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Abstract: A key player in driving cellular immunity, IFN-γ 
is capable of orchestrating numerous protective functions 
to heighten immune responses in infections and cancers. 
It can exhibit its immunomodulatory effects by enhancing 
antigen processing and presentation, increasing leukocyte 
trafficking, inducing an anti-viral state, boosting the anti-
microbial functions and affecting cellular proliferation 
and apoptosis. A complex interplay between immune 
cell activity and IFN-γ through coordinated integration 
of signals from other pathways involving cytokines 
and Pattern Recognition Receptors (PRRs) such as 
Interleukin (IL)-4, TNF-α, Lipopolysaccharide (LPS), 
Type-I Interferons (IFNs) etc. leads to initiation of a 
cascade of pro-inflammatory responses. Microarray data 
has unraveled numerous genes whose transcriptional 
regulation is influenced by IFN-γ. Consequently, IFN-γ 
stimulated cells display altered expression of many such 
target genes which mediate its downstream effector 
functions. The importance of IFN-γ is further reinforced 
by the fact that mice possessing disruptions in the IFN-γ 
gene or its receptor develop extreme susceptibility to 
infectious diseases and rapidly succumb to them. In this 
review, we attempt to elucidate the biological functions 
and physiological importance of this versatile cytokine. 
The functional implications of its biological activity in 
several infectious diseases and autoimmune pathologies 
are also discussed. As a counter strategy, many virulent 
pathogenic species have devised ways to thwart IFN-γ 
endowed immune-protection. Thus, IFN-γ mediated host-
pathogen interactions are critical for our understanding 
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of disease mechanisms and these aspects also manifest 
enormous therapeutic importance for the annulment of 
various infections and autoimmune conditions. 
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IFN-γ: An Introduction
The human immune system is evolved to eradicate or 
contain any pathogenic challenge and eliminate self-
altered cancerous cells. In this regard, IFN-γ has a critical 
role in recognizing and eliminating pathogens. IFN-γ, 
being the central effector of cell mediated immunity, can 
coordinate a plethora of anti-microbial functions. It can 
serve to amplify antigen presentation through antigen 
presenting cells (APCs) by enhancing antigen recognition 
via cognate T-cell interaction, increase the production 
of Reactive Oxygen Species (ROS) and Reactive Nitrogen 
Intermediates (RNIs) and induce anti-viral responses [1]. 
Additionally, cancer cells are destroyed by IFN-γ activity 
via induction of an anti-proliferative state. Immunity to 
several pathogens is mainly governed by IFN-γ activity. For 
example, the role of IFN-γ in endowing protection against 
Chlamydial infections is quite immense [2]. Release of 
IFN-γ by the CD4+ helper T cell population contributes 
to necessary effector cell activation and the generation 
of antibody mediated responses to Chlamydia infections 
[3]. The presence of IFN-γ is of absolute necessity in 
combating mycobacterial infections through its ability 
to regulate various protective functions and sustain 
both CD4+ and CD8+ cell activity [4]. The protective 
benefits of IFN-γ can also been seen in the context of viral 
infections, as enhanced survival of neurons infected with 
varicella zoster virus is observed post IFN-γ treatment [5]. 
Natural Killer (NK) cell -mediated IFN-γ production can 
successfully limit Hepatitis C virus proliferation in HIV+ 
(Human Immunodeficiency Virus) patients [6]. Enhanced 
anti-bacterial and immune protective effects simultaneous 
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with pro-inflammatory responses leading to protection 
of epithelial monolayers from pathogen mediated injury 
are also conferred by IFN-γ during Staphylococcus aureus 
infections [7]. Thus, IFN-γ is a robust protective effector 
molecule mediating protection against a wide array of 
pathogenic entities. 

IFN-γ increases the efficiency of immune system 
by enhancing its competence to deliver anti-microbial 
effector functions. Undoubtedly, such an important 
immune mediator is under stringent regulatory control. 
Over-activity of IFN-γ has been reported to cause 
excessive tissue damage, necrosis and inflammation 
and may contribute to disease pathology. Hyper-activity 
of both IFN- γ and IL-18 can exacerbate pathogenesis in 
Burkholderia infections [8]. Aberrant production of IFN-γ 
has been linked with autoimmunity and alterations in gut 
flora [9,10]. Therefore, IFN-γ activity is a double edged 
sword and immune regulatory mechanisms strive to 
strike a delicate balance between infection control and 
disease pathology in this regard. Foxp3+ (Forkhead box 
P3) -expressing regulatory T cells (Tregs) and suppressor 
of cytokine signaling protein-1 (SOCS-1) are critical 
controllers of IFN-γ activity in this regard.

IFN-γ: Production and signaling 
Interferons were initially described as agents interfering 
with viral multiplication and eliciting potent anti-viral 
activity. However, with the passage of time, they have been 
attributed with a vast array of physiological activities and 
are more than just anti-viral agents. The main producers 
of IFN-γ include T-cells, NK cells, NKT cells, professional 
APCs such as macrophages, dendritic cells (DCs) and 
B cells. The role of IFN-γ secreted by NK cells and APCs 
has been implicated in early host defense and autocrine 
regulation [11]. T cells are the major source of IFN-γ during 
adaptive immunity [12].

IFN-γ responses are an offshoot of receptor-mediated 
signaling. Its biological effects are manifested through its 
interaction with the receptor (IFN-γR) present on target 
cells such as macrophages, DCs and many other cell 
types. The receptor is a heterodimeric complex composed 
of a ligand binding alpha subunit (IFNGR1) and a signal 
transducing beta subunit (IFNGR2). IFN-γ binds to IFNGR1 
with relatively higher affinity compared with IFNGR2. 
Receptor-ligand interaction initiates a signaling cascade 
that in turn produces a series of protective responses 
[13]. Binding of IFN-γ crosslinks IFNGR1 and IFNGR2 
and activates Janus Kinases JAK1 and JAK2 through 

phosphorylation. Activated JAKs in turn phosphorylate 
inactive cytosolic transcription factor STAT1 (signal 
transducer and activator of transcription 1) [14]. Activated 
and phosphorylated STAT1 homodimerizes and is 
translocated to the nucleus where it binds to GAS (gamma 
activated sequences) elements in the promoter region and 
mediates transcription of IFN-γ associated genes required 
for protective immunity. IFN-γ-IFN-γR signaling triggers 
STAT1 phosphorylation and subsequent activation of 
transcription factor T-bet which depicts the onset of T 
cell polarization for commitment to TH1 lineage [15]. 
Recruitment of an additional factor, Runx3, which binds 
to  the  IFN-γ promoter, drives the expression of IFN-γ with 
concurrent silencing of the IL-4 gene [16]. Thus, IFN-γ plays 
a pivotal role in dampening the IL-4 -producing ability of 
TH1 cells and in maintaining sustained expression of T-bet 
[17].

An overview of IFN-γ activity
Macrophages represent a class of APCs which are versatile 
sentinels of the immune system. A pathogen is most likely 
to encounter a macrophage soon after its entry into the 
host and IFN-γ-stimulated macrophages show enhanced 
anti-microbial activity. Thus, IFN-γ activates macrophages 
and makes them better able to mount an effective 
immune response, such as enhanced antigen processing 
and presentation through upregulation of class II MHC, 
increased ROS and NOS production, induction of autophagy 
for clearance of intracellular pathogens and increased 
secretion of pro-inflammatory cytokines. Additionally, it 
can activate NK cells, increase their tumoricidal activity 
and also regulate antibody production to modulate B cell 
responses. Growth and maturation of other cell types 
and leukocyte migration are also facilitated by IFN-γ. The 
heightened immune activation ultimately leads to effective 
clearance of pathogens through enhanced phagocytosis, 
pro-inflammatory responses and lymphocyte recruitment. 

Anti-microbial effector functions of IFN-γ

IFN-γ is endowed with the exquisite ability to promote 
rapid acidification of phagolysosomes within infected 
macrophages. This low pH within the phagolysosome 
ameliorates RNS production and this cooperation leads to 
elimination of the pathogen [18]. IFN-γ is a potent inducer 
of autophagy which has now emerged as a novel anti-
microbial host response [19,20]. Immunity-related GTPases 
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(IRGs) comprise another very interesting class of IFN-
inducible proteins. IFN-γ stimulation upregulates several 
IRGs which facilitate recruitment of autophagic machinery 
onto the bacterial phagosomes. Human IRGM helps in 
trafficking various components of autophagy pathway to 
vacuoles containing Mycobacterium tuberculosis (M. tb) 
[20]. The IRGs primarily orchestrate vacuolar trafficking 
and facilitate pathogen delivery to lysosomes for enzyme-
mediated degradation. These may function in conjunction 
with certain other proteins, namely sequestosome 
(SQSTM1/p62), NDP52 and optineurin. These proteins 
mainly recognize ubiquitin-bearing bacteria that have 
successfully escaped the confines of the phagosomal 
compartment. On the contrary, galactins, another set 
of IFN-inducible proteins, recognize bacterial glycan 
moieties. The recognition and subsequent binding recruits 
the autophagy proteins and directs the bound components 
towards lysosomes [21]. Activation of M. tb-infected 
macrophages by IFN-γ stimulates the expression of IRGs 
that eventually coordinate vacuolar traffic and subsequent 
targeting of bacterial cargo for lysosomal hydrolysis [22]. 
Orchestration of cell autonomous immune responses by 
coordinating vacuolar compartmentalization is effective 
against several intracellular pathogens including 
Chlamydia psittaci, C. trachomatis and Salmonella 
Typhimurium. Additionally, Guanylate binding proteins 
(GBPs), expressed as a functional IFN-γ response also 
bind escaped bacteria and channelize them towards 
lysosomes [23]. Their salient structural aspects enable 
them to identify both phagosomal entrapped bacteria 
as well as free bacteria. For example, GBP1 can facilitate 
bacterial binding to lysosomes via interactions with 
SQSTM1. On the contrary, GBP7 engages autophagy 
proteins (ATG4B) driving extension of the elongation 
membrane around bacteria to sequester them completely 
within the autophagosomal compartment for degradation 
[21]. Recently, a protective house-keeping role of GBP1 
has been observed at the intestinal tight junctions. Being 
expressed at these places, it serves to control mucosal 
immunity by exerting regulatory effects on apoptosis [24].

Interestingly, IFN-γ can also deplete tryptophan, 
touted to be an effective anti-parasitic mechanism in 
humans [25]. The anti-viral effects invoked by IFN-γ are 
most notably through the induction of RNA-activated 
protein kinase R (PKR) and adenosine deaminase RNA 
specific-1 (ADAR-1). The anti-viral effectors either impact 
viral multiplication or genomic stability. Interferon-
induced transmembrane proteins (IFITMs) and tripartite 
motif-containing proteins (TRIMs) are another set 
of effector proteins that also elicit marked anti-viral 
properties. IFITMs restrict viral uncoating or entry into 

the host cells and confer protection against a number 
of viruses including Influenza-A, Flaviviruses, HIV-1, 
Ebola virus and Corona virus [26]. More recently it was 
shown that IFITM3 restricts virions inside the endosome 
to block their access to the cytoplasm [27]. On the other 
hand, TRIMs are induced in macrophages and myeloid 
DCs and function to limit viral entry, most notably that 
of retroviruses [28]. IFN-γ-inducible proteins can also 
employ components of the autophagic machinery to curb 
viral replication. For example, IFN-inducible GTPases 
utilize the microtubule-associated-protein-1-light chain-3 
(LC3) protein of the autophagy pathway to arrest murine 
norovirus replication. The concerted action of IFN-
inducible GTPases and GBPs leads to marked inhibition 
of viral growth in murine cells [29]. IFN-γ also regulates 
the production of proteins, viz. tethrin or viperin, involved 
in limiting and interfering with virion egress from cells or 
viral assembly. Tethrin acts as a restrictive factor against 
viruses such as Filo virus, HIV-1 or Arena virus by blocking 
viral exit from the infected macrophages [30]. 

IFN-γ regulates the production of various lysosomal 
constituents, granules or exudating substances 
(β-defensins, α-defensins and cathelicidins) mediating 
inflammation that display robust killing action against 
microbes.  IFN-γ is a potent inducer of autophagy upon 
mycobacterial induction by eliciting production of 
hCAP18/LL-37 cathelicidin in a Vitamin D3-dependent 
manner [31]. Additionally, IFN-γ also induces of several 
efflux systems that deprive pathogens of essential cations, 
consequently limiting their growth within host. NRAMP1, 
natural resistance associated macrophage protein 1, is 
one such immune effector protein that is upregulated by 
IFN-γ. NRAMP1 expels Mn2+ or Fe2+, lowering cationic 
concentration. It can effectively compete with pathogens 
for essential cations and reduce pathogenic possession 
of these ions within the phagosome [32]. Alternatively, 
IFN-γ triggers the upregulation and relocation of P-type 
Cu2+ onto phagosomes facilitating higher inflow of Cu2+ 
cations to ameliorate ROS generation [33]. In a similar 
mechanism, IFN-γ significantly enhances the expression 
of iron-exuding ferroprotein 1 with concomitant down-
modulation of transferrin receptor to diminish Fe2+ 
concentration, thereby restricting Salmonella growth [34].

Implications in infectious diseases 
IFN-γ has emerged as an extremely versatile cytokine 
that can carry out countless biological activities that are 
non-redundant with other interferons. The literature is 
inundated with reports that emphasize its importance in 
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disease pathologies. Consequently, any failure in the IFN-
γ-IFN-γR system severely hampers host immune responses 
to infections. Thus, its relevance with regard to conferring 
protective immunity in infectious diseases and cancers 
is undisputable. In this section we discuss and highlight 
its protective role in mediating immune responses in 
infectious diseases, cancer or autoimmunity. Numerous 
evasive strategies have been devised by pathogens to 
overcome its curbing effects and circumvent the protection 
conferred by IFN-γ.

Anti-microbial effects of IFN-γ : role in myco-
bacterial infection

The role of IFN-γ is almost undoubted in mediating 
protection against tuberculosis (TB) [35]. The hallmark 
of TB infection is the induction of cellular immunity and 
inflammation orchestrated by IFN-γ. Quite plausibly, 
mice lacking functional IFN-γ or the IFN-γR gene are 
most susceptible to mycobacterial infections. Mice with a 
disrupted IFN-γ gene show rapid, fulminant mycobacterial 
growth and disseminated TB [36]. Dysfunctional IFN-γ or 
IFN-γR signaling increases susceptibility to even mildly 
virulent strains such as attenuated Mycobacterium bovis 
Bacillus Calmette-Guérin (BCG). Children with non-
functional IFN-γR show disseminated infection with BCG 
[37]. Quite recently, a role of a novel IFN-γR adaptor has 
been implicated in the killing of M. tb. The Mal-dependent 
IFN-γR-mediated signaling is independent of the Toll-
like Receptor (TLR) pathway and initiates a cascade 
of downstream responses involving phosphorylation 
by MAPK-p38 (Mitogen activated protein kinase) and 
induction of autophagy. Mutations in the Mal adaptor 
diminished its IFN-γR binding capacity which ultimately 
led to compromised signaling in response to IFN-γ and 
impaired immune responses to M. tb [38].

IFN-γ knock out mice manifest uncontrolled bacterial 
growth and rapidly develop necrotic granulomas. Such 
mice have severely hampered cell-mediated immunity 
and Nitric Oxide Synthase 2 (NOS2) expression. IFN-γ 
favors ROS, RNI production, revokes the blockade of 
phagosome-lysosome fusion imposed by M. tb as part 
of its survival strategy, and also induces autophagy to 
favor clearance of M. tb [39]. Apoptosis has been linked 
with effective anti-microbial host defense mechanisms 
against intracellular pathogens, especially M. tb. IFN-γ 
also promotes apoptosis in a NO-dependent manner in 
human macrophages [40]. IFN-γ in combination with 
TLR2 stimulation also facilitates the production anti-
microbial peptides and induction of autophagy in a 

Vitamin-D-dependent pathway [41,42]. As a counter 
strategy, M .tb has evolved ways to subvert the deleterious 
effects of IFN-γ. M. tb averts the activating effects of 
IFN-γ on macrophages in a TLR-dependent manner. 
Many crucial immune protective responses exerted by 
IFN-γ are inhibited by M. tb.  Various mycobacterial cell 
wall lipoproteins abrogate IFN-γ-mediated anti-bacterial 
effects. For example, the M. tb 19 kDa lipoprotein inhibits 
MHC class II upregulation and antigen processing in IFN-γ 
treated macrophages to dampen the protective effects of 
IFN-γ. This occurs due to repressed expression of class II 
transactivator (CIITA) in a TLR-dependent manner and is 
believed to be due to inhibitory effects imposed on the 
chromatin remodeling of CIITA involving the TLR2 and 
MAPK pathways [43,44]. Prolonged signaling induced by 
19kDa protein through the TLR pathway has also been 
implicated in the downregulated expression of several 
IFN-γ-induced genes in macrophages [45]. Downstream 
transcriptional responses induced by IFN-γ are also 
inhibited by M. tb, although the proximal steps involved 
in IFN-γR signaling such as STAT1 phosphorylation and 
dimerization are unaffected [46]. Diminished IFN-γ-
induced responses are attributed to reduced association 
of STAT1 dimers with its associated co-activators such as 
cAMP response element binding protein (CREB) and p300 
in M. tb infected macrophages. This disrupted association 
leads to diluted macrophage activity, such as reduced 
killing of Toxoplasma gondii [47].  Interestingly, the role 
of TLR signaling has been linked with the induction of 
inhibitory responses to IFN-γ in mycobacterium infected 
macrophages. It was reported that TLR2 stimulation can 
abrogate IFN-γ responsive effects through stabilization and 
expression of a dominant negative form of STAT1β. Higher 
levels of STAT1β are induced upon M. avium infection 
which is attributed to increased STAT1β mRNA stability. 
Further, overexpression of STAT1β in macrophages leads 
to decreased IFN-γ gene expression [48]. STAT1 knock out 
(KO) mice are highly susceptible to TB and succumb very 
rapidly to the disease. These KO mice develop multiple 
necrotic and granulomatous lesions in the lungs with 
defective Tumor Necrosis Factor (TNF)-α, inducible NOS 
and IL-12 production [49]. 

Anti-microbial effects of IFN-γ : role in Sal-
monella infection

IFN-γ is critical in mediating intestinal immunity to 
Salmonella typhimurium [50,51]. Gene KO mice have 
revealed the importance of IFN-γ in promoting protective 
immunity. These mice show aberrant immune responses 
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and disseminated septicemia as compared with wild type 
(WT) mice which are characterized by high CD4+, CD8+, 
Class II MHC and Vascular Cell Adhesion Molecule I  
(VCAM-1) expression [50]. IL-12 dependent IFN-γ 
production plays a key role in endowing protection against 
Salmonella infections. IL-23 is also a major regulatory 
cytokine governing IFN-γ production [52].

IL-18 is a major contributor in imparting protective 
immunity by being a potent inducer of IFN-γ [53]. 
However, in many instances such as those involving 
colitis and inflammation, IFN-γ can have a dual role. In 
such scenarios, IFN-γ can promote inflammation and 
exacerbate inflammatory responses in the intestines 
to aggravate Salmonella-induced colitis. In this case 
neutrophils become an important source of IFN-γ. As 
a corollary, depletion of neutrophils relieves many of 
the IFN-γ-induced disease symptoms; it curbs excessive 
inflammation and decreases the severity of intestinal 
lesions [54].  IFN-γ has also been implicated in generating 
memory responses essential in vaccine protection against 
Salmonella. Following infection with mutant avirulent 
S. typhimurium Aro strains, mice deficient in IFN-γ are 
more susceptible than WT mice. These mice elicit highly 
impaired immunity and widespread septicemia [50]. A 
host of IFN-γ-induced genes are upregulated in response 
to Salmonella. Significant changes occur in the expression 
profile of many of the vital players of the immune 
system, such as chemokines, signaling molecules, 
transcription factors and surface receptors within the 
infected macrophage. Amongst the genes upregulated in 
macrophages or epithelial cells by S. typhimurium or S. 
dublin the prominent ones include IRF-1, iNOS and MHC 
class I and II [55]. This phenomenon can be recapitulated 
with LPS stimulations in uninfected macrophages. IFN-γ 
treated cells may exhibit a changed expression profile 
compared with pathogen-induced gene expression, 
pointing toward altered host cell responsive and 
differential activation state. Such profound alterations 
in the gene expression profile are also evident in in other 
bacterial infections. IFN-γ also facilitates internalization 
and promotes early killing of Salmonella without 
employing oxidative burst, accompanied by a decrease in 
IL-10 levels with a concomitant increase in IL-12 levels [56]. 
Another novel anti-microbial effect of IFN-γ is the depletion 
of intracellular iron levels in S. typhimurium-infected 
macrophages. Depleting iron starves the pathogen of this 
essential nutrient and boosts the bactericidal mechanism 
of macrophages. This occurs via transferrin receptor 1 
which leads to an enhanced iron efflux by increasing 
the iron exporter ferroprotein. This event ultimately 
enhances the expression of hemoxygenase I and the 

siderophore entrapping antimicrobial peptide, lipocalin 
2, that further sequesters iron from intracellular pools 
[57]. The role of hemoxygenase I is pivotal in regulating 
the initial stages of innate immunity to S. typhimurium 
infections. Iron export from tissue macrophages occurs 
in conjunction with increased serum levels of IL-12 and 
IFN-γ [58]. However, relocation of iron from intracellular 
pools may have negative outcomes as this often leads to 
anemia pertinent in Salmonella infections. Nevertheless, 
IFN-γ mediated iron scavenging undoubtedly bolsters 
host survival during acute infections [59].

Anti-microbial effects of IFN-γ : role in 
Listeria infection

Just like in other infections, IFN-γ forms an integral part 
of immunity against Listeria as well. Administration 
of anti-IFN-γ antibodies reverses the protective effects 
during Listeria infection and increases disease-associated 
fatality. The literature is replete with evidence stating the 
requirement of endogenous IFN-γ for the resolution of 
Listeria monocytogenes infection. NK cells and T cells are 
the key producers of IFN-γ in this regard. IFN-γ helps in 
bacterial clearance and control of primary infections with 
L. monocytogenes [60]. An essential role of IFN-γ-mediated 
signaling in inducing protective responses is evident from 
the fact that mice lacking functional STAT1 exhibit profound 
propensity to Listeria infections and manifest dampened 
macrophage activity and pathogen clearance [61]. STAT1-
mediating signaling was imperative in T cells and DCs 
only at the level of generating primary adaptive immune 
responses. The fact that IFN-γ curbs bacterial spread 
is evident following IFN-γ blockade with neutralizing 
antibodies resulting in higher bacterial burdens in the 
mesenteric lymph nodes [62]. The prominent anti-Listerial 
effects mediated by IFN-γ include the generation of ROS 
and RNS via induction of NOX2/CYBB (NAPDH oxidase), 
DUOX (dual oxidase) and iNOS/NOS2. Additionally, 
induction of inducible GTPases (which facilitate oxidative 
pathways, autophagy and orchestrate vesicular traffic) 
and elicitation of mitochondrial ROS through regulated 
expression of several nuclear genes that encode respiratory 
machinery through the activity of ERRα (Estrogen related 
receptor α) are some other examples of IFN-γ-mediated 
anti-Listerial effects. The role of ERRα has been associated 
with effective pathogen clearance through concerted 
mitochondrial ROS production. 63 IFN-γ also regulates the 
expression of indole 2,3 dioxygenase (IDO), an important 
enzyme involved in tryptophan metabolism known to 
limit infection spread and control enormous T cell activity 
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[64]. Furthermore, in Listeria or BCG infected mice, NK 
cells and T cells show a transient downfall of microRNA, 
miR29 that is essential for sustained production of IFN-γ. 
Thus, miR29 negatively regulates IFN-γ expression. Based 
on these observations researchers were able to devise a 
unique transgenic mice model (GS29) bearing ‘sponge’ 
targets that could compete with miR29 targets. Such 
mice displayed higher T helper responses, higher serum 
concentrations of IFN-γ and lower L. monocytogenes 
burden [65]. The pathogen has evolved exquisite evasive 
strategies to counter immune activation [66]. Listeria can 
modulate expression of many interferon stimulatory genes 
(ISGs) in epithelial cells. This is accomplished by targeting 
a chromatin repressing complex BAHD1 at the promoter 
level which can dampen expression of multiple ISGs and 
subsequently downregulate IFN-γ induced responses 
[67]. Interestingly, L. monocytogenes can also produce 
a protein called LntA which is a nucleomodulin. This 
protein binds to BAHD1 to nullify its effect and functions 
to ameliorate IFN functions [67,68]. Type-I IFNs are often 
linked with suppression of innate immune responses in 
L. monocytogenes infection and escalate predisposition 
to the disease.  IFN-α/β production affords some degree 
of subversion from the macrophage activating effects of 
IFN-γ which can also be achieved in part through IFN-γR 
downregulation [69].

Protective role of IFN-γ during parasite 
infection 

IFN-γ plays a pivotal role in host resistance to Leishmania 
infections [70]. Conversely, IL-4 mitigates ROS generation 
and stifles IFN-γ-mediated anti-pathogenic responses 
of the host. NK cells are the prime source of IFN-γ 
production which facilitates CD4+ T cell polarization and 
differentiation to induce early phases of resistance [70]. In 
the absence of IFN-γ, TH2 responses are linked to ablated 
anti-parasitic immunity. 

It is reported that both IL-12 and IFN-γ help in limiting 
visceral leishmaniasis and counteract IL-6, IL-24 and IL-27 
activity [71]. Neutralization of TNF-α leads to impaired 
IFN-γ production by spleen cells in visceral leishmaniasis 
patients, pointing towards a regulatory role of TNF-α 
[72]. Another important anti-parasitic mechanism is the 
degradation of tryptohan. This strategy constitutes an 
important host defense against obligate parasites such 
as Leishmania, Toxoplasma, Chlamydia etc. However, 
some reports have also emphasized on the harmful 
effects of IFN-γ in having negative repercussions on 
the disease outcome. For example, IFN-γ exacerbates 

disease symptoms through recruitment of inflammatory 
monocytes which diminish iNOS-dependent parasite 
killing, leading to expansion of the parasite niche. 
This in turn prolongs host cell survival to support 
parasite multiplication [73]. Similarly, IFN-γ promotes 
L. amazonensis replication in macrophages in vitro by 
inducing cationic amino acid transporter 2B (CAT2B) that 
facilitates L-arginine transport, which can be directly 
utilized by the parasite for its growth and multiplication 
[74]. Similar to other pathogens, L. donovani can also 
attenuate IFN-γR mediated signaling in macrophages by 
inhibiting STAT1 phosphorylation at tyrosine residues 
catalyzed by JAKs. This downregulates IFN-γ-induced 
genes and consequently, the downstream effector 
functions are quenched. Furthermore, the Leishmaina 
parasite can effectively thwart STAT1 translocation to 
the nucleus and also impede JAK activation necessary 
to achieve full-fledged downstream signaling emanating 
from IFN-γR [75].

IFN-γ: therapeutic and clinical 
implications 
Administration of cytokines is an important and effective 
therapeutic strategy to stimulate the immune system and 
initiate protective responses. This procedure shapes and 
orchestrates the host cytokine milieu to modulate various 
facets of immune responses most notably by influencing 
tumor microenvironment or pathogenesis. Cytokine 
administration has gained immense popularity in cancer 
immunotherapy and is beneficial in manipulating tumor 
behavior. The usability of such an approach is limited 
by its fatal side effects as systemic administration may 
lead to “toxic shock” leading to untoward consequences. 
However, some patients have achieved immense benefits 
and elicited better prognosis in certain conditions 
[76,77]. As discussed, owing to the numerous and vital 
immune-protective functions coordinated by IFN-γ, it 
is one such potent cytokine which can be administered 
either systemically or locally. Due to its profound 
immune modulatory abilities, IFN-γ has become an 
attractive therapeutic alternative and has been used as a 
prophylactic measure to cure several infections including 
cancers, fungal infections and chronic granulomatous 
disease (CGD) [78-80].

Experimental data point towards myriad protective 
effects of IFN-γ therapy. IFN-γ administration can 
successfully impede Ebola virus infectivity and can be an 
attractive prophylactic alternative. It effectively reduced 
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viral viability and serum titers [81]. Similarly, adjunctive 
immune therapy including IFN-γ as one of the pivotal 
components also drastically improved the outcome of 
invasive fungal infections or sepsis. Recombinant IFN-γ 
administration proved beneficial in restoring immune 
functionality thereby making IFN-γ as a promising 
therapeutic contender [82]. In animal infection models, 
administration of IFN-γ has led to better survival rate and 
immune responses. For example, enhanced resistance 
against invasive aspergillosis and disseminated Candida 
albicans infections is elicited in IFN-γ treated mice 
[83,84]. Similarly, IFN-γ therapy bolstered pulmonary 
immune responses in corticosteroid-treated rats in 

experimental legionellosis [85]. Improved survival and 
decreased pathogenic burden in lungs was observed upon 
IFN-γ administration in mice infected with Cryptococcus 
neoformans [86]. IFN-γ can prove as an effective 
therapeutic candidate against as many as 22 infectious 
agents including bacteria, fungi, protozoa and helminths. 
Clinically IFN-γ is an FDA approved drug for the treatment 
of CGD. CGD is a form of immune-deficiency characterized 
by a series of recurrent infections by pyogenic bacteria.  It 
is majorly an inherited disorder wherein most of the cases 
arise due to mutatation of the CYBB gene (Cytochrome B 
beta/NAPDH oxidase) encoding gp91phox, the remaining 
being autosomal recessive. The disease is primarily due 

Figure 1: IFN-γ: Production and regulation. A complex interplay between various cytokines determine the transcription and production 
of IFN-γ.  Release of IFN-γ either by NK cells or T cells triggers a series of anti-microbial responses. Following pathogenic recognition and 
uptake by an APC such as DC, the antigenic peptides are presented to the naïve T-cell population for initiation of an adaptive immune 
response. The cytokine milieu comprised of IL-12 and IL-2 triggers T cell proliferation to create conditions conducive for a pro-inflammatory 
phenotype. Exposure to IL-12 aids naïve cells to polarize to a TH1 phenotype. IFN-γ is a predominant cytokine in the TH1 response. Following 
transcription and production of the IFN-γ protein in the TH1 lineage committed and clonally expanded T cell population, this cytokine primes 
macrophages to upregulate their protective infections. The activated macrophages in turn produce IL-12 and IL-23 that further ameliorate 
pro-inflammatory conditions and facilitate IFN-γ production. Thus, IFN-γ production is self-sustained and occurs in a positive feedback 
manner. Macrophages are also known to produce IFN-γ that leads to autocrine activation further bolstering their anti-microbial functions.
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to dysfunctional NADPH oxidase machinery caused by 
defective or missing components of the phagocyte oxidase 
[87]. IFN-γ promotes respiratory burst by facilitating 
superoxide release in these patients and partially makes 
up for the anomalies in the oxidative metabolism. 
Interestingly, in some cases IFN-γ has been shown to 
improve splicing efficiency of the CYBB gene, which is 
normally malfunctional in CGD. It augments microbicidal 
activities and reduces the relative risk of infections by 
70% [88]. Thus, IFN-γ is a beneficial prophylactic agent in 
CGD with minimal side effects such as toxicity, delayed or 
impaired growth and development.  

The therapeutic and immunomodulatory effects of 
IFN-γ have also been utilized to treat immunodefeciency 
syndromes. For example, hyperimmunoglobulinemia 
E (hyper-IgE) is a rare and unique immunodeficiency 
syndrome which predisposes an individual to severe and 
recurrent Stapylococcus aurues infections. These patients 
exhibit skin eczema, abscesses, elevated eosinophil 
production, hyper-production of IgE with limited 
lymphocyte chemotaxis and reduced responsiveness 
to IL-12. Systemic administration of recombinant IFN-γ 
attenuates the course of clinical symptoms in such 
patients [89]. Efficacy of recombinant IFN-γ as an adjunct 
increases manifolds when it is used in conjunction with 

Figure 2: Protective effects of IFN-γ. IFN-γ primes the macrophage to improve its anti-microbial capacity. The biological protective 
effects commence upon binding of a dimeric IFN-γ to its cognate receptor on the macrophage surface. This binding leads to a series of 
phosphorylation reactions that ultimately phosphorylate STAT1 proteins. Following phosphorylation of STAT1 molecules, these homodimeric 
molecules translocate to the nucleus where they bind to GAS elements on the DNA. This triggers a plethora of downstream effector genes 
that encode products necessary for pathogen containment. IFN-γ -regulated proteins include Reactive Oxygen Species, Reactive Nitrogen 
Intermediates, autophagy proteins, efflux pumps or antiviral mediators. Besides, controlling infection, IFN-γ can serve as a double-edged 
sword in an immune dysfunctional state, such as autoimmunity, wherein it can exacerbate disease symptoms due to prolonged pro-
inflammatory effects.
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Table 1: Biological functions of IFN-γ: An overview.

Immunological 
pathway

Proteins affected Biological implications References

Antigen processing 
and presentation

CTIIA, MHC class II, Cathepsins (L, 
B, S and H), MHC class I, trimming 
peptidases (endoplasmic 
reticulum aminopeptidases, 
ERAP-1), β2-microglobulin

Mainly targets and boosts the expression of major effector 
molecules and chaperones involved in the processing 
and presentation of antigens in both class I and class 
II pathways. This pathway is central to the inception of 
adaptive immunity through the priming of naïve T cells 
by antigenic entities, leading to robust and efficient T cell 
activation.

[107-112]

Reactive Oxygen 
Species

gp91phox, p22phox, p67phox and 
GTPase Gbp7

Upregulates the expression and facilitates the assembly 
of subunits comprising the NADPH oxidase. The enzyme is 
critical for the generation of oxidative burst and production 
of ROS that show potent microbicidal effects.

[21,113]

Reactive Nitrogen 
Intermediates

NOS2, Argininosuccinate 
sythetase and GTP 
cyclohyrdoxylase I

Increases the production of the key enzyme involved in the 
catalytic production of reactive nitrogen species or acts 
indirectly via upregulation of accessory molecules that 
enhance production of substrate or enzymatic cofactors. 

[1,114]

Autophagy LC3-II, IRGM (LRG-47), bioactive 
Vitamin D3 (via CYP27b1 
hydroxylase), antimicrobial 
cathelicidin and ubiquitin-
binding proteins (SQSTM1, 
NDP52, optineurin and galectins)

A highly coordinated frame work of IFN-γ -inducible 
proteins including effector molecules, immunity-related 
GTPases and GBPs proteins trigger and facilitate the 
assembly of autophagic machinery and delivery of 
autophagic cargo to lysosomes. Additionally, to counter 
bacteria that have escaped into the cytosol, IFN-γ may 
stimulate production of proteins that direct cytosolic 
ubiquitinylated bacteria to the lysosome for degradation 
by combining them with the autophagy pathway.

[21,31,115,116]

Apoptosis Caspases (8, 9 and 1), Fas, FasL, 
Bax, increased Cytochrome c 
release, IRF-1 and TNFa 

IFN-γ stimulation may trigger both extrinsic and intrinsic 
death pathways. Concomitantly the levels of pro-apoptotic 
factors and mediators are increased that facilitate 
apoptotic death.

[116-118]

Cell migration and 
leucocyte traffic

CXCL9, MIP-1, MIP-1, IP-10,  
VCAM-1, ICAM-1, RANTES, CCL2

Expression of many essential chemokines and 
inflammatory mediators are under the influence of IFN-γ 
stimulation. These effector and adhesion molecules serve 
as chemoattractants and aid in immune cell migration or 
lymphocyte extravasation, thus helping in the initiation of 
an inflammatory response by recruiting diverse immune 
cells.

[1,119]

Antiviral mediators PKR, ADAR, IFITM, TRIM Viperin 
and Tethrin

Many antiviral proteins induced by IFN-γ help in countering 
numerous viral infections at several stages like viral entry, 
uncoating, blocking viral translation or virion assembly. IFN 
inducible viral RNA editing enzymes may edit RNA bases 
that may introduce severe genomic instabilities leading to 
lethal mutations 

[21,120]

Lysosome mediated 
killing/Phagosome 
maturation

Proton ATPases, IRGM/LRG-47 
(via induction of autophagy) GBPs 
and Rab proteins

IFN-γ elicits lysosomal killing of many intracellular 
pathogens by facilitating rapid acidification of phagosome 
and helping it recruit the necessary fusogenic machinery 
that aids its fusion with the lysosome. Alternatively, 
induction of several effectors of autophagy by IFN-γ 
can further facilitate lysosome-mediated enzymatic 
degradation of pathogens.

[121-124]
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the conventional anti-microbials. This is especially true in 
the case of visceral or cutaneous leishmaniasis, atypical 
mycobacterial infections and lepromatous leprosy [90,91]. 
Alveolar macrophages exhibit heightened activity and 
improved effector responses in a limited number of 
multi-drug resistant TB (MDR-TB) patients who received 
aerosolized IFN-γ therapy. In a small group of 5 patients, 
all the individuals who had undergone the therapy 
(thrice a week for 2 months) showed improved prognosis, 
reduction in lesion size and tested negative for sputum 
acid fast bacillus [92]. However, therapy termination led to 
reversion of sputum smears to positive. Nevertheless, the 
data indicate that aerosolized IFN-γ may be a potential and 
effective prophylactic agent for the treatment of MDR-TB 
patients, who are normally refractory to other lines of 
treatment. Systemic aerosolic IFN-γ administration also 
yields promising results for the treatment of respiratory 
infections caused by atypical mycobacteria [93]. IFN-γ 
can alleviate symptoms of sepsis by restoring LPS-
induced TNF-α production and HLA-DR expression in 
patients. This recovers macrophage activity and helps in 
clearance of sepsis [94]. IFN-γ therapy has been shown 
to successfully contain the damaging consequences of 
fibrosis. It ameliorates the total lung capacity and partial 
pressure of lung oxygen with concomitant suppression 
of pro-inflammatory cytokines in fibrotic disease [95]. As 
discussed earlier, mycobacteria subvert host immunity for 
their own benefit, interestingly, many host genes also play 

a suppressive role during M. tb infection and expression 
of these genes modulates TH1 cytokines including IFN-γ 
[96]. Our own findings have shown that IFN-γ plays a 
suppressive role during mycobacterial infection. Infection 
with M. tb induces production of IFN-γ that suppress 
many host protective functions. Thus, insights into 
host-pathogen interaction and dynamics of infection 
would strengthen our understanding of several disease 
mechanisms. These host-specific preventive therapeutic 
approaches can emerge as a robust alternative to the 
conventional pathogen-centric intervention to mitigate 
the ever-rising incidents of drug resistance. This can 
aid the development of better drugs and improve our 
understanding about host immune responses during 
complex infections. 

Recombinant IFN-γ elicits potent anti-proliferative, 
anti-angiogenic and anti-tumorigenic effects. It is known 
to trigger apoptotic death in tumor cells and leads to a 
positive disease outcome. The earliest usage of IFN-γ 
as a therapeutic agent was for acute leukemia and since 
then it has been used on and off experimentally to induce 
anti-proliferative tendencies in multiple cell lines. IFN-γ 
was successful in limiting carcinogenesis in numerous 
cancerous cell lines [97-99]. Growth modulatory properties 
of IFN-γ have also made it an interesting therapeutic option 
for hematologic conditions and human stem cell (HSC) 
transplantation. Recent findings have suggested that IFN-γ 
can negatively regulate the expansion of HSC pool and 

Immunological 
pathway

Proteins affected Biological implications References

Complement pathway Complement proteins (C2, C3, C4 
etc.) and CR3

Complement receptors mediators or proteins (secreted by 
macrophages or fibroblasts) are upregulated in response to 
IFN-γ. The surge in complement pathway activity enhances 
opsonic uptake of extracellular pathogen via receptor 
mediated phagocytosis.  

[125-127]

Fc Receptors FcγR IFN-γ-mediated enhanced expression of high affinity 
FcγR1 on myeloid cells ameliorates antimicrobial defences 
by facilitating opsonisation of IgG-coated extracellular 
pathogens via upregulated receptors. Thus, increasing 
opsonic uptake by phagocytic cells.

[128,129]

Other antimicrobial 
effectors

Cathelicidin LL-37/hCAP18
Defensins, cationic efflux 
molecules such as NRAMP1, P 
type ATPase Cu++ Pump ATP7A 
and Ferroprotein (SLC40A1), IDO

Many antimicrobial effectors such as antimicrobial 
peptides, cationic efflux pumps or molecules causing 
nutrient limitation to the pathogen are under the control 
of IFN-γ stimulation. These antimicrobial effectors display 
potent activity and can either directly or indirectly kill 
the pathogen either by depriving it of essential ions or 
nutrients or by disrupting its membrane integrity.

[21,130-132]

ContinuedTable 1: Biological functions of IFN-γ: An overview.
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lead to progressive loss of such cells in bone marrows and 
peripheral HSCs in the context of infections [100]. 

The therapeutic potential of IFN-γ can be limited 
owing to huge cost of treatments and side effects such as 
flu, lethargy, suppressed nervous system, cough etc [101]. 
Although these accompanied adverse effects do minimize 
the efficacy and potential of such immunomodulatory 
therapies, IFN-γ administration still proves to be beneficial 
and an effective adjunct to the existing drug regimen 
in this era of rapid and formidable drug resistance. 
Thus, cytokine intervention can control several of the 
life-threatening and debilitating infections. Targeting 
IFN-γ has been seen as a new therapeutic approach for 
combating atherosclerosis, as it is reported to be key player 
involved in the development and disease manifestation of 
atherosclerosis [102]. Clinical investigations have further 
substantiated the role of IFN-γ in progression of cardiac 
diseases. Patients suffering from chronic heart failure 
reported to have a higher serum IFN-γ levels as compared 
to healthy controls [103]. Moreover, myocardial tissues of 
patients suffering from Chagas’ cardiomyopathy displayed 
significant up regulation of IFN-γ-inducible genes, 
suggesting a direct link of IFN-γ signaling in this parasite-
induced heart problem. Individuals with peripartum 
cardiomyopathy upon treatment with ACE-inhibitors, 
beta-blockers and diuretics resulted in improved cardiac 
function along with lowering down of serum IFN-γ levels 
which was high otherwise [104]. Additionally, levels of 
IFN-γ in serum and cerebrospinal fluid have also been 
found up-regulated in the neurodegenerative disease, 
Amyotrophic lateral sclerosis (ALS). Hence, linking this 
key pro-inflammatory cytokine with the progression of the 
disease [105].. Elevated levels of serum targeting IFN-γ has 
been seen as a new therapeutic approach for combating 
atherosclerosis, as it is reported to be key player involved 
in the development and disease manifestation of 
atherosclerosis [102]. Clinical investigations have further 
substantiated the role of IFN-γ in progression of cardiac 
diseases. Patients suffering from chronic heart failure are 
reported to have a higher serum IFN-γ levels as compared 
to healthy controls [103]. Moreover, myocardial tissues of 
patients suffering from Chagas’ cardiomyopathy displayed 
significant up regulation of IFN-γ-inducible genes, 
suggesting a direct link of IFN-γ signaling in this parasite-
induced heart problem. Individuals with peripartum 
cardiomyopathy upon treatment with ACE-inhibitors, 
beta-blockers and diuretics resulted in improved cardiac 
function along with lowering of serum IFN-γ levels which 
was high otherwise [104]. Additionally, levels of IFN-γ 
in serum and cerebrospinal fluid have been found to be 

up-regulated in ALS, linking this key pro-inflammatory 
cytokine with the progression of the disease [105]. 
Elevated levels of serum IFN-γ has also been reported in 
patients with Parkinson’s disease [106]. Thus, IFN-γ can 
be a relevant disease marker in a clinical set-up, and 
therapeutic targeting of IFN-γ may emerge as a potential 
alternative strategy to alleviate disease pathologies.

Conclusion and future perspective
Owing to a plethora of biological activities mediated by 
IFN-γ, this cytokine remains an imperative and obligate 
protective factor in the host immune system. This 
versatile immune factor directly or indirectly regulates 
the expression of numerous genes that supposedly 
confer protection and mediate anti-microbial activities. 
Thus, comprehending its biological functionality or 
implications in infections or immune dysregulatory 
conditions, such as autoimmunity, becomes critical. 
Deeper understanding of the molecular basis of these  
IFN-γ-mediated mechanisms vis-à-vis diseases and 
associated pathologies would unravel valuable 
information about intricate host-pathogen encounters. A 
more in-depth understanding of the complex pattern of 
host-pathogen interactions would facilitate research in 
the areas of vaccine and drug development. Deciphering 
mechanisms of host mediated responses can also present 
a possibility of devising host-directed therapies that 
would alleviate the scourge of widespread drug resistance 
and limited drug usability. Likewise, the protective effects 
of IFN-γ have been harnessed for therapeutic purposes 
as well. This further reiterates its protective role in the 
host system. Comprehending the evasive mechanisms 
and tolerance to IFN-γ in various immune compromised 
conditions and cancers would further delineate complex 
patterns of pathogenesis and increase our understanding 
about disease mechanisms.
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