
Chapter 10
Hagedorn Model of Critical Behavior:
Comparison of Lattice and SBM Calculations

Ludwik Turko

Abstract The Statistical Bootstrap Model and the related concept of the limiting
temperature began the discussion about phase transitions in the hadronic matter.
This was also the origin of the quark-gluon plasma concept. We discuss here to
which extent lattice studies of QCD critical behavior at non-zero chemical potential
are compatible with the statistical bootstrap model calculations.

10.1 Rolf Hagedorn: Some Personal Impressions

“A fireball consists of fireballs, which in turn consist of fireballs, and so on . . . ”—
that was the leading sentence from the famous CERN Yellow Report 71-12 where
Rolf Hagedorn presented in detail the leading ideas and results of his Statistical
Bootstrap Model (SBM) [1]. I met this report in the late 1970s having yet some
scientific experience both in quantum field theory as well as in the theory of high
energy multi production processes.

Starting from the beginning I realized that I was reading something unusual.
I was impressed by the elegance and precision of the presentation. It was quite
obvious to me that the author had spent a lot of time on discussions to clarify
his arguments. Some questions were answered before I could even think about
them. All was achieved without overuse of mathematical formalism, although all
presentation was mathematically very rigorous. The author, however, used as simple
and natural mathematical tools as possible, without going into the complex jungle
of formulae and multilevel definitions. It was also clearly visible that the model, all
its architecture and equipment was a one man project—Rolf Hagedorn.

And the most important point—a new idea was presented. I was not sure at that
time—is this idea right or wrong—but that it was an idea not to be ignored. It was
a nice answer to the long-standing question—how to effectively describe the basic
structure of matter, i.e. here hadronic matter. We knew the whole hierarchy—nuclei,
nucleons, elementary particles, quarks. Any of those ‘levels’ pretended at some time
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to be the ‘real’ elementary one. The SBM didn’t try to answer the question about
basic constituents. It just pointed out that this would be a wrong question.

About 2 years later I met Rolf Hagedorn at CERN in 1979. I was quite convinced
at that time about the idea of statistical bootstrap. I saw SBM as a good topic to
explore—at least as a way of thinking, and, I wanted to gain a deeper knowledge
about statistical physics which in the domain of strong interactions had been to me
a rather obscure subject. I also convinced my Ph.D. student at that time, Krzysztof
Redlich, that this mixture of statistical physics and theory of elementary particles
could be a very fruitful and interesting subject.

Traveling to CERN I was quite excited to meet the physicist whose papers
were giving me not only scientific but also quite aesthetic experience. In short:
personal meetings with Hagedorn were even more interesting then reading his
papers. He was a man of great general culture, very polite but also expecting well-
prepared arguments in discussions. From the other side he was very open to share
his reasoning, his calculations—even those that still were at a preliminary level
of development. His handwritten notes were famous—in an almost calligraphic
script, nicely written formulae, alternative arguments. He handed those notes to
collaborators—it was just like received a chapter of an advanced textbook.

After 2 years our relationship rapidly changed. The martial law, introduced in
Poland in December 1981, not only made impossible my stay at CERN expected
in Spring 1982, but also put me first in an internee camp, then in jail. I was not the
only scientist at that time who found himself in such an unexpected surrounding.
And it was Rolf Hagedorn, who without any delay in the very first days of martial
law, co-initiated at CERN a campaign to free interned or jailed physicists in Poland.
Posters with photos and names were posted on walls of TH division, signatures of
protest were collected, and letters of protest were sent to Polish officials.

When we met again in 1989 we still kept our relationship, not only on a scientific
but also on a friendly level. Looking now back I must admit that Rolf Hagedorn was
among those who shaped my profile—not only as a scientist, but also as a man. He
was definitely worth following—in any respect. I am happy I had the possibility to
be close to such an exceptional scientist and an exceptional man. A man of honor.

10.2 Critical Behavior of Hadronic Matter

Quantum chromodynamics (QCD) gauge theory is an excellent tool for description
of single hadronic events in vacuum. However, for the dense and hot hadronic
matter the most reliable theoretical results, based on first principles, can be obtained
only through lattice gauge theory calculations. In particular, a phase transition or
crossover phenomena are expected. This critical behavior is related to peculiarities
in standard lattice QCD quantities as the Polyakov loop or susceptibilities.

From the other side, a surprisingly simple resonance gas model provides a good
description of particle yields in the relativistic heavy ion collisions in the broad
energy range [2, 3]. The clue to this result is in the exponential-like behavior of the
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particle mass spectrum. This model, slightly extended [4], also reproduces results
of the transition between a hadron resonance gas phase and the quark gluon plasma
obtained in course of QCD lattice simulation.

The concept of the limiting temperature of the hadronic matter has appeared in
the SBM [5–8]. An introduction of the baryonic chemical potential transforms this
critical temperature into the critical curve, see Chap. 23. Higher internal symmetries
lead to an appearance of the critical surface [9, 10]. The hadronic matter, above the
critical curve, is interpreted nowadays as a QGP phase.

I will compare here calculations of critical curves obtained in the � � T plane
from lattice Monte Carlo simulations with analogous critical curves obtained with
the same input from the SBM. It was shown [11, 12] that a gas of non-interacting
resonances provides a good description of the low temperature phase of lattice QCD.
As the hadronic mass spectrum is similar to the exponential mass spectrum expected
from the SBM, it is interesting to check if the critical behavior obtained from the
SBM resembles Monte Carlo results of lattice QCD.

We are interested here in the region of the .�B;T/ plane covered by ultrarel-
ativistic heavy ion collisions where the phase transition is expected i.e. the high
temperatures and low baryonic densities. The efficient method of lattice simulation
proceeds here via a Taylor expansion with respect to the baryonic chemical potential
at �B D 0 [13, 14]. This lattice technique, supplemented with other technical tools
specific for QCD lattice simulations, was used to obtain the phase transition curve
Tc.�/ for 2-flavor and 3-flavor QCD [15–19].

Critical Curve from the Lattice Calculations

In order to compare the SBM with lattice results one should take into account that
the latter are not obtained from calculations performed with the physically realized
quark mass spectrum. One finds [20–22] that the quark mass dependence is well
parameterized through the relation

.mHa/2 D .mHa/2phys C b.m�a/2 ; (10.1)

where .mHa/phys denotes the physical mass value of a hadron expressed in lattice
units and .mHa/ is the value calculated on the lattice for a certain value of the quark
mass or equivalently a certain value of the pion mass.

The lattice constant a can be treated as a specific ultra-violet regularization which
is removed in the continuous limit a! 0. The value of the critical temperature Tc is
dependent on the pion mass [17]. Pion here is understood as the lowest pseudoscalar
mesonic state qNq of the mass mPS. This mass decreases to its physical pion mass
m� D 0:140GeV in the continuous limit along with the critical temperature.

Critical curves for 2-flavor and 3-flavor QCD were obtained at some assumed
quarks masses (in lattice constant a units): mq D 0:1 on the left-hand figure and
mq D 0:1; mq D 0:005 on the right-hand plots. Corresponding mPS masses were
0:770GeV, 0:190GeV and 0:170GeV, respectively.
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Critical Curve from the Statistical Bootstrap Model

Let us start from the bootstrap equation taken for the system with pions and nucleons
taken as basic constituents. The bootstrap input function is given as, compare
Eq. (27.19) on page 352

'n� ;nN .�;T/ D 2H�T
h
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�m�

T

�
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(10.2)

I restricted the set of input particles for a given valence quark input to the
lightest mesonic and baryonic states respectively. n� and nN are their numbers, spin
degeneration and antibaryons are taken into account here. They form an input for
the SBM. So for two quark flavors there are n� D 3 mesonic states and nN D 8

baryonic states. For three quark flavors with the threefold quark mass degeneracy
one gets n� D 8 and nN D 32, respectively.

The bootstrap constant H is written as

H D A
2m�mN

.2�/3
1

B
(10.3)

where B1=4 � 0:190MeV is the bag constant to reproduce critical energy density
" � 0:6GeV/fm 3 and the parameter A is chosen so to get the critical temperature
Tc at �B D 0 from the corresponding QCD lattice simulation.

The Statistical Bootstrap Model used on the QCD lattice system has its basis
components such as they appear in lattice QCD simulation. It means, particularly,
nucleon mass expressed by pion mass (all in GeV) as

mN.m�/ D 0:94C m2
�

0:94
(10.4)

The critical curve for incompressible hadrons is obtained directly from the
bootstrap equation

2˚ D ' C e˚ � 1 ; (10.5)

which is meaningful only for

' � ln 4 � 1 :

So the critical curve Tc.�/ is given on the �B � T plane by the condition

'n� ;nN .�;T/ D ln 4 � 1 : (10.6)
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Fig. 10.1 The transition temperature Tc, as a function of baryonic chemical potential for 2-flavor
lattice, bootstrap system (left-hand figure). The critical temperature 2-flavor lattice bootstrap sys-
tem, compared with result of corresponding lattice simulation (right-hand figure), both considered
in power law approximation

Comparison of SBM and Lattice-QCD

I consider the lattice bootstrap system as described above. The exact result is shown
in left panel of Fig. 10.1, corresponding to Hagedorn’s result Fig. 25.3 on page 303.
This result should be compared to the 2-flavor QCD lattice simulation, indicated
with vertical error line domain in the right panel in Fig. 10.1.

As the critical curves Tc.�q/ from the QCD lattice calculations were obtained
up to O..�q=Tc.0//

2/ term, so the similar approximation should be used for the
critical curves obtained from Eq. (10.6). This means that the expression coshŒ

�
�B
T

	
�

in Eq. (10.2) should be replaced by the corresponding Taylor expansion truncated to
the first two terms. The result of this procedure is presented on the Fig. 10.1—right
panel.

10.3 Conclusions

Results presented on Fig. 10.1 show that the Statistical Bootstrap Model reproduces
at least qualitatively basic properties of the critical curve obtained in the course
of QCD lattice simulation. We have quantitative agreement for smaller values of
baryonic chemical potential, not exceeding 0:7GeV. This is rather natural taking
into account that the method used in the simulations was based on the idea of
analytical continuation in the chemical potential variable, starting from the point
� D 0.
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The statistical bootstrap model, created by Rolf Hagedorn half a century ago, at
a time when quarks were still a bold hypothesis, remains a very inspiring research
tool of hadronic matter. Based on Hagedorn’s deep knowledge and great intuition,
the Statistical Bootstrap Model has still some unknown and unexpected properties,
waiting to be discovered.
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