Chapter 1
Preliminaries

1.1 The FEniCS Project

The FEniCS Project is a research and software project aimed at creating
mathematical methods and software for automated computational mathe-
matical modeling. This means creating easy, intuitive, efficient, and flexible
software for solving partial differential equations (PDEs) using finite element
methods. FEniCS was initially created in 2003 and is developed in collabo-
ration between researchers from a number of universities and research insti-
tutes around the world. For more information about FEniCS and the latest
updates of the FEniCS software and this tutorial, visit the FEniCS web page
at https://fenicsproject.org.

FEniCS consists of a number of building blocks (software components)
that together form the FEniCS software: DOLFIN [27], FFC [17], FIAT [16],
UFL [1], mshr, and a few others. For an overview, see [26]. FEniCS users
rarely need to think about this internal organization of FEniCS, but since
even casual users may sometimes encounter the names of various FEniCS
components, we briefly list the components and their main roles in FEniCS.
DOLFIN is the computational high-performance C++ backend of FEniCS.
DOLFIN implements data structures such as meshes, function spaces and
functions, compute-intensive algorithms such as finite element assembly and
mesh refinement, and interfaces to linear algebra solvers and data structures
such as PETSc. DOLFIN also implements the FEniCS problem-solving en-
vironment in both C++ and Python. FFC is the code generation engine of
FEniCS (the form compiler), responsible for generating efficient C++ code
from high-level mathematical abstractions. FIAT is the finite element back-
end of FEniCS, responsible for generating finite element basis functions, UFL
implements the abstract mathematical language by which users may express
variational problems, and mshr provides FEniCS with mesh generation ca-
pabilities.

© The Author(s) 2016 3
H.P Langtangen and A. Logg, Solving PDEs in Python,
Simula SpringerBriefs on Computing 3, DOI 10.1007/978-3-319-52462-7_1



4 1 Preliminaries

1.2 What you will learn

The goal of this tutorial is to demonstrate how to apply the finite element to
solve PDEs in FEniCS. Through a series of examples, we demonstrate how
to:

solve linear PDEs (such as the Poisson equation),

solve time-dependent PDEs (such as the heat equation),
solve nonlinear PDEs,

solve systems of time-dependent nonlinear PDEs.

Important topics involve how to set boundary conditions of various types
(Dirichlet, Neumann, Robin), how to create meshes, how to define variable
coefficients, how to interact with linear and nonlinear solvers, and how to
postprocess and visualize solutions.

We will also discuss how to best structure the Python code for a PDE
solver, how to debug programs, and how to take advantage of testing frame-
works.

1.3 Working with this tutorial

The mathematics of the illustrations is kept simple to better focus on FEniCS
functionality and syntax. This means that we mostly use the Poisson equation
and the time-dependent diffusion equation as model problems, often with
input data adjusted such that we get a very simple solution that can be
exactly reproduced by any standard finite element method over a uniform,
structured mesh. This latter property greatly simplifies the verification of the
implementations. Occasionally we insert a physically more relevant example
to remind the reader that the step from solving a simple model problem to a
challenging real-world problem is often quite short and easy with FEniCS.

Using FEniCS to solve PDEs may seem to require a thorough understand-
ing of the abstract mathematical framework of the finite element method
as well as expertise in Python programming. Nevertheless, it turns out that
many users are able to pick up the fundamentals of finite elements and Python
programming as they go along with this tutorial. Simply keep on reading and
try out the examples. You will be amazed at how easy it is to solve PDEs
with FEniCS!



1.4 Obtaining the software 5

1.4 Obtaining the software

Working with this tutorial obviously requires access to the FEniCS software.
FEniCS is a complex software library, both in itself and due to its many de-
pendencies to state-of-the-art open-source scientific software libraries. Man-
ually building FEniCS and all its dependencies from source can thus be a
daunting task. Even for an expert who knows exactly how to configure and
build each component, a full build can literally take hours! In addition to the
complexity of the software itself, there is an additional layer of complexity in
how many different kinds of operating systems (Linux, Mac, Windows) may
be running on a user’s laptop or compute server, with different requirements
for how to configure and build software.

For this reason, the FEniCS Project provides prebuilt packages to make
the installation easy, fast, and foolproof.

FEniCS download and installation

In this tutorial, we highlight two main options for installing the FEniCS
software: Docker containers and Ubuntu packages. While the Docker
containers work on all operating systems, the Ubuntu packages only
work on Ubuntu-based systems. Note that the built-in FEniCS plotting
does currently not work from Docker, although rudimentary plotting is
supported via the Docker Jupyter notebook option.

FEniCS may also be installed using other methods, including Conda
packages and building from source. For more installation options and
the latest information on the simplest and best options for installing
FEniCS, check out the official FEniCS installation instructions. These
can be found at https://fenicsproject.org/download.

FEniCS version: 2016.2

FEniCS versions are labeled 2016.1, 2016.2, 2017.1 and so on, where the
major number indicates the year of release and the minor number is a
counter starting at 1. The number of releases per year varies but typi-

cally one can expect 2-3 releases per year. This tutorial was prepared
for and tested with FEniCS version 2016.2.



https://fenicsproject.org/download

6 1 Preliminaries

1.4.1 Installation using Docker containers

A modern solution to the challenge of software installation on diverse soft-
ware platforms is to use so-called containers. The FEniCS Project pro-
vides custom-made containers that are controlled, consistent, and high-
performance software environments for FEniCS programming. FEniCS con-
tainers work equally well! on all operating systems, including Linux, Mac,
and Windows.

To use FEniCS containers, you must first install the Docker platform.
Docker installation is simple and instructions are available on the Docker
web page?. Once you have installed Docker, just copy the following line into
a terminal window:

Terminal

Terminal> curl -s https://get.fenicsproject.org | bash

The command above will install the program fenicsproject on your sys-
tem. This program lets you easily create FEniCS sessions (containers) on
your system:

Terminal

Terminal> fenicsproject run

This command has several useful options, such as easily switching between
the latest release of FEniCS, the latest development version and many more.
To learn more, type fenicsproject help. FEniCS can also be used directly
with Docker, but this typically requires typing a relatively complex Docker
command, for example:

Terminal

docker run --rm -ti -v ‘pwd‘:/home/fenics/shared -w
/home/fenics/shared quay.io/fenicsproject/stable:current ’/bin/bash -1
-c "export TERM=xterm; bash -i"’

Sharing files with FEniCS containers

When you run a FEniCS session using fenicsproject run, it will au-
tomatically share your current working directory (the directory from

! Running Docker containers on Mac and Windows involves a small performance over-
head compared to running Docker containers on Linux. However, this performance
penalty is typically small and is often compensated for by using the highly tuned and
optimized version of FEniCS that comes with the official FEniCS containers, compared
to building FEniCS and its dependencies from source on Mac or Windows.

2 https://www.docker. com


https://www.docker.com
https://www.docker.com

1.4 Obtaining the software 7

which you run the fenicsproject command) with the FEniCS ses-
sion. When the FEniCS session starts, it will automatically enter into
a directory named shared which will be identical with your current
working directory on your host system. This means that you can eas-
ily edit files and write data inside the FEniCS session, and the files
will be directly accessible on your host system. It is recommended that
you edit your programs using your favorite editor (such as Emacs or
Vim) on your host system and use the FEniCS session only to run your

program(s).

1.4.2 Installation using Ubuntu packages

For users of Ubuntu GNU/Linux, FEniCS can also be installed easily via the
standard Ubuntu package manager apt-get. Just copy the following lines
into a terminal window:

Terminal

Terminal> sudo add-apt-repository ppa:fenics-packages/fenics
Terminal> sudo apt-get update

Terminal> sudo apt-get install fenics

Terminal> sudo apt-get dist-upgrade

This will add the FEniCS package archive (PPA) to your Ubuntu com-
puter’s list of software sources and then install FEniCS. It will will also
automatically install packages for dependencies of FEniCS.

Watch out for old packages!

In addition to being available from the FEniCS PPA| the FEniCS soft-
ware is also part of the official Ubuntu repositories. However, depending
on which release of Ubuntu you are running, and when this release was
created in relation to the latest FEniCS release, the official Ubuntu
repositories might contain an outdated version of FEniCS. For this rea-
son, it is better to install from the FEniCS PPA.




8 1 Preliminaries

1.4.3 Testing your installation

Once you have installed FEniCS, you should make a quick test to see that
your installation works properly. To do this, type the following command in
a FEniCS-enabled? terminal:

Terminal

Terminal> python -c ’import fenics’

If all goes well, you should be able to run this command without any error
message (or any other output).

1.5 Obtaining the tutorial examples

In this tutorial, you will learn finite element and FEniCS programming
through a number of example programs that demonstrate both how to solve
particular PDEs using the finite element method, how to program solvers in
FEniCS, and how to create well-designed Python code that can later be ex-
tended to solve more complex problems. All example programs are available
from the web page of this book at https://fenicsproject.org/tutorial.
The programs as well as the source code for this text can also be accessed
directly from the Git repository* for this book.

1.6 Background knowledge

1.6.1 Programming in Python

While you can likely pick up basic Python programming by working through
the examples in this tutorial, you may want to study additional material
on the Python language. A natural starting point for beginners is the classic
Python Tutorial [11], or a tutorial geared towards scientific computing [22]. In
the latter, you will also find pointers to other tutorials for scientific computing
in Python. Among ordinary books we recommend the general introduction
Dive into Python [28] as well as texts that focus on scientific computing with
Python [15,18-21].

3 For users of FEniCS containers, this means first running the command fenicsproject
run.

4 https://github.com/hplgit/fenics-tutorial/


https://github.com/hplgit/fenics-tutorial/

1.6 Background knowledge 9

a N
Python versions

Python comes in two versions, 2 and 3, and these are not compatible.
FEniCS works with both versions of Python. All the programs in this
tutorial are also developed such that they can be run under both Python
2 and 3. Python programs that need to print must then start with

from __future__ import print_function

to enable the print function from Python 3 in Python 2. All use of
print in the programs in this tutorial consists of function calls, like
print(’a:’, a). Almost all other constructions are of a form that
looks the same in Python 2 and 3.

1.6.2 The finite element method

Many good books have been written on the finite element method. The books
typically fall in either of two categories: the abstract mathematical version
of the method or the engineering “structural analysis” formulation. FEniCS
builds heavily on concepts from the abstract mathematical exposition. The
first author has a book® [24] in development that explains all details of the
finite element method in an intuitive way, using the abstract mathematical
formulations that FEniCS employs.

The finite element text by Larson and Bengzon [25] is our recommended
introduction to the finite element method, with a mathematical notation
that goes well with FEniCS. An easy-to-read book, which also provides a
good general background for using FEniCS, is Gockenbach [12]. The book
by Donea and Huerta [8] has a similar style, but aims at readers with an
interest in fluid flow problems. Hughes [14] is also recommended, especially
for readers interested in solid mechanics and heat transfer applications.

Readers with a background in the engineering “structural analysis” version
of the finite element method may find Bickford [3] an attractive bridge over to
the abstract mathematical formulation that FEniCS builds upon. Those who
have a weak background in differential equations in general should consult
a more fundamental book, and Eriksson et al [9] is a very good choice. On
the other hand, FEniCS users with a strong background in mathematics will
appreciate the texts by Brenner and Scott [5], Braess [4], Ern and Guermond
[10], Quarteroni and Valli [29], or Ciarlet [7].

5 http://hplgit.github.io/fem-book/doc/web/index.html


http://hplgit.github.io/fem-book/doc/web/index.html

10 1 Preliminaries

Open Access This chapter is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the work’s Creative Commons
license, unless indicated otherwise in the credit line; if such material is not included in the work’s
Creative Commons license and the respective action is not permitted by statutory regulation, users
will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.





