
Chapter 3
A Gallery of finite element solvers

The goal of this chapter is to demonstrate how a range of important PDEs from
science and engineering can be quickly solved with a few lines of FEniCS code.
We start with the heat equation and continue with a nonlinear Poisson equation,
the equations for linear elasticity, the Navier–Stokes equations, and finally look at
how to solve systems of nonlinear advection–diffusion–reaction equations. These
problems illustrate how to solve time-dependent problems, nonlinear problems,
vector-valued problems, and systems of PDEs. For each problem, we derive the
variational formulation and express the problem in Python in a way that closely
resembles the mathematics.

3.1 The heat equation

As a first extension of the Poisson problem from the previous chapter, we
consider the time-dependent heat equation, or the time-dependent diffusion
equation. This is the natural extension of the Poisson equation describing the
stationary distribution of heat in a body to a time-dependent problem.

We will see that by discretizing time into small time intervals and applying
standard time-stepping methods, we can solve the heat equation by solving
a sequence of variational problems, much like the one we encountered for the
Poisson equation.

3.1.1 PDE problem

Our model problem for time-dependent PDEs reads

37© The Author(s) 2016
H.P Langtangen and A. Logg, Solving PDEs in Python,
Simula SpringerBriefs on Computing 3, DOI 10.1007/978-3-319-52462-7_3

38 3 A Gallery of finite element solvers

∂u

∂t
=∇2u+f in Ω× (0,T], (3.1)

u= uD on ∂Ω× (0,T], (3.2)
u= u0 at t= 0 . (3.3)

Here, u varies with space and time, e.g., u= u(x,y, t) if the spatial domain Ω
is two-dimensional. The source function f and the boundary values uD may
also vary with space and time. The initial condition u0 is a function of space
only.

3.1.2 Variational formulation

A straightforward approach to solving time-dependent PDEs by the finite
element method is to first discretize the time derivative by a finite difference
approximation, which yields a sequence of stationary problems, and then turn
each stationary problem into a variational formulation.

Let superscript n denote a quantity at time tn, where n is an integer count-
ing time levels. For example, un means u at time level n. A finite difference
discretization in time first consists of sampling the PDE at some time level,
say tn+1: (

∂u

∂t

)n+1
=∇2un+1 +fn+1 . (3.4)

The time-derivative can be approximated by a difference quotient. For sim-
plicity and stability reasons, we choose a simple backward difference:(

∂u

∂t

)n+1
≈ un+1−un

∆t
, (3.5)

where ∆t is the time discretization parameter. Inserting (3.5) in (3.4) yields

un+1−un

∆t
=∇2un+1 +fn+1 . (3.6)

This is our time-discrete version of the heat equation (3.1), a so-called back-
ward Euler or implicit Euler discretization.

We may reorder (3.6) so that the left-hand side contains the terms with
the unknown un+1 and the right-hand side contains computed terms only.
The result is a sequence of spatial (stationary) problems for un+1, assuming
un is known from the previous time step:

3.1 The heat equation 39

u0 = u0 , (3.7)
un+1−∆t∇2un+1 = un+∆tfn+1, n= 0,1,2, . . . (3.8)

Given u0 , we can solve for u0, u1, u2, and so on.
An alternative to (3.8), which can be convenient in implementations, is to

collect all terms on one side of the equality sign:

un+1−∆t∇2un+1−un−∆tfn+1 = 0, n= 0,1,2, . . . (3.9)

We use a finite element method to solve (3.7) and either of the equations
(3.8) or (3.9). This requires turning the equations into weak forms. As usual,
we multiply by a test function v ∈ V̂ and integrate second-derivatives by
parts. Introducing the symbol u for un+1 (which is natural in the program),
the resulting weak form arising from formulation (3.8) can be conveniently
written in the standard notation:

a(u,v) = Ln+1(v),

where

a(u,v) =
∫
Ω

(uv+∆t∇u ·∇v) dx, (3.10)

Ln+1(v) =
∫
Ω

(
un+∆tfn+1)vdx. (3.11)

The alternative form (3.9) has an abstract formulation

Fn+1(u;v) = 0,

where

Fn+1(u;v) =
∫
Ω

(
uv+∆t∇u ·∇v− (un+∆tfn+1)v

)
dx. (3.12)

In addition to the variational problem to be solved in each time step, we
also need to approximate the initial condition (3.7). This equation can also
be turned into a variational problem:

a0(u,v) = L0(v),

with

40 3 A Gallery of finite element solvers

a0(u,v) =
∫
Ω
uvdx, (3.13)

L0(v) =
∫
Ω
u0vdx. (3.14)

When solving this variational problem, u0 becomes the L2 projection of the
given initial value u0 into the finite element space. The alternative is to con-
struct u0 by just interpolating the initial value u0 ; that is, if u0 =

∑N
j=1U

0
j φj ,

we simply set Uj = u0(xj ,yj), where (xj ,yj) are the coordinates of node num-
ber j. We refer to these two strategies as computing the initial condition by
either projection or interpolation. Both operations are easy to compute in
FEniCS through a single statement, using either the project or interpolate
function. The most common choice is project, which computes an approxi-
mation to u0 , but in some applications where we want to verify the code by
reproducing exact solutions, one must use interpolate (and we use such a
test problem here!).

In summary, we thus need to solve the following sequence of variational
problems to compute the finite element solution to the heat equation: find
u0 ∈ V such that a0(u0,v) =L0(v) holds for all v ∈ V̂ , and then find un+1 ∈ V
such that a(un+1,v) =Ln+1(v) for all v ∈ V̂ , or alternatively, Fn+1(un+1,v) =
0 for all v ∈ V̂ , for n= 0,1,2,

3.1.3 FEniCS implementation

Our program needs to implement the time-stepping manually, but can rely
on FEniCS to easily compute a0, L0, a, and L (or Fn+1), and solve the linear
systems for the unknowns.

Test problem 1: A known analytical solution. Just as for the Poisson
problem from the previous chapter, we construct a test problem that makes
it easy to determine if the calculations are correct. Since we know that our
first-order time-stepping scheme is exact for linear functions, we create a
test problem which has a linear variation in time. We combine this with a
quadratic variation in space. We thus take

u= 1 +x2 +αy2 +βt, (3.15)

which yields a function whose computed values at the nodes will be exact,
regardless of the size of the elements and ∆t, as long as the mesh is uniformly
partitioned. By inserting (3.15) into the heat equation (3.1), we find that the
right-hand side f must be given by f(x,y, t) = β−2−2α. The boundary value
is uD(x,y, t) = 1+x2 +αy2 +βt and the initial value is u0(x,y) = 1+x2 +αy2.

FEniCS implementation. A new programming issue is how to deal
with functions that vary in space and time, such as the boundary condi-

3.1 The heat equation 41

tion uD(x,y, t) = 1 + x2 +αy2 + βt. A natural solution is to use a FEniCS
Expression with time t as a parameter, in addition to the parameters α and
β:

alpha = 3; beta = 1.2
u_D = Expression(’1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t’,

degree=2, alpha=alpha, beta=beta, t=0)

This Expression uses the components of x as independent variables, while
alpha, beta, and t are parameters. The time t can later be updated by

u_D.t = t

The essential boundary conditions, along the entire boundary in this case,
are implemented in the same way as we have previously implemented the
boundary conditions for the Poisson problem:

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u_D, boundary)

We shall use the variable u for the unknown un+1 at the new time step
and the variable u_n for un at the previous time step. The initial value of
u_n can be computed by either projection or interpolation of u0 . Since we
set t = 0 for the boundary value u_D, we can use u_D to specify the initial
condition:

u_n = project(u_D, V)
or
u_n = interpolate(u_D, V)

Projecting versus interpolating the initial condition

To actually recover the exact solution (3.15) to machine precision, it is
important to compute the discrete initial condition by interpolating u0 .
This ensures that the degrees of freedom are exact (to machine preci-
sion) at t= 0. Projection results in approximate values at the nodes.

We may either define a or L according to the formulas above, or we may
just define F and ask FEniCS to figure out which terms should go into the
bilinear form a and which should go into the linear form L. The latter is
convenient, especially in more complicated problems, so we illustrate that
construction of a and L:

u = TrialFunction(V)
v = TestFunction(V)
f = Constant(beta - 2 - 2*alpha)

42 3 A Gallery of finite element solvers

F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)

Finally, we perform the time-stepping in a loop:

u = Function(V)
t = 0
for n in range(num_steps):

Update current time
t += dt
u_D.t = t

Solve variational problem
solve(a == L, u, bc)

Update previous solution
u_n.assign(u)

In the last step of the time-stepping loop, we assign the values of the variable
u (the new computed solution) to the variable u_n containing the values at
the previous time step. This must be done using the assign member function.
If we instead try to do u_n = u, we will set the u_n variable to be the same
variable as u which is not what we want. (We need two variables, one for the
values at the previous time step and one for the values at the current time
step.)

Remember to update expression objects with the current
time!
Inside the time loop, observe that u_D.t must be updated before the
solve statement to enforce computation of Dirichlet conditions at
the current time step. A Dirichlet condition defined in terms of an
Exression looks up and applies the value of a parameter such as t
when it gets evaluated and applied to the linear system.

The time-stepping loop above does not contain any comparison of the
numerical and the exact solutions, which we must include in order to verify
the implementation. As for the Poisson equation in Section 2.3, we compute
the difference between the array of nodal values for u and the array of nodal
values for the interpolated exact solution. This may be done as follows:

u_e = interpolate(u_D, V)
error = np.abs(u_e.vector().array() - u.vector().array()).max()
print(’t = %.2f: error = %.3g’ % (t, error))

For the Poisson example, we used the function compute_vertex_values to
extract the function values at the vertices. Here we illustrate an alternative
method to extract the vertex values, by calling the function vector, which

3.1 The heat equation 43

returns the vector of degrees of freedom. For a P1 function space, this vector
of degrees of freedom will be equal to the array of vertex values obtained by
calling compute_vertex_values, albeit possibly in a different order.

The complete program for solving the heat equation goes as follows:

from fenics import *
import numpy as np

T = 2.0 # final time
num_steps = 10 # number of time steps
dt = T / num_steps # time step size
alpha = 3 # parameter alpha
beta = 1.2 # parameter beta

Create mesh and define function space
nx = ny = 8
mesh = UnitSquareMesh(nx, ny)
V = FunctionSpace(mesh, ’P’, 1)

Define boundary condition
u_D = Expression(’1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t’,

degree=2, alpha=alpha, beta=beta, t=0)

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u_D, boundary)

Define initial value
u_n = interpolate(u_D, V)
#u_n = project(u_D, V)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(beta - 2 - 2*alpha)

F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)

Time-stepping
u = Function(V)
t = 0
for n in range(num_steps):

Update current time
t += dt
u_D.t = t

Compute solution
solve(a == L, u, bc)

Plot solution

44 3 A Gallery of finite element solvers

plot(u)

Compute error at vertices
u_e = interpolate(u_D, V)
error = np.abs(u_e.vector().array() - u.vector().array()).max()
print(’t = %.2f: error = %.3g’ % (t, error))

Update previous solution
u_n.assign(u)

Hold plot
interactive()

This example program can be found in the file ft03_heat.py.

Test problem 2: Diffusion of a Gaussian function. Let us now solve
a more interesting test problem, namely the diffusion of a Gaussian hill. We
take the initial value to be

u0(x,y) = e−ax
2−ay2

for a= 5 on the domain [−2,2]× [2,2]. For this problem we will use homoge-
neous Dirichlet boundary conditions (uD = 0).

FEniCS implementation. Which are the required changes to our previous
program? One major change is that the domain is no longer a unit square.
The new domain can be created easily in FEniCS using RectangleMesh:

nx = ny = 30
mesh = RectangleMesh(Point(-2, -2), Point(2, 2), nx, ny)

Note that we have used a much higher resolution than before to better re-
solve the features of the solution. We also need to redefine the initial condi-
tion and the boundary condition. Both are easily changed by defining a new
Expression and by setting u= 0 on the boundary.

To be able to visualize the solution in an external program such as Par-
aView, we will save the solution to a file in VTK format in each time step.
We do this by first creating a File with the suffix .pvd:

vtkfile = File(’heat_gaussian/solution.pvd’)

Inside the time loop, we may then append the solution values to this file:

vtkfile << (u, t)

This line is called in each time step, resulting in the creation of a new file
with suffix .vtu containing all data for the time step (the mesh and the
vertex values). The file heat_gaussian/solution.pvd will contain the time
values and references to the .vtu file, which means that the .pvd file will
be a single small file that points to a large number of .vtu files containing
the actual data. Note that we choose to store the solution to a subdirectory
named heat_gaussian. This is to avoid cluttering our source directory with

https://fenicsproject.org/pub/tutorial/python/vol1/ft03_heat.py

3.1 The heat equation 45

all the generated data files. One does not need to create the directory before
running the program as it will be created automatically by FEniCS.

The complete program appears below.

from fenics import *
import time

T = 2.0 # final time
num_steps = 50 # number of time steps
dt = T / num_steps # time step size

Create mesh and define function space
nx = ny = 30
mesh = RectangleMesh(Point(-2, -2), Point(2, 2), nx, ny)
V = FunctionSpace(mesh, ’P’, 1)

Define boundary condition
def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(0), boundary)

Define initial value
u_0 = Expression(’exp(-a*pow(x[0], 2) - a*pow(x[1], 2))’,

degree=2, a=5)
u_n = interpolate(u_0, V)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(0)

F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)

Create VTK file for saving solution
vtkfile = File(’heat_gaussian/solution.pvd’)

Time-stepping
u = Function(V)
t = 0
for n in range(num_steps):

Update current time
t += dt

Compute solution
solve(a == L, u, bc)

Save to file and plot solution
vtkfile << (u, t)
plot(u)

Update previous solution

46 3 A Gallery of finite element solvers

u_n.assign(u)

Hold plot
interactive()

This example program can be found in the file ft04_heat_gaussian.py.
Visualization in ParaView. To visualize the diffusion of the Gaussian hill,
start ParaView, choose File–Open..., open heat_gaussian/solution.pvd,
and click Apply in the Properties pane. Click on the play button to display
an animation of the solution. To save the animation to a file, click File–
Save Animation... and save the file to a desired file format, for example
AVI or Ogg/Theora. Once the animation has been saved to a file, you can
play the animation offline using a player such as mplayer or VLC, or upload
your animation to YouTube. Figure 3.1 shows a sequence of snapshots of the
solution.

Fig. 3.1 A sequence of snapshots of the solution of the Gaussian hill problem created
with ParaView.

3.2 A nonlinear Poisson equation

We shall now address how to solve nonlinear PDEs. We will see that nonlinear
problems can be solved just as easily as linear problems in FEniCS, by sim-
ply defining a nonlinear variational problem and calling the solve function.
When doing so, we will encounter a subtle difference in how the variational
problem is defined.

3.2.1 PDE problem

As a model problem for the solution of nonlinear PDEs, we take the following
nonlinear Poisson equation:

https://fenicsproject.org/pub/tutorial/python/vol1/ft04_heat_gaussian.py

3.2 A nonlinear Poisson equation 47

−∇· (q(u)∇u) = f, (3.16)

in Ω, with u = uD on the boundary ∂Ω. The coefficient q = q(u) makes the
equation nonlinear (unless q(u) is constant in u).

3.2.2 Variational formulation

As usual, we multiply our PDE by a test function v ∈ V̂ , integrate over the
domain, and integrate the second-order derivatives by parts. The bound-
ary integral arising from integration by parts vanishes wherever we employ
Dirichlet conditions. The resulting variational formulation of our model prob-
lem becomes: find u ∈ V such that

F (u;v) = 0 ∀v ∈ V̂ , (3.17)

where

F (u;v) =
∫
Ω

(q(u)∇u ·∇v−fv)dx, (3.18)

and

V = {v ∈H1(Ω) : v = uD on ∂Ω},
V̂ = {v ∈H1(Ω) : v = 0 on ∂Ω} .

The discrete problem arises as usual by restricting V and V̂ to a pair
of discrete spaces. As before, we omit any subscript on the discrete spaces
and discrete solution. The discrete nonlinear problem is then written as: find
u ∈ V such that

F (u;v) = 0 ∀v ∈ V̂ , (3.19)

with u=
∑N
j=1Ujφj . Since F is nonlinear in u, the variational statement gives

rise to a system of nonlinear algebraic equations in the unknowns U1, . . . ,UN .

3.2.3 FEniCS implementation

Test problem. To solve a test problem, we need to choose the right-hand
side f , the coefficient q(u) and the boundary value uD . Previously, we have
worked with manufactured solutions that can be reproduced without approx-
imation errors. This is more difficult in nonlinear problems, and the algebra

48 3 A Gallery of finite element solvers

is more tedious. However, we may utilize SymPy for symbolic computing and
integrate such computations in the FEniCS solver. This allows us to eas-
ily experiment with different manufactured solutions. The forthcoming code
with SymPy requires some basic familiarity with this package. In particular,
we will use the SymPy functions diff for symbolic differentiation and ccode
for C/C++ code generation.

We take q(u) = 1+u2 and define a two-dimensional manufactured solution
that is linear in x and y:

Warning: from fenics import * will import both ‘sym‘ and
‘q‘ from FEniCS. We therefore import FEniCS first and then
overwrite these objects.
from fenics import *

def q(u):
"Return nonlinear coefficient"
return 1 + u**2

Use SymPy to compute f from the manufactured solution u
import sympy as sym
x, y = sym.symbols(’x[0], x[1]’)
u = 1 + x + 2*y
f = - sym.diff(q(u)*sym.diff(u, x), x) - sym.diff(q(u)*sym.diff(u, y), y)
f = sym.simplify(f)
u_code = sym.printing.ccode(u)
f_code = sym.printing.ccode(f)
print(’u =’, u_code)
print(’f =’, f_code)

Define symbolic coordinates as required in Expression objects

Note that we would normally write x, y = sym.symbols(’x, y’), but
if we want the resulting expressions to have valid syntax for FEniCS
Expression objects, we must use x[0] and x[1]. This is easily accom-
plished with sympy by defining the names of x and y as x[0] and x[1]:
x, y = sym.symbols(’x[0], x[1]’).

Turning the expressions for u and f into C or C++ syntax for FEniCS
Expression objects needs two steps. First, we ask for the C code of the
expressions:

u_code = sym.printing.ccode(u)
f_code = sym.printing.ccode(f)

In some cases, one will need to edit the result to match the required syntax
of Expression objects, but not in this case. (The primary example is that
M_PI for π in C/C++ must be replaced by pi for Expression objects.) In
the present case, the output of u_code and f_code is

3.2 A nonlinear Poisson equation 49

x[0] + 2*x[1] + 1
-10*x[0] - 20*x[1] - 10

After having defined the mesh, the function space, and the boundary, we
define the boundary value u_D as

u_D = Expression(u_code, degree=1)

Similarly, we define the right-hand side function as

f = Expression(f_code, degree=1)

Name clash between FEniCS and program variables

In a program like the one above, strange errors may occur due to name
clashes. If you define sym and q prior to doing from fenics import *,
the latter statement will also import variables with the names sym and
q, overwriting the objects you have previously defined! This may lead
to strange errors. The safest solution is to do import fenics instead
of from fenics import * and then prefix all FEniCS object names by
fenics. The next best solution is to do from fenics import * first
and then define your own variables that overwrite those imported from
fenics. This is acceptable if we do not need sym and q from fenics.

FEniCS implementation. A solver for the nonlinear Poisson equation is
as easy to implement as a solver for the linear Poisson equation. All we need
to do is to state the formula for F and call solve(F == 0, u, bc) instead
of solve(a == L, u, bc) as we did in the linear case. Here is a minimalistic
code:

from fenics import *

def q(u):
return 1 + u**2

mesh = UnitSquareMesh(8, 8)
V = FunctionSpace(mesh, ’P’, 1)
u_D = Expression(u_code, degree=1)

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u_D, boundary)

u = Function(V)
v = TestFunction(V)
f = Expression(f_code, degree=1)
F = q(u)*dot(grad(u), grad(v))*dx - f*v*dx

50 3 A Gallery of finite element solvers

solve(F == 0, u, bc)

A complete version of this example program can be found in the file ft05_
poisson_nonlinear.py.

The major difference from a linear problem is that the unknown function u
in the variational form in the nonlinear case must be defined as a Function,
not as a TrialFunction. In some sense this is a simplification from the linear
case where we must define u first as a TrialFunction and then as a Function.

The solve function takes the nonlinear equations, derives symbolically the
Jacobian matrix, and runs a Newton method to compute the solution.

When we run the code, FEniCS reports on the progress of the Newton
iterations. With 2 · (8× 8) cells, we reach convergence in eight iterations
with a tolerance of 10−9, and the error in the numerical solution is about
10−16. These results bring evidence for a correct implementation. Thinking
in terms of finite differences on a uniform mesh, P1 elements mimic stan-
dard second-order differences, which compute the derivative of a linear or
quadratic function exactly. Here, ∇u is a constant vector, but then multi-
plied by (1 +u2), which is a second-order polynomial in x and y, which the
divergence “difference operator” should compute exactly. We can therefore,
even with P1 elements, expect the manufactured u to be reproduced by the
numerical method. With a nonlinearity like 1 +u4, this will not be the case,
and we would need to verify convergence rates instead.

The current example shows how easy it is to solve a nonlinear problem
in FEniCS. However, experts on the numerical solution of nonlinear PDEs
know very well that automated procedures may fail for nonlinear problems,
and that it is often necessary to have much better manual control of the
solution process than what we have in the current case. We return to this
problem in [23] and show how we can implement taylored solution algorithms
for nonlinear equations and also how we can steer the parameters in the
automated Newton method used above.

3.3 The equations of linear elasticity

Analysis of structures is one of the major activities of modern engineering,
which likely makes the PDE modeling the deformation of elastic bodies the
most popular PDE in the world. It takes just one page of code to solve the
equations of 2D or 3D elasticity in FEniCS, and the details follow below.

https://fenicsproject.org/pub/tutorial/python/vol1/ft05_poisson_nonlinear.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft05_poisson_nonlinear.py

3.3 The equations of linear elasticity 51

3.3.1 PDE problem

The equations governing small elastic deformations of a body Ω can be writ-
ten as

−∇·σ = f in Ω, (3.20)
σ = λtr(ε)I+ 2µε, (3.21)

ε= 1
2

(
∇u+ (∇u)>

)
, (3.22)

where σ is the stress tensor, f is the body force per unit volume, λ and µ are
Lamé’s elasticity parameters for the material in Ω, I is the identity tensor,
tr is the trace operator on a tensor, ε is the symmetric strain-rate tensor
(symmetric gradient), and u is the displacement vector field. We have here
assumed isotropic elastic conditions.

We combine (3.21) and (3.22) to obtain

σ = λ(∇·u)I+µ(∇u+ (∇u)>) . (3.23)

Note that (3.20)–(3.22) can easily be transformed to a single vector PDE for
u, which is the governing PDE for the unknown u (Navier’s equation). In the
derivation of the variational formulation, however, it is convenient to keep
the equations split as above.

3.3.2 Variational formulation

The variational formulation of (3.20)–(3.22) consists of forming the inner
product of (3.20) and a vector test function v ∈ V̂ , where V̂ is a vector-valued
test function space, and integrating over the domain Ω:

−
∫
Ω

(∇·σ) ·vdx=
∫
Ω
f ·vdx.

Since ∇·σ contains second-order derivatives of the primary unknown u, we
integrate this term by parts:

−
∫
Ω

(∇·σ) ·vdx=
∫
Ω
σ :∇vdx−

∫
∂Ω

(σ ·n) ·vds,

where the colon operator is the inner product between tensors (summed pair-
wise product of all elements), and n is the outward unit normal at the bound-
ary. The quantity σ ·n is known as the traction or stress vector at the bound-
ary, and is often prescribed as a boundary condition. We here assume that it
is prescribed on a part ∂ΩT of the boundary as σ ·n= T . On the remaining

52 3 A Gallery of finite element solvers

part of the boundary, we assume that the value of the displacement is given
as a Dirichlet condition. We thus obtain∫

Ω
σ :∇vdx=

∫
Ω
f ·vdx+

∫
∂ΩT

T ·vds.

Inserting the expression (3.23) for σ gives the variational form with u as
unknown. Note that the boundary integral on the remaining part ∂Ω \∂ΩT
vanishes due to the Dirichlet condition.

We can now summarize the variational formulation as: find u ∈ V such
that

a(u,v) = L(v) ∀v ∈ V̂ , (3.24)

where

a(u,v) =
∫
Ω
σ(u) :∇vdx, (3.25)

σ(u) = λ(∇·u)I+µ(∇u+ (∇u)>), (3.26)

L(v) =
∫
Ω
f ·vdx+

∫
∂ΩT

T ·vds. (3.27)

One can show that the inner product of a symmetric tensor A and an anti-
symmetric tensor B vanishes. If we express ∇v as a sum of its symmetric and
anti-symmetric parts, only the symmetric part will survive in the product
σ :∇v since σ is a symmetric tensor. Thus replacing ∇u by the symmetric
gradient ε(u) gives rise to the slightly different variational form

a(u,v) =
∫
Ω
σ(u) : ε(v)dx, (3.28)

where ε(v) is the symmetric part of ∇v:

ε(v) = 1
2

(
∇v+ (∇v)>

)
.

The formulation (3.28) is what naturally arises from minimization of elastic
potential energy and is a more popular formulation than (3.25).

3.3.3 FEniCS implementation

Test problem. As a test example, we will model a clamped beam deformed
under its own weight in 3D. This can be modeled by setting the right-hand
side body force per unit volume to f = (0,0,−%g) with % the density of the
beam and g the acceleration of gravity. The beam is box-shaped with length

3.3 The equations of linear elasticity 53

L and has a square cross section of width W . We set u= uD = (0,0,0) at the
clamped end, x= 0. The rest of the boundary is traction free; that is, we set
T = 0.

FEniCS implementation. We first list the code and then comment upon
the new constructions compared to the previous examples we have seen.

from fenics import *

Scaled variables
L = 1; W = 0.2
mu = 1
rho = 1
delta = W/L
gamma = 0.4*delta**2
beta = 1.25
lambda_ = beta
g = gamma

Create mesh and define function space
mesh = BoxMesh(Point(0, 0, 0), Point(L, W, W), 10, 3, 3)
V = VectorFunctionSpace(mesh, ’P’, 1)

Define boundary condition
tol = 1E-14

def clamped_boundary(x, on_boundary):
return on_boundary and x[0] < tol

bc = DirichletBC(V, Constant((0, 0, 0)), clamped_boundary)

Define strain and stress

def epsilon(u):
return 0.5*(nabla_grad(u) + nabla_grad(u).T)
#return sym(nabla_grad(u))

def sigma(u):
return lambda_*nabla_div(u)*Identity(d) + 2*mu*epsilon(u)

Define variational problem
u = TrialFunction(V)
d = u.geometric_dimension() # space dimension
v = TestFunction(V)
f = Constant((0, 0, -rho*g))
T = Constant((0, 0, 0))
a = inner(sigma(u), epsilon(v))*dx
L = dot(f, v)*dx + dot(T, v)*ds

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution

54 3 A Gallery of finite element solvers

plot(u, title=’Displacement’, mode=’displacement’)

Plot stress
s = sigma(u) - (1./3)*tr(sigma(u))*Identity(d) # deviatoric stress
von_Mises = sqrt(3./2*inner(s, s))
V = FunctionSpace(mesh, ’P’, 1)
von_Mises = project(von_Mises, V)
plot(von_Mises, title=’Stress intensity’)

Compute magnitude of displacement
u_magnitude = sqrt(dot(u, u))
u_magnitude = project(u_magnitude, V)
plot(u_magnitude, ’Displacement magnitude’)
print(’min/max u:’,

u_magnitude.vector().array().min(),
u_magnitude.vector().array().max())

This example program can be found in the file ft06_elasticity.py.

Vector function spaces. The primary unknown is now a vector field u and
not a scalar field, so we need to work with a vector function space:

V = VectorFunctionSpace(mesh, ’P’, 1)

With u = Function(V) we get u as a vector-valued finite element function
with three components for this 3D problem.

Constant vectors. For the boundary condition u = (0,0,0), we must set
a vector value to zero, not just a scalar. Such a vector constant is specified
as Constant((0, 0, 0)) in FEniCS. The corresponding 2D code would use
Constant((0, 0)). Later in the code, we also need f as a vector and specify
it as Constant((0, 0, rho*g)).

nabla_grad. The gradient and divergence operators now have a prefix
nabla_. This is strictly not necessary in the present problem, but recom-
mended in general for vector PDEs arising from continuum mechanics, if you
interpret ∇ as a vector in the PDE notation; see the box about nabla_grad
in Section 3.4.2.

Stress computation. As soon as the displacement u is computed, we can
compute various stress measures. We will compute the von Mises stress de-
fined as σM =

√
3
2s : s where s is the deviatoric stress tensor

s= σ− 1
3tr(σ)I .

There is a one-to-one mapping between these formulas and the FEniCS code:

s = sigma(u) - (1./3)*tr(sigma(u))*Identity(d)
von_Mises = sqrt(3./2*inner(s, s))

The von_Mises variable is now an expression that must be projected to a
finite element space before we can visualize it:

https://fenicsproject.org/pub/tutorial/python/vol1/ft06_elasticity.py

3.3 The equations of linear elasticity 55

V = FunctionSpace(mesh, ’P’, 1)
von_Mises = project(von_Mises, V)
plot(von_Mises, title=’Stress intensity’)

Scaling. It is often advantageous to scale a problem as it reduces the need
for setting physical parameters, and one obtains dimensionsless numbers that
reflect the competition of parameters and physical effects. We develop the
code for the original model with dimensions, and run the scaled problem
by tweaking parameters appropriately. Scaling reduces the number of active
parameters from 6 to 2 for the present application.

In Navier’s equation for u, arising from inserting (3.21) and (3.22) into
(3.20),

−(λ+µ)∇(∇·u)−µ∇2u= f,

we insert coordinates made dimensionless by L, and ū = u/U , which results
in the dimensionless governing equation

−β∇̄(∇̄ · ū)−∇̄2ū= f̄ , f̄ = (0,0,γ),

where β = 1 +λ/µ is a dimensionless elasticity parameter and where

γ = %gL2

µU

is a dimensionless variable reflecting the ratio of the load %g and the shear
stress term µ∇2u∼ µU/L2 in the PDE.

One option for the scaling is to chose U such that γ is of unit size
(U = %gL2/µ). However, in elasticity, this leads to displacements of the size
of the geometry, which makes plots look very strange. We therefore want the
characteristic displacement to be a small fraction of the characteristic length
of the geometry. This can be achieved by choosing U equal to the maxi-
mum deflection of a clamped beam, for which there actually exists a formula:
U = 3

2%gL
2δ2/E, where δ = L/W is a parameter reflecting how slender the

beam is, and E is the modulus of elasticity. Thus, the dimensionless param-
eter δ is very important in the problem (as expected, since δ � 1 is what
gives beam theory!). Taking E to be of the same order as µ, which is the case
for many materials, we realize that γ ∼ δ−2 is an appropriate choice. Exper-
imenting with the code to find a displacement that “looks right” in plots of
the deformed geometry, points to γ = 0.4δ−2 as our final choice of γ.

The simulation code implements the problem with dimensions and physical
parameters λ, µ, %, g, L, and W . However, we can easily reuse this code for
a scaled problem: just set µ= %= L= 1, W as W/L (δ−1), g = γ, and λ= β.

56 3 A Gallery of finite element solvers

Fig. 3.2 Plot of gravity-induced deflection in a clamped beam for the elasticity prob-
lem.

3.4 The Navier–Stokes equations

For the next example, we will solve the incompressible Navier–Stokes equa-
tions. This problem combines many of the challenges from our previously
studied problems: time-dependence, nonlinearity, and vector-valued variables.
We shall touch on a number of FEniCS topics, many of them quite advanced.
But you will see that even a relatively complex algorithm such as a second-
order splitting method for the incompressible Navier–Stokes equations, can
be implemented with relative ease in FEniCS.

3.4.1 PDE problem

The incompressible Navier–Stokes equations form a system of equations for
the velocity u and pressure p in an incompressible fluid:

%

(
∂u

∂t
+u ·∇u

)
=∇·σ(u,p) +f, (3.29)

∇·u= 0. (3.30)

The right-hand side f is a given force per unit volume and just as for the
equations of linear elasticity, σ(u,p) denotes the stress tensor, which for a
Newtonian fluid is given by

3.4 The Navier–Stokes equations 57

σ(u,p) = 2µε(u)−pI, (3.31)

where ε(u) is the strain-rate tensor

ε(u) = 1
2

(
∇u+ (∇u)T

)
.

The parameter µ is the dynamic viscosity. Note that the momentum equation
(3.29) is very similar to the elasticity equation (3.20). The difference is in the
two additional terms %(∂u/∂t+u ·∇u) and the different expression for the
stress tensor. The two extra terms express the acceleration balanced by the
force F =∇·σ+f per unit volume in Newton’s second law of motion.

3.4.2 Variational formulation

The Navier–Stokes equations are different from the time-dependent heat
equation in that we need to solve a system of equations and this system
is of a special type. If we apply the same technique as for the heat equa-
tion; that is, replacing the time derivative with a simple difference quotient,
we obtain a nonlinear system of equations. This in itself is not a problem
for FEniCS as we saw in Section 3.2, but the system has a so-called saddle
point structure and requires special techniques (special preconditioners and
iterative methods) to be solved efficiently.

Instead, we will apply a simpler and often very efficient approach, known
as a splitting method. The idea is to consider the two equations (3.29) and
(3.30) separately. There exist many splitting strategies for the incompress-
ible Navier–Stokes equations. One of the oldest is the method proposed by
Chorin [6] and Temam [31], often referred to as Chorin’s method. We will
use a modified version of Chorin’s method, the so-called incremental pres-
sure correction scheme (IPCS) due to [13] which gives improved accuracy
compared to the original scheme at little extra cost.

The IPCS scheme involves three steps. First, we compute a tentative ve-
locity u? by advancing the momentum equation (3.29) by a midpoint finite
difference scheme in time, but using the pressure pn from the previous time
interval. We will also linearize the nonlinear convective term by using the
known velocity un from the previous time step: un · ∇un. The variational
problem for this first step is

〈%(u?−un)/∆t,v〉+ 〈%un ·∇un,v〉+ 〈σ(un+ 1
2 ,pn), ε(v)〉

+ 〈pnn,v〉∂Ω−〈µ∇un+ 1
2 ·n,v〉∂Ω = 〈fn+1,v〉. (3.32)

58 3 A Gallery of finite element solvers

This notation, suitable for problems with many terms in the variational for-
mulations, requires some explanation. First, we use the short-hand notation

〈v,w〉=
∫
Ω
vwdx, 〈v,w〉∂Ω =

∫
∂Ω

vwds.

This allows us to express the variational problem in a more compact way.
Second, we use the notation un+ 1

2 . This notation refers to the value of u at
the midpoint of the interval, usually approximated by an arithmetic mean:

un+ 1
2 ≈ (un+un+1)/2.

Third, we notice that the variational problem (3.32) arises from the integra-
tion by parts of the term 〈−∇ · σ,v〉. Just as for the elasticity problem in
Section 3.3, we obtain

〈−∇·σ,v〉= 〈σ,ε(v)〉−〈T,v〉∂Ω ,

where T = σ ·n is the boundary traction. If we solve a problem with a free
boundary, we can take T = 0 on the boundary. However, if we compute the
flow through a channel or a pipe and want to model flow that continues into
an “imaginary channel” at the outflow, we need to treat this term with some
care. The assumption we then make is that the derivative of the velocity in the
direction of the channel is zero at the outflow, corresponding to a flow that is
“fully developed” or doesn’t change significantly downstream of the outflow.
Doing so, the remaining boundary term at the outflow becomes pn−µ∇u ·n,
which is the term appearing in the variational problem (3.32). Note that this
argument and the implementation depends on the exact definition of ∇u,
as either the matrix with components ∂ui/∂xj or ∂uj/∂xi. We here choose
the latter, ∂uj/∂xi, which means that we must use the FEniCS operator
nabla_grad for the implementation. If we use the grad operator and the
definition ∂ui/∂xj , we must instead keep the terms pn−µ(∇u)> ·n!

grad(u) vs. nabla_grad(u)

For scalar functions, ∇u has a clear meaning as the vector

∇u=
(
∂u

∂x
,
∂u

∂y
,
∂u

∂z

)
.

However, if u is vector-valued, the meaning is less clear. Some sources
define ∇u as the matrix with elements ∂uj/∂xi, while other sources pre-
fer ∂ui/∂xj . In FEniCS, grad(u) is defined as the matrix with elements
∂ui/∂xj , which is the natural definition of ∇u if we think of this as the
gradient or derivative of u. This way, the matrix ∇u can be applied to
a differential dx to give an increment du = ∇u dx. Since the alterna-

3.4 The Navier–Stokes equations 59

tive interpretation of ∇u as the matrix with elements ∂uj/∂xi is very
common, in particular in continuum mechanics, FEniCS provides the
operator nabla_grad for this purpose. For the Navier–Stokes equations,
it is important to consider the term u ·∇u which should be interpreted
as the vector w with elements wi =

∑
j

(
uj

∂
∂xj

)
ui =

∑
j uj

∂ui
∂xj

. This
term can be implemented in FEniCS either as grad(u)*u, since this
is expression becomes

∑
j ∂ui/∂xjuj , or as dot(u, nabla_grad(u))

since this expression becomes
∑
iui∂uj/∂xi. We will use the notation

dot(u, nabla_grad(u)) below since it corresponds more closely to the
standard notation u ·∇u.

To be more precise, there are three different notations used for PDEs
involving gradient, divergence, and curl operators. One employs gradu,
divu, and curlu operators. Another employs ∇u as a synonym for
gradu, ∇·u means divu, and ∇×u is the name for curlu. The third
operates with ∇u, ∇ ·u, and ∇×u in which ∇ is a vector and, e.g.,
∇u is a dyadic expression: (∇u)i,j = ∂uj/∂xi = (gradu)>. The latter
notation, with ∇ as a vector operator, is often handy when deriving
equations in continuum mechanics, and if this interpretation of ∇ is the
foundation of your PDE, you must use nabla_grad, nabla_div, and
nabla_curl in FEniCS code as these operators are compatible with
dyadic computations. From the Navier–Stokes equations we can easily
see what ∇ means: if the convective term has the form u ·∇u, actually
meaning (u ·∇)u, then ∇ is a vector and the implementation becomes
dot(u, nabla_grad(u)) in FEniCS, but if we see ∇u ·u or (gradu) ·u,
the corresponding FEniCS expression is dot(grad(u), u).

Similarly, the divergence of a tensor field like the stress tensor σ
can also be expressed in two different ways, as either div(sigma)
or nabla_div(sigma). The first case corresponds to the components
∂σij/∂xj and the second to ∂σij/∂xi. In general, these expressions will
be different but when the stress measure is symmetric, the expressions
have the same value.

We now move on to the second step in our splitting scheme for the in-
compressible Navier–Stokes equations. In the first step, we computed the
tentative velocity u? based on the pressure from the previous time step. We
may now use the computed tentative velocity to compute the new pressure
pn:

〈∇pn+1,∇q〉= 〈∇pn,∇q〉−∆t−1〈∇ ·u?, q〉. (3.33)

Note here that q is a scalar-valued test function from the pressure space,
whereas the test function v in (3.32) is a vector-valued test function from the
velocity space.

One way to think about this step is to subtract the Navier–Stokes momen-
tum equation (3.29) expressed in terms of the tentative velocity u? and the

60 3 A Gallery of finite element solvers

pressure pn from the momentum equation expressed in terms of the velocity
un+1 and pressure pn+1. This results in the equation

(un+1−u?)/∆t+∇pn+1−∇pn = 0. (3.34)

Taking the divergence and requiring that ∇·un+1 = 0 by the Navier–Stokes
continuity equation (3.30), we obtain the equation −∇ ·u?/∆t+∇2pn+1−
∇2pn = 0, which is a Poisson problem for the pressure pn+1 resulting in the
variational problem (3.33).

Finally, we compute the corrected velocity un+1 from the equation (3.34).
Multiplying this equation by a test function v, we obtain

〈un+1,v〉= 〈u?,v〉−∆t〈∇(pn+1−pn),v〉. (3.35)

In summary, we may thus solve the incompressible Navier–Stokes equa-
tions efficiently by solving a sequence of three linear variational problems in
each time step.

3.4.3 FEniCS implementation

Test problem 1: Channel flow. As a first test problem, we compute the
flow between two infinite plates, so-called channel or Poiseuille flow. As we
shall see, this problem has a known analytical solution. Let H be the distance
between the plates and L the length of the channel. There are no body forces.

We may scale the problem first to get rid of seemingly independent physical
parameters. The physics of this problem is governed by viscous effects only,
in the direction perpendicular to the flow, so a time scale should be based on
diffusion accross the channel: tc =H2/ν. We let U , some characteristic inflow
velocity, be the velocity scale and H the spatial scale. The pressure scale is
taken as the characteristic shear stress, µU/H , since this is a primary example
of shear flow. Inserting x̄= x/H, ȳ = y/H, z̄ = z/H, ū= u/U , p̄=Hp/(µU),
and t̄=H2/ν in the equations results in the scaled Navier–Stokes equations
(dropping bars after the scaling):

∂u

∂t
+ Reu ·∇u=−∇p+∇2u,

∇·u= 0 .

Here, Re = %UH/µ is the Reynolds number. Because of the time and pressure
scales, which are different from convection-dominated fluid flow, the Reynolds
number is associated with the convective term and not the viscosity term.

The exact solution is derived by assuming u = (ux(x,y,z),0,0), with the
x axis pointing along the channel. Since ∇ ·u = 0, u cannot depend on x.

3.4 The Navier–Stokes equations 61

The physics of channel flow is also two-dimensional so we can omit the z
coordinate (more precisely: ∂/∂z = 0). Inserting u= (ux,0,0) in the (scaled)
governing equations gives u′′x(y) = ∂p/∂x. Differentiating this equation with
respect to x shows that ∂2p/∂2x= 0 so ∂p/∂x is a constant, here called −β.
This is the driving force of the flow and can be specified as a known parameter
in the problem. Integrating u′′x(y) =−β over the width of the channel, [0,1],
and requiring u = (0,0,0) at the channel walls, results in ux = 1

2βy(1− y).
The characteristic inlet velocity U can be taken as the maximum inflow at
y = 1/2, implying β = 8. The length of the channel, L/H in the scaled model,
has no impact on the result, so for simplicity we just compute on the unit
square. Mathematically, the pressure must be prescribed at a point, but since
p does not depend on y, we can set p to a known value, e.g. zero, along the
outlet boundary x= 1. The result is p(x) = 8(1−x) and ux = 4y(1−y).

The boundary conditions can be set as p = 8 at x = 0, p = 0 at x = 1
and u = (0,0,0) on the walls y = 0,1. This defines the pressure drop and
should result in unit maximum velocity at the inlet and outlet and a parabolic
velocity profile without further specifications. Note that it is only meaningful
to solve the Navier–Stokes equations in 2D or 3D geometries, although the
underlying mathematical problem collapses to two 1D problems, one for ux(y)
and one for p(x).

The scaled model is not so easy to simulate using a standard Navier–Stokes
solver with dimensions. However, one can argue that the convection term is
zero, so the Re coefficient in front of this term in the scaled PDEs is not
important and can be set to unity. In that case, setting % = µ = 1 in the
original Navier–Stokes equations resembles the scaled model.

For a specific engineering problem one wants to simulate a specific fluid
and set corresponding parameters. A general solver is therefore most naturally
implemented with dimensions and the original physical parameters. However,
scaling may greatly simplify numerical simulations. First of all, it shows that
all fluids behave in the same way: it does not matter whether we have oil,
gas, or water flowing between two plates, and it does not matter how fast
the flow is (up to some criticial value of the Reynolds number where the
flow becomes unstable and transitions to a complicated turbulent flow of
totally different nature). This means that one simulation is enough to cover
all types of channel flow! In other applications, scaling shows that it might be
necessary to set just the fraction of some parameters (dimensionless numbers)
rather than the parameters themselves. This simplifies exploring the input
parameter space which is often the purpose of simulation. Frequently, the
scaled problem is run by setting some of the input parameters with dimension
to fixed values (often unity).

FEniCS implementation. Our previous examples have all started out with
the creation of a mesh and then the definition of a FunctionSpace on the
mesh. For the Navier–Stokes splitting scheme we will need to define two
function spaces, one for the velocity and one for the pressure:

62 3 A Gallery of finite element solvers

V = VectorFunctionSpace(mesh, ’P’, 2)
Q = FunctionSpace(mesh, ’P’, 1)

The first space V is a vector-valued function space for the velocity and the
second space Q is a scalar-valued function space for the pressure. We use
piecewise quadratic elements for the velocity and piecewise linear elements
for the pressure. When creating a VectorFunctionSpace in FEniCS, the
value-dimension (the length of the vectors) will be set equal to the geometric
dimension of the finite element mesh. One can easily create vector-valued
function spaces with other dimensions in FEniCS by adding the keyword
parameter dim:

V = VectorFunctionSpace(mesh, ’P’, 2, dim=10)

Stable finite element spaces for the Navier–Stokes equations

It is well-known that certain finite element spaces are not stable for the
Navier–Stokes equations, or even for the simpler Stokes equations. The
prime example of an unstable pair of finite element spaces is to use first
degree continuous piecewise polynomials for both the velocity and the
pressure. Using an unstable pair of spaces typically results in a solu-
tion with spurious (unwanted, non-physical) oscillations in the pressure
solution. The simple remedy is to use continuous piecewise quadratic
elements for the velocity and continuous piecewise linear elements for
the pressure. Together, these elements form the so-called Taylor-Hood
element. Spurious oscillations may occur also for splitting methods if
an unstable element pair is used.

Since we have two different function spaces, we need to create two sets of
trial and test functions:

u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

As we have seen in previous examples, boundaries may be defined in FEn-
iCS by defining Python functions that return True or False depending on
whether a point should be considered part of the boundary, for example

def boundary(x, on_boundary):
return near(x[0], 0)

This function defines the boundary to be all points with x-coordinate
equal to (near) zero. The near function comes from FEniCS and per-
forms a test with tolerance: abs(x[0] - 0) < 3E-16 so we do not run into
rounding troubles. Alternatively, we may give the boundary definition as a

3.4 The Navier–Stokes equations 63

string of C++ code, much like we have previously defined expressions such
as u_D = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’, degree=2). The
above definition of the boundary in terms of a Python function may thus be
replaced by a simple C++ string:

boundary = ’near(x[0], 0)’

This has the advantage of moving the computation of which nodes belong
to the boundary from Python to C++, which improves the efficiency of the
program.

For the current example, we will set three different boundary conditions.
First, we will set u= 0 at the walls of the channel; that is, at y = 0 and y = 1.
Second, we will set p= 8 at the inflow (x= 0) and, finally, p= 0 at the outflow
(x = 1). This will result in a pressure gradient that will accelerate the flow
from the initial state with zero velocity. These boundary conditions may be
defined as follows:

Define boundaries
inflow = ’near(x[0], 0)’
outflow = ’near(x[0], 1)’
walls = ’near(x[1], 0) || near(x[1], 1)’

Define boundary conditions
bcu_noslip = DirichletBC(V, Constant((0, 0)), walls)
bcp_inflow = DirichletBC(Q, Constant(8), inflow)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_noslip]
bcp = [bcp_inflow, bcp_outflow]

At the end, we collect the boundary conditions for the velocity and pressure
in Python lists so we can easily access them in the following computation.

We now move on to the definition of the variational forms. There are three
variational problems to be defined, one for each step in the IPCS scheme. Let
us look at the definition of the first variational problem. We start with some
constants:

U = 0.5*(u_n + u)
n = FacetNormal(mesh)
f = Constant((0, 0))
k = Constant(dt)
mu = Constant(mu)
rho = Constant(rho)

The next step is to set up the variational form for the first step (3.32) in
the solution process. Since the variational problem contains a mix of known
and unknown quantities we will use the following naming convention: u is
the unknown (mathematically un+1) as a trial function in the variational
form, u_ is the most recently computed approximation (un+1 available as a
Function object), u_n is un, and the same convention goes for p, p_ (pn+1),
and p_n (pn).

64 3 A Gallery of finite element solvers

Define strain-rate tensor
def epsilon(u):

return sym(nabla_grad(u))

Define stress tensor
def sigma(u, p):

return 2*mu*epsilon(u) - p*Identity(len(u))

Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx + \

rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \
+ inner(sigma(U, p_n), epsilon(v))*dx \
+ dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
- dot(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Note that we take advantage of the Python programming language to
define our own operators sigma and epsilon. Using Python this way makes
it easy to extend the mathematical language of FEniCS with special operators
and constitutive laws.

Also note that FEniCS can sort out the bilinear form a(u,v) and linear
form L(v) forms by the lhs and rhs functions. This is particularly convenient
in longer and more complicated variational forms.

The splitting scheme requires the solution of a sequence of three variational
problems in each time step. We have previously used the built-in FEniCS
function solve to solve variational problems. Under the hood, when a user
calls solve(a == L, u, bc), FEniCS will perform the following steps:

A = assemble(A)
b = assemble(L)
bc.apply(A, b)
solve(A, u.vector(), b)

In the last step, FEniCS uses the overloaded solve function to solve the
linear system AU = b where U is the vector of degrees of freedom for the
function u(x) =

∑
j=1Ujφj(x).

In our implementation of the splitting scheme, we will make use of these
low-level commands to first assemble and then call solve. This has the ad-
vantage that we may control when we assemble and when we solve the linear
system. In particular, since the matrices for the three variational problems
are all time-independent, it makes sense to assemble them once and for all
outside of the time-stepping loop:

A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

Within the time-stepping loop, we may then assemble only the right-hand
side vectors, apply boundary conditions, and call the solve function as here
for the first of the three steps:

3.4 The Navier–Stokes equations 65

Time-stepping
t = 0
for n in range(num_steps):

Update current time
t += dt

Step 1: Tentative velocity step
b1 = assemble(L1)
[bc.apply(b1) for bc in bcu]
solve(A1, u_.vector(), b1)

Notice the Python list comprehension [bc.apply(b1) for bc in bcu] which
iterates over all bc in the list bcu. This is a convenient and compact way to
construct a loop that applies all boundary conditions in a single line. Also,
the code works if we add more Dirichlet boundary conditions in the future.
Note that the boundary conditions only need to be applied to the right-hand
side vectors as they have already been applied to the matrices (not shown).

Finally, let us look at an important detail in how we use parameters such
as the time step dt in the definition of our variational problems. Since we
might want to change these later, for example if we want to experiment with
smaller or larger time steps, we wrap these using a FEniCS Constant:

k = Constant(dt)

The assembly of matrices and vectors in FEniCS is based on code genera-
tion. This means that whenever we change a variational problem, FEniCS will
have to generate new code, which may take a little time. New code will also
be generated and compiled when a float value for the time step is changed. By
wrapping this parameter using Constant, FEniCS will treat the parameter
as a generic constant and not as a specific numerical value, which prevents
repeated code generation. In the case of the time step, we choose a new name
k instead of dt for the Constant since we also want to use the variable dt as
a Python float as part of the time-stepping.

The complete code for simulating 2D channel flow with FEniCS can be
found in the file ft07_navier_stokes_channel.py.
Verification. We compute the error at the nodes as we have done before to
verify that our implementation is correct. Our Navier–Stokes solver computes
the solution to the time-dependent incompressible Navier–Stokes equations,
starting from the initial condition u= (0,0). We have not specified the initial
condition explicitly in our solver which means that FEniCS will initialize all
variables, in particular the previous and current velocities u_n and u_, to
zero. Since the exact solution is quadratic, we expect the solution to be exact
to within machine precision at the nodes at infinite time. For our implemen-
tation, the error quickly approaches zero and is approximately 10−6 at time
T = 10.
Test problem 2: Flow past a cylinder. We now turn our attention to a
more challenging problem: flow past a circular cylinder. The geometry and pa-

https://fenicsproject.org/pub/tutorial/python/vol1/ft07_navier_stokes_channel.py

66 3 A Gallery of finite element solvers

Fig. 3.3 Plot of the velocity profile at the final time for the Navier–Stokes channel
flow example.

rameters are taken from problem DFG 2D-2 in the FEATFLOW/1995-DFG
benchmark suite1 and is illustrated in Figure 3.4. The kinematic viscosity is
given by ν = 0.001 = µ/% and the inflow velocity profile is specified as

u(x,y, t) =
(

1.5 · 4y(0.41−y)
0.412 ,0

)
,

which has a maximum magnitude of 1.5 at y = 0.41/2. We do not use any
scaling for this problem since all exact parameters are known.

0.21

0.20

0.20

0.41

2.20

0.1

Fig. 3.4 Geometry for the flow past a cylinder test problem. Notice the slightly per-
turbed and unsymmetric geometry.

1 http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html

http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html
http://www.featflow.de/en/benchmarks/cfdbenchmarking/flow/dfg_benchmark2_re100.html

3.4 The Navier–Stokes equations 67

FEniCS implementation. So far all our domains have been simple shapes
such as a unit square or a rectangular box. A number of such simple meshes
may be created using the built-in mesh classes in FEniCS (UnitIntervalMesh,
UnitSquareMesh, UnitCubeMesh, IntervalMesh, RectangleMesh, BoxMesh).
FEniCS supports the creation of more complex meshes via a technique called
constructive solid geometry (CSG), which lets us define geometries in terms
of simple shapes (primitives) and set operations: union, intersection, and set
difference. The set operations are encoded in FEniCS using the operators +
(union), * (intersection), and - (set difference). To access the CSG function-
ality in FEniCS, one must import the FEniCS module mshr which provides
the extended meshing functionality of FEniCS.

The geometry for the cylinder flow test problem can be defined easily by
first defining the rectangular channel and then subtracting the circle:

channel = Rectangle(Point(0, 0), Point(2.2, 0.41))
cylinder = Circle(Point(0.2, 0.2), 0.05)
domain = channel - cylinder

We may then create the mesh by calling the function generate_mesh:

mesh = generate_mesh(domain, 64)

Here the argument 64 indicates that we want to resolve the geometry with
64 cells across its diameter (the channel length).

To solve the cylinder test problem, we only need to make a few minor
changes to the code we wrote for the channel flow test case. Besides defining
the new mesh, the only change we need to make is to modify the boundary
conditions and the time step size. The boundaries are specified as follows:

inflow = ’near(x[0], 0)’
outflow = ’near(x[0], 2.2)’
walls = ’near(x[1], 0) || near(x[1], 0.41)’
cylinder = ’on_boundary && x[0]>0.1 && x[0]<0.3 && x[1]>0.1 && x[1]<0.3’

The last line may seem cryptic before you catch the idea: we want to pick
out all boundary points (on_boundary) that also lie within the 2D domain
[0.1,0.3]× [0.1,0.3], see Figure 3.4. The only possible points are then the
points on the circular boundary!

In addition to these essential changes, we will make a number of small
changes to improve our solver. First, since we need to choose a relatively
small time step to compute the solution (a time step that is too large will
make the solution blow up) we add a progress bar so that we can follow the
progress of our computation. This can be done as follows:

progress = Progress(’Time-stepping’)
set_log_level(PROGRESS)

Time-stepping
t = 0.0
for n in range(num_steps):

68 3 A Gallery of finite element solvers

Update current time
t += dt

Place computation here

Update progress bar
progress.update(t / T)

Log levels and printing in FEniCS

Notice the call to set_log_level(PROGRESS) which is essential to make
FEniCS actually display the progress bar. FEniCS is actually quite in-
formative about what is going on during a computation but the amount
of information printed to screen depends on the current log level. Only
messages with a priority higher than or equal to the current log level
will be displayed. The predefined log levels in FEniCS are DBG, TRACE,
PROGRESS, INFO, WARNING, ERROR, and CRITICAL. By default, the log
level is set to INFO which means that messages at level DBG, TRACE, and
PROGRESS will not be printed. Users may print messages using the FEn-
iCS functions info, warning, and error which will print messages at
the obvious log level (and in the case of error also throw an exception
and exit). One may also use the call log(level, message) to print a
message at a specific log level.

Since the system(s) of linear equations are significantly larger than for the
simple channel flow test problem, we choose to use an iterative method in-
stead of the default direct (sparse) solver used by FEniCS when calling solve.
Efficient solution of linear systems arising from the discretization of PDEs
requires the choice of both a good iterative (Krylov subspace) method and
a good preconditioner. For this problem, we will simply use the biconjugate
gradient stabilized method (BiCGSTAB) and the conjugate gradient method.
This can be done by adding the keywords bicgstab or cg in the call to solve.
We also specify suitable preconditioners to speed up the computations:

solve(A1, u1.vector(), b1, ’bicgstab’, ’hypre_amg’)
solve(A2, p1.vector(), b2, ’bicgstab’, ’hypre_amg’)
solve(A3, u1.vector(), b3, ’cg’, ’sor’)

Finally, to be able to postprocess the computed solution in ParaView, we
store the solution to a file in each time step. We have previously created files
with the suffix .pvd for this purpose. In the example program ft04_heat_
gaussian.py, we first created a file named heat_gaussian/solution.pvd
and then saved the solution in each time step using

vtkfile << (u, t)

https://fenicsproject.org/pub/tutorial/python/vol1/ft04_heat_gaussian.py
https://fenicsproject.org/pub/tutorial/python/vol1/ft04_heat_gaussian.py

3.4 The Navier–Stokes equations 69

For the present example, we will instead choose to save the solution to
XDMF format. This file format works similarly to the .pvd files we have seen
earlier but has several advantages. First, the storage is much more efficient,
both in terms of speed and file sizes. Second, .xdmf files work in parallell,
both for writing and reading (postprocessing). Much like .pvd files, the actual
data will not be stored in the .xdmf file itself, but will instead be stored in
a (single) separate data file with the suffix .hdf5 which is an advanced file
format designed for high-performance computing. We create the XDMF files
as follows:

xdmffile_u = XDMFFile(’navier_stokes_cylinder/velocity.xdmf’)
xdmffile_p = XDMFFile(’navier_stokes_cylinder/pressure.xdmf’)

In each time step, we may then store the velocity and pressure by

xdmffile_u.write(u, t)
xdmffile_p.write(p, t)

We also store the solution using a FEniCS TimeSeries. This allows us to
store the solution not for visualization, but for later reuse in a computation
as we will see in the next section. Using a TimeSeries it is easy and efficient
to read in solutions from certain points in time during a simulation. The
TimeSeries class also uses the HDF5 file format for efficient storage and
access to data.

Figures 3.5 and 3.6 show the velocity and pressure at final time visualized
in ParaView. For the visualization of the velocity, we have used the Glyph
filter to visualize the vector velocity field. For the visualization of the pressure,
we have used the Warp By Scalar filter.

Fig. 3.5 Plot of the velocity for the cylinder test problem at final time.

The complete code for the cylinder test problem looks as follows:

from fenics import *
from mshr import *
import numpy as np

T = 5.0 # final time
num_steps = 5000 # number of time steps
dt = T / num_steps # time step size
mu = 0.001 # dynamic viscosity

70 3 A Gallery of finite element solvers

Fig. 3.6 Plot of the pressure for the cylinder test problem at final time.

rho = 1 # density

Create mesh
channel = Rectangle(Point(0, 0), Point(2.2, 0.41))
cylinder = Circle(Point(0.2, 0.2), 0.05)
domain = channel - cylinder
mesh = generate_mesh(domain, 64)

Define function spaces
V = VectorFunctionSpace(mesh, ’P’, 2)
Q = FunctionSpace(mesh, ’P’, 1)

Define boundaries
inflow = ’near(x[0], 0)’
outflow = ’near(x[0], 2.2)’
walls = ’near(x[1], 0) || near(x[1], 0.41)’
cylinder = ’on_boundary && x[0]>0.1 && x[0]<0.3 && x[1]>0.1 && x[1]<0.3’

Define inflow profile
inflow_profile = (’4.0*1.5*x[1]*(0.41 - x[1]) / pow(0.41, 2)’, ’0’)

Define boundary conditions
bcu_inflow = DirichletBC(V, Expression(inflow_profile, degree=2), inflow)
bcu_walls = DirichletBC(V, Constant((0, 0)), walls)
bcu_cylinder = DirichletBC(V, Constant((0, 0)), cylinder)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_inflow, bcu_walls, bcu_cylinder]

3.4 The Navier–Stokes equations 71

bcp = [bcp_outflow]

Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

Define functions for solutions at previous and current time steps
u_n = Function(V)
u_ = Function(V)
p_n = Function(Q)
p_ = Function(Q)

Define expressions used in variational forms
U = 0.5*(u_n + u)
n = FacetNormal(mesh)
f = Constant((0, 0))
k = Constant(dt)
mu = Constant(mu)

Define symmetric gradient
def epsilon(u):

return sym(nabla_grad(u))

Define stress tensor
def sigma(u, p):

return 2*mu*epsilon(u) - p*Identity(len(u))

Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx \

+ rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \
+ inner(sigma(U, p_n), epsilon(v))*dx \
+ dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
- dot(f, v)*dx

a1 = lhs(F1)
L1 = rhs(F1)

Define variational problem for step 2
a2 = dot(nabla_grad(p), nabla_grad(q))*dx
L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx

Define variational problem for step 3
a3 = dot(u, v)*dx
L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx

Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

72 3 A Gallery of finite element solvers

Create XDMF files for visualization output
xdmffile_u = XDMFFile(’navier_stokes_cylinder/velocity.xdmf’)
xdmffile_p = XDMFFile(’navier_stokes_cylinder/pressure.xdmf’)

Create time series (for use in reaction_system.py)
timeseries_u = TimeSeries(’navier_stokes_cylinder/velocity_series’)
timeseries_p = TimeSeries(’navier_stokes_cylinder/pressure_series’)

Save mesh to file (for use in reaction_system.py)
File(’navier_stokes_cylinder/cylinder.xml.gz’) << mesh

Create progress bar
progress = Progress(’Time-stepping’)
set_log_level(PROGRESS)

Time-stepping
t = 0
for n in range(num_steps):

Update current time
t += dt

Step 1: Tentative velocity step
b1 = assemble(L1)
[bc.apply(b1) for bc in bcu]
solve(A1, u_.vector(), b1, ’bicgstab’, ’hypre_amg’)

Step 2: Pressure correction step
b2 = assemble(L2)
[bc.apply(b2) for bc in bcp]
solve(A2, p_.vector(), b2, ’bicgstab’, ’hypre_amg’)

Step 3: Velocity correction step
b3 = assemble(L3)
solve(A3, u_.vector(), b3, ’cg’, ’sor’)

Plot solution
plot(u_, title=’Velocity’)
plot(p_, title=’Pressure’)

Save solution to file (XDMF/HDF5)
xdmffile_u.write(u_, t)
xdmffile_p.write(p_, t)

Save nodal values to file
timeseries_u.store(u_.vector(), t)
timeseries_p.store(p_.vector(), t)

Update previous solution
u_n.assign(u_)
p_n.assign(p_)

Update progress bar

3.5 A system of advection–diffusion–reaction equations 73

progress.update(t / T)
print(’u max:’, u_.vector().array().max())

Hold plot
interactive()

This program can be found in the file ft08_navier_stokes_cylinder.py.
The reader should be advised that this example program is considerably more
demanding than our previous examples in terms of CPU time and memory,
but it should be possible to run the program on a reasonably modern laptop.

3.5 A system of advection–diffusion–reaction
equations

The problems we have encountered so far—with the notable exception of the
Navier–Stokes equations—all share a common feature: they all involve mod-
els expressed by a single scalar or vector PDE. In many situations the model
is instead expressed as a system of PDEs, describing different quantities pos-
sibly governed by (very) different physics. As we saw for the Navier–Stokes
equations, one way to solve a system of PDEs in FEniCS is to use a splitting
method where we solve one equation at a time and feed the solution from
one equation into the next. However, one of the strengths with FEniCS is
the ease by which one can instead define variational problems that couple
several PDEs into one compound system. In this section, we will look at how
to use FEniCS to write solvers for such systems of coupled PDEs. The goal
is to demonstrate how easy it is to implement fully implicit, also known as
monolithic, solvers in FEniCS.

3.5.1 PDE problem

Our model problem is the following system of advection–diffusion–reaction
equations:

∂u1
∂t

+w ·∇u1−∇· (ε∇u1) = f1−Ku1u2, (3.36)

∂u2
∂t

+w ·∇u2−∇· (ε∇u2) = f2−Ku1u2, (3.37)

∂u3
∂t

+w ·∇u3−∇· (ε∇u3) = f3 +Ku1u2−Ku3. (3.38)

This system models the chemical reaction between two species A and B
in some domain Ω:

https://fenicsproject.org/pub/tutorial/python/vol1/ft08_navier_stokes_cylinder.py

74 3 A Gallery of finite element solvers

A+B→ C.

We assume that the reaction is first-order, meaning that the reaction rate
is proportional to the concentrations [A] and [B] of the two species A and B:

d
dt [C] =K[A][B].

We also assume that the formed species C spontaneously decays with a rate
proportional to the concentration [C]. In the PDE system (3.36)–(3.38), we
use the variables u1, u2, and u3 to denote the concentrations of the three
species:

u1 = [A], u2 = [B], u3 = [C].

We see that the chemical reactions are accounted for in the right-hand sides
of the PDE system (3.36)–(3.38).

The chemical reactions take part at each point in the domain Ω. In addi-
tion, we assume that the species A, B, and C diffuse throughout the domain
with diffusivity ε (the terms −∇· (ε∇ui)) and are advected with velocity w
(the terms w ·∇ui).

To make things visually and physically interesting, we shall let the chemical
reaction take place in the velocity field computed from the solution of the
incompressible Navier–Stokes equations around a cylinder from the previous
section. In summary, we will thus be solving the following coupled system of
nonlinear PDEs:

%

(
∂w

∂t
+w ·∇w

)
=∇·σ(w,p) +f, (3.39)

∇·w = 0, (3.40)
∂u1
∂t

+w ·∇u1−∇· (ε∇u1) = f1−Ku1u2, (3.41)

∂u2
∂t

+w ·∇u2−∇· (ε∇u2) = f2−Ku1u2, (3.42)

∂u3
∂t

+w ·∇u3−∇· (ε∇u3) = f3 +Ku1u2−Ku3. (3.43)

We assume that u1 = u2 = u3 = 0 at t= 0 and inject the species A and B into
the system by specifying nonzero source terms f1 and f2 close to the corners
at the inflow, and take f3 = 0. The result will be that A and B are convected
by advection and diffusion throughout the channel, and when they mix the
species C will be formed.

Since the system is one-way coupled from the Navier–Stokes subsystem to
the advection–diffusion–reaction subsystem, we do not need to recompute the
solution to the Navier–Stokes equations, but can just read back the previously

3.5 A system of advection–diffusion–reaction equations 75

computed velocity field w and feed it into our equations. But we do need to
learn how to read and write solutions for time-dependent PDE problems.

3.5.2 Variational formulation

We obtain the variational formulation of our system by multiplying each
equation by a test function, integrating the second-order terms −∇· (ε∇ui)
by parts, and summing up the equations. When working with FEniCS it is
convenient to think of the PDE system as a vector of equations. The test
functions are collected in a vector too, and the variational formulation is the
inner product of the vector PDE and the vector test function.

We also need introduce some discretization in time. We will use the back-
ward Euler method as before when we solved the heat equation and approx-
imate the time derivatives by (un+1

i −uni)/∆t. Let v1, v2, and v3 be the test
functions, or the components of the test vector function. The inner product
results in

∫
Ω

(∆t−1(un+1
1 −un1)v1 +w ·∇un+1

1 v1 + ε∇un+1
1 ·∇v1)dx (3.44)

+
∫
Ω

(∆t−1(un+1
2 −un2)v2 +w ·∇un+1

2 v2 + ε∇un+1
2 ·∇v2)dx

+
∫
Ω

(∆t−1(un+1
3 −un3)v3 +w ·∇un+1

3 v3 + ε∇un+1
3 ·∇v3)dx

−
∫
Ω

(f1v1 +f2v2 +f3v3)dx

−
∫
Ω

(−Kun+1
1 un+1

2 v1−Kun+1
1 un+1

2 v2 +Kun+1
1 un+1

2 v3−Kun+1
3 v3)dx= 0.

For this problem it is natural to assume homogeneous Neumann boundary
conditions on the entire boundary for u1, u2, and u3; that is, ∂ui/∂n= 0 for
i= 1,2,3. This means that the boundary terms vanish when we integrate by
parts.

3.5.3 FEniCS implementation

The first step is to read the mesh from file. Luckily, we made sure to save the
mesh to file in the Navier–Stokes example and can now easily read it back
from file:

mesh = Mesh(’navier_stokes_cylinder/cylinder.xml.gz’)

76 3 A Gallery of finite element solvers

The mesh is stored in the native FEniCS XML format (with additional gzip-
ping to decrease the file size).

Next, we need to define the finite element function space. For this problem,
we need to define several spaces. The first space we create is the space for
the velocity field w from the Navier–Stokes simulation. We call this space W
and define the space by

W = VectorFunctionSpace(mesh, ’P’, 2)

It is important that this space is exactly the same as the space we used for the
velocity field in the Navier–Stokes solver. To read the values for the velocity
field, we use a TimeSeries:

timeseries_w = TimeSeries(’navier_stokes_cylinder/velocity_series’)

This will initialize the object timeseries_w which we will call later in the
time-stepping loop to retrieve values from the file velocity_series.h5 (in
binary HDF5 format).

For the three concentrations u1, u2, and u3, we want to create a mixed
space with functions that represent the full system (u1,u2,u3) as a single
entity. To do this, we need to define a MixedElement as the product space of
three simple finite elements and then used the mixed element to define the
function space:

P1 = FiniteElement(’P’, triangle, 1)
element = MixedElement([P1, P1, P1])
V = FunctionSpace(mesh, element)

Mixed elements as products of elements

FEniCS also allows finite elements to be defined as products of simple
elements (or mixed elements). For example, the well-known Taylor–
Hood element, with quadratic velocity components and linear pressure
functions, may be defined as follows:

P2 = VectorElement(’P’, triangle, 2)
P1 = FiniteElement(’P’, triangle, 1)
TH = P2 * P1

This syntax works great for two elements, but for three or more ele-
ments we meet a subtle issue in how the Python interpreter handles the
* operator. For the reaction system, we create the mixed element by
element = MixedElement([P1, P1, P1]) and one would be tempted
to write

element = P1 * P1 * P1

3.5 A system of advection–diffusion–reaction equations 77

However, this is equivalent to writing element = (P1 * P1) * P1 so
the result will be a mixed element consisting of two subsystems, the
first of which in turn consists of two scalar subsystems.

Finally, we remark that for the simple case of a mixed system con-
sisting of three scalar elements as for the reaction system, the definition
is in fact equivalent to using a standard vector-valued element:

element = VectorElement(’P’, triangle, 1, dim=3)
V = FunctionSpace(mesh, element)

Once the space has been created, we need to define our test functions and
finite element functions. Test functions for a mixed function space can be
created by replacing TestFunction by TestFunctions:

v_1, v_2, v_3 = TestFunctions(V)

Since the problem is nonlinear, we need to work with functions rather than
trial functions for the unknowns. This can be done by using the corresponding
Functions construction in FEniCS. However, as we will need to access the
Function for the entire system itself, we first need to create that function
and then access its components:

u = Function(V)
u_1, u_2, u_3 = split(u)

These functions will be used to represent the unknowns u1, u2, and u3 at the
new time level n+ 1. The corresponding values at the previous time level n
are denoted by u_n1, u_n2, and u_n3 in our program.

When now all functions and test functions have been defined, we can
express the nonlinear variational problem (3.44):

F = ((u_1 - u_n1) / k)*v_1*dx + dot(w, grad(u_1))*v_1*dx \
+ eps*dot(grad(u_1), grad(v_1))*dx + K*u_1*u_2*v_1*dx \
+ ((u_2 - u_n2) / k)*v_2*dx + dot(w, grad(u_2))*v_2*dx \
+ eps*dot(grad(u_2), grad(v_2))*dx + K*u_1*u_2*v_2*dx \
+ ((u_3 - u_n3) / k)*v_3*dx + dot(w, grad(u_3))*v_3*dx \
+ eps*dot(grad(u_3), grad(v_3))*dx - K*u_1*u_2*v_3*dx + K*u_3*v_3*dx \
- f_1*v_1*dx - f_2*v_2*dx - f_3*v_3*dx

The time-stepping simply consists of solving this variational problem in
each time step by a call to the solve function:

t = 0
for n in range(num_steps):

t += dt
timeseries_w.retrieve(w.vector(), t)
solve(F == 0, u)
u_n.assign(u)

In each time step, we first read the current value for the velocity field from the
time series we have previously stored. We then solve the nonlinear system,

78 3 A Gallery of finite element solvers

and assign the computed values to the left-hand side values for the next
time interval. When retrieving values from a TimeSeries, the values will by
default be interpolated (linearly) to the given time t if the time does not
exactly match a sample in the series.

The solution at the final time is shown in Figure 3.7. We clearly see the
advection of the species A and B and the formation of C along the center of
the channel where A and B meet.

Fig. 3.7 Plot of the concentrations of the three species A, B, and C (from top to
bottom) at final time.

The complete code is presented below.

from fenics import *

T = 5.0 # final time
num_steps = 500 # number of time steps
dt = T / num_steps # time step size
eps = 0.01 # diffusion coefficient
K = 10.0 # reaction rate

Read mesh from file
mesh = Mesh(’navier_stokes_cylinder/cylinder.xml.gz’)

Define function space for velocity
W = VectorFunctionSpace(mesh, ’P’, 2)

Define function space for system of concentrations
P1 = FiniteElement(’P’, triangle, 1)

3.5 A system of advection–diffusion–reaction equations 79

element = MixedElement([P1, P1, P1])
V = FunctionSpace(mesh, element)

Define test functions
v_1, v_2, v_3 = TestFunctions(V)

Define functions for velocity and concentrations
w = Function(W)
u = Function(V)
u_n = Function(V)

Split system functions to access components
u_1, u_2, u_3 = split(u)
u_n1, u_n2, u_n3 = split(u_n)

Define source terms
f_1 = Expression(’pow(x[0]-0.1,2)+pow(x[1]-0.1,2)<0.05*0.05 ? 0.1 : 0’,

degree=1)
f_2 = Expression(’pow(x[0]-0.1,2)+pow(x[1]-0.3,2)<0.05*0.05 ? 0.1 : 0’,

degree=1)
f_3 = Constant(0)

Define expressions used in variational forms
k = Constant(dt)
K = Constant(K)
eps = Constant(eps)

Define variational problem
F = ((u_1 - u_n1) / k)*v_1*dx + dot(w, grad(u_1))*v_1*dx \

+ eps*dot(grad(u_1), grad(v_1))*dx + K*u_1*u_2*v_1*dx \
+ ((u_2 - u_n2) / k)*v_2*dx + dot(w, grad(u_2))*v_2*dx \
+ eps*dot(grad(u_2), grad(v_2))*dx + K*u_1*u_2*v_2*dx \
+ ((u_3 - u_n3) / k)*v_3*dx + dot(w, grad(u_3))*v_3*dx \
+ eps*dot(grad(u_3), grad(v_3))*dx - K*u_1*u_2*v_3*dx + K*u_3*v_3*dx \
- f_1*v_1*dx - f_2*v_2*dx - f_3*v_3*dx

Create time series for reading velocity data
timeseries_w = TimeSeries(’navier_stokes_cylinder/velocity_series’)

Create VTK files for visualization output
vtkfile_u_1 = File(’reaction_system/u_1.pvd’)
vtkfile_u_2 = File(’reaction_system/u_2.pvd’)
vtkfile_u_3 = File(’reaction_system/u_3.pvd’)

Create progress bar
progress = Progress(’Time-stepping’)
set_log_level(PROGRESS)

Time-stepping
t = 0
for n in range(num_steps):

Update current time
t += dt

80 3 A Gallery of finite element solvers

Read velocity from file
timeseries_w.retrieve(w.vector(), t)

Solve variational problem for time step
solve(F == 0, u)

Save solution to file (VTK)
_u_1, _u_2, _u_3 = u.split()
vtkfile_u_1 << (_u_1, t)
vtkfile_u_2 << (_u_2, t)
vtkfile_u_3 << (_u_3, t)

Update previous solution
u_n.assign(u)

Update progress bar
progress.update(t / T)

Hold plot
interactive()

This example program can be found in the file ft09_reaction_system.py.
Finally, we comment on three important techniques that are very use-

ful when working with systems of PDEs: setting initial conditions, setting
boundary conditions, and extracting components of the system for plotting
or postprocessing.

Setting initial conditions for mixed systems. In our example, we did
not need to worry about setting an initial condition, since we start with
u1 = u2 = u3 = 0. This happens automatically in the code when we set
u_n = Function(V). This creates a Function for the whole system and all
degrees of freedom are set to zero.

If we want to set initial conditions for the components of the system sepa-
rately, the easiest solution is to define the initial conditions as a vector-valued
Expression and then project (or interpolate) this to the Function represent-
ing the whole system. For example,

u_0 = Expression((’sin(x[0])’, ’cos(x[0]*x[1])’, ’exp(x[1])’), degree=1)
u_n = project(u_0, V)

This defines u1, u2, and u2 to be the projections of sinx, cos(xy), and exp(y),
respectively.

Setting boundary conditions for mixed systems. In our example, we
also did not need to worry about setting boundary conditions since we used
a natural Neumann condition. If we want to set Dirichlet conditions for in-
dividual components of the system, this can be done as usual by the class
DirichletBC, but we must specify for which subsystem we set the bound-
ary condition. For example, to specify that u2 should be equal to xy on the
boundary defined by boundary, we do

https://fenicsproject.org/pub/tutorial/python/vol1/ft09_reaction_system.py

3.5 A system of advection–diffusion–reaction equations 81

u_D = Expression(’x[0]*x[1]’, degree=1)
bc = DirichletBC(V.sub(1), u_D, boundary)

The object bc or a list of such objects containing different boundary condi-
tions, can then be passed to the solve function as usual. Note that numbering
starts at 0 in FEniCS so the subspace corresponding to u2 is V.sub(1).

Accessing components of mixed systems. If u is a Function defined on
a mixed function space in FEniCS, there are several ways in which u can be
split into components. Above we already saw an example of the first of these:

u_1, u_2, u_3 = split(u)

This extracts the components of u as symbols that can be used in a variational
problem. The above statement is in fact equivalent to

u_1 = u[0]
u_2 = u[1]
u_3 = u[2]

Note that u[0] is not really a Function object, but merely a symbolic ex-
pression, just like grad(u) in FEniCS is a symbolic expression and not a
Function representing the gradient. This means that u_1, u_2, u_3 can be
used in a variational problem, but cannot be used for plotting or postpro-
cessing.

To access the components of u for plotting and saving the solution to file,
we need to use a different variant of the split function:

u_1_, u_2_, u_3_ = u.split()

This returns three subfunctions as actual objects with access to the common
underlying data stored in u, which makes plotting and saving to file possible.
Alternatively, we can do

u_1_, u_2_, u_3_ = u.split(deepcopy=True)

which will create u_1_, u_2_, and u_3_ as stand-alone Function objects,
each holding a copy of the subfunction data extracted from u. This is useful
in many situations but is not necessary for plotting and saving solutions to
file.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication,

adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license and

indicate if changes were made.

The images or other third party material in this chapter are included in the work’s Creative Commons

license, unless indicated otherwise in the credit line; if such material is not included in the work’s

Creative Commons license and the respective action is not permitted by statutory regulation, users

will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.

