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Summary
Background Controversy exists about the diff erences in air pollution exposure and inhalation dose between mode of 
transport. We aimed to review air pollution exposure and inhaled dose according to mode of transport and pollutant  
and their eff ect in terms of years of life expectancy (YLE).

Methods In this systematic review, we searched ten online databases from inception to April 13, 2016, without 
language or temporal restrictions, for cohort, cross-sectional, and experimental studies that compared exposure to 
carbon monoxide, black carbon, nitrogen dioxide, and fi ne and coarse particles in active commuters (pedestrian or 
cyclist) and commuters using motorised transport (car, motorcycle, bus, or massive motorised transport [MMT—
ie, train, subway, or metro]). We excluded studies that measured air pollution exposure exclusively with biomarkers or 
on the basis of simulated data, reviews, comments, consensuses, editorials, guidelines, in-vitro studies, meta-analyses, 
ecological studies, and protocols. We extracted average exposure and commuting time per mode of transport and 
pollutant to calculate inhaled doses. We calculated exposure and inhaled dose ratios using active commuters as the 
reference and summarised them with medians and IQRs. We also calculated diff erences in YLE due to fi ne particle 
inhaled dose and physical activity.

Findings We identifi ed 4037 studies, of which 39 were included in the systematic review. Overall, car commuters had 
higher exposure to all pollutants than did active commuters in 30 (71%) of 42 comparisons (median ratio 1·22 
[IQR 0·90–1·76]), followed by those who commuted by bus in 57 (52%) of 109 (1·0 [0·79–1·41]), by motorcycle in 
16 (50%) of 32 (0·99 [0·86–1·38]), by a car with controlled ventilation settings in 39 (45%) of 86 (0·95 [0·66–1·54]), 
and by MMT in 21 (38%) of 55 (0·67 [0·49–1·13]). Overall, active commuters had higher inhalation doses than did 
commuters using motorised transport (median ratio car with controlled ventilation settings 0·16 [0·10–0·28]; car 
0·22 [0·15–0·30]; motorcycle 0·38 [0·26–0·78]; MMT 0·49 [0·34–0·81]; bus 0·72 [IQR 0·50–0·99]). Commuters 
using motorised transport lost up to 1 year in YLE more than did cyclists.

Interpretation Proximity to traffi  c and high air interchange increased the exposure to air pollution of commuters 
using motorised transport. Larger inhalation rates and commuting time increased inhaled dose among active 
commuters. Benefi ts of active commuting from physical activity are larger than the risk from an increased inhaled 
dose of fi ne particles.
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Medical Research Council, Nestlé Nutrition (Nestec), Metagenics, and AXA.
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Levels of ambient air pollution according to mode of 
transport: a systematic review

Introduction
Worldwide, air pollution exposure is a public health issue 
associated with various health eff ects, including cardio-
vascular and respiratory disease, cancer, pregnancy 
complications, and adverse birth outcomes.1 Air pollution 
exposure can be considered a function of the concentration 
of pollutants in a microenvironment and the time spent 
by individuals in that microenvironment.2 Traffi  c 
emissions contribute the major part of air pollution 
in traffi  c-related microenvironments.3 Commuters are 
exposed to high levels of pollutants,4 which often do not 
meet air quality standards.

Findings from two previous systematic reviews5,6 
suggested that commuters using motorised transport  
(ie, private or public car, train, metro, tram, bus, or 
subway) have a higher exposure to air pollution than do 

active commuters (ie, pedestrian or cyclist). However, 
if the higher breathing parameters and trip time of an 
active commute than of a motorised commute are 
considered, inhaled and deposited doses of pollutants 
become higher among cyclists and pedestrians than 
among commuters using motorised transport.7–10 
Authors of a systematic review11 of health impact 
assessment studies concluded that consensus exists that 
despite the increased health risks associated with the 
higher inhaled dose of traffi  c-related pollutants among 
active commuters than among commuters using 
motorised transport, the benefi ts of physical activity 
from active commuting remain larger. Nevertheless, 
to our knowledge, no previous review of a modal 
comparison of air pollution exposure has systematically 
addressed the diff erences in inhaled dose of pollutant 
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per mode of transport or the diff erential eff ect on years 
of life expectancy (YLE).

Therefore, we aimed to systematically review studies 
that compared air pollution exposure by mode of transport 
to examine diff erences in inhaled dose according to mode 
of transport and pollutant. Furthermore, we estimated 
the trade-off  in YLE while taking into account the inhaled 
dose of fi ne particles and physical activity levels according 
to transportation.

Methods
Search strategy and selection criteria
In this systematic review, we searched ten databases 
(Embase, MEDLINE, Cinahl, the Cochrane Library, 
Web of Science, Scopus, PubMed, Google Scholar, 
ProQuest, and Scielo) in cooperation with a medical 
information specialist (WMB) to identify relevant studies 
that compared air pollution exposure between mode of 
transport among adult commuters from inception to 
April 13, 2016, with no language or temporal restrictions. 
We combined terms related to air pollution (eg, “air 

pollution”) or specifi c air pollutants (eg, “PM10”, “PM2·5”, 
or “CO”) with terms related to mode of transport 
(eg, “traffi  c”, “subway”, “car”, “bicycle”, or “walk”). Full 
search strategies are provided in the appendix.

We included all studies (cohort, cross-sectional, and 
experimental) that measured personal air pollution 
exposure while commuting by at least one active and 
one motorised mode of transport. We excluded studies 
that measured air pollution exposure exclusively 
with biomarkers or on the basis of simulated data, 
reviews, comments, consensuses, editorials, guide-
lines, in-vitro studies, meta-analyses, ecological 
studies, and protocols. We selected data only for 
carbon monox ide (CO), black carbon (BC), nitrogen 
dioxide (NO₂), fi ne (particulate matter of <2·5 μm) and 
coarse (particulate matter of 2·5–10 μm) particles, and 
six modes of transport: walking, cycling, bus, massive 
motorised transport (MMT—ie, subway, metro, and 
train), car (private or public), and motorcycle 
(motorcycle, scooter, and auto rickshaw). We stratifi ed 
cars into two categories: cars that had controlled 

See Online for appendix

Research in context

Evidence before this study
We did a systematic review of reviews published 
before June 18, 2014, without language or temporal restrictions. 
We used combinations of keywords related to “mode of 
transport” and “air pollution”. We searched in Embase, 
MEDLINE, the Cochrane Library, Web of science, Scopus, and 
PubMed. We found 1887 references, among which we found 
three reviews. A non-systematic review published in 2007 
addressed the evidence for the determinants of exposure to 
carbon monoxide and fi ne particles according to mode of 
transport. Additionally, a systematic review published in 2014 
included only studies done in Europe of exposure in four modes 
of transport: car, bicycle, bus, and subway. On the basis of these 
two reviews, car, bus, and subway commuters have higher 
exposure than do cyclists and pedestrians to particulate matter, 
carbon monoxide, and black carbon. However, these reviews did 
not address the eff ect on the inhalation dose of the increased 
respiratory parameters among active commuters. Another 
non-systematic review published in 2010 assessed if the benefi ts 
of the modal shift from motorised to bicycle commuting 
outweigh the associated risks. Despite cyclists having increased 
inhaled doses of pollutants and a high risk of traffi  c injuries, 
these risks were found to be outweighed by the benefi ts of 
increased physical activity, by contrast with commuters using 
motorised transport. These fi ndings were consistently supported 
by a systematic review published in 2016 that included studies 
that addressed the balance of the health risks and benefi ts of 
active commuting through health impact assessment. 

Added value of this study
Through a rigorous and comprehensive systematic review, 
we have addressed the evidence that compared air pollution 

exposure according to mode of transport. We provide 
estimations of the diff erences in exposure, but also in inhaled 
dose, which was not systematically addressed in previous 
reviews. We also calculated the potential trade-off  in years of 
life expectancy (YLE) using fi ne particle exposure levels 
purposely measured to compare between mode of transport 
at specifi c study settings. We compared the eff ect on YLE of 
inhaled dose of pollutants, by contrast with physical activity 
levels, per mode of transport. We have addressed 
heterogeneity between studies by calculating ratios of 
exposure and inhaled dose within each study. Also, 
heterogeneity in YLE eff ect estimates was reduced by use of 
standard assumptions to calculate inhaled pollutant doses and 
levels of physical activity. Our study addresses transport 
microenvironments that were not consistently addressed in 
previous evidence, like motorcyclists and pedestrians. We also 
account for heterogeneous settings by including Asian and 
West Pacifi c cities 

Implications of all the available evidence
The trade-off  in health outcomes according to mode of 
transport depends largely on local context attributes. However, 
consensus exists that despite the harmful eff ects of air pollution 
exposure, physical activity from active commuting provides 
more gains in health outcomes than air pollution exposure 
provides losses. More research is required to account for other 
long-term and short-term risk factors associated with traffi  c. 
To stimulate a shift from motorised to active and public 
transport, policies should address traffi  c-related pollution of 
commuters’ microenvironments. Large societal benefi ts can be 
obtained from environments that increase active and public 
transport commuting.
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ventilation settings (windows closed, air conditioning 
on or off , or air recirculation modes on or off ) and 
those without controlled ventilation settings.

Working in pairs, three authors (MC, CMK, and KD) 
reviewed titles and abstracts of the entire list of studies 
identifi ed by the search to select those that fulfi lled the 
selection criteria. After initial appraisal, we retrieved full 
texts of selected titles. Full texts were appraised 
independently by two authors (MC and RF-P) to select 
those that fulfi lled the selection criteria. Disagreements 
were solved through discussion and with consultation 
with a third independent author (OHF). We reviewed 
reference lists of the retrieved articles and previous 
systematic reviews for additional publications. We 
contacted experts in the fi eld to identify additional 
references that should be considered. Selection criteria 
and study selection procedures, data extraction, and 
quality assessment are described in detail in the 
appendix. The study protocol is available online.

Data analysis
We registered extracted data from each article in 
a purposely designed form, including for study design, 
measurement period, mode of transport, monitoring 
device, commuting time, and number of measurements. 
We extracted summary and dispersion measurements of 
exposure according to mode of transport and pollutant. 
If available, we extracted summary measurements 
stratifi ed by season, day, period of monitoring, type of 
route, and city. If more than one summary measurement 
was reported for the same stratum, we preferably 
extracted arithmetic means, then geometric means, and, 
fi nally, medians. We extracted summary measurements 
of inhalation and uptake dose (per h or trip), the model, 
and the parameters used for the estimation. We used the 
most complete report when multiple papers of the same 
study were available. We addressed quality of the studies 
in terms of the comparability of the exposure measured 
between mode of transport (ie, time and route standards), 
external validity (ie, background and meteorological 
conditions and commuting standards), measurement 
standardisation, and data reporting. We used a modifi ed 
version of the Newcastle-Ottawa Scale for assessing the 
quality of observational studies (appendix). 

To uniformly summarise the exposure data extracted, 
we standardised the units of concentrations by applying 
standard conversion factors.12 We calculated the median 
and IQR of averages of exposure concentration per mode 
of transport and pollutant and the percentage of 
exposure averages above the European Union ambient 
air quality standards13 (except for BC because no standard 
has been defi ned). Within each study, we calculated the 
exposure ratio according to mode of transport using 
cyclists’ exposure as the reference. We summarised 
exposure ratios as medians and IQRs per mode of 
transport and pollutant and calculated the percentages 
of ratios above 1. Also, we meta-analysed exposure ratios 

using random-eff ects models.14 We assessed hetero-
geneity with I².15 We assessed variability within studies 
by estimating the SE from the variance for ratios of the 
mean.14 We visually inspected publication bias with 
funnel plots and used Egger’s tests to assess asymmetry. 
All tests were two-tailed and we considered p values 
of 0·05 or less signifi cant. For 13 studies that did not 
include cyclists, we used pedestrians’ exposure as the 
reference (reported separately to the studies that 
included cyclists). For two additional studies, we used 
pedestrians’ exposure as the reference because for some 
comparisons in these studies only comparisons with 
pedestrians were possible.

We calculated inhaled doses of pollutants (in-
haled amount per trip) as the average exposure 
concen tration (reported by authors) multiplied by minute 
ventilation (m³/h) multiplied by trip time (min; reported 
by authors) multiplied by a conversion factor, if applicable. 
We used minute ventilation as suggested by the 
US Environmental Protection Agency16 for each mode of 

For the study protocol see 
http://www.erasmusage.com/
wp-content/uploads/2016/10/
Protocol_SR.pdf

 Figure 1: Study selection
*We included these three duplicate studies in the table of study characteristics.

4037 potentially eligible studies identified
3953 identified by database search

84 identified by manual search of reference 
lists and expert suggestions

1471 duplicates excluded

2566 identified for screening

174 excluded after screening
14 study design
24 only motorised transport

3 only active transport
13 not commuting

1 biomarkers
20 conference proceedings
93 not relevant

6 full text not available

12 excluded as pollutants of interest not 
reported

3 duplicates excluded*

2338 excluded after screening

54 full-text articles selected

228 selected by title and abstract screening

39 eligible studies
28 experimental studies
10 observational studies

1 mixed design study
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Pollutants Method of measurement Mode of transport Monitoring period Location

Active Motorised

Adams et al (2001)18; 
Adams et al (2002)19*

PM2·5 Gravimetric analysis Cyclist Car, bus, and MMT 3 week measurements in 
July, 1999, and February, 2000

London, UK

Boogaard et al (2009)20 PM2·5 Light scattering Cyclist Car 11 days (except Fridays) 
between late August and 
October, 2006

Apeldoorn, Delft, Den Bosch, 
Eindhoven, Groningen, 
Haarlem, Maastricht, Nijmegen, 
The Hague, Utrecht, and 
Zwolle (Netherlands)

Brauer et al (1999)21 Particle 
concentration 
(≥1 to <5 μg; 
≥5 μg)

Light scattering Cyclist and pedestrian Car, bus and seabus, 
and MMT

May to October, 1999 Vancouver, Canada

Briggs et al (2008)22 PM≥1 to <2·5;
PM≥2·5 to <10

Light scattering Pedestrian Car 7 weekdays during May and 
June, 2005

London, UK

Chertok et al (2004)23 NO2 NS Cyclist and pedestrian Car, bus, and MMT 13–27 Sept, 2002 Sydney, Australia

Bruinen de Bruin et al 
(2004)24

CO Electrochemical sensor Pedestrian Car, MMT, and 
motorcycle

1997–98 (1 year period) Milan, Italy

de Nazelle et al (2012)25 PM2·5; CO; BC PM2·5: light scattering and 
gravimetric analysis; CO: 
electrochemical monitor; BC: 
optical sensor (aethalometer)

Cyclist and pedestrian Car and bus 4 weeks beginning 
May 28, 2009

Barcelona, Spain

Dirks et al (2012)26 CO Electrochemical monitor Cyclist and pedestrian Car, bus, MMT, 
and motorcycle

Nov 8–Dec 17, 2010 Auckland, New Zealand

Dons et al (2011)27*; 
Dons et al (2012)28

BC Aethalometer Cyclist and pedestrian Car (driver and 
passenger), MMT 
(train, light rail, and 
metro), and bus

16 participants only during 
summer of 2010; 8 of them 
plus 38 new volunteers were 
measured during winter 
2010–11

Mol, Belgium

Dor et al (1995)29 CO Electrochemical monitor Pedestrian Car and MMT October, 1991, to 
September, 1992

Paris, France

Duci et al (2003)30 CO Electrochemical monitor Pedestrian Car, bus, and MMT (rail) Summer of 1998 and 
November, 1998, to 
February, 1999

Athens, Greece

Farrar et al (2001)31 NO2 Adsorbance 
(spectrophotometer)

Cyclist Car and bus August to September, 2000 Perth, Australia

Gee and Raper (1999)32 PM4·0 Gravimetric analysis Cyclist Bus NS Manchester, UK

Georgoulis et al (2002)33 CO Electrochemical monitor Cyclist and pedestrian Car, MMT, 
and motorcycle

February, 1997, to 
January, 1998; February, 1997, 
to March, 1998; June, 1997, 
to June, 1998; March, 1997, 
to January, 1998; October, 1996, 
to December, 1997

Basel, Switzerland; Athens, 
Greece; Prague, Czech Republic; 
Milan, Italy; Helsinki, Finland

Goel et al (2015)34 PM2·5 Light scattering Cyclist and pedestrian Car (open and closed 
windows), bus (open 
and closed windows), 
MMT, auto rickshaw, 
and motorised 
two-wheeler

41 days between January and 
May, 2014

Delhi, India

Gulliver and Briggs 
(2004)35

PM10; PM2·5 Light scattering Pedestrian Car Pilot: July, 1999;·Route 1: 
November, 1999, to 
March, 2000; Route 2: 
April 2000·

Northampton, UK

Gulliver and Briggs 
(2007)36

PM1–2·5; PM2·5–10; 
PM10 to TSP

Light scattering Pedestrian Car 10 diff erent days between 
January and March, 2005

Leicester, UK

Huang et al (2012)37 PM2·5; CO PM2·5: spectrometer and 
gravimetric analysis; CO: 
electrochemical sensor

Cyclist Car and bus December, 2010, and 
February, 2011

Beijing, China

Int Panis et al (2010)7 PM10; PM2·5 Light scattering Cyclist Car 8 days in June, 2009 Brussels, Louvain-la-Neuve, 
and Mol (Belgium)

Kaur et al (2005)38; Kaur 
and Nieuwenhuijsen 
(2009)39*

PM2·5; CO PM2·5: gravimetric analysis; CO: 
electrochemical monitor

Cyclist and pedestrian Car and bus 4 week fi eld campaign from 
April 28 to May 23, 2003

London, UK

(Table continues on next page)
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transport (appendix). Then, we calculated the inhalation 
dose ratio between mode of transport using the inhaled 
dose of cyclists (or pedestrians, accordingly) as the 
reference. We summarised ratios as medians and IQRs. 

Finally, we estimated the trade-off  in YLE due to fi ne 
particle inhaled dose and physical activity, according to 
mode of transport. We used fi ne particles because it has 
the most consistent evidence for all-cause mortality risk.17 
We calculated the loss or gain of YLE due to fi ne particle 

inhaled dose and physical activity levels for a person 
commuting by a given mode of transport. We based 
calculations on fi ne particle exposure and a set of 
assumptions regarding weekly levels of physical activity 
per mode of transport (appendix). We built the assumptions 
for a given scenario where one hypothetical person spends 
7 days in four microenvironments: at work, at home, 
sleeping, and commuting by one of the modes of transport 
over a 7 km route twice a day. We did a sensitivity analysis 

Pollutants Method of measurement Mode of transport Monitoring period Location

Active Motorised

(Continued from previous page)

Kingham et al (2013)40 PM10; PM2·5; 
CO

PM10 and PM2·5: spectrometer; 
CO: electrochemical monitor

Cyclist Car and bus Weekdays between Feb 26 and 
March 26, 2009

Christchurch, New Zealand

Li et al (2015)41 BC Optical sensor (aethalometer) Cyclist and pedestrian Car, bus, and MMT 6 non-rainy working days 
during August, 2014

Shangai, China

Liu et al (2015)42 PM10; PM2·5 Light scattering Pedestrian Car, bus, and MMT January to March between 
2012 and 2014

Taipei, Taiwan

McNabola et al (2008)8 PM2·5 Gravimetric analysis Cyclist and pedestrian Car and bus January, 2005, to June, 2006 Dublin, Ireland

Morabia et al (2009)43 PM2·5 Light scattering Pedestrian Car and MMT October, 2007, to 
February, 2008

New York, USA

Moreno et al (2015)44 BC; PM2·5; CO BC: optical sensor 
(aethalometer); PM2·5: 
gravimetric analysis and light 
scattering; CO: electrochemical 
monitor

Pedestrian MMT (subway) and bus 39 weekdays between October 
and November, 2014

Barcelona, Spain

Nyhan et al (2014)9 PM10; PM2·5 Light scattering Cyclist and pedestrian Bus and MMT NS Dublin, Ireland

Onat and Stakeeva 
(2013)45

PM2·5 Light scattering Pedestrian Bus, MMT, car (A/C on 
or off ), and metrobus

Oct 8 and Nov 16, 2008 Istambul, Turkey

Ramos et al (2016)46 PM10; PM4; 
PM2·5; PM1; CO

PM: light scattering; CO: 
electrochemical monitor

Cyclist Car, bus, MMT, and 
motorcyclist

15 non-rainy days during 
December, 2013, 
to March, 2014

Lisbon, Portugal

Rank et al (2001)47 Particles Gravimetric analysis Cyclist Car June 18 and Aug 3, 1998 Copenhagen, Denmark

Saksena et al (2008)48 PM10; CO PM10: nephelometer (light 
scattering); CO: 
electrochemical monitor

Pedestrian Car, bus, and 
motorcyclist (Mobi 
bike)

October, 2006 Hanoi, Vietnam

Suárez et al (2014)49 PM2·5 Light scattering Cyclist Car, bus, and MMT Winter to spring, 2011, and 
summer to autumn, 2012

Santiago de Chile, Chile

van Wijnen et al (1995)10 CO; NO2 CO: gas chromatography; NO2: 
adsorbance 
(spectrophotometer)

Cyclist and pedestrian Car January, May, and August, 1990 Amsterdam, Netherlands

Vellopolou and Ashmore 
(1998)50

CO Electrochemical sensor Pedestrian Car, bus, and 
motorcyclist

5 month period beginning 
December, 1992

Athens, Greece

Vouitsis et al (2014)51 PM10; PM2·5; BC PM: light scattering; BC: 
optical sensor (aethalometer)

Cyclist Bus and car (windows 
open and closed)

April, 2011 Thessaloniki, Greece

Williams and Knibbs 
(2016)52

BC Aethalometer Cyclist and pedestrian Car (windows open and 
closed), bus, and MMT

April, 2016, to October, 2016 Brisbane and Eden, Australia

Wu et al (2013)53 PM2·5 Light scattering Cyclist and pedestrian Car, bus, MMT, and 
motorcylist

March 5–10, 2011, 
March 28–April 3, 2011, and 
July 5–11, 2011

Foshan, China

Yan et al (2015)54 PM2·5 Light scattering Pedestrian Bus and MMT 
(A/C on and off )

Dec 10–23, 2011 Beijing, China

Zuurbier et al (2010)55 PM10; PM2·5 PM10: gravimetric analysis; 
PM2·5: light scattering

Cyclist (low-traffi  c and 
high-traffi  c route)

Bus, MMT (diesel and 
electric), and car (diesel 
and petrol)

June, 2007, to June, 2008 Arnhem, Netherlands

PM=particulate matter. MMT=massive motorised transport. NO2=nitrogen dioxide. NS=not specifi ed. CO=carbon monoxide. BC=black carbon. TSP=total suspended particles. A/C=air conditioning. *Duplicate studies 
used to extract study characteristics but excluded from systematic review.

Table: General characteristics of the studies 
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for the person commuting over a 3·5 km route. We 
calculated the net gains or losses by comparing each mode 
of transport to a reference scenario (cyclists or pedestrians, 
accordingly) and summarising them as medians and 
IQRs. A detailed description of the procedures is provided 
in the appendix. We did all analyses in Stata (version 14.0). 

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 

the report. The corresponding author had full access to 
all the data in the study and had fi nal responsibility for 
the decision to submit for publication.

Results
After screening 4037 potentially relevant studies, we 
retrieved and assessed 228 full texts, of which 
54 fulfi lled the initial selection criteria and 39 reported 
on exposure to the pollutants of interests and were 
included in the systematic review (fi gure 1, table; we 

Figure 2: Distribution of ratio of pollutant exposure level among diff erent modes of transport to (A) cyclists’ or (B) pedestrians’ exposure
The squares size is weighted according to the number of comparisons used to calculate the median. The exact medians and IQRs are provided in the appendix. 
BC=black carbon. CO=carbon monoxide. MMT=massive motorised transport. 
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excluded three duplicate studies from the systematic 
review but included them in the table of study 
characteristics). The studies were done in European 
(n=24), west Pacifi c (n=11), American (n=3), and 
southeast Asian (n=1) countries. Further characteristics 
are provided in the appendix.

Irrespective of pollutant, car commuters had higher air 
pollution exposure than did active commuters in 30 (71%) 
of 42 comparisons (median 1·22 [IQR 0·90–1·76]), 
followed by those who commuted by bus in 57 (52%) 
of 109 (1·0 [0·79–1·41]), by motorcycle in 16 (50%) 
of 32 (0·99 [0·86–1·38]), by a car with controlled 
ventilation settings in 39 (45%) of 86 (0·95 [0·66–1·54]), 
and by MMT in 21 (38%) of 55 (0·67 [0·49–1·13]). 
We observed diff erences in exposure ratio per mode of 
transport and pollutant (fi gure 2). We obtained similar 
estimations by meta-analysing the exposure ratios, but 
we identifi ed a large heterogeneity (higher than 90% in 
most comparisons; appendix). We did not fi nd evidence 
of publication bias (appendix).

Inhalation or uptake pollutant dose was available in 
12 of the studies included in the systematic review 
(appendix). Cyclists followed by pedestrians had the 
highest uptake dose of pollutants. Minute ventilation as 
a breathing parameter was heterogeneous across 
studies. Five studies7,9,10,25,55 used surrogates of activity 
intensity to derive minute ventilation, whereas the 
remaining studies8,26,28,37,41,46,51 used published parameters. 
In Figure 3, we compare the distribution of exposure 
and inhaled dose ratios on the basis of our calculation of 
inhalation dose. For all motorised modes of transport, 
the median of the inhaled dose ratio was lower than the 
exposure ratio. Active commuters had a higher 
inhalation dose of pollutants than did commuters who 
used motorised transport (median ratio car with 
controlled ventilation settings 0·16 [IQR 0·10–0·28]; car 
0·22 [0·15–0·30]; motorcycle 0·38 [0·26–0·78]); MMT 
0·49 [0·34–0·81]; bus 0·72 [0·50–0·99]) due to increased 
respiratory parameters. A ratio of inhaled dose lower 
than the ratio of exposure, with respect to the y axis, 
suggests that the relative inhaled dose of pollutant 
among cyclists, in the denominator, is higher than their 
relative exposure. We observed small diff erences 
between exposure and inhaled dose ratios for the 
comparison of pedestrians with cyclists.

Figure 4 shows the diff erence in YLE due to fi ne 
particle exposure and physical activity per mode of 
transport. Median losses in YLE were up to 1 year larger 
among commuters using motorised transport than 
among cyclists because of less physical activity, despite 
the lower inhaled dose of fi ne particles (appendix). Losses 
were larger among people commuting by car, by a car 
with controlled ventilation settings, and by motorcycle 
than among bus and MMT commuters because of the 
active stages attributed to public transport commuters. 
Losses of commuters using motorised transport 
compared with pedestrians were larger than of those 

using motorised transport compared with cyclists 
because of the longer commuting time of pedestrians 
than of cyclists. In a sensitivity analysis, we tested varying 
commuting times and consistently observed YLE gains 
in favour of active transport (appendix), as the diff erence 
between life-years lost due to fi ne particle exposure and 
life-years gained due to physical activity remained 
roughly the same for a 3·5 km route as for a 7 km route 
with the relative risk of physical activity of 0·8056 (age 
20–30 years: median –1·50 years [IQR –1·69 to –1·08]; 
age 40–64 years: –1·26 [–1·44 to –0·77]; age ≥65 years: 
–0·59 [–0·82 to –0·26]).

Regarding quality of studies, comparability of exposure 
between mode of transport was high (at least three 
stars according to the Newcastle-Ottawa Scale) in 
16 experimental studies (appendix). We noted a very low 
comparability in 13 experimental studies (two or fewer 
stars). Ten studies were observational, which aimed to 
measure rather than compare exposure between mode 
of transport. Irrespective of pollutant, exposure levels to 
CO, NO₂, and fi ne and coarse particles were above 
ambient air quality standards13 among cyclists in 
50 (56%) of 89 exposure averages, among pedestrians 
in 22 (46%) of 48, among those who commuted by car in 
22 (55%) of 40, among those who commuted by a car 
with controlled ventilation settings in 45 (52%) of 87, 
among those who commuted by MMT in 25 (48%) of 52, 
and among those who commuted by motorcycle in 
24 (65%) of 37. The distribution of pollutant exposure 
level per mode of transport is shown in the appendix. 
Fine particles were more frequently above ambient air 
quality standards than were the other pollutants 
(155 [83%]) of 187 exposure averages). Detailed 
information about ascertainment of air pollution 
exposure was provided in 33 (85%) studies. Sample size 
or dispersion measure ments were not reported in four 
(10%) studies. Complete reporting of background and 
meteorological conditions was found in 21 (54%) studies. 
Standardisation of all modes of transport measured and 
reporting of it was found in 20 (51%) studies.

Discussion
Car and bus commuters had the highest levels of air 
pollution exposure, followed by those commuting by a 
car with controlled ventilation settings, cyclists, and 
pedestrians, whereas the lowest was experienced by MMT 
commuters and motorcylists. Cyclists, followed by 
pedestrians, had the highest inhalation and uptake dose 
of pollutants because of increased minute ventilation and 
trip time. Compared with people commuting by car, by a 
car with controlled ventilation settings, and by motor-
cycle, the negative eff ect on YLE of increased inhaled dose 
did not overcome the positive eff ect of physical activity 
when commuting actively. Commuter exposure can be 
reduced by increasing the distance from traffi  c emissions, 
reducing air exchange with use of ventilation settings in 
motorised mode of transport, and choice of routes with 
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Figure 3: Comparison of ratio of exposure to pollutants with ratio of inhaled dose of pollutants according to mode of transport and pollutant to that of cyclists
(A) Black carbon. (B) Carbon monoxide. (C) Coarse particles. (D) Fine particles. (E) NO2. MMT=massive motorised transport. 
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low emissions and high dispersion of pollutants 
(eg, parks), as well as eff orts to reduce local and regional 
emissions. We observed a large heterogeneity across the 
evidence. Further research should consider inhaled and 
uptake dose while commuting to address air pollution 
eff ects on health. 

In agreement with previous systematic reviews,5,6 the 
diff erences in air pollution exposure between mode of 
transport in this study can be explained mainly by the 
position of the commuter with respect to the gradient of 
pollutant concentration8,18,20,25,28,38,41,49 and the commuter’s 
microenvironment sensitivity to surrounding pollutant 
concentration. The gradient of pollutant concentration 
depends on the rate of emissions and the dispersion and 
decay of pollutants in the air,1,57 which is infl uenced, among 
others, by meteorological58,59 and route25,39,41 attributes. The 
close contact of commuters using motorised transport to 
the traffi  c line explains their higher levels of air pollution 
exposure than those for active commuters.5,6,46 Indeed, bus 
commuters and cyclists have lower exposure when they 
travel via separated bus lanes or cycle routes or travel close 
to kerb than when they do not.2,5,25,38,46 Also, pedestrians, 
who usually travel on the pavement, have a lower exposure 
than do cyclists.6,38 We observed the lowest exposure among 
MMT commuters, except for exposure to BC, most 
probably because they often travel on railways or through 
tunnels separated from ground traffi  c.26 The main sources 
of exposure for MMT commuters involve walking stages, 
when approaching the stations,49 and while waiting inside 
the stations.5,41,53 Commuters using ground motorised 
transport (ie, car and bus) on overcongested routes with 
high emission levels had high pollutant exposure because 
of high emissions, long trip time, and frequent idling.5,6,37 
Additionally, canyon-like street confi guration reduces the 
dispersive and catalytic action of environmental and 
meteorological factors, thus trapping the pollutants.8,31,41

Commuters’ microenvironment sensitivity to surr ound-
ing pollutants depends on the rate of air interchange of the 
microenvironment. Active commuters, and commuters 
using motorised transport with open windows, have a high 
rate of air interchange, increasing their exposure to high 
pollutant concen trations41,36,53 and pollutant hotspots like 
intersections and traffi  c lights.26,36,41,45,54,59 This leads to 
a pattern of concentration peaks in active commuters’ 
exposure, whereas commuters using motorised transport 
have a constant concentration exposure. Physical barriers 
like controlled ventilation settings in cars help to extract 
and fi lter fi ne and coarse particles from the vehicle 
microenvironment.22,36,48,53 Moreover, physical barriers make 
a large diff erence in highly contaminated environments,37 
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where both commuters using motorised transport and 
active commuters have similar exposure levels to fi ne and 
coarse particles.22,35,37 Nevertheless, people commuting with 
a car with controlled ventilation settings had an increased 
exposure to CO,10,29,37,38,46,48 attributed to self-pollution due to 
fi ltration of surrounding emissions and products from 
engine combustion.

Commuters’ microenvironment sensitivity to traffi  c-
related air pollution is largely determined by built 
environment attributes that increase their proximity to 
traffi  c emissions, by an absence of physical barriers like 
ventilation settings, and by increased respiratory para-
meters leading to increased airway deposition of pollutants. 
Therefore, active commuters might benefi t from air 
pollution forecasting and on-road advice to actively protect 
themselves from exposure—eg, by choosing uncongested 
routes. Incentives to shift from private motorised to active 
and public transport should be accompanied by urban 
planning standards and policies, such as dedicated lanes, 
separated cycle routes and pavements, improved 
ventilation in vehicles and at stops and stations for public 
transport, a boosted transition to environmentally friendly 
vehicles, and other eff orts aimed to reduce both combustive 
and non-combustive traffi  c-related emissions.3 Moreover, 
large societal benefi ts are obtained from an active 
commuter-friendly environment, which aff ects additional 
traffi  c-related risk factors, like noise, traffi  c injuries, quality 
of life, and social cohesion, among others.60,61

By contrast with overall exposure, the inhaled dose of 
pollutants was higher among active commuters than 
among commuters using motorised transport. This 
fi nding is mainly explained by the increased minute 
ventilation, leading to increased air volume and frequency 
of breathing, deeper inhalation, and larger inhalation of 
pollutants in active commuters than in commuters using 
motorised transport.7 Active commuters, especially 
pedestrians, also have a longer trip time than do 
commuters using motorised transport and thereby have 
increased exposure time.7,8,22,37,55

In agreement with previous studies,11 the large losses in 
YLE among commuters using motorised transport due 
to less physical activity than in active commuters were 
not off set by the modest gains due to lower inhaled fi ne 
particles. YLE losses of commuting by car, by a car with 
controlled ventilation settings, and by motorcycle were 
larger than were the losses observed among public 
transport commuters (bus and MMT). This fi nding can 
be explained by the contribution of physical activity 
during the active stages of the trip, like when approaching 
stations or stops, despite additional sources of air 
pollution inhalation.9,25,55,62 

To our knowledge, this study is the fi rst systematic 
review of air pollution exposure and inhaled dose 
according to mode of transport. Our fi ndings are in 
agreement with the systematic review by Mueller and 
colleagues,11 which included 30 studies that assessed the 
net health benefi ts of active transport through health 

impact assessment, 17 of which addressed the negative 
eff ect of air pollution exposure. Nevertheless, none of the 
studies included by Mueller and colleagues11 were 
included in our study as they did not comply with our 
selection criteria and research question. Also, all but one 
study analysed by Mueller and colleagues11 were done 
with data from European countries, the USA, 
New Zealand, and Australia, with mostly indirect air 
pollution exposure levels, and with heterogeneous 
assumptions and modelling frameworks. By contrast, 
we used fi ne particle exposure levels purposely measured 
for modal comparison in 23 studies and applied standard 
assumptions for inhaled and physical activity doses. 
Also, because of our selection criteria, we included 
further settings, also adding Asian and west Pacifi c cities, 
with higher ambient air pollution than in the USA and 
most European countries. Under very high air pollution 
concentrations, the trade-off  between air pollution 
exposure risks and active transport benefi ts has been 
suggested to not benefi t active transport anymore.63 Yet, 
our fi ndings are consistently in favour of active transport. 

Limitations of our analyses deserve attention. First, the 
external validity of the studies included in this report was 
aff ected by the heterogeneity of settings and methodological 
approaches. Nevertheless, on the basis of the observed 
heterogeneity, this systematic review encompasses various 
environmental conditions and makes our fi ndings 
generalisable. Second, despite our comprehensive search, 
only eight studies were done in countries other than 
European and North American countries (China,37,41,53,54 
India,34 Taiwan,42 Vietnam,48 and Chile49). Although we did 
not fi nd evidence of publication bias, these regions are 
under-represented in our review. Third, we did not take 
into account the additional toxicity of other pollutants. 
However, fi ne particle levels are a strong marker of traffi  c-
related air pollution, and we found that fi ne particles were 
more frequently above ambient air quality standards than 
were the other pollutants. Fourth, we assumed a rather 
unlikely scenario of pedestrians commuting daily for 
longer than 2 h. Walking is an important source of physical 
activity, and a large proportion of active commuters are 
pedestrians.64 With a sensitivity analysis, we tested varying 
commuting times and consistently observed YLE gains in 
favour of active transport. Fifth, we focused on the long-
term mortality eff ect of physical activity and fi ne particle 
exposure. However, examination of other short-term and 
long-term health eff ects would be benefi cial, as well as 
other exposures, like noise and traffi  c injuries. Findings 
from previous studies suggest that regardless of the 
expected increment of traffi  c injuries along the shift from 
motorised to active commuting, the reduction in motorised 
traffi  c volume and the increment of an active commuter-
friendly environment would contribute to a reduction of 
the burden of traffi  c incidents.11 Finally, we assumed a total 
replacement of mode of transport at each scenario 
modelled and a linear association of fi ne particle exposure 
and physical activity with mortality, by contrast with 
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previous fi ndings.11,60,56 However, our approximation is 
intended to build on previous eff orts to summarise air 
pollution exposure according to mode of transport to 
examine the eff ect of commuting parameters on inhaled 
doses and potential population-level eff ects. Health 
benefi ts strongly depend on specifi c local attributes,11,60 
such as the off er of mode of transport, apportionment of 
emissions, and built environment attributes, besides local 
policies and normative behaviour. Decision making based 
on health impact assessment should take into account 
such local attributes.
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