
Chapter 32
Strangeness and Phase Changes in
Hot Hadronic Matter – 1983

Johann Rafelski

Abstract Two phases of hot hadronic matter are described with emphasis put on
their distinction. Here the role of strange particles as a characteristic observable of
the quark-gluon plasma phase is particularly explored.

32.1 Phase Transition or Perhaps Transformation: Hadronic
Gas and the Quark-Gluon Plasma

I explore here consequences of the hypothesis that the energy available in the
collision of two relativistic heavy nuclei, at least in part of the system, is equally
divided among the accessible degrees of freedom. This means that there exists a
domain in space in which, in a suitable Lorentz frame, the energy of the longitudinal
motion has been largely transformed to transverse degrees of freedom. The physical
variables characterizing such a ‘fireball’ are energy density, baryon number density,
and total volume. The basic question concerns the internal structure of the fireball.
It can consist either of individual hadrons, or instead, of quarks and gluons in a new
physical phase, the plasma, in which they are deconfined and can move freely over
the volume of the fireball. It appears that the phase transition from the hadronic gas
phase to the quark-gluon plasma is controlled mainly by the energy density of the
fireball. Several estimates [1] lead to 0.6–1 GeV/fm3 for the critical energy density,
to be compared with 0.16 GeV/fm3 in nuclear matter.

We first recall that the unhandy extensive variables, viz., energy, baryon number,
etc., are replaced by intensive quantities. To wit, the temperature T is a measure
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Fig. 32.1 p;V diagram for
the gas–plasma first order
transition, with the dotted
curve indicating a
model-dependent, unstable
domain between overheated
and undercooled phases

of energy per degree of freedom; the baryon chemical potential � controls the
mean baryon density. The statistical quantities such as entropy (= measure of the
number of available states), pressure, heat capacity, etc., will also be functions of T
and �, and will have to be determined. The theoretical techniques required for the
description of the two quite different phases, viz., the hadronic gas and the quark-
gluon plasma, must allow for the formulation of numerous hadronic resonances on
the one side [2], which then at sufficiently high energy density dissolve into the state
consisting of their constituents. At this point, we must appreciate the importance and
help by a finite, i.e., nonzero temperature in reaching the transition to the quark-
gluon plasma: to obtain a high particle density, instead of only compressing the
matter (which as it turns out is quite difficult), we also heat it up; many pions are
generated in a collision, allowing the transition to occur at moderate, even vanishing
baryon density [3].

Consider, as an illustration of what is happening, the p;V diagram shown
in Fig. 32.1. Here we distinguish three domains. The hadronic gas region is
approximately a Boltzmann gas where the pressure rises with reduction of the
volume. When the internal excitation rises, the individual hadrons begin to cluster.
This reduces the increase in the Boltzmann pressure, since a smaller number of
particles exercises a smaller pressure. In a complete description of the different
phases, we have to allow for a coexistence of hadrons with the plasma state in the
sense that the internal degrees of freedom of each cluster, i.e., quarks and gluons,
contribute to the total pressure even before the dissolution of individual hadrons.
This does indeed become necessary when the clustering overtakes the compressive
effects and the hadronic gas pressure falls to zero as V reaches the proper volume
of hadronic matter. At this point the pressure rises again very quickly, since in the
absence of individual hadrons, we now compress only the hadronic constituents. By
performing the Maxwell construction between volumes V1 and V2, we can in part
account for the complex process of hadronic compressibility alluded to above.

As this discussion shows, and detailed investigations confirm [4], we cannot
escape the conjecture of a first order phase transition in our approach. This con-
jecture of [1, item (g)] has been criticized, and only more recent lattice gauge theory
calculations have led to the widespread acceptance of this phenomenon, provided
that an internal SU(3) (colour) symmetry is used—SU(2) internal symmetry leads
to a second order phase transition [1, item (i)]. It is difficult to assess how such
hypothetical changes in actual internal particle symmetry would influence phe-
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Table 32.1 Phase transition of hot hadronic matter in theoretical physics

Object �! Observational hypothesis �! Theoretical consequence

Nature �! Internal SU(3) symmetry �! First order phase transition

(on a lattice)

Nature �! Bootstrap OD resonance �! First order phase transition

dominance of hadronic in a phenomenological

interactions bootstrap approach

? �! Internal SU(2) symmetry �! Second order phase transition

(on a lattice)

Fig. 32.2 Paths taken
in the �; T plane by different
physical events

nomenological descriptions based on an observed picture of nature. For example, it
is difficult to argue that, were the colour symmetry SU(2) and not SU(3), we would
still observe the resonance dominance of hadronic spectra and could therefore use
the bootstrap model. All present understanding of phases of hadronic matter is based
on approximate models, which requires that Table 32.1 be read from left to right.

I believe that the description of hadrons in terms of bound quark states on the one
hand, and the statistical bootstrap for hadrons on the other hand, have many common
properties and are quite complementary. Both the statistical bootstrap and the bag
model of quarks are based on quite equivalent phenomenological observations.
While it would be most interesting to derive the phenomenological models quantita-
tively from the accepted fundamental basis—the Lagrangian quantum field theory of
a non-Abelian SU(3) ‘glue’ gauge field coupled to coloured quarks—we will have
to content ourselves in this report with a qualitative understanding only. Already
this will allow us to study the properties of hadronic matter in both aggregate states:
the hadronic gas and the state in which individual hadrons have dissolved into the
plasma consisting of quarks and of the gauge field quanta, the gluons.

It is interesting to follow the path taken by an isolated quark-gluon plasma fireball
in the �;T plane, or equivalently in the �;T plane. Several cases are depicted in
Fig. 32.2. In the Big Bang expansion, the cooling shown by the dashed line occurs
in a Universe in which most of the energy is in the radiation. Hence, the baryon
density � is quite small. In normal stellar collapse leading to cold neutron stars, we
follow the dash-dotted line parallel to the � axis. The compression is accompanied
by little heating.
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In contrast, in nuclear collisions, almost the entire �;T plane can be explored
by varying the parameters of the colliding nuclei. We show an example by the full
line, and we show only the path corresponding to the cooling of the plasma, i.e., the
part of the time evolution after the termination of the nuclear collision, assuming
a plasma formation. The figure reflects the circumstance that, in the beginning of
the cooling phase, i.e., for 1–1:5 
 10�23 s, the cooling happens almost exclusively
by the mechanism of pion radiation [5]. In typical circumstances, about half of the
available energy has been radiated away before the expansion, which brings the
surface temperature close to the temperature of the transition to the hadronic phase.
Hence a possible, perhaps even likely, scenario is that in which the freezing out
and the expansion happen simultaneously. These highly speculative remarks are
obviously made in the absence of experimental guidance. A careful study of the
hadronization process most certainly remains to be performed.

In closing this section, let me emphasize that the question whether the transition
hadronic gas ! quark-gluon plasma is a phase transition (i.e., discontinuous) or
continuous phase transformation will probably only be answered in actual experi-
mental work; as all theoretical approaches suffer from approximations unknown in
their effect. For example, in lattice gauge computer calculations, we establish the
properties of the lattice and not those of the continuous space in which we live.

The remainder of this report is therefore devoted to the study of strange particles
in different nuclear phases and their relevance to the observation of the quark-gluon
plasma.

32.2 Strange Particles in Hot Nuclear Gas

My intention in this section is to establish quantitatively the different channels
in which the strangeness, however created in nuclear collisions, will be found.
In our following analysis (see [6]) a tacit assumption is made that the hadronic
gas phase is practically a superposition of an infinity of different hadronic gases,
and all information about the interaction is hidden in the mass spectrum �.m2; b/
which describes the number of hadrons of baryon number b in a mass interval dm2

and volume V � m. When considering strangeness-carrying particles, all we then
need to include is the influence of the non-strange hadrons on the baryon chemical
potential established by the non-strange particles.

The total partition function is approximately multiplicative in these degrees of
freedom:

ln Z D ln Znon-strange C ln Zstrange : (32.1)

For our purposes, i.e., in order to determine the particle abundances, it is sufficient
to list the strange particles separately, and we find
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ln Zstrange.T;V; �s; �q/ D C
n
2W.xK/.�s�
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s �q/ (32.2)
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W.xi/ D
�mi

T

�2
K2
�mi

T

�
: (32.3)

We have C D VT3=2�2 for a fully equilibrated state. However, strangeness-creating
(x! sC Ns) processes in hot hadronic gas may be too slow (see below) and the total
abundance of strange particles may fall short of this value of C expected in absolute
strangeness chemical equilibrium. On the other hand, strangeness exchange cross-
sections are very large (e.g., the K�p cross-section is � 100mb in the momentum
range of interest), and therefore any momentarily available strangeness will always
be distributed among all particles in Eq. (32.2) according to the values of the
fugacities �q D �1=3B and �s. Hence we can speak of a relative strangeness chemical
equilibrium. Henceforth we omit the subscript ‘B’ when referring to barychemical
properties and symbols.

We neglected to write down quantum statistics corrections as well as the
multistrange particles Ξ and Ω�, as our considerations remain valid in this simple
approximation [7]. Interactions are effectively included through explicit reference to
the baryon number content of the strange particles, as just discussed. Non-strange
hadrons influence the strange faction by establishing the value of �q at the given
temperature and baryon density.

The fugacities �s and �q as introduced here control the strangeness and the
baryon number, respectively. While �s counts the strange quark content, the up and
down quark content is counted by �q D �1=3.

Using the partition function Eq. (32.2), we calculate for given �, T, and V the
mean strangeness by evaluating

hns � nNsi D �s
@

@�s
ln Zstrange.T;V; �s; �q/ ; (32.4)

which is the difference between strange and antistrange components. This expres-
sion must be equal to zero due to the fact that the strangeness is a conserved quantum
number with respect to strong interactions. From this condition, we get

�s D �q

ˇ̌
ˇ̌
ˇ
W.xK/C ��1
W.xΛ/C 3W.xΣ/

�

W.xK/C �


W.xΛ/C 3W.xΣ/

�
ˇ̌
ˇ̌
ˇ

1=2

	 �qF ; (32.5)

a result contrary to intuition: �s ¤ 1 for a gas with total hsi D 0. We notice a
strong dependence of F on the baryon number. For large �, the term with ��1 will
tend to zero and the term with � will dominate the expression for �s and F. As a
consequence, the particles with fugacity �s and strangeness S D �1 (note that by
convention strange quarks s carry S D �1, while strange antiquarks Ns carry S D 1)
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are suppressed by a factor F which is always smaller than unity. Conversely, the
production of particles which carry the strangeness S D C1will be favoured by F�1.
This is a consequence of the presence of nuclear matter: for � D 0, we find F D 1.

In nuclear collisions, the mutual chemical equilibrium, that is, a proper distri-
bution of strangeness among the strange hadrons, will most likely be achieved.
By studying the relative yields, we can exploit this fact and eliminate the absolute
normalization C [see Eq. (32.2)] from our considerations. We recall that the value
of C is uncertain for several reasons:

i V is unknown.
ii C is strongly .t; r/-dependent, through the spacetime dependence of T.

iii Most importantly, the value C D VT3=2�2 assumes absolute chemical equilib-
rium, which is not achieved owing to the shortness of the collision.

Indeed, we have [see Eq. (32.31) for in plasma strangeness formation and further
details and solutions, also see Sect. 31.2]

dC

dt
D AH

�
1 � C.t/2

C.1/2
�
; (32.6)

and the time constant �H D C.1/=2AH for strangeness production in nuclear matter
can be estimated to be 10�21 s [8]. Thus C does not reach C.1/ in plasmaless
nuclear collisions. If the plasma state is formed, then the relevant C > C.1/ (since
strangeness yield in plasma is above strangeness yield in hadron gas, see Chap. 31
and below).

Now, why should we expect relative strangeness equilibrium to be reached
faster than absolute strangeness equilibrium [6]? Consider the strangeness exchange
interaction

K�p �! Λ 0 (32.7)

which has a cross-section of about 10 mb at low energies, while the sNs ‘strangeness
creating’ associate production

pp �! pΛKC (32.8)

has a cross-section of less than 0.06 mb, i.e., 150 times smaller. Since the latter
reaction is somewhat disfavoured by phase space, consider further the reaction

 p �! YK (32.9)
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where Y is any hyperon (strange baryon). This has a cross-section of less than
1 mb, still 10 times weaker than one of the s-exchange channels in Eq. (32.7).
Consequently, I expect the relative strangeness equilibration time to be about ten
times shorter than the absolute strangeness equilibration time, namely 10�23 s, in
hadronic matter of about twice nuclear density.

We now compute the relative strangeness abundances expected from nuclear
collisions. Using Eq. (32.5), we find from Eq. (32.2) the grand canonical partition
sum for zero average strangeness:

ln Zstrange
0 D C

h
2W.xK/

�
F�K C F�1�K

	C 2W.xΛ/
�
F��Λ C F�1��1�Λ

	

C 6W.xΣ/
�
F��Σ C F�1��1�Σ

	i
; (32.10)

where, in order to distinguish different hadrons, dummy fugacities �i, i D K, K, Λ,
Λ, Σ, Σ have been written. The strange particle multiplicities then follow from

hnii D �i
@

@�i
ln Zstrange

0

ˇ̌
ˇ
�iD1

: (32.11)

Explicitly, we find (notice that the power of F follows the s-quark content):

hnK˙i D CF	W.xK/ ; (32.12)

hnΛ=Σ0i D CFC1W.xΛ=Σ0 /e
C�=T ; (32.13)

hnΛ=Σ0i D CF�1W.xΛ=Σ0 /e
��=T : (32.14)

In Eq. (32.14) we have indicated that the multiplicity of antihyperons can only
be built up if antibaryons are present according to their (small) phase space. This
still seems an unlikely proposition, and the statistical approach may be viewed as
providing an upper limit on their multiplicity.

From the above equations, we can derive several very instructive conclusions.
In Fig. 32.3 we show the ratio hnKCi=hnK�i D F�2 as a function of the baryon
chemical potential � for several temperatures that can be expected and which are
seen experimentally. We see that this particular ratio is a good measure of the baryon
chemical potential in the hadronic gas phase, provided that the temperatures are
approximately known. The mechanism for this process is as follows: the strangeness
exchange reaction of Eq. (32.7) tilts to the left (K�) or to the right (abundance F �
KC), depending on the value of the baryon chemical potential.

In the Fig. 32.4 the long dashed line shows the upper limit for the abundance
of Λ as measured in terms of Λ abundances. Clearly visible is the substantial
relative suppression of Λ, in part caused by the baryon chemical potential factor
of Eq. (32.14), but also by the strangeness chemistry (factor F2), as in KCK� above.
Indeed, the actual relative number of Λ will be even smaller, since Λ are in relative
chemical equilibrium and Λ in hadron gas are not: the reaction KCp ! Λ 0,
analogue to Eq. (32.7), will be suppressed by low p abundance. Also indicated in
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Fig. 32.3 The ratio hnKC i=hnK� i 
 F�2 as a function of the baryon chemical potential �, for
T D 100; .20/; 160MeV. The lines cross where � D mY � mK; mY is the mean hyperon mass

Fig. 32.4 Relative abundance of Λ=Λ. The actual yield from the hadronic gas limit may still be
10–100 times smaller than the statistical value shown

Fig. 32.4 by shading is a rough estimate for the Λ production in the plasma phase,
which suggests that anomalous Λ abundance may be an interesting feature of highly
energetic nuclear collisions [9], for further discussion see Sect. 32.5 below.

32.3 Quark-Gluon Plasma

From the study of hadronic spectra, as well as from hadron–hadron and hadron–
lepton interactions, there has emerged convincing evidence for the description
of hadronic structure in terms of quarks [10]. For many purposes it is entirely
satisfactory to consider baryons as bound states of three fractionally charged
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particles, while mesons are quark–antiquark bound states. The Lagrangian of quarks
and gluons is very similar to that of electrons and photons, except for the required
summations over flavour and colour:

L D  
F � .p � gA/�m
�
 � 1

4
F��F

�� : (32.15)

The flavour-dependent masses m of the quarks are small. For u, d flavours, one
estimates mu;d � 5–20 MeV. The strange quark mass is usually chosen at about
150 MeV [11]. The essential new feature of QCD, not easily visible in Eq. (32.15),
is the non-linearity of the field strength F in terms of the potentials A. This leads
to an attractive glue–glue interaction in select channels and, as is believed, requires
an improved (non-perturbative) vacuum state in which this interaction is partially
diagonalized, providing for a possible perturbative approach.

The energy density of the perturbative vacuum state, defined with respect to the
true vacuum state, is by definition a positive quantity, denoted by B. This notion
has been introduced originally in the MIT bag model [12], logically, e.g., from a fit
to the hadronic spectrum [12], which gives

B D 
(140–210)MeV
�4 D (50–250)MeV/fm3 : (32.16)

The central assumption of the quark bag approach is that, inside a hadron where
quarks are found, the true vacuum structure is displaced or destroyed. One can
turn this point around: quarks can only propagate in domains of space in which the
true vacuum is absent. This statement is a reformulation of the quark confinement
problem. Now the remaining difficult problem is to show the incompatibility of
quarks with the true vacuum structure. Examples of such behaviour in ordinary
physics are easily found; e.g., a light wave is reflected from a mirror surface,
magnetic field lines are expelled from superconductors, etc. In this picture of
hadronic structure and quark confinement, all colourless assemblies of quarks,
antiquarks, and gluons can form stationary states, called a quark bag. In particular,
all higher combinations of the three-quark baryons .qqq/ and quark–antiquark
mesons (qNq) form a permitted state.

As the u and d quarks are almost massless inside a bag, they can be produced
in pairs, and at moderate internal excitations, i.e., temperatures, many qNq pairs will
be present. Similarly, sNs pairs will also be produced. We will return to this point at
length below. Furthermore, real gluons can be excited and will be included here in
our considerations.

Thus, what we are considering here is a large quark bag with substantial,
equilibrated internal excitation, in which the interactions can be handled (hopefully)
perturbatively. In the large volume limit, which as can be shown is valid for baryon
number b & 10, we simply have for the light quarks the partition function of a
Fermi gas which, for practically massless u and d quarks can be given analytically
(see ref.[1, item (b)] and [13]), even including the effects of interactions through
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first order in ˛s D g2=4� :

ln Zq.ˇ; �/D gV

6�2
ˇ�3

��
1 � 2˛s

�

��
1

4
.�ˇ/4 C �2

2
.�ˇ/2

�
C
�
1 � 50

21

˛s

�

�
7�4

60

�
:

(32.17)

Similarly, the glue is a Bose gas:

ln Zg.ˇ; �/ D V
8�2

45
ˇ�3

�
1 � 15

4

˛s

�

�
; (32.18)

while the term associated with the difference to the true vacuum, the bag term, is

ln Zbag D �BVˇ : (32.19)

It leads to the required positive energy density B within the volume occupied by
the coloured quarks and gluons and to a negative pressure on the surface of this
region. At this stage, this term is entirely phenomenological, as discussed above. The
equations of state for the quark-gluon plasma are easily obtained by differentiating

ln Z D ln Zq C ln Zg C ln Zvac ; (32.20)

with respect to ˇ, �, and V .
An assembly of quarks in a bag will assume a geometric shape and size such as to

make the total energy E.V; b; S/ as small as possible at fixed given baryon number
and fixed total entropy S. Instead of just considering one bag we may, in order to be
able to use the methods of statistical physics, use the microcanonical ensemble. We
find from the first law of thermodynamics, viz.,

dE D �PdV C TdSC �db ; (32.21)

that

P D �@E.V; b; S/

@V
: (32.22)

We observe that the stable configuration of a single bag, viz., @E=@V D 0,
corresponds to the configuration with vanishing pressure P in the microcanonical
ensemble. Rather than work in the microcanonical ensemble with fixed b and S, we
exploit the advantages of the grand canonical ensemble and consider P as a function
of � and T :

P D � @

@V



T ln Z.�;T;V/

�
; (32.23)

with the result

P D 1

3
." � 4B/ ; (32.24)
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where " is the energy density:

" D 6

�2

��
1 � 2˛s

�

��
1

4

��
3

�4 C 1

2

��
3

�2
.�T/2

�
C
�
1� 50

21

˛s

�

�
7

60
.�T/4

�

C 8

15�2
.�T/4

�
1 � 15

4

˛s

�

�
C B : (32.25)

In Eq. (32.24), we have used the relativistic relation between the quark and gluon
energy density and pressure:

Pq D 1

3
"q ; Pg D 1

3
"g : (32.26)

From Eq. (32.24), it follows that, when the pressure vanishes in a static configura-
tion, the energy density is 4B, independently of the values of � and T which fix
the line P D 0. We note that, in both quarks and gluons, the interaction conspires to
reduce the effective available number of degrees of freedom. At ˛s D 0, � D 0, we
find the handy relation

"q C "g D
�

T

160MeV

�4 �GeV

fm3

�
: (32.27)

It is important to appreciate how much entropy must be created to reach the plasma
state. From Eq. (32.20), we find for the entropy density S and the baryon density �:

S D 2

�

�
1 � 2˛s

�

���
3

�2
�T C 14

15�

�
1 � 50

21

˛s

�

�
.�T/3 C 32

45�

�
1 � 15

4

˛s

�

�
.�T/3 ;

(32.28)

� D 2

3�2

��
1 � 2˛s

�

����
3

�3 C �

3
.�T/2

��
; (32.29)

which leads for �=3 D �q < �T to the following expressions for the entropy per
baryon [including the gluonic entropy second T3 term in Eq. (32.28)]:

S

�
� 37

15
�2

T

�q

T��q ! 25 Š (32.30)

As this simple estimate shows, plasma events are extremely entropy-rich, i.e., they
contain very high particle multiplicity. In order to estimate the particle multiplicity,
one may simply divide the total entropy created in the collision by the entropy per
particle for massless black body radiation, which is S=n D 4. This suggests that, at
T � �q, there are roughly six pions per baryon.
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32.4 Strange Quarks in Plasma

In lowest order in perturbative QCD, sNs quark pairs can be created by gluon fusion
processes, Fig. 31.2a,b,c; and by annihilation of light quark-antiquark pairs, see
Fig. 31.2d. The averaged total cross-sections for these processes were calculated by
Brian Combridge [14]. Note that in this book the thermal in quark-gluon plasma
strangeness production rates were evaluated in Sect. 31.2 closely following the
original presentation in [15] and thus we skip much of the original presentation.

The loss term of the strangeness population is proportional to the square of the
density ns of strange and antistrange quarks. sNs pair annihilations proceeds via the
two-gluon channel, quark-antiquark channel, and occasionally through ”G final
states [16]. With ns.1/ being the saturation density at large times, the following
differential equation determines ns as a function of time [15]:

dns

dt
� A

(
1 �

�
ns.t/

ns.1/
�2)

: (32.31)

Thus we find

ns.t/ D ns.1/
tanh.t=2�/C ns.0/

ns.1/

1C ns.0/

ns.1/
tanh.t=2�/

; � D ns.1/
2A

: (32.32)

For ˛s � 0:6 and M � T, we find, see Sect. 31.2 that � � 4 
 10�23 s. � falls
off rapidly with increasing temperature. Figure 32.5 shows the approach of ns.t/,
normalized with baryon density, to the fully saturated phase space as a function of
time. We note the high abundance of strangeness relative to baryon number seen
in Fig. 32.5—here, baryon number was computed assuming T � �q D �=3 [see
Eq. (32.29)]. These two facts, namely:

1. high relative strangeness abundance in plasma,
2. practical saturation of available phase space,

have led me to suggest the observation of strangeness as a possible signal of quark-
gluon plasma [9].

There are two elements in point (1) above: firstly, strangeness in the quark-
gluon phase is practically as abundant as the anti-light quarks u D d D Nq, since
both phase spaces have similar suppression factors, see Sect. 31.1. Note that the
chemical potential of quarks suppresses the Nq density. This phenomenon reflects
on the chemical equilibrium between qNq and the presence of a light quark density
associated with the net baryon number. Secondly, strangeness in the plasma phase
is more abundant than in the hadronic gas phase (even if the latter phase space is
saturated) when compared at the same temperature and baryon chemical potential in
the phase transition region. The rationale for the comparison at fixed thermodynamic
variables, rather than at fixed values of microcanonical variables such as energy
density and baryon density, is outlined in the next section. I record here only that the
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Fig. 32.5 Time evolution of
the strange quark to baryon
number abundance in the
plasma for various
temperatures T � �q D �=3.
M D 150MeV, ˛s D 0:6

abundance of strangeness in the plasma is well above that in the hadronic gas phase
space (by factors 1–6, see Fig. 31.1) and the two become equal only when the baryon
chemical potential � is so large that abundant production of hyperons becomes
possible. This requires a hadronic phase at an energy density of 5–10 GeV/fm3.

32.5 How to Discover the Quark–Gluon Plasma

Here only the role of the strange particles in the anticipated discovery will be
discussed. My intention is to show that, under different possible transition scenarios,
characteristic anomalous strange particle patterns emerge. Examples presented are
intended to provide some guidance to future experiments and are not presented here
in order to imply any particular preference for a reaction channel. I begin with a
discussion of the observable quantities.

The temperature and chemical potential associated with the hot and dense phase
of nuclear collision can be connected with the observed particle spectra, and,
as discussed here, particle abundances. The last grand canonical variable—the
volume—can be estimated from particle interferences. Thus, it is possible to use
these measured variables, even if their precise values are dependent on a particular
interpretational model, to uncover possible rapid changes in a particular observable.
In other words, instead of considering a particular particle multiplicity as a function
of the collision energy

p
s, I would consider it as a function of, e.g., mean transverse

momentum hp?i, which is a continuous function of the temperature (which is in turn
continuous across any phase transition boundary).

To avoid possible misunderstanding of what I want to say, here I consider the
(difficult) observation of the width of the KC two-particle correlation function in
momentum space as a function of the average KC transverse momentum obtained
at given

p
s. Most of KC would originate from the plasma region, which, when it

is created, is relatively small, leading to a comparatively large width. (Here I have
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assumed a first order phase transition with substantial increase in volume as matter
changes from plasma to gas.) If, however, the plasma state were not formed, KC
originating from the entire hot hadronic gas domain would contribute a relatively
large volume which would be seen; thus the width of the two-particle correlation
function would be small. Thus, a first order phase transition implies a jump in the
KC correlation width as a function of increasing hp?iKC , as determined in the same
experiment, varying

p
s.

From this example emerges the general strategy of my approach: search for
possible discontinuities in observables derived from discontinuous quantities (such
as volume, particle abundances, etc.) as a function of quantities measured exper-
imentally and related to thermodynamic variables always continuous at the phase
transition: temperature, chemical potentials, and pressure. This strategy, of course,
can only be followed if, as stated in the first sentence of this report, approximate
local thermodynamic equilibrium is also established.

Strangeness seems to be particularly useful for plasma diagnosis, because its
characteristic time for chemical equilibration is of the same order of magnitude as
the expected lifetime of the plasma: � � 1–3 
 10�23 s. This means that we are
dominantly creating strangeness in the zone where the plasma reaches its hottest
stage—freezing over the abundance somewhat as the plasma cools down. However,
the essential effect is that the strangeness abundance in the plasma is greater, by a
factor of about 30, than that expected in the hadronic gas phase at the same values of
�;T. Before carrying this further, let us note that, in order for strangeness to disap-
pear partially during the phase transition, we must have a slow evolution, with time
constants of � 10�22 s. But even so, we would end up with strangeness-saturated
phase space in the hadronic gas phase, i.e., roughly ten times more strangeness than
otherwise expected. For similar reasons, i.e., in view of the rather long strangeness
production time constants in the hadronic gas phase, strangeness abundance survives
practically unscathed in this final part of the hadronization as well. Facit:

If a phase transition to the plasma state has occurred, then on return to the hadron phase,
there will be most likely significantly more strange particles around than there would be (at
this T and �) if the hadron gas phase had never been left.

In my opinion, the simplest observable proportional to the strange particle
multiplicity is the rate of V-events from the decay of strange baryons (e.g., Λ) and
mesons (e.g., Ks) into two charged particles. Observations of this rate require a
visual detector, e.g., a streamer chamber. To estimate the multiplicity of V-events,
I reduce the total strangeness created in the collision by a factor 1/3 to select only
neutral hadrons and another factor 1/2 for charged decay channels. We thus have

hnVi � 1

6

hsi C hsi
hbi hbi � hbi

15
; (32.33)

where I have taken hsi=hbi � 0:2 (see Fig. 32.5). Thus for events with a large baryon
number participation, we can expect to have several V’s per collision, which is 100–
1,000 times above current observation for Ar-KCl collision at 1.8 GeV/Nuc kinetic
energy [17].
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Due to the high Ns abundance, we may further expect an enrichment of strange
antibaryon abundances [9]. I would like to emphasize here Ns Ns Nq states (anticascades)
created by the accidental coagulation of two Ns quarks helped by a gluon ! Nq
reaction. Ultimately, the Ns Ns Nq states become Ns Nq Nq, either through an Ns exchange
reaction in the gas phase or via a weak interaction much, much later. However,
half of the Ns Nq Nq states are then visible as Λ decays in a visual detector. This anomaly
in the apparent Λ abundance is further enhanced by relating it to the decreased
abundance of antiprotons, as described above.

Unexpected behaviour of the plasma–gas phase transition can greatly influence
the channels in which strangeness is found. For example, in an extremely particle-
dense plasma, the produced sNs pairs may stay near to each other—if a transition
occurs without any dilution of the density, then I would expect a large abundance
of φ.1020/ sNs mesons, easily detected through their partial decay mode (1/4 %) to a
�C�� pair.

Contrary behaviour will be recorded if the plasma is cool at the phase transition,
and the transition proceeds slowly—major coagulation of strange quarks can then
be expected with the formation of sss and Ns Ns Ns baryons and in general .s/3n clusters.
Carrying this even further, supercooled plasma may become ‘strange’ nuclear
(quark) matter [18]. Again, visual detectors will be extremely successful here,
showing substantial decay cascades of the same heavy fragment.

In closing this discussion, I would like to give warning about the pions. From
the equations of state of the plasma, we have deduced in Sect. 32.3 a very high
specific entropy per baryon. This entropy can only increase in the phase transition
and it leads to very high pion multiplicity in nuclear collisions, probably created
through pion radiation from the plasma [5] and sequential decays. Hence by relating
anything to the pion multiplicity, e.g., considering K=  ratios, we dilute the signal
from the plasma. Furthermore, pions are not at all characteristic for the plasma; they
are simply indicating high entropy created in the collision. However, we note that the
K=  ratio can show substantial deviations from values known in pp collisions—but
the interpretations of this phenomenon will be difficult.

It is important to appreciate that the experiments discussed above would cer-
tainly be quite complementary to the measurements utilizing electromagnetically
interacting probes, e.g., dileptons, direct photons. Strangeness-based measurements
have the advantage that they have much higher counting rates than those recording
electromagnetic particles.
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