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      Linear Polyubiquitination: A Crucial 
Regulator of NF-κB Activation                     

       Kazuhiro     Iwai    

    Abstract     NF-κB is a transcription factor known to be involved in pleomorphic 
biological phenomena such as infl ammation and immune responses. Abnormal 
activation of NF-κB has been reported in many pathological conditions, including 
malignant tumors. Therefore, the NF-κB activation pathway has been extensively 
studied and involvement of the ubiquitin conjugation system in the NF-κB activa-
tion pathways has been revealed. Although the ubiquitin conjugation system was 
discovered as a part of a protein degradation pathway, non-degradable roles of the 
ubiquitin system have been revealed recently. Several types of polyubiquitin chains 
exist in cells and the type of chain seems to determine how ubiquitinated proteins 
are regulated. We have identifi ed that a new type of polyubiquitin chain, the linear 
polyubiquitin chain, plays a crucial role in regulating the NF-κB activation pathway 
in non-degradable manner. In this chapter, the discovery, roles in NF-κB activation, 
and involvement in the pathogenesis of cancers of linear ubiquitination will be 
discussed.  
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        The Ubiquitin Conjugation System 

 The ubiquitin system, which is one of the most extensively studied post- translational 
protein modifi cation systems, has been identifi ed as part of an energy-dependent 
degradation system [ 1 ]. Ubiquitin is a protein-based modifi er composed of 76 
amino acids. Through the function of three enzymes called the ubiquitin-activating 
enzyme (E1), the ubiquitin conjugating enzyme (E2) and the ubiquitin ligase (E3), 
ubiquitin is conjugated to the substrate proteins that are recognized by E3s. Ubiquitin 
is added onto ubiquitin pre-conjugated to the substrates to generate polyubiquitin 
chains—polymer of ubiquitin. The proteasome recognizes the polyubiquitin chains 

        K.   Iwai      (*) 
  Department of Molecular and Cellular Physiology, Graduate School of Medicine , 
 Kyoto University ,   Yoshida-konoe-cho, Sakyo-ku ,  Kyoto   606-8501 ,  Japan   
 e-mail: kiwai@mcp.med.kyoto-u.ac.jp  

© The Author(s) 2015 
K. Nakao et al. (eds.), Innovative Medicine, DOI 10.1007/978-4-431-55651-0_4

mailto:kiwai@mcp.med.kyoto-u.ac.jp


52

and destines ubiquitinated proteins for degradation (Fig.  1 ) [ 2 ]. The physiological 
signifi cance of the ubiquitin proteolytic system mainly arises from its timely and 
selective recognition of the substrate proteins [ 2 ]. However, timely and selective 
protein modifi cation is a desirable feature not only for degradation but also for other 
modes of protein regulation. As expected, these non-degradation functions of the 
ubiquitin system are now widely recognized [ 3 ]. Among the post-translational 
modifi cation systems, the ubiquitin system has the unique feature that the system 
regulates the function of proteins by conjugating polyubiquitin chains in most cases. 
There are several types of polyubiquitin chains in cells, and the type of polyubiqui-
tin chain is thought to determine the mode of regulation of the conjugated proteins 
[ 3 ]. Polyubiquitin chains have been believed to be exclusively generated via linkage 
between the carboxyl group of a ubiquitin monomer and ε-amino group of one of 
seven Lys residues within ubiquitin. For example, ubiquitin chains generated via 
Lys(K)48 of ubiquitin (K48 chains) function as a degradation signal and chains 
generated via K63 (K63 chains) are involved in DNA repair or signal transduction 
without a functioning degradation signal (Fig.  1 ) [ 3 ]. We have identifi ed a new type 
of polyubiquitin chain, the linear polyubiquitin chain, in which the carboxyl group 
of a ubiquitin monomer forms a peptide bond with an N-terminal Met residue of 
another ubiquitin molecule (Fig.  1 ) [ 4 ]. We have also identifi ed the ubiquitin ligase 

  Fig. 1    The ubiquitin conjugation system. Through the function of three enzymes, called ubiquitin 
activating enzymes (E1), ubiquitin conjugating enzymes (E2), and ubiquitin ligases (E3), ubiquitin 
is conjugated to target proteins that are specifi cally recognized by E3s. Once an ubiquitin is conju-
gated to the target protein, additional ubiquitins are conjugated successively onto the terminal 
ubiquitin already conjugated to the target protein to form polyubiquitin chains. The polyubiquitin 
chains have been velieved to be generated by iso-peptide bond formation between the C-terminal 
carboxyl group of one ubiquitin and an ε-amino group of one of seven Lys residues in another 
ubiquitin. In the case of the ubiquitin proteolytic pathway, polyubiquitin chains are conjugated via 
K48. K63 conjugated chains are involved in signaling or DNA repair without the conjugated pro-
tein being subject to degradation. However, the linear ubiquitin chain, as reviewed here, is unique 
because it is generated by peptide bond formation between the C-terminus of one ubiquitin and 
the α-amino group of Met1 residues in another ubiquitin. Conjugated ubiquitins are cleaved by 
deubiquitinating enzymes (DUBs). The function of conjugated proteins is modulated via specifi c 
recognition of conjugated polyubiquitin chains       
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complex that specifi cally generates linear polyubiquitin chains and named it as the 
linear ubiquitin chain assembly complex (LUBAC) [ 4 ]. Further analysis has revealed 
that linear polyubiquitination is involved in NF-κB activation [ 5 ].

       The Canonical NF-κB Activation Pathways 

 NF-κB is a transcription factor that is involved in a broad array of biological phe-
nomena including cell survival, infl ammation, and innate and acquired immune 
responses [ 6 ]. Since aberrant activation of NF-κB is reported in numerous patho-
logical conditions including autoimmune diseases and neoplasms, the NF-κB acti-
vation pathway has been extensively studied. NF-κB activation pathways are 
basically subdivided into two distinct pathways, known as the canonical and alter-
native pathways [ 6 ]. The canonical NF-κB activation pathway is discussed here 
since LUBAC-mediated linear polyubiquitination is known to be involved in the 
pathway [ 7 ]. NF-κB is inactive in resting cells as it resides in the cytoplasm bound 
to inhibitor proteins called inhibitors of NF-κBs (IκBs) in the canonical activation 
pathway (Fig.  2 ). The IκB kinase (IKK) complex, which comprises IKK1, IKK2, 
and NF-κB essential modulator (NEMO), is activated upon stimulation with various 
agents such as Toll-like receptor (TLR) ligands or infl ammatory cytokines including 
TNF-α- and IL-1β, which leads to phosphorylation of IκBs. Phosphorylated IκBs 
are recognized by the SCF βTrCP  ubiquitin ligase and conjugated with K48 chains, 
which leads to phosphorylated IκBs to degradation by the proteasome. Then, liber-
alized NF-κB translocates to the nucleus to induce the transcription of target genes 
(Fig.  2 ) [ 6 ]. Although the precise mechanism leading to the activation of the IKK 
complex has not been completely solved, K63 polyubiquitin chains have been 
shown to be involved in the IKK activation in the canonical pathway [ 8 ]. Since roles 
of K63 chains in NF-κB activation is not the main topic of in this article [ 8 ], the 
current hypothesis of the roles of K63 chains in the TNF-α- and IL-1β-induced 
canonical NF-κB activation pathway will only be summarized here. Upon binding 
TNF-α in addition to adaptor molecules, ubiquitin ligases including TRAF2 and 
cIAPs are recruited to the TNF receptor 1 (TNFR1) and K63 chains conjugated 
mainly onto RIP1. In the case of IL-1β signaling, TRAF6 E3 recruited to the IL-1 
receptor (IL-1R) complex generates K63 chains on TRAF6 itself and on IRAK1. 
K63 chains, generated in the activated receptor complex, recruit the TAK1–TAB1–
TAB2/3 complex and the IKK complex via K63-selective binding of TAB2/3 or 
NEMO, respectively. TAK1 then phosphorylates specifi c Ser residues of IKK2, 
which leads to the phosphorylation and degradation of IκBs [ 8 ]. However, the 
involvement of K63-linked chains in NF-κB activation has been challenged. In cells 
isolated from KO mice of Ubc13, a crucial component of an Ubc13–Uev1a E2 
complex to generate K63 chains specifi cally, NF-κB activation mediated by TNF-α 
is not overtly affected, although TNF-α-mediated activation of MAPKs by these 
stimuli is severely impaired [ 9 ]. Moreover, K63 chains are dispensable for TNF-α-, 
but not for IL-1β-, induced canonical NF-κB activation [ 10 ]. Thus, although K63 
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chains play crucial roles in signaling, they might be dispensable for the canonical 
NF-κB activation, at least on some occasions including TNF-α stimulation.

       The Linear Ubiquitin Chains and Their Roles 
in NF-κB Activation 

 One of the important features of the ubiquitin conjugation system is the diversity of 
the polyubiquitin chains [ 11 ]. Ubiquitin chains have been believed to be generated 
by conjugating C-terminal carboxyl groups of ubiquitin to ε-amino groups of one of 
seven Lys residues of another ubiquitin. Although polyubiquitin chains are 

  Fig. 2    The canonical NF-κB activation pathway. NF-κB (p65-p50 heterodimer in Fig.  2 .) resides 
within the cytoplasm of resting cells in a form bound to the inhibitor protein, IκBα. Upon binding 
to TNF-α, TRADD and RIP1 are recruited to the TNF receptor 1 (TNFR1). TRADD then recruits 
TRAF2 and cIAPs. In the case of IL-1β signaling, MyD88 is recruited to the IL-1 receptor (IL-1R), 
which recruits IRAK1 and IRAK4 to the receptor. IRAK1 binds to TRAF6. The ubiquitin ligase 
activities of TRAF6 and cIAPs are involved in the signaling cascade leading to canonical IKK 
activation, namely IKK2 phosphorylation. Phosphorylated IκBα is then conjugated with K48- 
linked polyubiquitin chains by the SCF βTrCP  ubiquitin ligase and degraded by the proteasome. 
Liberated NF-κB translocates to the nucleus and induces the expression of target genes       
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generated by the repetitive functions of three enzymes, E1, E2, and E3, molecular 
mechanisms underlying polyubiquitin chain generation has not been completely 
solved [ 11 ]. During the dissection of the mechanism underscoring polyubiquitin 
generation, we have identifi ed a new type of ubiquitin chain called the linear ubiq-
uitin chain, in which the C-terminal carboxyl group of ubiquitin is conjugated to the 
α-amino group of the N-terminus of another ubiquitin [ 11 ]. Here, how the linear 
chains were discovered is discussed. We have identifi ed the E3 complex composed 
of two RING–IBR–RING proteins, HOIL-1L and HOIP, and realized that HOIL-1L 
and HOIP possess multiple ubiquitin binding sites in addition to E2 binding sites 
(Fig.  3 ) [ 4 ,  12 ]. We thus hypothesized that the ubiquitin ligase complex recognizes 
ubiquitin as a substrate and conjugates ubiquitin onto it to generate polyubiquitin 
chains. Further analyses revealed that the HOIL-1L–HOIP complex indeed gener-
ates linear polyubiquitin chains exclusively [ 4 ].

   During the course of seeking the physiological function, we found that siRNA- 
mediated suppression of HOIP attenuated TNF-α-mediated NF-κB activation [ 5 ]. 
In primary hepatocytes isolated from mice lacking HOIL-1L, TNF-α-induced 
nuclear localization of p65, a subunit of NF-κB, is heavily impaired. Moreover, 
 TNF-α- induced IKK activation and expression of target genes of NF-κB are severely 
attenuated in embryonic fi broblasts (MEFs) from the HOIL-1L KO mice [ 5 ]. 

 However, although deletion of molecules essential for NF-κB activation, such as 
NEMO or IKK2, is embryonic lethal in mice, HOIL-1L KO is viable. HOIP, which 
is a catalytic subunit of the complex, was heavily decreased but not completely 
absent in HOIL-1L KO cells, which suggested that HOIP may have another binding 
partner besides HOIL-1L, and we identifi ed SHARPIN as a binding partner of 
HOIP. The C-terminus half of SHARPIN exhibits signifi cant homology with the 
N-terminal half of HOIL-1L, which is essential for binding to HOIP (Fig.  3 ) [ 13 ]. 
Further analyses revealed that SHARPIN forms the tertiary complex with HOIL-1L 
and HOIP [ 13 ]. The complex composed of HOIL-1L, HOIP, and SHARPIN conju-
gates to linear polyubiquitin chains, and we designated the complex composed of 
HOIL-1L, HOIP, and SHARPIN as LUBAC (Fig.  3 ) [ 13 ]. 

  Fig. 3    Schematic representation of LUBAC, which is composed of HOIL-1L, HOIP, and 
SHARPIN. The zinc fi nger and RING-IBR-RING domains of HOIP are the substrate-binding site 
and E3 active site, respectively.  IBR  in-between RING,  NZF  Npl4-type zinc fi nger,  PUB  peptide:N- 
glycanase/UBA- or UBX-containing proteins,  RING  really interesting new gene,  UBA  ubiquitin- 
associated domains,  UBL  ubiquitin-like,  ZF  zinc fi nger       
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 Pathophysiological roles of linear polyubiquitin chains were revealed by the 
analyses of spontaneous mutant mice called chronic proliferative dermatitis in mice 
(cpdm) [ 13 – 15 ]. Loss of SHARPIN is causative in cpdm mice that exhibit chronic 
infl ammation including chronic dermatitis and immunodefi ciency. In cells isolated 
from cpdm mice, the amount of the other components of LUBAC, HOIL-1L and 
HOIP, was reduced drastically by the lack of SHARPIN, thereby attenuating canon-
ical NF-κB activation induced by several stimuli including TNF-α and CD40 
[ 13 – 15 ]. Recently, loss-of-function mutation of HOIL-1L provoked a fatal human 
inherited disorder characterized by chronic autoinfl ammation, invasive bacterial 
infections, and muscular amylopectinosis [ 16 ]. Loss of HOIL-1L or SHARPIN 
destabilizes the other two components of LUBAC and thereby suppresses signal- 
induced NF-κB activation [ 5 ,  13 – 15 ]. Thus, loss of regulatory subunits of LUBAC 
suppresses signal-induced canonical NF-κB activation and provokes diseases 
characterized by autoinfl ammatory and immunodefi ciency phenotypes, at least in 
part [ 7 ].  

    Mechanism Underlying Linear Ubiquitin Chain-Mediated 
NF-κB Activation 

 The ubiquitin conjugation system regulates a wide variety of physiological phe-
nomena by conjugating polyubiquitin chains in a timely and selective manner [ 3 ]. 
The E3 enzymes must recognize target proteins prior to their ubiquitination [ 3 ]. In the 
case of LUBAC-mediated canonical NF-κB activation, NEMO, an integral subunit 
of the IKK complex, is the substrate of LUBAC, and linear polyubiquitination of 
NEMO is shown to be involved in the activation of IKK that leads to canonical 
NF-κB activation [ 6 ]. Recent analyses revealed the molecular mechanism of linear 
polyubiquitination of NEMO-mediated IKK activation [ 17 ]. Upon stimulation with 
agents such as TNF-α, LUBAC recognizes NEMO using the Npl4-type zinc fi nger 
1 (NZF1) domain of HOIP (Fig.  4 ) and conjugates linear ubiquitin chains onto the 
proteins. Conjugation of di-ubiquitin (dimer) of linear linkage to NEMO appears 
enough to activate the IKK complex [ 17 ]. Activation of the IKK complex is mediated 
by the phosphorylation of IKK2 [ 6 ]. In general, phosphorylation of kinases is medi-
ated either by trans-autophosphorylation or by upstream kinases [ 18 ]. The crystal 
structural analyses of human IKK2 revealed that homotypic interaction of the IKK2 
kinase domain is crucial for IKK2 activation [ 19 ]. Moreover, NEMO possesses the 
ubiquitin binding activity that prefers linear di-ubiquitin, and NEMO’s ubiquitin 
binding activity is critical for IKK activation [ 20 ]. We thus showed that linear 
di-ubiquitin conjugated to NEMO is recognized by another NEMO in trans, which 
triggers dimerization of the IKK complex and subsequent trans- autophosphorylation 
of IKK2 (Fig.  4 ) [ 17 ].
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       Perspectives 

 The involvement of LUBAC-mediated linear polyubiquitination in disease has been 
shown recently. Aberrant NF-κB activation plays an essential role in the pathogen-
esis of activated B cell-like diffuse large B cell lymphomas (ABC DLBCL) [ 21 ]. 
Recent analyses showed that LUBAC is essential for the growth of ABC DLBCL 
cells through suppression of NF-κB activity. Moreover, two rare SNPs in the HOIP 
gene are enriched in ABC DLBCL [ 21 ]. We have also observed that attenuation of 
LUBAC suppressed lung metastases of osteosarcomas in mice [ 22 ]. Moreover, 
HOIP attenuates apoptosis induced by platinum-based genotoxins, including cisplatin 
and carboplatin, that are widely used as anti-cancer drugs [ 23 ]. Thus, suppression of 
LUBAC activity might be a suitable target to control malignant tumors. We have 

  Fig. 4    The proposed role of 
linear chains in canonical 
NF-κB activation. NEMO, an 
integral component of the 
IKK complex, is recognized 
by the NZF1 of HOIP upon 
stimulation and is linearly 
ubiquitinated by 
LUBAC. Linear di-ubiquitin 
is suffi cient to activate 
IKK. Linear di-ubiquitin 
conjugated to NEMO is 
recognized by NEMO in 
another IKK complex in 
trans, triggering dimerization 
and trans-auto- 
phosphorylation of IKK2. 
Activated IKK2 
phosphorylates IκBα, 
activating the canonical 
NF-κB pathway       
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identifi ed a new type of ubiquitin modifi cation, linear ubiquitination, during our 
analyses to address the basic question of how the ubiquitin system generates polyu-
biquitin chains. We hope our unexpected fi nding will lead to the development of 
new therapeutic agents to control cancer.     
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