accompanied by 
chronic systemic inflammation. The effects of allergy 
on AD have not been addressed, but epidemiological 
studies suggest that the presence of allergic diseases, 
especially asthma, is associated with an almost two-fold 
increase in the risk of developing any form of dementia, 
including AD, later in life (83, 84). Asthma is an inflam-
matory disease of the airways, and it is characterized 
by airway eosinophilia, in which the CCL11 (eotaxin-1) 
chemokine plays a crucial role. Eotaxin-1 is a key mol-
ecule in eosinophil chemoattraction and activation 
in asthma pathogenesis (85). Of note, eotaxin-1 levels 
increase throughout life, thus being a molecular effec-
tor of aging, the largest risk factor for developing AD 
(86). It has been shown that plasma eotaxin-1 levels are 
correlated with AD patients. Therefore, low to moderate 
eotaxin-1 levels elicit a normal or protective response, 
while higher levels ultimately lead to neurodegeneration 
and memory impairment (87).

Studies in mice revealed an association between 
allergy and increased phosphorylation of tau (88). More 
recently, it has been described that allergic long-term 
inflammation results in a reduction in the number of 
activated microglia at the dentate gyrus, together with 
enhanced neurogenesis in that brain region (89).

Taken together, all these observations support the 
notion that cross-talk between peripheral tissues and the 
CNS could regulate microglial activation, and, in some 
cases, might result in the onset of neurodegeneration.

Conclusions
Neuroinflammation is one of the main triggers of neurode-
generation. Research into the factors and pathways able to 
induce the first steps of the inflammatory response would 
lead to the identification of potential therapeutic targets 
through which to halt the progression of AD.
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List of abbreviations
AD	 Alzheimer’s disease
Aβ	 beta amyloid peptide
NFT	 neurofibrillary tangles
SP	 senile plaques
APP	 amyloid precursor protein
NAIDS	 non-steroidal anti-inflammatory drugs
CD	 cluster of differentiation
LPS	 lipopolysaccharides
IL	 interleukin
TNF-α	 tumor necrosis factor α
TGF-β	 transforming growth factor β
COX	 cyclooxygenase
RAGE	 receptor for advanced glycation end products
GWAS	 genome-wide association study
TREM2	 triffering receptor expressed in myeloid cells 2
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