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Basket Option Pricing and Implied
Correlation in a One-Factor Lévy Model

Daniël Linders and Wim Schoutens

Abstract In this paper we employ a one-factor Lévy model to determine basket
option prices. More precisely, basket option prices are determined by replacing the
distribution of the real basketwith an appropriate approximation. For the approximate
basket we determine the underlying characteristic function and hence we can derive
the related basket option prices by using the Carr–Madan formula. We consider a
three-moments-matching method. Numerical examples illustrate the accuracy of our
approximations; several Lévy models are calibrated to market data and basket option
prices are determined. In the last part we show how our newly designed basket option
pricing formula can be used to define implied Lévy correlation by matching model
and market prices for basket options. Our main finding is that the implied Lévy
correlation smile is flatter than its Gaussian counterpart. Furthermore, if (near) at-
the-money option prices are used, the corresponding implied Gaussian correlation
estimate is a good proxy for the implied Lévy correlation.

Keywords Basket option · Implied correlation ·One-factor Lévymodel ·Variance-
Gamma

1 Introduction

Nowadays, an increased volume of multi-asset derivatives is traded. An example of
such a derivative is a basket option. The basic version of such a multivariate product
has the same characteristics as a vanilla option, but now the underlying is a basket of
stocks instead of a single stock. The pricing of these derivatives is not a trivial task
because it requires a model that jointly describes the stock prices involved.
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Stock price models based on the lognormal model proposed in Black and Scholes
[6] are popular choices from a computational point of view; however, they are not
capable of capturing the skewness and kurtosis observed for log returns of stocks
and indices. The class of Lévy processes provides a much better fit for the observed
log returns and, consequently, the pricing of options and other derivatives in a Lévy
setting is much more reliable. In this paper we consider the problem of pricing
multi-asset derivatives in a multivariate Lévy model.

The most straightforward extension of the univariate Black and Scholes model is
based on the Gaussian copula model, also called the multivariate Black and Scholes
model. In this framework, the stocks composing the basket at a given point in time
are assumed to be lognormally distributed and a Gaussian copula is connecting these
marginals. Even in this simple setting, the price of a basket option is not given in a
closed form and has to be approximated; see e.g. Hull and White [23], Brooks et al.
[8], Milevsky and Posner [39], Rubinstein [42], Deelstra et al. [18], Carmona and
Durrleman [12] and Linders [29], among others. However, the normality assumption
for the marginals used in this pricing framework is too restrictive. Indeed, in Linders
and Schoutens [30] it is shown that calibrating the Gaussian copula model to mar-
ket data can lead to non-meaningful parameter values. This dysfunctioning of the
Gaussian copula model is typically observed in distressed periods. In this paper we
extend the classical Gaussian pricing framework in order to overcome this problem.

Several extensions of the Gaussian copula model are proposed in the literature.
For example, Luciano and Schoutens [32] introduce a multivariate Variance Gamma
model where dependence is modeled through a common jump component. This
model was generalized in Semeraro [44], Luciano and Semeraro [33], and Guil-
laume [21]. A stochastic correlation model was considered in Fonseca et al. [19].
A framework for modeling dependence in finance using copulas was described in
Cherubini et al. [14]. The pricing of basket options in these advanced multivariate
stock price models is not a straightforward task. There are several attempts to derive
closed form approximations for the price of a basket option in a non-Gaussian world.
In Linders and Stassen [31], approximate basket option prices in a multivariate Vari-
ance Gamma model are derived, whereas Xu and Zheng [48, 49] consider a local
volatility jump diffusion model. McWilliams [38] derives approximations for the
basket option price in a stochastic delay model. Upper and lower bounds for basket
option prices in a general class of stock price models with known joint characteristic
function of the logreturns are derived in Caldana et al. [10].

In this paper we start from the one-factor Lévy model introduced in Albrecher
et al. [1] to build a multivariate stock price model with correlated Lévy marginals.
Stock prices are assumed to be driven by an idiosyncratic and a systematic factor.
The idea of using a common market factor is not new in the literature and goes back
to Vasicek [47]. Conditional on the common (or market) factor, the stock prices are
independent. We show that our model generalizes the Gaussian model (with single
correlation). Indeed, the idiosyncratic and systematic components are constructed
from a Lévy process. Employing a Brownian motion in that construction delivers the
Gaussian copula model, but other Lévy models arise by employing different Lévy
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processes like VG, NIG, Meixner, etc. As a result, this new one-factor Lévy model
is more flexible and can capture other types of dependence.

The correlation is by construction always positive and, moreover, we assume
a single correlation. Stocks can, in reality, be negatively correlated and correla-
tions between different stocks will differ. From a tractability point of view, however,
reporting a single correlation number is often preferred over n(n − 1)/2 pairwise
correlations. The single correlation can be interpreted as a mean level of correlation
and provides information about the general dependence among the stocks compos-
ing the basket. Such a single correlation appears, for example, in the construction of
a correlation swap. Therefore, our framework may have applications in the pricing
of such correlation products. Furthermore, calibrating a full correlation matrix may
require an unrealistically large amount of data if the index consists of many stocks.

In the first part of this paper, we consider the problem of finding accurate approx-
imations for the price of a basket option in the one-factor Lévy model. In order to
value a basket option, the distribution of this basket has to be determined. However,
the basket is a weighted sum of dependent stock prices and its distribution function
is in general unknown or too complex to work with. Our valuation formula for the
basket option is based on a moment-matching approximation. To be more precise,
the (unknown) basket distribution is replaced by a shifted random variable having
the same first three moments than the original basket. This idea was first proposed in
Brigo et al. [7], where the Gaussian copula model was considered. Numerical exam-
ples illustrating the accuracy and the sensitivity of the approximation are provided.

In the second part of the paper we show how the well-established notions of
implied volatility and implied correlation can be generalized in our multivariate
Lévy model. We assume that a finite number of options, written on the basket and
the components, are traded. The prices of these derivatives are observable and will
be used to calibrate the parameters of our stock price model. An advantage of our
modeling framework is that each stock is described by a volatility parameter and that
the marginal parameters can be calibrated separately from the correlation parameter.
Wegive numerical examples to showhow touse the vanilla option curves to determine
an implied Lévy volatility for each stock based on a Normal, VG, NIG, and Meixner
process and determine basket option prices for different choices of the correlation
parameter.

An implied Lévy correlation estimate arises when we tune the single correla-
tion parameter such that the model price exactly hits the market price of a basket
option for a given strike. We determine implied correlation levels for the stocks
composing the Dow Jones Industrial Average in a Gaussian and a Variance Gamma
setting. We observe that implied correlation depends on the strike and in the VG
model, this implied Lévy correlation smile is flatter than in the Gaussian copula
model. The standard technique to price non-traded basket options (or other multi-
asset derivatives) is by interpolating on the implied correlation curve. It is shown in
Linders and Schoutens [30] that in the Gaussian copula model, this technique can
sometimes lead to non-meaningful correlation values. We show that the Lévy ver-
sion of the implied correlation solves this problem (at least to some extent). Several
papers consider the problem of measuring implied correlation between stock prices;
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see e.g. Fonseca et al. [19], Tavin [46], Ballotta et al. [4], and Austing [2]. Our
approach is different in that we determine implied correlation estimates in the one-
factor Lévy model using multi-asset derivatives consisting of many assets (30 assets
for the Dow Jones). When considering multi-asset derivatives with a low dimension,
determining the model prices of these multi-asset derivatives becomes much more
tractable. A related paper is Linders and Stassen [31], where the authors also use
high-dimensional multi-asset derivative prices for calibrating a multivariate stock
price model. However, whereas the current paper models the stock returns using
correlated Lévy distributions, the cited paper uses time-changed Brownian motions
with a common time change.

2 The One-Factor Lévy Model

We consider a market where n stocks are traded. The price level of stock j at some
future time t, 0 ≤ t ≤ T is denoted by Sj(t). Dividends are assumed to be paid
continuously and the dividend yield of stock j is constant and deterministic over
time. We denote this dividend yield by qj. The current time is t = 0. We fix a future
timeT andwe always consider the randomvariables Sj(T) denoting the time-T prices
of the different stocks involved. The price level of a basket of stocks at time T is
denoted by S(T) and given by

S(T) =
n∑

j=1

wjSj(T),

where wj > 0 are weights which are fixed upfront. In case the basket represents the
price of the Dow Jones, the weights are all equal. If this single weight is denoted by
w, then 1/w is referred to as the Dow Jones Divisor.1 The pay-off of a basket option
with strike K and maturity T is given by (S(T) − K)+, where (x)+ = max(x, 0).
The price of this basket option is denoted by C[K, T ]. We assume that the market
is arbitrage-free and that there exists a risk-neutral pricing measure Q such that the
basket option price C[K, T ] can be expressed as the discounted risk-neutral expected
value. In this pricing formula, discounting is performed using the risk-free interest
rate r, which is, for simplicity, assumed to be deterministic and constant over time.
Throughout the paper, we always assume that all expectations we encounter are
well-defined and finite.

1More information and the current value of the Dow Jones Divisor can be found here: http://www.
djindexes.com.

http://www.djindexes.com
http://www.djindexes.com
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2.1 The Model

The most straightforward way to model dependent stock prices is to use a Black
and Scholes model for the marginals and connect them with a Gaussian copula. A
crucial (and simplifying) assumption in this approach is the normality assumption. It
is well-known that log returns do not pass the test for normality. Indeed, log returns
exhibit a skewed and leptokurtic distribution which cannot be captured by a normal
distribution; see e.g. Schoutens [43].

We generalize the Gaussian copula approach by allowing the risk factors to be
distributed according to any infinitely divisible distributionwith known characteristic
function. This larger class of distributions increases the flexibility to find a more
realistic distribution for the log returns. InAlbrecher et al. [1] a similar frameworkwas
considered for pricing CDO tranches; see also Baxter [5]. The Variance Gamma case
was considered in Moosbrucker [40, 41], whereas Guillaume et al. [22] consider the
pricing of CDO-squared tranches in this one-factor Lévy model. A unified approach
for theseCIIDmodels (conditionally independent and identically distributed) is given
in Mai et al. [36].

Consider an infinitely divisible distribution for which the characteristic function
is denoted by φ. A stochastic process X can be built using this distribution. Such a
process is called a Lévy process with mother distribution having the characteristic
function φ. The Lévy process X = {X(t)|t ≥ 0} based on this infinitely divisible dis-
tribution starts at zero and has independent and stationary increments. Furthermore,
for s, t ≥ 0 the characteristic function of the increment X(t + s) − X(t) is φs.

Assume that the random variable L has an infinitely divisible distribution and
denote its characteristic function by φL. Consider the Lévy process
X = {X(t)|t ∈ [0, 1]} based on the distribution L. We assume that the process is stan-
dardized, i.e.E[X(1)] = 0 andVar[X(1)] = 1. One can then show that Var[X(t)] = t,
for t ≥ 0. Define also a series of independent and standardized processes Xj ={
Xj(t)|t ∈ [0, 1]}, for j = 1, 2, . . . , n. The process Xj is based on an infinitely divis-
ible distribution Lj with characteristic function φLj . Furthermore, the processes
X1, X2, . . . , Xn are independent from X. Take ρ ∈ [0, 1]. The r.v. Aj is defined by

Aj = X(ρ) + Xj(1 − ρ), j = 1, 2, . . . n. (1)

In this construction,X(ρ) andXj(1 − ρ) are random variables having the characteris-
tic functionφ

ρ

L andφ
1−ρ

Lj
, respectively. Denote the characteristic function ofAj byφAj .

Because the processes X and Xj are independent and standardized, we immediately
find that

E[Aj] = 0, Var[Aj] = 1 and φAj (t) = φ
ρ

L (t)φ1−ρ

Lj
(t), for j = 1, 2, . . . , n. (2)

Note that if X and Xj are both Lévy processes based on the same mother distribution

L, we obtain the equality Aj
d= L.
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The parameter ρ describes the correlation between Ai and Aj, if i �= j. Indeed, it
was proven in Albrecher et al. [1] that in case Aj, j = 1, 2, . . . , n is defined by (1),
we have that

Corr
[
Ai, Aj

] = ρ. (3)

We model the stock price levels Sj(T) at time T for j = 1, 2, . . . , n as follows

Sj(T) = Sj(0)e
μjT+σj

√
TAj , j = 1, 2, . . . , n, (4)

whereμj ∈ R andσj > 0.Note that in this setting, each time-T stock price ismodeled
as the exponential of a Lévy process. Furthermore, a driftμj and a volatility parameter
σj are added to match the characteristics of stock j. Our model, which we will call the
one-factor Lévy model, can be considered as a generalization of the Gaussian model.
Indeed, instead of a normal distribution, we allow for a Lévy distribution, while the
Gaussian copula is generalized to a Lévy-based copula.2 This model can also, at
least to some extent, be considered as a generalization to the multidimensional case
of the model proposed in Corcuera et al. [17] and the parameter σj in (4) can then
be interpreted as the Lévy space (implied) volatility of stock j. The idea of building
a multivariate asset model by taking a linear combination of a systematic and an
idiosyncratic process can also be found in Kawai [26] and Ballotta and Bonfiglioli
[3].

2.2 The Risk-Neutral Stock Price Processes

If we take

μj = (r − qj) − 1

T
logφL

(
−iσj

√
T
)

, (5)

we find that
E[Sj(T)] = e(r−qj)T Sj(0), j = 1, 2, . . . , n.

From expression (5) we conclude that the risk-neutral dynamics of the stocks in the
one-factor Lévy model are given by

Sj(T) = Sj(0)e
(r−qj−ωj)T+σj

√
TAj , j = 1, 2, . . . , n, (6)

where ωj = logφL

(
−iσj

√
T
)

/T . We always assume ωj to be finite. The first three

moments of Sj(T) can be expressed in terms of the characteristic function φAj . By

2The Lévy-based copula refers to the copula between the r.v.’s A1, A2, . . . , An and is different from
the Lévy copula introduced in Kallsen and Tankov [25].
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the martingale property, we have that E
[
Sj(T)

] = Sj(0)e(r−qj)T . The risk-neutral
variance Var

[
Sj(T)

]
can be written as follows

Var
[
Sj(T)

] = Sj(0)
2e2(r−qj)T

(
e−2ωjTφAj

(
−i2σj

√
T
)

− 1
)

.

The second and third moment of Sj(T) are given by:

E
[
Sj(T)2

] = E[Sj(T)]2
φAj

(
−i2σj

√
T
)

φAj

(
−iσj

√
T
)2 ,

E
[
Sj(T)3

] = E[Sj(T)]3
φAj

(
−i3σj

√
T
)

φAj

(
−iσj

√
T
)3 .

We always assume that these quantities are finite. If the processXj hasmother distrib-
ution L, we can replace φAj by φL in expression (5) and in the formulas forE

[
Sj(T)2

]

and E
[
Sj(T)3

]
. From here on, we always assume that all Lévy processes are built on

the same mother distribution. However, all results remain to hold in the more general
case.

3 A Three-Moments-Matching Approximation

In order to price a basket option, one has to know the distribution of the random sum
S(T), which is a weighted sum of dependent random variables. This distribution is in
most situations unknown or too cumbersome to work with. Therefore, we search for
a new random variable which is sufficiently ‘close’ to the original random variable,
but which is more attractive to work with. More concretely, we introduce in this
section a new approach for approximating C[K, T ] by replacing the sum S(T) with
an appropriate random variable S̃(T) which has a simpler structure, but for which
the first three moments coincide with the first three moments of the original basket
S(T). This moment-matching approach was also considered in Brigo et al. [7] for
the multivariate Black and Scholes model.

Consider the Lévy process Y = {Y(t) | 0 ≤ t ≤ 1} with infinitely divisible distri-
bution L. Furthermore, we define the random variable A as

A = Y(1).

In this case, the characteristic function ofA is given byφL . The sum S(T) is aweighted
sum of dependent random variables and its cdf is unknown.We approximate the sum
S(T) by S̃(T), defined by
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S̃(T) = S̄(T) + λ, (7)

where λ ∈ R and

S̄(T) = S(0) exp
{
(μ̄ − ω̄)T + σ̄

√
TA
}

. (8)

The parameter μ̄ ∈ R determines the drift and σ̄ > 0 is the volatility parameter.
These parameters, as well as the shifting parameter λ, are determined such that the
first three moments of S̃(T) coincide with the corresponding moments of the real
basket S(T). The parameter ω̄, defined as follows

ω̄ = 1

T
logφL

(
−iσ̄

√
T
)

,

is assumed to be finite.

3.1 Matching the First Three Moments

Thefirst threemoments of the basketS(T) are denoted bym1, m2, andm3 respectively.
In the following lemma, we express the moments m1, m2, and m3 in terms of the
characteristic function φL and the marginal parameters. A proof of this lemma is
provided in the appendix.

Lemma 1 Consider the one-factor Lévy model (6) with infinitely divisible mother
distribution L. The first two moments m1 and m2 of the basket S(T) can be expressed
as follows

m1 =
n∑

j=1

wjE
[
Sj(T)

]
, (9)

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)

]
E [Sk(T)]

⎛

⎝
φL

(
−i(σj + σk)

√
T
)

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

⎞

⎠

ρj,k

,(10)

where

ρj,k =
{

ρ, if j �= k;
1, if j = k.

The third moment m3 of the basket S(T) is given by
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m3 =
n∑

j=1

n∑

k=1

n∑

l=1

wjwkwlE
[
Sj(T)

]
E [Sk(T)]E [Sl(T)]

×
φL

(
−i
(
σj + σk + σl

)√
T
)ρ

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

φL

(
−iσl

√
T
)Aj,k,l, (11)

where

Aj,k,l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

φL

(
−iσl

√
T
))1−ρ

, if j �= k, k �= l and j �= l;
(
φL

(
−i(σj + σk)

√
T
)

φL

(
−iσl

√
T
))1−ρ

, if j = k, k �= l;
(
φL

(
−i(σk + σl)

√
T
)

φL

(
−iσj

√
T
))1−ρ

, if j �= k, k = l;
(
φL

(
−i(σj + σl)

√
T
)

φL

(
−iσk

√
T
))1−ρ

, if j = l, k �= l;
φL

(
−i
(
σj + σk + σl

)√
T
)1−ρ

, if j = k = l.

InSect. 2.2wederived thefirst threemoments for each stock j, j = 1, 2, . . . , n. Taking
into account the similarity between the price Sj(T) defined in (6) and the approximate
r.v. S̄(T), defined in (8), we can determine the first three moments of S̄(T):

E
[
S̄(T)

] = S(0)eμ̄T =: ξ,

E
[
S̄(T)2

] = E
[
S̄(T)

]2 φL

(
−i2σ̄

√
T
)

φL

(
−iσ̄

√
T
)2 =: ξ 2α,

E
[
S̄(T)3

] = E
[
S̄(T)

]3 φL

(
−i3σ̄

√
T
)

φL

(
−iσ̄

√
T
)3 =: ξ 3β.

These expressions can now be used to determine the first three moments of the
approximate r.v. S̃(T):

E
[̃
S(T)

] = E
[
S̄(T)

]+ λ,

E
[̃
S(T)2

] = E
[
S̄(T)2

]+ λ2 + 2λE
[
S̄(T)

]
,

E
[̃
S(T)3

] = E
[
S̄(T)3

]+ λ3 + 3λ2E
[
S̄(T)

]+ 3λE
[
S̄(T)2

]
.

Determining the parameters μ̄, σ̄ and the shifting parameter λ by matching the first
three moments, results in the following set of equations

m1 = ξ + λ,

m2 = ξ 2α + λ2 + 2λξ,

m3 = ξ 3β + λ3 + 3λ2ξ + 3λξ 2α.
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These equations can be recast in the following set of equations

λ = m1 − ξ,

ξ 2 = m2 − m2
1

α − 1
,

0 =
(

m2 − m2
1

α − 1

)3/2

(β + 2 − 3α) + 3m1m2 − 2m3
1 − m3.

Remember that α and β are defined by

α =
φL

(
−i2σ̄

√
T
)

φL

(
−iσ̄

√
T
)2 and β =

φL

(
−i3σ̄

√
T
)

φL

(
−iσ̄

√
T
)3 .

Solving the third equation results in the parameter σ̄ . Note that this equation does
not always have a solution. This issue was also discussed in Brigo et al. [7] for the
Gaussian copula case. However, in our numerical studies we did not encounter any
numerical problems. If we know σ̄ , we can also determine ξ and λ from the first two
equations. Next, the drift μ̄ can be determined from

μ̄ = 1

T
log

ξ

S(0)
.

3.2 Approximate Basket Option Pricing

The price of a basket option with strikeK andmaturity T is denoted byC[K, T ]. This
unknown price is approximated in this section by CMM[K, T ], which is defined as

CMM[K, T ] = e−rTE

[(̃
S(T) − K

)
+
]
.

Using expression (7) for S̃(T), the price CMM[K, T ] can be expressed as

CMM[K, T ] = e−rTE

[(
S̄(T) − (K − λ)

)
+
]
.

Note that the distribution of S̄(T) is also depending on the choice of λ. In order to
determine the priceCMM[K, T ], we should be able to price an option written on S̄(T),
with a shifted strike K − λ. Determining the approximation CMM[K, T ] using the
Carr–Madan formula requires knowledge about the characteristic function φlog S̄(T)

of log S̄(T):

φlog S̄(T)(u) = E

[
eiu log S̄(T)

]
.



Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model 345

Using expression (8) we find that

φlog S̄(T)(u) = E

[
exp

{
iu
(
log S(0) + (μ̄ − ω̄)T + σ̄

√
TA
)}]

.

The characteristic function of A is φL, from which we find that

φlog S̄(T)(u) = exp {iu (log S(0) + (μ̄ − ω̄)T)} φL

(
uσ̄

√
T
)

.

Note that nowhere in this section we used the assumption that the basket weights
wj are strictly positive. Therefore, the three-moments-matching approach proposed
in this section can also be used to price, e.g. spread options. However, for pricing
spread options, alternative methods exist; see e.g. Carmona and Durrleman [11],
Hurd and Zhou [24] and Caldana and Fusai [9].

3.3 The FFT Method and Basket Option Pricing

Consider the random variable X. In this section we show that if the characteristic
function φlogX of this r.v. X is known, one can approximate the discounted stop-loss
premium

e−rTE
[
(X − K)+

]
,

for any K > 0.
Let α > 0 and assume that E

[
Xα+1

]
exists and is finite. It was proven in Carr and

Madan [13] that the price e−rTE
[
(X − K)+

]
can be expressed as follows

e−rTE
[
(X − K)+

] = e−α log(K)

π

∫ +∞

0
exp {−iv log(K)} g(v)dv, (12)

where

g(v) = e−rTφlogX (v − (α + 1)i)
α2 + α − v2 + i(2α + 1)v

. (13)

The approximation CMM[K, T ]was introduced in Sect. 3 and the random variable
X now denotes the moment-matching approximation S̃(T) = S̄(T) + λ. The approx-
imation CMM[K, T ] can then be determined as the option price written on S̄(T) and
with shifted strike price K − λ.
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Table 1 Overview of infinitely divisible distributions

Gaussian Variance Gamma

Parameters μ ∈ R, σ > 0 μ, θ ∈ R, σ, ν > 0

Notation N (μ, σ 2)σ V G(σ, ν, θ, μ)

φ(u) eiuμ+ 1
2 σ 2uσ eiuμ

(
1 − iuθν + u2σ 2ν/2

)−1/ν

Mean μ μ + θ

Variance σ 2 σ 2
σ + νθ2

Standardized version N (0, 1) V G(κσ, ν, κθ,−κθ)

where κ = 1√

σ 2+θ2σ ν

Normal Inverse Gaussian Meixner

Parameters α, δ > 0, β ∈ (−α, α), μ ∈ R α, δ > 0, β ∈ (−π, π), μ ∈ R

Notation NIG(α, β, δ, μ) MX(α, β, δ, μ)

φ(u) e
iuμ−δ

(√
α2−(β+iu)2−

√
α2−β2

σ

)

eiuμ
(

cos(β/2)
cosh((αu−iβ)/2)

)2δ

Mean μ + δβ√
α2−β2

σ

μ + αδ tan(β/2)

Variance α2δ
(
α2 − β2

)−3/2
cos−2(β/2)α2

σ δ/2

Standardized version NIG
(
α, β, (α2 − β2)3/2,

−(α2−β2)β

α2

)
MX

(
α, β,

2 cos2( β
2 )

α2
σ

,
− sin(β)

α

)

4 Examples and Numerical Illustrations

The Gaussian copula model with equicorrelation is a member of our class of one-
factor Lévy models. In this section we discuss how to build the Gaussian, Variance
Gamma, Normal Inverse Gaussian, and Meixner models. However, the reader is
invited to construct one-factor Lévymodels based on other Lévy-based distributions;
e.g. CGMY, Generalized hyperbolic, etc. distributions.

Table1 summarizes the Gaussian, Variance Gamma, Normal Inverse Gaussian,
and the Meixner distributions, which are all infinitely divisible. In the last row, it is
shown how to construct a standardized version for each of these distributions. We
assume that L is distributed according to one of these standardized distributions.
Hence, L has zero mean and unit variance. Furthermore, the characteristic function
φL of L is given in closed form. We can then define the Lévy processes X and
Xj, j = 1, 2, . . . , n based on the mother distribution L. The random variables Aj,
j = 1, 2, . . . , n, are modeled using expression (1).



Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model 347

Table 2 Basket option prices in the one-factor VG model with S1(0) = 40, S2(0) = 50, S3(0) =
60, S4(0) = 70, and ρ = 0

K Cmc[K, T ] CMM [K, T ] Length CI

σ1 = 0.2; σ2 = 0.2; σ3 = 0.2; σ4 = 0.2

50 6.5748 6.5676 4.27E-03

55 2.4363 2.4781 3.05E-03

60 0.2651 0.2280 9.29E-04

σ1 = 0.5; σ2 = 0.5; σ3 = 0.5; σ4 = 0.5

55 4.1046 4.2089 6.31E-03

60 1.7774 1.7976 4.13E-03

65 0.5474 0.4637 2.16E-03

σ1 = 0.8; σ2 = 0.8; σ3 = 0.8; σ4 = 0.8

60 3.2417 3.3371 7.16E-03

65 1.6806 1.6429 5.08E-03

70 0.7581 0.6375 3.30E-03

σ1 = 0.6; σ2 = 1.2; σ3 = 0.3; σ4 = 0.9

55 5.5067 5.6719 9.44E-03

60 3.2266 3.3305 7.31E-03

65 1.6972 1.6750 5.26E-03

70 0.7889 0.6830 3.52E-03

4.1 Variance Gamma

Although pricing basket option under a normality assumption is tractable from a
computational point of view, it introduces a high degree of model risk; see e.g. Leoni
and Schoutens [28]. The Variance Gamma distribution has already been proposed as
a more flexible alternative to the Brownian setting; see e.g. Madan and Seneta [34]
and Madan et al. [35].

We consider two numerical examples where L has a Variance Gamma distri-
bution with parameters σ = 0.5695, ν = 0.75, θ = −0.9492, μ = 0.9492. Table2
contains the numerical values for the first illustration, where a four-basket option pay-

ing
(
1
4

∑4
j=1 Sj(T) − K

)

+
at time T is considered. We use the following parameter

values: r = 6%, T = 0.5, ρ = 0 and S1(0) = 40, S2(0) = 50, S3(0) = 60, S4(0) =
70. These parameter values are also used in Sect. 5 of Korn and Zeytun [27]. We
denote by Cmc[K, T ] the corresponding Monte Carlo estimate for the price C[K, T ].
Here, 107 number of simulations are used. The approximation of the basket option
price C[K, T ] using the moment-matching approach outlined in Sect. 3 is denoted
by CMM[K, T ]. A comparison between the empirical density and the approximate
density is provided in Fig. 1.

In the second example, we consider the basket S (T) = w1X1 (T) + w2X2 (T) ,

written on two non-dividend paying stocks. We use as parameter values the ones



348 D. Linders and W. Schoutens

also used in Sect. 7 of Deelstra et al. [18], hence r = 5%, X1 (0) = X2 (0) = 100,
and w1 = w2 = 0.5. Table3 gives numerical values for these basket options. Note
that strike prices are expressed in terms of forward moneyness. A basket strike
price K has forward moneyness equal to K/E [S] . We can conclude that the three-
moments-matching approximation gives acceptable results. For far out-of-the-money
call options, the approximation is not always able to closely approximate the real
basket option price.

We also investigate the sensitivity with respect to the Variance Gamma parameters
σ, ν, and θ and to the correlation parameter ρ. We consider a basket option consisting
of 3 stocks, i.e. n = 3. From Tables2 and 3, we observe that the error is the biggest
in case we consider different marginal volatilities and the option under consideration
is an out-of-the-money basket call. Therefore, we put σ1 = 0.2, σ2 = 0.4, σ3 = 0.6
and we determine the prices Cmc[K, T ] and CMM[K, T ] for K = 105.13. The other
parameter values are: r = 0.05, ρ = 0.5, w1 = w2 = w3 = 1/3 and T = 1. The first
panel of Fig. 2 shows the relative error for varying σ . The second panel of Fig. 2
shows the relative error in function of ν. The sensitivity with respect to θ is shown
in the third panel of Fig. 2. Finally, the fourth panel of Fig. 2 shows the relative error
in function of ρ.

The numerical results show that the approximations do not always manage to
closely approximate the true basket option price. Especially when some of the
volatilities deviate substantially from the other ones, the accuracy of the approxi-
mation deteriorates. The dysfunctioning of the moment-matching approximation in
the Gaussian copula model was already reported in Brigo et al. [7]. However, in
order to calibrate the Lévy copula model to available option data, the availability of
a basket option pricing formula which can be evaluated in a fast way, is of crucial
importance. Table4 shows the CPU times3 for the one-factor VGmodel for different
basket dimensions. The calculation time of approximate basket option prices when
100 stocks are involved is less than one second. Therefore, the moment-matching
approximation is a good candidate for calibrating the one-factor Lévy model.

4.2 Pricing Basket Options

In this subsection we explain how to determine the price of a basket option in a
realistic situation where option prices of the components of the basket are available
and used to calibrate the marginal parameters. In our example, the basket under
consideration consists of 2 major stock market indices (n = 2), the S&P500 and the
Nasdaq:

Basket = w1S&P 500 + w2Nasdaq.

The pricing date is February 19, 2009 and we determine prices for the Normal, VG,
NIG, and Meixner case. The details of the basket are listed in Table5. The weights

3The numerical illustrations are performed on an Intel Core i7, 2.70GHz.
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Fig. 1 Probability density function of the real basket (solid line) and the approximate basket (dashed
line). The basket option consists of 4 stocks and r = 0.06, ρ = 0, T = 1/2, w1 = w2 = w3 = w4 =
1
4 . All volatility parameters are equal to σ
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Fig. 2 Relative error in the one-factor VG model for the three-moments-matching approximation.
The basket option consists of 3 stocks and r = 0.05, ρ = 0.5, T = 1, σ1 = 0.2, σ2 = 0.4, σ3 =
0.6, w1 = w2 = w3 = 1

3 . The strike price is K = 105.13. In the benchmark model, the VG para-
meters are σ = 0.57, ν = 0.75, θ = −0.95, μ = 0.95

w1 and w2 are chosen such that the initial price S(0) of the basket is equal to 100.
The maturity of the basket option is equal to 30 days.

The S&P 500 and Nasdaq option curves are denoted by C1 and C2, respec-
tively. These option curves are only partially known. The traded strikes for curve
Cj are denoted by Ki,j, i = 1, 2, . . . , Nj, where Nj > 1. If the volatilities σ1 and σ2
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Table 3 Basket option prices in the one-factor VGmodel with r = 0.05, w1 = w2 = 0.5, X1(0) =
X2(0) = 100 and σ1 = σ2

T ρ σ1 Cmc[K, T ] CMM [K, T ] Length CI

K = 115.64 1 0.3 0.2 1.3995 1.3113 4.08E-03

0.4 5.5724 5.6267 1.26E-02

0.7 0.2 1.8963 1.8706 4.96E-03

0.4 6.9451 7.0095 1.47E-02

K = 127.80 3 0.3 0.2 4.4427 4.4565 1.14E-02

0.4 11.3138 11.5920 2.77E-02

0.7 0.2 5.6002 5.6368 1.34E-02

0.4 13.7444 13.9336 3.23E-02

K = 105.13 1 0.3 0.2 5.5312 5.5965 8.78E-03

0.4 10.1471 10.3515 1.73E-02

0.7 0.2 6.327 6.3731 9.74E-03

0.4 11.7163 11.8379 1.95E-02

K = 116.18 3 0.3 0.2 8.9833 9.1489 1.66E-02

0.4 15.8784 16.2498 3.27E-02

0.7 0.2 10.3513 10.4528 1.86E-02

0.4 18.4042 18.6214 3.73E-02

K = 94.61 1 0.3 0.2 12.3514 12.4371 1.29E-02

0.4 16.213 16.4493 2.17E-02

0.7 0.2 13.0696 13.1269 1.40E-02

0.4 17.7431 17.8690 2.40E-02

K = 104.57 3 0.3 0.2 15.1888 15.3869 2.15E-02

0.4 21.3994 21.7592 3.76E-02

0.7 0.2 16.5069 16.6232 2.36E-02

0.4 23.8489 24.0507 4.23E-02

and the characteristic function φL of the mother distribution L are known, we can
determine the model price of an option on asset j with strike K and maturity T . This
price is denoted by Cmodel

j [K, T;Θ, σj], where Θ denotes the vector containing the
model parameters of L. Given the systematic component, the stocks are independent.
Therefore, we can use the observed option curves C1 and C2 to calibrate the model
parameters as follows:

Algorithm 1 (Determining the parameters Θ and σj of the one-factor Lévy model)

Step 1: Choose a parameter vector Θ .
Step 2: For each stock j = 1, 2, . . . , n, determine the volatility σj as follows:

σj = argmin
σ

1

Nj

Nj∑

i=1

∣∣∣Cmodel
j [Ki,j, T;Θ, σ ] − Cj[Ki,j]

∣∣∣

Cj[Ki,j] ,



Basket Option Pricing and Implied Correlation in a One-Factor Lévy Model 351

Table 4 The CPU time (in seconds) for the one-factor VGmodel for increasing basket dimension n

n CPU TIMES

Moment Matching

5 0.1991

10 0.1994

20 0.1922

30 0.2043

40 0.2335

50 0.2888

60 0.3705

70 0.4789

80 0.5909

90 0.6862

100 0.8680

The following parameters are used: r = 0.05, T = 1, ρ = 0.5, wj = 1
n , σj = 0.4, qj = 0, Sj(0) =

100, for j = 1, 2, . . . , n. The basket strike is K = 105.13

Table 5 Input data for the basket option

Date Feb 19, 2009

Maturity March 21, 2009

S&P 500 Nasdaq

Forward 777.76 1116.72

Weights 0.06419 0.0428

Step 3: Determine the total error:

error =
n∑

j=1

1

Nj

Nj∑

i=1

∣∣∣Cmodel
j [Ki,j, T;Θ, σj] − Cj[Ki,j]

∣∣∣

Cj[Ki,j] .

Repeat these three steps until the parameter vector Θ is found for which
the total error is minimal. The corresponding volatilities σ1, σ2, . . . , σn are
called the implied Lévy volatilities.

Only a limited number of option quotes is required to calibrate the one-factor Lévy
model. Indeed, the parameter vector Θ can be determined using all available option
quotes. Additional, one volatility parameter has to be determined for each stock.
However, other methodologies for determiningΘ exist. For example, one can fix the
parameter Θ upfront, as is shown in Sect. 5.2. In such a situation, only one implied
Lévy volatility has to be calibrated for each stock.

The calibrated parameters together with the calibration error are listed in Table6.
Note that the relative error in the VG, Meixner, and NIG case is significantly smaller
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Table 6 One-factor Lévy models: Calibrated model parameters

Model Calibration
error (%)

Model Parameters Volatilities

Normal 10.89 μnormal σnormal σ1 σ2

0 1 0.2821 0.2734

VG 2.83 σV G νV G θV G

0.3477 0.49322 −0.3919 0.3716 0.3628

Meixner 2.81 αMeixner βMeixner

1.1689 −1.6761 0.3799 0.3709

NIG 2.89 αNIG βNIG

2.2768 −1.4951 0.3863 0.3772

Table 7 Basket option prices for the basket given in Table5

ρ K CBLS[K, T ] CV G[K, T ] CMeixner[K, T ] CNIG[K, T ]
0.1 90 10.1783 10.7380 10.7893 10.8087

95 5.9457 6.7092 6.7482 6.7418

100 2.8401 3.4755 3.4843 3.4642

105 1.0724 1.3375 1.3381 1.3374

110 0.3158 0.3613 0.3690 0.3766

120 0.0133 0.0198 0.0204 0.0197

0.5 90 10.3557 11.1445 11.2037 11.2169

95 6.3160 7.2359 7.2754 7.2605

100 3.3139 4.0376 4.0436 4.0154

105 1.4699 1.7870 1.7798 1.7706

110 0.5480 0.5857 0.5907 0.5980

120 0.0461 0.0419 0.0421 0.0415

0.8 90 10.5000 11.4203 11.4837 11.4932

95 6.5745 7.5877 7.6280 7.6091

100 3.6292 4.4229 4.4287 4.3970

105 1.7462 2.1247 2.1149 2.1010

110 0.7301 0.7923 0.7954 0.8015

120 0.0852 0.0726 0.0726 0.0723

The time to maturity is 30 days

than in the normal case. Using the calibrated parameters for the mother distribution
L together with the volatility parameters σ1 and σ2, we can determine basket option
prices in the different model settings. Note that here and in the sequel of the paper,
we always use the three-moments-matching approximation for determining basket
option prices. We put T = 30 days and consider the cases where the correlation
parameter ρ is given by 0.1, 0.5, and 0.8. The corresponding basket option prices are
listed in Table7. One can observe from the table that eachmodel generates a different
basket option price, i.e. there is model risk. However, the difference between the
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Fig. 3 Implied market and model volatilities for February 19, 2009 for the S&P 500 (left) and the
Nasdaq (right), with time to maturity 30 days

Gaussian and the non-Gaussianmodels is muchmore pronounced than the difference
within the non-Gaussian models. We also find that using normally distributed log
returns, one underestimates the basket option prices. Indeed, the basket option prices
CV G[K, T ], CMeixner[K, T ] and CNIG[K, T ] are larger than CBLS[K, T ]. In the next
section, however, we encounter situations where the Gaussian basket option price
is larger than the corresponding VG price for out-of-the-money options. The reason
for this behavior is that marginal log returns in the non-Gaussian situations are
negatively skewed, whereas these distributions are symmetric in the Gaussian case.
This skewness results in a lower probability of ending in the money for options with
a sufficiently large strike (Fig. 3).

5 Implied Lévy Correlation

In Sect. 4.2 we showed how the basket option formulas can be used to obtain basket
option prices in the Lévy copula model. The parameter vector Θ describing the
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mother distribution L and the implied Lévy volatility parameters σj can be calibrated
using the observed vanilla option curves Cj[K, T ] of the stocks composing the basket
S(T); see Algorithm 1. In this section we show how an implied Lévy correlation
estimate ρ can be obtained if in addition to the vanilla options, market prices for a
basket option are also available.

We assume that S(T) represents the time-T price of a stock market index. Exam-
ples of such stock market indices are the Dow Jones, S&P 500, EUROSTOXX 50,
and so on. Furthermore, options on S(T) are traded and their prices are observable
for a finite number of strikes. In this situation, pricing these index options is not a
real issue; we denote the market price of an index option with maturity T and strike
K by C[K, T ]. Assume now that the stocks composing the index can be described by
the one-factor Lévy model (6). If the parameter vector Θ and the marginal volatil-
ity vector σ = (σ1, σ2, . . . , σn) are determined using Algorithm 1, the model price
Cmodel[K, T; σ ,Θ, ρ] for the basket option only depends on the choice of the cor-
relation ρ. An implied correlation estimate for ρ arises when we match the model
price with the observed index option price.

Definition 1 (Implied Lévy correlation) Consider the one-factor Lévymodel defined
in (6). The implied Lévy correlation of the index S(T) with moneyness π =
S(T)/S(0), denoted by ρ [π ], is defined by the following equation:

Cmodel
[
K, T; σ ,Θ, ρ [π ]

] = C[K, T ], (14)

where σ contains the marginal implied volatilities and Θ is the parameter vector
of L.

Determining an implied correlation estimate ρ [K/S(0)] requires an inversion of the
pricing formula ρ → Cmodel[K, T; σ ,Θ, ρ]. However, the basket option price is not
given in a closed form and determining this price using Monte Carlo simulation
would result in a slow procedure. If we determine Cmodel[K, T; σ ,Θ, ρ] using the
three-moments-matching approach, implied correlations can be determined in a fast
and efficient way. The idea of determining implied correlation estimates based on an
approximate basket option pricing formula was already proposed in Chicago Board
Options Exchange [15], Cont and Deguest [16], Linders and Schoutens [30], and
Linders and Stassen [31].

Note that in case we take L to be the standard normal distribution, ρ[π ] is an
implied Gaussian correlation; see e.g. Chicago Board Options Exchange [15] and
Skintzi and Refenes [45]. Equation (14) can be considered as a generalization of the
implied Gaussian correlation. Indeed, instead of determining the single correlation
parameter in a multivariate model with normal log returns and a Gaussian copula,
we can now extend the model to the situation where the log returns follow a Lévy
distribution. A similar idea was proposed in Garcia et al. [20] and further studied in
Masol and Schoutens [37]. In these papers, Lévy base correlation is defined using
CDS and CDO prices.

The proposed methodology for determining implied correlation estimates can
also be applied to other multi-asset derivatives. For example, implied correlation
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estimates can be extracted from traded spread options [46], best-of basket options
[19], and quanto options [4]. Implied correlation estimates based on various multi-
asset products are discussed in Austing [2].

5.1 Variance Gamma

In order to illustrate the proposed methodology for determining implied Lévy corre-
lation estimates, we use the Dow Jones Industrial Average (DJ). The DJ is composed
of 30 underlying stocks and for each underlying we have a finite number of option
prices to which we can calibrate the parameter vectorΘ and the Lévy volatility para-
meters σj. Using the available vanilla option data for June 20, 2008, we will work out
the Gaussian and the Variance Gamma case.4 Note that options on components of the
Dow Jones are of American type. In the sequel, we assume that the American option
price is a good proxy for the corresponding European option price. This assumption
is justified because we use short term and out-of-the-money options.

The single volatility parameter σj is determined for stock j by minimizing the rel-
ative error between the model and the market vanilla option prices; see Algorithm 1.
Assuming a normal distribution for L, this volatility parameter is denoted by σ BLS

j ,
whereas the notation σ V G

j , j = 1, 2, . . . , n is used for the VG model. For June 20,
2008, the parameter vector Θ for the VG copula model is given in Table9 and the
implied volatilities are listed in Table8. Figure4 shows the model (Gaussian and
VG) and market prices for General Electric and IBM, both members of the Dow
Jones, based on the implied volatility parameters listed in Table8. We observe that
the Variance Gamma copula model is more suitable in capturing the dynamics of the
components of the Dow Jones than the Gaussian copula model.

Given the volatility parameters for the Variance Gamma case and the normal case,
listed in Table8, the implied correlation defined by Eq. (14) can be determined based
on the availableDow Jones index options on June 20, 2008. For a given index strikeK ,
the moneyness π is defined as π = K/S(0). The implied Gaussian correlation (also
called Black and Scholes correlation) is denoted by ρBLS [π ] and the corresponding
implied Lévy correlation, based on a VG distribution, is denoted by ρV G [π ]. In order
to match the vanilla option curves more closely, we take into account the implied
volatility smile and use a volatility parameter with moneyness π for each stock j,
which we denote by σj[π ]. For a detailed and step-by-step plan for the calculation
of these volatility parameters, we refer to Linders and Schoutens [30].

Figure5 shows that both the implied Black and Scholes and implied Lévy cor-
relation depend on the moneyness π . However, for low strikes, we observe that
ρV G [π ] < ρBLS [π ], whereas the opposite inequality holds for large strikes, making
the implied Lévy correlation curve less steep than its Black and Scholes counterpart.
In Linders and Schoutens [30], the authors discuss the shortcomings of the implied
Black and Scholes correlation and show that implied Black and Scholes correlations

4All data used for calibration are extracted from an internal database of the KU Leuven.
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Table 8 Implied Variance Gamma volatilities σ V G
j and implied Black and Scholes volatilities σBLS

j
for June 20, 2008

Stock σ V G
j σBLS

j

Alcoa Incorporated 0.6509 0.5743

American Express Company 0.4923 0.4477

American International Group 0.5488 0.4849

Bank of America 0.6003 0.5482

Boeing Corporation 0.3259 0.2927

Caterpillar 0.3009 0.2671

JP Morgan 0.5023 0.4448

Chevron 0.3252 0.3062

Citigroup 0.6429 0.5684

Coca Cola Company 0.2559 0.2343

Walt Disney Company 0.3157 0.2810

DuPont 0.2739 0.2438

Exxon Mobile 0.2938 0.2609

General Electric 0.3698 0.3300

General Motors 0.9148 0.8092

Hewlet–Packard 0.3035 0.2704

Home Depot 0.3604 0.3255

Intel 0.4281 0.3839

IBM 0.2874 0.2509

Johnson & Johnson 0.1741 0.1592

McDonald’s 0.2508 0.2235

Merck & Company 0.3181 0.2896

Microsoft 0.3453 0.3068

3M 0.2435 0.2202

Pfizer 0.2779 0.2572

Procter & Gamble 0.1870 0.1671

AT&T 0.3013 0.2688

United Technologies 0.2721 0.2434

Verizon 0.3116 0.2847

Wal-Mart Stores 0.2701 0.2397

can become larger than one for low strike prices. Our more general approach and
using the implied Lévy correlation solves this problem at least to some extent. Indeed,
the region where the implied correlation stays below 1 is much larger for the flatter
implied Lévy correlation curve than for its Black and Scholes counterpart. We also
observe that near the at-the-money strikes, VG and Black and Scholes correlation
estimates are comparable, which may be a sign that in this region, the use of implied
Black and Scholes correlation (as defined in Linders and Schoutens [30]) is justi-
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Table 9 Calibrated VG parameters for different trading days

VG Parameters

S(0) T (days) σ ν θ

March 25,
2008

125.33 25 0.2981 0.5741 −0.1827

April 18, 2008 128.49 29 0.3606 0.5247 −0.2102

June 20, 2008 118.43 29 0.3587 0.4683 −0.1879

July 18, 2008 114.97 29 0.2639 0.5222 −0.1641

August 20,
2008

114.17 31 0.2467 0.3770 −0.1887
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Fig. 4 Option prices and implied volatilities (model and market) for Exxon Mobile and IBM on
June 20, 2008 based on the parameters listed in Table8. The time to maturity is 30 days

fied. Figure7 shows implied correlation curves for March, April, July and August,
2008. In all these situations, the time to maturity is close to 30 days. The calibrated
parameters for each trading day are listed in Table9.

We determine the implied correlation ρV G[π ] such that model and market
quote for an index option with moneyness π = K/S(0) coincide. However, the
model price is determined using the three-moments-matching approximation and
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Fig. 5 Implied correlation
smile for the Dow Jones,
based on a Gaussian (dots)
and a one-factor Variance
Gamma model (crosses) for
June 20, 2008
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may deviate from the real model price. Indeed, we determine ρV G[π ] such that
CMM

[
K, T; σ ,Θ, ρ [π ]

] = C[K, T ]. In order to test if the implied correlation esti-
mate obtained is accurate, we determine the model price Cmc

[
K, T; σ ,Θ, ρ [π ]

]

using Monte Carlo simulation, where we plug in the volatility parameters and the
implied correlation parameters. The results are listed in Table10 and shown in Fig. 6.
We observe that model and market prices are not exactly equal, but the error is still
acceptable.

5.2 Double Exponential

In the previous subsection, we showed that the Lévy copula model allows for deter-
mining robust implied correlation estimates. However, calibrating this model can
be a computational challenging task. Indeed, in case we deal with the Dow Jones
Industrial Average, there are 30 underlying stocks and each stock has approximately
5 traded option prices. Calibrating the parameter vector Θ and the volatility para-
meters σj has to be done simultaneously. This contrasts sharply with the Gaussian
copula model, where the calibration can be done stock per stock.

In this subsection we consider a model with the computational attractive calibra-
tion property of the Gaussian copula model, but without imposing any normality
assumption on the marginal log returns. To be more precise, given the convincing
arguments exposed in Fig. 7 we would like to keep L a V G(σ, ν, θ, μ) distribution.
However, we do not calibrate the parameter vector Θ = (σ, ν, θ, μ) to the vanilla
option curves, but we fix these parameters upfront as follows

μ = 0, θ = 0, ν = 1 and σ = 1.
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Table 10 Market quotes for Dow Jones Index options for different basket strikes on June 20, 2008

Basket strikes Market call prices Implied VG
correlation

VG call prices

94 24.45 0.8633 24.4608

95 23.45 0.8253 23.4794

96 22.475 0.786 22.4899

97 21.475 0.7358 21.4887

98 20.5 0.7062 20.5303

99 19.5 0.6757 19.5308

100 18.525 0.6546 18.5551

101 17.55 0.6203 17.5705

102 16.575 0.6101 16.6062

103 15.6 0.5778 15.6313

104 14.65 0.5668 14.6954

105 13.675 0.5386 13.7209

106 12.725 0.5266 12.7672

107 11.8 0.5164 11.8280

108 10.85 0.4973 10.8922

109 9.95 0.4989 9.9961

110 9.05 0.484 9.0813

111 8.2 0.4809 8.2202

112 7.35 0.4719 7.3519

113 6.525 0.4656 6.5193

114 5.7 0.4527 5.6755

115 4.95 0.4467 4.8908

116 4.225 0.4389 4.1554

117 3.575 0.4344 3.4788

118 2.935 0.4162 2.8118

119 2.375 0.4068 2.2337

120 1.88 0.3976 1.7227

121 1.435 0.3798 1.2977

122 1.065 0.3636 0.9549

123 0.765 0.3399 0.6906

124 0.52 0.3147 0.4793

125 0.36 0.3029 0.3517

126 0.22 0.2702 0.2321

127 0.125 0.2357 0.1479

For each price we find the corresponding implied correlation and the model price using a one-factor
Variance Gamma model with parameters listed in Table9
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Fig. 6 Dow Jones option prices: Market prices (circles) and the model prices using a one-factor
Variance Gamma model and the implied VG correlation smile (crosses) for June 20, 2008
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In this setting, L is a standardized distribution and its characteristic function φL is
given by

φL(u) = 1

1 + u2
2

, u ∈ R.

From its characteristic function, we see that L has a Standard Double Exponential
distribution, also called Laplace distribution, and its pdf fL is given by

fL(u) =
√
2

2
e− |u|√

2

The Standard Double Exponential distribution is symmetric and centered around
zero, while it has variance 1. Note, however, that it is straightforward to generalize
this distribution such that it has center μ and variance σ 2. Moreover, the kurtosis of
this Double Exponential distribution is 6.

By using the Double Exponential distribution instead of the more general
Variance Gamma distribution, some flexibility is lost for modeling the marginals.
However, the Double Exponential distribution is still a much better distribution for
modeling the stock returns than the normal distribution. Moreover, in this simplified
setting, the only parameters to be calibrated are the marginal volatility parameters,
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Fig. 8 Implied correlation smiles in the one-factor Variance Gamma and the Double Exponential
model
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which we denote by σ DE
j , and the correlation parameter ρDE . Similar to the Gaussian

copula model, calibrating the volatility parameter σ DE
j only requires the option curve

of stock j. As a result, the time to calibrate the Double Exponential copula model is
comparable to its Gaussian counterpart and much shorter than the general Variance
Gamma copula model.

Consider the DJ on March 25, 2008. The time to maturity is 25 days. We deter-
mine the implied marginal volatility parameter for each stock in a one-factor Vari-
ance Gamma model and a Double Exponential framework. Given this information,
we can determine the prices CV G[K, T ] and CDE[K, T ] for a basket option in a
Variance-Gamma and a Double Exponential model, respectively. Figure8 shows the
implied Variance Gamma and the Double Exponential correlations. We observe that
the implied correlation based on a one-factor VG model is larger than its Double
Exponential counterpart for a moneyness bigger than one, whereas both implied
correlation estimates are relatively close to each other in the other situation.

6 Conclusion

In this paper we introduced a one-factor Lévy model and we proposed a three-
moments-matching approximation for pricing basket options. Well-known
distributions like the Normal, Variance Gamma, NIG, Meixner, etc., can be used in
this one-factor Lévy model. We calibrate these different models to market data and
determine basket option prices for the different model settings. Our newly designed
(approximate) basket option pricing formula can be used to define implied Lévy
correlation. The one-factor Lévy model provides a flexible framework for deriving
implied correlation estimates in different model settings. Indeed, by employing a
Brownian motion and a Variance Gamma process in our model, we can determine
Gaussian and VG-implied correlation estimates, respectively. We observe that the
VG implied correlation is an improvement of the Gaussian-implied correlation.
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Appendix: Proof of Lemma 1

The proof for expression (9) is straightforward.
Starting from the multinomial theorem, we can write the second moment m2 as

follows

m2 = E
[
(w1S1(T) + w2S2(T) + . . . wnSn(T))2

]

= E

⎡

⎣
∑

i1+i2+...+in=2

2

i1!i2! . . . in!
n∏

j=1

(
wjSj(T)

)ij

⎤

⎦ .

Considering the cases (in = 0), (in = 1) and (in = 2) separately, we find

m2 = E

⎡

⎣

⎛

⎝
n−1∑

j=1

wjSj(T)

⎞

⎠

2

+ 2wnSn(T)

n−1∑

j=1

wjSj(T) + w2
j S2

n(T)

⎤

⎦ .

Continuing recursively gives

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)Sk(T)

]
. (15)

We then find that

m2 =
n∑

j=1

n∑

k=1

wjwkSj(0)Sk(0)

×E

[
exp

{
(2r − qj − qk − ωj − ωk)T + (σjAj + σkAk)

√
T
}]

=
n∑

j=1

n∑

k=1

wjwk
E
[
Sj(T)

]
E [Sk(T)]

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)E

[
exp

{
(σjAj + σkAk)

√
T
}]

.

In the last step,we used theExpressionωj = logφL

(
iσj

√
T
)

/T . Ifwe use expression

(1) to decompose Aj and Ak in the common component X(ρ) and the independent
components Xj(1 − ρ) and Xk(1 − ρ), we find the following expression for m2

m2 =
n∑

j=1

n∑

k=1

wjwk
E
[
Sj(T)

]
E
[
Sk(T)

]

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)E

[
e(σj+σk )X(ρ)eσj

√
TXj(1−ρ)eσk

√
TXk (1−ρ)

]
.

The r.v. X(ρ) is independent from Xj(1 − ρ) and Xk(1 − ρ). Furthermore, the char-
acteristic function of X(ρ) is φ

ρ

L , which results in
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m2 =
n∑

j=1

n∑

k=1

wjwk
E
[
Sj(T)

]
E [Sk(T)]

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)φL

(
−i(σj + σk)

√
T
)ρ

×E

[
eσj

√
TXj(1−ρ)eσk

√
TXk(1−ρ)

]
.

If j �= k, Xj(1 − ρ) and Xk(1 − ρ) are i.i.d. with characteristic function φ
1−ρ

L , which
gives the following expression for m2:

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)

]
E [Sk(T)]

⎛

⎝
φL

(
−i(σj + σk)

√
T
)

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

⎞

⎠

ρ

.

If j = k, we find that

E

[
eσj

√
TXj(1−ρ)eσk

√
TXk(1−ρ)

]
= φL

(
−i
(
σj + σk

)√
T
)

,

which gives

m2 =
n∑

j=1

n∑

k=1

wjwkE
[
Sj(T)

]
E [Sk(T)]

φL

(
−i(σj + σk)

√
T
)

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
) .

This proves expression (10) for m2.
We can write m3 as follows

m3 = E

⎡

⎣

⎛

⎝
n∑

j=1

wjSj(T)

⎞
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3⎤
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⎞
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2
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wlSl(T)

⎤

⎦ .

Using expression (15), we find the following Expression for m3:

m3 = E

⎡
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wjwkSj(T)Sk(t)

⎞

⎠
n∑

l=1

wlSl(T)

⎤

⎦

=
n∑
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[
Sj(T)Sk(T)Sl(T)

]
.
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Similar calculations as for m2 result in

m3 =
n∑

j=1

n∑

k=1

n∑

l=1

wjwkwlE
[
Sj(T)

]
E [Sk(T)]E [Sl(T)]

×
φL

(
−i(σj + σk + σl)

√
T
)ρ

φL

(
−iσj

√
T
)

φL

(
−iσk

√
T
)

φL

(
−iσl

√
T
)Aj,k,l,

where

Aj,k,l = E

[
eσj

√
TXj(1−ρ)eσk

√
TXk(1−ρ)eσl

√
TXl(1−ρ)

]
.

Differentiating between the situations (j = k = l), (j = k, k �= l), (j �= k, k = l),
(j �= k, k �= l, j = l) and (j �= k �= l, j �= l), we find expression (11).
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Pricing Shared-Loss Hedge Fund
Fee Structures

Ben Djerroud, David Saunders, Luis Seco and Mohammad Shakourifar

Abstract The asset management business is driven by fee structures. In the context
of hedge funds, fees have usually been a hybrid combination of two different types,
which has coined a well-known business term of “2 and 20”. As an attempt to
provide better alignment with their investors, in a new context of low interest rates
and lukewarm performance, a new type of fund fees has been introduced in the last
few years that offers a more symmetric payment structure, which we will refer to
as shared loss. In this framework, in return for receiving performance fees, the fund
manager provides some downside protection against losses to the investors.We show
that the position values of the investor and the hedge fundmanager can be formulated
as portfolios of options, and discuss issues regarding pricing and fairness of the fee
rates, and incentives for both investors and hedge fund managers. In particular, we
will be able to show that, from a present value perspective, these fee structures can
be set up as being favorable either to the hedge fund manager or to the investor. The
paper is based on an arbitrage-free pricing framework. However, if one is to take
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into account the value to the business that investor capital brings to a fund, which is
not part of our framework, it is possible to create a situation where both investors as
well as asset managers win.

Keywords Hedge funds · Fee structures · First-loss · Shared-loss · Black-Scholes
option pricing

1 Introduction

Hedge Funds are pooled investment vehicles overseen by a management company.
They generally aim at absolute return portfolios and their success is usually linked to
market inefficiencies, such as instrumentmispricing,misguidedmarket consensus or,
in general terms, themanager’s intelligence to anticipatemarketmoves. The nature of
these investments is that they exploit investment opportunities that are rare. This is a
characteristic that they share with private equity investments, but they share with the
mutual fund industry the fact that they often trade in liquid, marketable securities.
Fund sizes are more in line with private equity investing than with the mammoth
mutual fund industry. Their compensation structure, because of their limited access
to opportunity, is also more in line with the private equity universe, and usually
consists in a fixed, asset-based fee, and a variable, performance fee base. Because of
market conditions that have been in place over the last several years, in particular the
low interest rate environment, coupled with the lukewarm performance of the hedge
fund sector in the recent years, investors have become increasingly more sensitive
to fee structures. The traditional 2&20 fee structure, consisting of a flat fee of 2%
of assets under management together with a performance fee of 20% of net profits
is considered unfair on the basis of the asymmetry: the management company will
always earn a fee, whereas the investor is only guaranteed to pay that fee. The advent
of the 40-ACT funds1 has, in particular, dispensed with the performance fee base in
favor of a fixed management fee, which is more in line with the mutual fund industry
than with the hedge fund industry. This compensation model essentially rewards
funds for becoming asset gatherers instead of the alpha-seeking business the hedge
fund was set out to be. In this paper we will examine, from a quantitative perspective,
a suite of symmetric performance fee structures which are gaining traction with more
sophisticated investors, known as first-loss (or shared-loss) fee structures. In this new
framework, in return for receiving performance fees, the fundmanager provides some
downside protection against losses to the investors.

The issue of the incentives created by hedge fund fees bears much similarity
to issues surrounding the structure of executive compensation. At first glance, the
optionality inherent in both would seem to incentivize greater risk taking. However,
the reality is more subtle. Carpenter [2] studies the case of executive compensation,

1Pooled investment vehicles, enforced and regulated by the Securities and Exchange Commission,
that are packaged and sold to retail and institutional investors in the public markets.
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when the manager cannot hedge options provided as compensation by trading the
underlying. In certain conditions, a utility-maximizingmanagermaychoose to reduce
rather than increase the volatility of the underlying firm. Ross [9] gives necessary
and sufficient conditions for a fee schedule to make a utility-maximizing manager
more or less risk-averse. Hodder and Jackwerth [6] consider the effects of hedge
fund fee incentives on a risk manager with power utility, and also in the presence of
a liquidation barrier. They find that over a one-year horizon, risk-taking varies dra-
matically with fund value, but that this effect is moderated over longer time horizons.
Kouwenberg and Ziemba [7] consider loss-averse hedge fund managers and find that
higher incentive fees lead to riskier fundmanagement strategies. However, this effect
is reduced if a significant portion of the manager’s ownmoney is invested in the fund.
They further provide empirical evidence showing that hedge fundswith incentive fees
have significantly lower mean returns (net of fees), and find a positive correlation
between fee levels and downside risk. They find that risk is increasing with respect
to the performance fee if the manager’s objective function is based on cumulative
prospect theory, rather than utility, and provide empirical evidence. Recent work on
the analysis of hedge fund fee structures includes that of Goetzmann et al. [3], who
value a fee structure with a highwater mark provision, using a PDE approach with a
fixed investment portfolio, Panageas and Westerfield [8], who consider the portfolio
selection decision of maximizing the present value of fees for a risk-neutral manager
over an infinite horizon, and Guasoni and Obłój [4], who extend this work to man-
agers with risk-averse power utility. Closest to the current work is He and Kou [5],
who analyze shared-loss fee structures for hedge funds by looking at the portfolio
selection decision of a hedge fund manager whose preferences are modeled using
cumulative prospect theory. The problem is considered in the presence of a man-
ager investing in the fund, and with a predetermined liquidation barrier. Analytical
solutions of the portfolio selection problem are provided, and the result (cumulative
prospect theory) for both the investor and the manager is examined. It is found that
depending on the parameter values, either a traditional fee structure or a first-loss
fee structure may result in a riskier investment strategy. While for some parameter
values, the first-loss structure improves the utility of both the investor and the hedge
fund manager, they find that for typical values, the manager is better off, while the
investor is worse off. In this paper, we investigate the shared-loss fee structures from
the perspective of risk-neutral valuation, with no further assumptions about investor
preferences, while He and Kou [5] solve the stochastic control problem (under the
real-world measure) corresponding to the manager maximizing the utility function
from cumulative prospect theory, and also evaluate the investor’s payoff using the
same type of criterion.

The paper is organized as follows. First, we will review the traditional fee struc-
tures in some detail. Next, wewill introduce the notion andmechanics of the first-loss
structures, and a framework for a fee pricing based on the theory of option price val-
uation. After that, we will introduce the concept of net fee, a number that will allow
us to determine whether the investor or the management company is the net winner
in a given fee agreement. Finally, we will present a set of computational examples
that will display the net fee as a function of the agreement and market variables.
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2 Hedge Fund Fees

The hedge fund manager charges two types of fees to the fund investors:

• A fixed management fee, usually ranging from 1% to 2% of net asset values.
• A performance fee, most commonly equal to 20% of net profits obtained by the
fund.

In this paper we assume a single investor and a single share issued by the fund.
The extension to the case of multiple investors andmultiple shares is straightforward.
Although fees are paid according to a determined schedule (usually monthly or
quarterly for management fees and annual for performance fees), we will assume a
single payment at the end of a fixed term T .

The fund value evolution and fee payment mechanics are denoted as follows: the
initial fund supplied by the investor is X0. The hedge fund manager then invests fund
assets to create future gross values Xt , for t > 0. The gross fund value Xt is split
between the investor’s worth It (the net asset value) and the manager’s fee Mt :

Xt = It + Mt .

At time 0, X0 = I0 and M0 = 0.
There are countless variations to this basic framework, including hurdles, claw-

backs, etc. (for more details on first-loss arrangements see Banzaca [1]). We will
ignore those and assume the commonly used version of a management fee equal to
m · X0 (m represents a fixed percentage of the initial investment by the investor), and
a performance fee of

α · (XT − (1 + m)X0))+ ,

payable only when it is positive, and equal to zero when it is negative. Hence,

MT = m · X0 + α · (XT − (1 + m)X0)+) (1)

In other words, while the management fee is a fixed future liability to the investor,
the performance fee is a contingent claim on the part of the manager. As a conse-
quence, we will be pricing the management fee simply as a fixed guaranteed fee with
a predetermined future cash value, and we will be valuing the performance fee as
the value of a certain call option. In our setting, we will assume normally distributed
log-returns for the invested assets Xt , which allows us to value the performance fee in
the Black–Scholes framework. It is worth mentioning that hedge funds managers can
speculate on volatility, credit risks, etc. and in contrast to the traditional money man-
agers, they can go long and short. The diversity in investment styles and the different
levels of gross and net exposure that they can employ could result in leptokurtic (non-
normal) properties in their returns, which is revealed through frequent large negative
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returns to the left of the return distribution. Generalization of the current framework
to models that account for non-normality of the hedge fund returns, for example
by employing generalized autoregressive conditional heteroskedasticity (GARCH)
models, could be a subject for future research.

3 The First-Loss Model

Calpers announced in 2014 that they were exiting hedge fund investments WSJ [10].
While not the main stated reason for their decision, one they mentioned was high
fees payable to their hedge fund managers, something that has caught the attention
of investors worldwide in the contemporary context of a widely accepted notion that
hedge fund fees nowadays are too high. Certain hedge funds are reacting to this
shifting balance of power between the sell-side and the buy-side of the investment
business with the creation of innovative fee structures which still reward the intel-
lectual capital of the hedge fund manager and allow for business growth but at the
same time offer the investor a more symmetric compensation structure.

An example of a first-loss structure is the following:

• The investor provides an investment of $100M to a fund.
• The fund manager will absorb the first-loss up to 10% of the initial investment.
• The investor pays a management fee of 1% to the manager, and performance fee
of 50%.

In our paper we will present a quantitative comparison of the fees payable to
the manager and the risk-neutral valuation of the guarantee offered to the investor.
We want to note, for the sake of completeness, that there are many other qualitative
considerations which are relevant when analyzing both the fee structure as well as
the business value offered to a management company by the investor, which are not
the objective of this paper. In fact, hedge fund start-ups have become more difficult
in recent times, increasing value to any investor action that allows a hedge fund
business to succeed. That value is linked to a wide variety of fund characteristics,
including the size of assets under management (AUM), the track record, or historical
performance, and the reputation of its investor base, among others.

In addition to the initial investment X0, themanagement feem and the performance
fee α, payable at a fixed time horizon T , we will now also consider a deposit amount
c, as a percentage of the initial investment X0, which the manager will provide as
a guarantee for losses. Our objective is to analyze the relationship between all four
variables to determine whether the investor, or the manager, is the net winner of
value-add from a risk-neutral valuation perspective.
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4 An Option Pricing Framework

The fund value Xt is split between the investors It and the manager Mt , where,
Xt = It + Mt . In the following sub-sections we derive the payoff function of each
player separately, and then price the positions accordingly.

4.1 Payoff to the Investor

The payoff to the investor at the terminal time T is:

IT =

⎧
⎪⎨

⎪⎩

XT − mX0 − α(XT − mX0 − X0) when XT − mX0 ≥ X0

X0 when (1 − c)X0 ≤ XT − mX0 ≤ X0

XT + (c − m)X0 when XT − mX0 ≤ (1 − c)X0

or, writing the payoff in a more compact form:

IT = XT − mX0 (pays a management fee)
−α(XT − mX0 − X0)+ (pays a performance fee)

+(X0 − XT + mX0)+ − ((1 − c)X0 − XT + mX0)+ (receives a guarantee)

Thus, we see that the position of the investor is equivalent to the following portfolio:

• A position in the hedge fund assets, with initial investment X0, less management
fee, that is, X0 − mX0.

• A short position in α call options on the hedge fund assets, with strike price
X0 + mX0 (the performance fee, or performance call option, given to the hedge
fund manager).

• A long position in a put option on the fund assets, with the strike price X0 + mX0

(the insurance put option).
• A short position in a put option on the fund assets, with strike price (1 − c)X0 +
mX0 (yielding a cap on the insurance payment).

4.2 Payoff to the Manager

The payoff to the manager is MT = XT − IT . In other words, the payoff to the
hedge fund manager results from the manager having the opposite position in all of
the options of the investor. More explicitly,
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MT = mX0 (receives a management fee)
+α(XT − mX0 − X0)+ (receives a performance fee)

−(X0 − XT + mX0)+ + ((1 − c)X0 − XT + mX0)+ (provides a guarantee)

which implies that the hedge fund manager has a portfolio of options consisting of:

• A constant position in the fixed management fee of mX0.
• A long position in α call options on the hedge fund assets, with strike price X0 +
mX0.

• A short position in a put option on the fund assets, with the strike price X0 + mX0.
• A long position in a put option on the fund assets, with strike price (1 − c)X0 +
mX0.

Note that net income to the management company is now no longer guaranteed
to be positive. In addition, since the options trades constitute a zero-sum game (the
positions of the manager and the investor are opposite each other), the sum of the
investor payoff and the manager payoff is equal to XT .

4.3 Valuation: Pricing Fees as Derivatives

In this section, we will value the positions of the investor and the hedge fund man-
ager using a simple Black–Scholes model for the underlying fund value process. In
particular, we employ risk-neutral valuation, and assume that under the risk-neutral
probabilities, the fund value process satisfies the stochastic differential equation:

dXt = r Xt dt + σ Xt dWt , (2)

with solution:
Xt = X0 exp

(
(r − σ 2

2 )t + σWt

)
(3)

where Wt is a standard Brownian motion, and r and σ are positive constants, giving
the continuously compounded risk-free interest rate and the volatility of the hedge
fund assets respectively. It should be noted that the Black–Scholes framework is
applicable to our context as the underlying, that is the fund value, can be dynamically
traded. Moreover, in a managed account context, even the liquidity of the fund can
be made to match the liquidity of the underlying traded securities.

The Black–Scholes formula can be used to derive the price of the investor’s
position under the Black–Scholes model:

VI (0) = X0 − e−rTmX0 − αC(X0, T, X0 + mX0, r, σ )

+P(X0, T, X0 + mX0, r, σ ) − P(X0, T, (1 − c)X0 + mX0, r, σ ) (4)

whereC(X, T, K , r, σ ) is the Black–Scholes price of a call option on a non-dividend
paying asset with current value of the underlying X , time to expiration T , strike price
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K , risk-free interest rate r and volatilityσ , and P(X, T, K , r, σ ) is theBlack–Scholes
put option price with the same parameters as arguments.

5 Consequences of the Derivative Pricing Framework

5.1 Graphical Analysis

To compare and contrast the traditional and shared-loss fee structures, in our base case
we take the investment horizon to be one month, that is T = 1/12, the performance
fee α = 50%, the manager deposit c = 10%, the risk-free interest rate r = 2%, the
volatility σ = 15%, and the initial investment X0 = $1. For simplicity and without
loss of generality we assume a zero management fee for our base case.

With our base case parameters, the total value of the investor’s payoff is 1.0073,
and the value of the manager’s payoff is −0.0073. Notice that the value of the
investor’s payoff is greater than the initial investment of 1. In contrast, the price of the
traditional investor payoff (without the insurance part of the payoff—i.e. removing
both put options) is 0.9909, and the value of the manager’s payoff in this instance is
0.0091.

5.1.1 Payoff Functions of the Investor and the Manager

The payoff functions of the investor under the shared-loss and the traditional fee
structures are given in Fig. 1. The payoff to the hedge fund manager using the afore-
mentioned benchmark values and under the shared-loss fee structure is also depicted
in Fig. 2 along with the traditional payoff structure with only the performance fee
α(XT − X0)+. Observe that since the options trades constitute a zero-sum game (the
positions of the manager and the investor are opposite each other), the sum of the
investor payoff and the manager payoff is equal to XT .

Figure3 illustrates the ‘fair performance fee’, where investor gets a payoff with
present value equal to his initial cash injection, X0, given volatility and manager’s
deposit levels, i.e. we setVI (0) = X0. The fair performance fee can be easily obtained
from Eq. (4) as,

αfair = −e−rT mX0 + P(X0, T, X0 + mX0, r, σ ) − P(X0, T, (1 − c)X0 + mX0, r, σ )

C(X0, T, X0 + mX0, r, σ )

Interested reader can derive explicit, well-known expressions for the sensitivities
of the αfair relative to different parameters in terms of the Greeks and Vega of the
involving options. As can be seen from the figure, for small values of volatility, the
fair performance fee is indifferent to the levels of manager’s deposit; however, as
volatility increases, a higher level of deposit by the manager translates into a higher
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Fig. 2 Payoff for the hedge fund manager

performance fee paid by the investor to make the deal a fair one. In Fig. 4, we
normalize the volatility on the horizontal axis by the manager’s deposit defined as a
percentage of the initial investment X0. For a given level of deposit, the higher the
volatility of the underlying investment, the higher the probability that the loss incurred
by the manager exceeds the deposit. In other words, the probability that the manager
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Fig. 4 Fair performance fee versus normalized (by deposit) volatility

exercises the put option offered by the investor increases, which results in a reversal
in the fair performance fee for higher levels of volatility. This is clearly illustrated
in Fig. 4 where volatility and deposit are combined in a single scaling variable, that
is, volatility/deposit, where the deposit is expressed as a percentage of the initial
investment X0. The corresponding maximum value for the fair performance fee
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increases with the size of the deposit; that’s because for higher deposits, the manager
will have to lose more and more before the investor starts bearing the residual loss,
therefore his compensation should be higher accordingly. Note that the x-axis in
Figs. 3 and 4 is incorporating the annual volatility of the fund assets; however, the
performance fee is crystallized on a monthly basis which suggests a comparison
between the deposit level and monthly volatility, as opposed to annual volatility.
Since returns are assumed to follow a normal distribution in our Black–Scholes
framework, one can explicitly calculate the probability of the returns falling into a
certain interval, in particular, with about 68% probability, the return falls within 1
standard deviation of the mean. This explains why the curves for various deposits
reach a maximum roughly around the same level of (annual) volatility/deposit ratio,
in the [1, 2] interval.

5.2 Sensitivity Analysis

In this section, we perform a sensitivity analysis of the prices of the investor’s and
manager’s payouts, as a function of the different model parameters.

5.2.1 Volatility (σ )

Figure 5 shows the value of the investor’s position as a function of the volatility
parameter σ , as σ ranges from 5% to 60%.
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Fig. 5 Value of the investor’s position versus volatility σ
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We see that the position is initially an increasing function of the volatility, owing
to the increasing value of the investor’s put option as a function of σ . However, as
the volatility becomes very large, the value of the investor’s position starts to decline
as the hedge fund’s call option, as well as its put option, become more valuable. The
maximum value for the investor occurs at a volatility around σ = 32.5%. Observe
however, that the value is relatively insensitive to the level of σ , with a minimum
value of 1.0016, and a maximum value of 1.0118.

5.2.2 Manager Deposit (c)

We varied the manager deposit between 1% and 25%, while holding all other para-
meters at their base case values. The results of the sensitivity analysis are shown in
Fig. 6.

Aswould be expected, the value of the investor’s position is an increasing function
of the manager’s deposit. The value of the position is equal to one (break-even point,
or ‘fair fee point’) at around c = 0.0233. Any deposit level less than c = 0.0233 puts
the investor at a disadvantage, and the investor is indifferent to deposit levels higher
than 10%.

0 0.05 0.1 0.15 0.2 0.25
0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

Trader Deposit

In
ve

st
or

 V
al

ue

Shared Loss

Fig. 6 Value of the investor’s position versus manager’s deposit c



Pricing Shared-Loss Hedge Fund Fee Structures 381

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

Expiration Date

In
ve

st
or

 V
al

ue

Shared Loss

Traditional

Fig. 7 Value of the investor’s position versus the expiration date T

5.2.3 Maturity Date (T )

The dependence on the time to maturity is of interest specially when adapting the
results of this paper to realistic situations. As wementioned earlier, our mathematical
assumption is that fees will be paid at a fixed time in the future. In practice, fees are
payable according to calendars agreed between the investors and the manager. In the
graphs that follow, we address this by varying the expiration date T from 1 day to 1
year. The results are shown in Fig. 7.

Initially, the value of the position is increasing in T , but eventually, it begins to
decrease in T , as the options given to the hedge fundmanager becomemore valuable.
The maximum value of the investor’s position occurs at T around one quarter of a
year (T ∼ 0.22).

6 Conclusion

The exchange of business value between the manager and the investor is always a
complex one: beyond fees paid, there are intangibles the investor gives the manager.
An asset management business is valued taking into account many factors, such
as track records, years in business, assets under management, the reputation of its
investors, and of course fees. In this paper we focus on first-loss fee structures, which
are bringing novel points of attention between investors and hedge fund managers
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in the historical discussions on fair compensation. We focus only on the fee payable
by the investor and the guarantee offered by the manager, which is the main novelty
in this set up. The main challenge in this new paradigm is to evaluate the value of
the guarantee offered by the hedge fund manager in relation to the fee paid by the
investor. In this paper, we developed a mathematical approach to compare the two
features of guarantee and performance fee from an option pricing perspective. The
framework is flexible and can be used for different specific investment settings and
can account for slight variations from one fund to another. Our salient leitmotif is:
fee agreements must be structured to be attractive to managers so they are willing to
participate, and at the same time provide a cushion against losses to the investor. A
significant contribution, that sheds light on the road-map and paves theway for deeper
investigations, is to see, andmore importantly formulate, the underlying fee structure
from the lens of option valuation. By employing a risk-neutral framework and options
pricing theory, one is able to not only price, but also analyze the sensitivity of the
value of the investor’s and manager’s positions in reference to a set of influential
parameters.
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Negative Basis Measurement: Finding
the Holy Scale

German Bernhart and Jan-Frederik Mai

Abstract Investing into a bond and at the same time buying CDS protection on the
same bond is known as buying a basis package. Loosely speaking, if the bond pays
more than the CDS protection costs, the position has an allegedly risk-free positive
payoff known as “negative basis”. However, several different mathematical defini-
tions of the negative basis are present in the literature. The present article introduces
an innovative measurement, which is demonstrated to fit better into arbitrage pric-
ing theory than existing approaches. This topic is not only interesting for negative
basis investors. It also affects derivative pricing in general, since the negative basis
might act as a liquidity spread that contributes as a net funding cost to the value of a
transaction; see Morini and Parampolini (Risk, 58–63, 2011, [23]).

Keywords Negative basis measurement · Bond-CDS basis · Hidden yield

1 Introduction

On first glimpse, it is surprising that investing into a bond and buying CDS protection
on that underlying bond, henceforth called a basis package, can earn an attractive
spread on top of the risk-free rate of return, as it appears to be free of default risk.
This excess return over the risk-free rate is informally called negative basis1; more
formal definitions are given in the main body of this article. [8] has even devoted an
entire book to the topic. If, conversely, the cost of CDS protection exceeds the bond
earnings, one speaks of a positive basis. In this article, we only speak of negative
bases, as fundamentally the concepts of positive and negative basis are simply inverse.

1Sometimes also called bond-CDS basis.;
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The appropriatemeasurement of negative basis plays an important rolewith regard
to the cost of funding literature, which has become of paramount interest in the
financial industry since the recent liquidity crisis. Generally speaking, this stream
of literature reconsiders the pricing of derivatives under the new post-crisis funda-
mentals regarding funding, liquidity, and credit risk issues. Substantial contributions
have been made, among others, by [5, 7, 12, 13, 23, 27, 29]. Loosely speaking, most
references agree upon the fact that, at least under certain simplifying assumptions
(full, bilateral, and continuous collateralization), derivative contracts can be evalu-
ated in the traditional way, only the involved discount factors have to be adjusted by
means of a spread accounting for funding and liquidity charges. In particular, [23]
show in a simple, theoretical framework that the negative basis is a spread which
plays an essential role in this regard. In order to set these theoretical findings into
action in the industry’s pricing machinery, it is therefore an essential task to establish
viable and reasonable measurements for the negative basis. The present article shows
that this topic is not only important but also challenging, and contributes a careful
comparison of three different measurement methods. In particular, we point out why
the most common measurement approaches (denoted by (Z) and (PE) below) are not
recommended, and propose a decent alternative.

In the present article, we take the point of view of a negative basis investor whose
goal is to detect interesting negative basis positions and to monitor the evolution of
such investments over time. Alternatively, consider a bank which has to evaluate its
derivative book. As the aforementioned references show that the required discount
factors for the pricing algorithms might have to be adjusted by means of the negative
basis, one faces the task of measuring this negative basis appropriately. For the
effective implementation of these tasks, it is crucial to come up with a reliable and
viable, yet reasonable mathematical definition of what the negative basis actually
is. Specific focus is put on simple-to-implement approaches that rely on commonly
applied pricing methodologies for bonds and CDS, described in, e.g., [18, 25]. In
total, we discuss three different measurements (two traditional and one innovative):

• Difference between Z-spread of the bond and CDS running spread, as presented,
e.g., in [8], and defined by Bloomberg on the screen YAS.

• Par-equivalent CDS-methodology, as described in the Appendix of [2], who apply
this definition for an empirical study, see also [3].

• A hidden yield approach that assumes the risk-free discounting curve to be a
reference interest rate curve shifted by the (initially unknown) negative basis.

Important to note is that, according to all these definitions, a negative basis is assigned
to a bond, not to an issuer. This means that two different bonds issued by the same
company are allowed to have two different negative bases. This viewpoint stands
in glaring contrast to some of the more macro-economic considerations carried out
in references cited in the next section. CDS protection typically refers to a whole
battery of eligible bonds by a reference issuer, and normally the major driver for
CDS spreads is considered to be the issuer’s default risk. However, some of the
deliverable bonds might trade at diverse yields for reasons other than the issuer’s
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default risk—for instance legal issues, liquidity issues, or funding issues, cf. [21]
and Sect. 2.

The rest of this article is organized as follows. Section2 recalls reasons for the
existence of negative basis. Section3 introduces general notations, which are used
throughout the remaining sections. Section4 reviews the traditional methods (Z) and
(PE), Sect. 5 discusses the innovative method (HY), and Sect. 6 concludes.

2 Why Does Negative Basis Exist?

There are a couple of intuitive explanations for the existence of negative basis, see,
e.g., [1, 2, 4, 6, 10, 19, 24, 26, 30]. For the convenience of the reader, we briefly
recall some of them in the sequel.

• Liquidity issues: Some bond issues are distributed only among a few investors.
If one of these investors has to sell her bonds, for instance due to regulatory
requirements or demand for liquidity, supply may exceed demand and thus the
price of the bond must drop significantly in order for the bond to be sold. At the
same time the CDS price might remain unaffected.

• Funding costs: From a pure credit risk perspective, selling CDS protection eco-
nomically is the same risk as buying the underlying bond. However, buying a bond
requires an initial investment that must be funded, whereas selling CDS protection
typically requires much less initial funding (unless the CDS upfront exceeds the
bond price). Therefore, in times of high funding costs there is an incentive to sell
CDS rather than to buy bonds, which might lead to an increase in supply of CDS
protection, making it cheap relative to bond prices.

• Market segmentation: Empirical observations suggest that bond trades some-
times have larger volumes and might be motivated much less by quantitative
aspects thanCDS trades.Arguing similarly, [6, p. 5, l. 5–7] conjecture that“market-
implied [risk] measures have a stronger impact on the CDSmarket, while the more
easily available rating information affects the bond market more strongly”. Such
instrument-specific differences might contribute to the existence of negative basis.

• Legal risk: The bond of the negative basis position might bear certain risks that
cannot be protected against by means of a CDS. Examples are certain collective
action clauses, debt restructuring events, or call rights for the bond issuer. Such
“legal gaps” explain parts of the negative basis.

• Counterparty credit risk: A joint default of both the CDS counterparty and the
issuer of the bond could lead to a loss for the basis position.2 These potential losses
imply that CDS protection is not 100% and consequently might contribute to the
negative basis, see, e.g., [5, 22].

• Mark-to-market risk: The negative basis might further increase after one has
entered into the position, due to one of the aforementioned reasons. In this case, one

2However, counterparty credit risk can be reduced significantly by a negative basis investor when
the CDS is collateralized, which is the usual case.
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loses money due to mark-to-market balancing. In theory, one gets this money back
eventually, but it might occur that mark-to-market losses exceed one’s personal
tolerance level during the bond’s lifetime. In this case, one has to exit the position
and realize the loss. This risk is especially significant if the negative basis position
is levered (which has happened heavily during the financial crisis). Part of the
negative basis might be viewed as a risk premium for taking this mark-to-market-
risk.

Basis “arbitrageurs” are investors that try to earn the negative basis by investing
into basis packages. This means that they consider the negative basis an adequate
compensation for taking the aforementioned risks. In classical arbitrage theory, their
appearance improves trading liquidity. Counterintuitively, however, [9] argue that
the advent of CDS was detrimental to bond markets and [20] find some evidence that
basis arbitrageurs bring new risks into the corporate bond markets.

3 General Notations

All definitions to follow rely on the pricing of CDS and a plain vanilla coupon bond
according to the most simple mathematical setup we can think of. This is in order
to make the article as reader-friendly as possible; furthermore, we think the setup
is already rich enough in order to convey the main ideas. The only randomness
considered in the present article is the default time of the bond issuer, which is
formally defined on a probability space (Ω,F ,Q), with state space Ω , σ -algebra
F , and probabilitymeasureQ. Expected valueswith respect to the pricingmeasureQ
are denoted byE. The default intensityλ(.) of the issuer’s default time τ is assumed to
be deterministic, i.e. Q(τ > t) = exp(− ∫ t

0 λ(s) ds). Sometimes the function λ(.) is
constant, sometimes piecewise constant, depending on our application. For example,
the computation of a so-called Z-spread requires λ(.) to be constant,3 whereas the
joint consistent pricing of several CDS quotes with different maturities requires λ(.)

to be piecewise constant.
Generally speaking, it is our understanding that a negative basis is a measure

for the mispricing between CDS and bonds with respect to default risk alone. This
explains why considering the default time as the sole stochastic object corresponds
to the most minimal modeling approach possible. Besides the non-randomness of the
default intensity, the following further simplifying assumptions are taken for granted
throughout:

• We ignore recovery risk: Upon default, the bond holder receives the constant
proportionR ∈ [0, 1] of her nominal. Default is assumed to instantaneously trigger
a credit event of the CDS. The bond is assumed to be a deliverable security in
the auction following the CDS trigger event, and the auction process is assumed
to yield the same recovery rate R. Although this is an unrealistic assumption in

3See below in Step 3 of Definition 1.
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principle (see, e.g., [17]), a negative basis investor can always eliminate recovery
risk by delivering his bonds into the auction (physical settlement), in which case
he gets compensated by the (nominal-matched) CDS for the nominal loss of the
bond.4 Consequently, our assumption is not severe for the present purpose.

• We ignore interest rate risk: The discounting curve is deterministic and the discount
factors are denoted by DF(t) := exp(− ∫ t

0 r(s) ds) with some given deterministic
short rate function r(.). All presented negative basis figures are measurements
relative to the applied short rate function r(.).

Under these assumptions we introduce the following notations:

• t(B)
j denotes the coupon payment dates of the bond.

• The bond’s lifetime is denoted by T , i.e. T denotes the last coupon payment
date, which at the same time is the redemption date. Moreover, the bond is
assumed to pay a constant coupon rate C at each coupon payment date.

• t(C)
i denotes the payment dates of the considered CDS contracts, which typically
are quarterly on the 20th of March, June, September, and December, respectively,
according to the terms and conditions of ISDA standard contracts.5

• For a CDS with maturity T , the (usually standardized) running coupon is denoted
by s(T) and the upfront payment to be made at CDS settlement by upf(T).

• The expected discounted value of the sum of all premium payments to be made
by the CDS protection buyer (the premium leg) is denoted by6

EDPL(λ(.), r(.), s(T), upf(T),T)

:= upf(T) + s(T)
∑

0<t(C)
i ≤T

(
t(C)
i − t(C)

i−1

)
DF

(
t(C)
i

)
Q

(
τ > t(C)

i

)

= upf(T) + s(T)
∑

0<t(C)
i ≤T

(
t(C)
i − t(C)

i−1

)
DF

(
t(C)
i

)
e− ∫ t(C)

i
0 λ(s) ds.

• The expected discounted value of the sum of all default compensation payments
to be made by the CDS protection seller (the default/protection leg) is denoted by

EDDL(λ(.), r(.),R,T) : = (1 − R)E[1{τ≤T} DF(τ )]
= (1 − R)

∫ T

0
DF(y) λ(y) e− ∫ y

0 λ(s) ds dy.

4Interestingly, a mismatch between bond and CDS recovery is often favorable for the negative basis
investor, since the CDS recovery rate tends to be lower than the bond recovery, see, e.g., [14]. Thus,
it might make sense for a negative basis investor to opt for cash settlement of the CDS and sell his
bonds in the marketplace, speculating on a favorable recovery mismatch.
5See http://www2.isda.org/asset-classes/credit-derivatives/.
6For the sake of notational convenience we ignore accrued interest upon default, which can, of
course, be incorporated easily.

http://www2.isda.org/asset-classes/credit-derivatives/
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• The model price of the bond is given by

Bond(λ(.), r(.),R,C,T) := C
∑

0<t(B)
j ≤T

(
t(B)
j − t(B)

j−1

)
DF

(
t(B)
j

)
Q

(
τ > t(B)

j

)

+ DF(T)Q(τ > T) + RE[1{τ≤T} DF(τ )]

= C
∑

0<t(B)
j ≤T

(
t(B)
j − t(B)

j−1

)
DF

(
t(B)
j

)
e−

∫ t(B)
j

0 λ(s) ds

+ DF(T) e−
∫ T
0 λ(s) ds + R

∫ T

0
DF(y) λ(y) e−

∫ y
0 λ(s) ds dy.

4 Traditional Measurements

4.1 The Z-Spread Methodology

The main idea of the Z-spread methodology is to define the negative basis as the
difference between (expected) annualized bond earnings and annualized protection
costs. This method is described, e.g., in [8]. The negative basis NB(Z) is computed
by the following algorithm.

Definition 1 (Negative Basis (Z))

1. A reference discounting curve, resp. the associated short rate r(.), is chosen and
used in all subsequent steps, e.g. bootstrapped from quoted prices for interest rate
derivatives according to one of the methods described in [15, 16].

2. From a term structure of quotedCDSwith differentmaturities, piecewise constant
intensities λ(.) are bootstrapped, as described, e.g., in [25]. For this, a recovery
assumption is made, i.e. R is model input.7

3. Denoting by B the quoted market price of the bond, the bond’s Z-spread z is
defined as the root of the function8

x �→ Bond(x, r(.), 0,C,T) − B, (1)

7If CDS prices are quoted in running spreads with zero upfronts, then these quotes typically come
naturally equippedwith a recovery assumption that is required in order to convert the running spreads
into actually tradable standardized coupon and upfront payments. However, after this conversion
the recovery rate is a free model parameter.
8For a reader-friendly explanation of the Z-spread see [28]. In particular, it is useful to observe that
Bond(x, r(.),R,C,T) = Bond(0, r(.) + x,R,C,T) for R = 0, implying that the Z-spread equals
a constant default intensity under a zero recovery assumption.
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if existent. In words, the Z-spread is the amount by which the reference short rate
r(.) needs to be shifted parallelly in order for the discounted bond cash flows to
match the market quote. The root, whenever existing at all, is unique.

4. The (zero-upfront) running CDS spread s(T) for a CDS contract, whose maturity
matches the bond’s maturity, is defined as

s(T) := EDDL(λ(.), r(.),R,T)

EDPL(λ(.), r(.), 1, 0,T)
,

i.e. the fair running spread when no upfront payment is present.
5. NB(Z) := z − s(T).

Intuitively, the Z-spread z is a measure of the annualized excess return of the bond
on top of the “risk-free” rate r(.), whereas s(T) is the annualized CDS protection
cost. Hence, NB(Z) equals the difference between earnings and costs (expected in
case of survival). If the function (1) does not have a root in (0,∞), this means that
the bond is less risky than the default risk intrinsic in the chosen discounting curve
r(.). Especially since the liquidity crisis, when the interbank money transfer ran
dry, significant spreads between discounting curves obtained from overnight rates
and LIBOR-based swap rates are observed. Consequently, one could recognize, e.g.,
German government bonds with a “negative Z-spread” with respect to the interest
rate curve r(.), which was obtained from 6-month EURIBOR swap rates. For such
reasons it has become market standard to extract the “risk-free” discounting curve
from overnight rates rather than from LIBOR-based swap rates. Moreover, [19] point
out that the difference between bond yields and CDS spreads can depend on whether
treasury rates or swap rates are used for discounting. Since negative basis investors
are typically trading in the high yield sector, the function (1) normally does have
a root in (0,∞) for several canonical choices of r(.), be it extracted from swap
rates with overnight tenor, 3-month tenor, or 6-month tenor. But it is important to
stress that all presented negative basis measurements are always relative measures
depending on the applied interest rate curve r(.).

The Z-spread methodology has some drawbacks:

• Imprecision: Earnings and costs are not measured accurately, but only approxi-
mately. TheZ-spread is only a rough estimate for the expected annualized earnings,
and the zero-upfront running CDS spread is also not really tradable, but only a
fictitious quantity. Furthermore, the Z-spread is earned on the bond value, whereas
the CDS spread is paid on the (bond and) CDS nominal, which may result in a
nonsense measurement for bonds trading away from par, see Example1 below.
To this end, [10] proposes to replace the Z-spread by an asset swap spread. It is
possible to define more accurate measurements of earnings and costs taking into
account actual cash flows. However, in the present article we do not elaborate on
these fine-tunings, since the “earnings and costs”-perspective in general suffers
from the following second difficulty.

• Inaccurate hedge: The measurement assumes that bond and CDS have the
same maturity and nominals and furthermore implicitly assumes a survival
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until maturity. Upon a default event the PnL of the position might be considerably
different, depending on the timing of the default, see Fig. 1 in Example1 below.
Hence, the assumedCDShedge cannot really be considered to be default-risk elim-
inating (it might either profit from or lose on a default event), and consequently
the number NB(Z) does not deserve to be called a return figure after elimination of
default risk, which the negative basis should be in our opinion.

4.2 The Par-Equivalent CDS Methodology

The par-equivalent CDS methodology is described in the Appendix of [2]. A similar
idea is also outlined in [8, p. 101 ff] and [3]. The negative basis NB(PE) is computed
along the steps of the following algorithm.

Definition 2 (Negative Basis (PE))

1. A reference discounting curve, resp. the associated short rate r(.), is chosen and
used in all subsequent steps, e.g. bootstrapped from quoted prices for interest rate
derivatives according to one of the methods described in [15, 16].

2. From a term structure of CDS contracts on the reference entity, piecewise constant
intensities λ(.) are bootstrapped, as described, e.g., in [25]. For this a recovery
assumption is made, i.e. R is model input.

3. The (zero-upfront) running CDS spread s(T) for a CDS contract, whose maturity
matches the bond’s maturity, is defined as

s(T) := EDDL(λ(.), r(.),R,T)

EDPL(λ(.), r(.), 1, 0,T)
,

i.e. the fair running spread when no upfront payment is present.
4. Denoting by B the quoted market price of the bond, a shift z̃ is defined as the root

of the function
x �→ Bond(λ(.) + x, r(.),R,C,T) − B,

if existent. In words, the bond is priced with the default intensities λ(.) that are
consistent with CDS quotes, which are then shifted parallelly until the bond’s
market quote is matched.

5. A second (zero-upfront) running CDS spread s̃(T) for a CDS contract, whose
maturity matches the bond’s maturity, is defined as

s̃(T) := EDDL(λ(.) + z̃, r(.),R,T)

EDPL(λ(.) + z̃, r(.), 1, 0,T)
,

i.e. the fair spread when no upfront payment is present, but now with the shifted
intensity rates λ(.) + z̃, which are required in order to price the bond correctly.

6. NB(PE) := s̃(T) − s(T).
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The main idea of (PE) is to question the default probabilities bootstrapped from
the given CDS quotes, and to adjust them in order to match the bond quote. On
a high level, this negative basis measurement is based on the difference between
default probabilities that are required in order to match the bond price and default
probabilities that are required in order to fit the CDS quotes.

The methodology (PE) has some drawbacks:

• No link to arbitrage pricing theory: In our view, there is no convincing economic
argument as to why two different survival functions for the same default time
should be used. In particular, the method provides no joint pricing model for bond
and CDS that explains the negative basis as one of its parameters. The method is
“decoupled” from arbitrage pricing theory.

• No link to “earnings and costs”-perspective:Unlike the method (Z), the method
(PE) does not have a clear link to an earningsmeasure above a reference rate,which
is what the negative basis is informally thought of.

5 An Innovative Methodology

In our opinion, the negative basis should be a spread on top of a reference discounting
curve which can be earned without exposure to default risk. This means we question
the usual assumption that the applied discounting curve r(.) is the appropriate risk-
free rate to be used, because there is actually a higher rate that can be earned “risk-
free” (recalling that default risk is the only riskwithin our tinymodel). Thismotivates
what we call the hidden yield approach. The negative basisNB(HY) is computed along
the steps of the following algorithm.

Definition 3 (Negative Basis (HY))

1. A reference discounting curve, resp. the associated short rate r(.), is chosen and
used in all subsequent steps, e.g. bootstrapped from quoted prices for interest rate
derivatives according to one of the methods described in [15, 16].

2. Denote by λx(.) the piecewise constant intensity rates that are bootstrapped from
CDSmarket quotes,when the assumeddiscounting curve is r(.) + x, as described,
e.g., in [25]. The recovery rate R is fixed and chosen as model input.

3. The negative basis NB(HY) is defined as the root9 of the function

x �→ Bond(λx(.), r(.) + x,R,C,T) − B.

In words, NB(HY) is precisely the parallel shift of the reference short rate r(.)
which allows for a calibration such that the model prices of bond and CDSmatch
the observed market quotes for bond and CDS.

9Lemma A.1 in the Appendix guarantees that this root typically exists and is unique.
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The idea of method (HY) can also be summarized as follows: If the risk-free
interest rate curve is assumed to be r(.) + NB(HY), then the market quotes for bond
and CDS are arbitrage-free (as we have found a corresponding pricing measure).
It allows for the intuitive interpretation of the negative basis as a spread earned
on top of a reference discounting rate after elimination of default risk. Abstractly
speaking, assuming no transaction costs and availability of CDS protection at all
maturities T > 0 (= perfect market conditions), arbitrage pricing theory suggests the
existence of a trading strategy which buys the bond and hedges it via CDS, and which
earns10 precisely the rate r(.) + NB(HY) until theminimum of default time τ and bond
maturity T . Since this way of thinking about NB(HY) is its distinctive property and
highlights its intrinsic coherence with arbitrage pricing theory, the following lemma
demonstrates by a heuristic argument how the rate r(.) + NB(HY) can be earned in a
risk-free way.

Lemma 1 (The rate r(.) + NB(HY) can be earned without default risk) Assuming
perfect market conditions, there exists a (static) portfolio, which is long the bond
and invested in several CDS, which earns the rate r(.) + NB(HY) until min{τ,T}.
Proof (heuristic)We denote byQ the probability measure under which τ has piece-
wise constant default intensity λNB(HY) (.). We discretize the time interval [0,T ] into
m buckets 0 =: t0 < t1 < . . . < tm := T , but m may be chosen arbitrarily large such
that the mesh of the discrete-time grid tends to zero as m tends to infinity. We intro-
duce the following m + 1 probabilities:

w(m)
j := Q

(
τ ∈ (tj−1, tj]

)
, j = 1, . . . ,m, w(m)

m+1 := Q(τ > tm).

Now let τ (m) denote a random variable with distribution

Q

(
τ (m) = t̄j

)
= w(m)

j , t̄j := tj−1 + tj
2

, j = 1, . . . ,m,

Q

(
τ (m) > t

)
= Q(τ > t), t ≥ tm,

(
in particular,Q(τ (m) > tm) = w(m)

m+1

)
.

Notice that τ (m) ≈ τ in distribution, with the approximation improving with increas-
ingm. In the sequel, we work with τ (m), assuming that default during [0,T ] can only
take place at the possible realizations t̄1, . . . , t̄m of τ (m) in [0,T ]. We now consider
a portfolio of m + 1 instruments, namely the bond and one CDS for each maturity
t1, . . . , tm. We assume that the bond nominal is given by N0. Furthermore, Ni ∈ R
denotes the nominal of the CDSwithmaturity ti. Negative nominalmeans that we sell
the bond or sell CDS protection. Let’s have a look at the following random variables,
which are functions of τ (m):

10By “earning” r(.) + NB(HY) wemean that the internal rate of return of the position is the reference
rate r(.) plus a spread NB(HY).
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V (0)(τ (m)
) :=

(
r(.) + NB(HY)

)
-discounted value of all cash flows from the bond,

when default takes place at τ (m),

V (i)(τ (m)
) :=

(
r(.) + NB(HY)

)
-discounted value of all cash flows from the CDS with

maturity ti, when default takes place at τ (m), i = 1, . . . ,m.

All random variables V (i)
(
τ (m)

)
take on onlym + 1 possible values, since their value

on the event {τ (m) > tm} does not depend on τ (m) (as there are no cash flows after
tm). So without loss of generality we may write V (i)

(
τ (m)

) = V (i)
(
t̄m+1

)
for some

arbitrary t̄m+1 > tm on the event {τ (m) > tm}. Our goal is to show that it is possible
to find a non-zero vector (N0, . . . ,Nm) ∈ Rm+1 such that

N0 V
(0)(τ (m)

) +
m∑

i=1

Ni V
(i)

(
τ (m)

)

︸ ︷︷ ︸(
r(.)+NB(HY)

)
-discounted value of outcome

≡ N0 B +
m∑

i=1

Ni upf(ti)

︸ ︷︷ ︸
initial investment amount

, (2)

where B denotes the market bond price and upf(ti) the market upfront of the CDS
with maturity ti. This mathematical statement intuitively means that the considered
portfolio of bond and CDS earns the rate r(.) + NB(HY) until min{τ (m),T} in a risk-
free manner, regardless of the actual timing of the default. Now why is this possible?
Considering the randomness on the left-hand side of Eq. (2), we actually havem + 1
equations for the m + 1 unknowns N0,N1, . . . ,Nm. Rewriting Eq. (2) in terms of
linear algebra, we obtain

⎛

⎜
⎜⎜
⎜
⎜
⎝

V (0)(t̄1
) − B V (1)(t̄1

) − upf(t1) . . . V (m)
(
t̄1

) − upf(tm)

...
. . .

...

...
. . .

...

V (0)(t̄m+1
) − B V (1)(t̄m+1

) − upf(t1) . . . V (m)
(
t̄m+1

) − upf(tm)

⎞

⎟
⎟⎟
⎟
⎟
⎠

⎛

⎜⎜
⎜
⎝

N0
N1
...

Nm

⎞

⎟⎟
⎟
⎠

=

⎛

⎜⎜
⎜
⎝

0
0
...

0

⎞

⎟⎟
⎟
⎠

.

(3)

In order to prove the existence of a non-trivial solution (N0, . . . ,Nm) to Eq. (3), it
suffices to verify that the associated (m + 1) × (m + 1)-matrix does not have full
rank. Now here enters the essential heuristic argument: it follows from the definition
of NB(HY) that

m+1∑

j=1

w(m)
j V (0)

(
t̄j
) ≈ B =

m+1∑

j=1

w(m)
j B,

m+1∑

j=1

w(m)
j V (i)

(
t̄j
) ≈ upf(ti) =

m+1∑

j=1

w(m)
j upf(ti), i = 1, . . . ,m,
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with the approximations becoming equalities asm → ∞. In other words, this means
that the rows of the equation system (3) are linearly dependent. Consequently, the
associated matrix cannot have full rank and the columns must also be linearly depen-
dent, i.e. there exists a non-zero solution (N0, . . . ,Nm) of Eq. (3), and hence (2), as
desired. Finally, taking a close look at the structure of the involved cash flows, it is
obvious that a solutionmust satisfyN0 
= 0.Without loss of generality wemay hence
set N0 = 1 (because if (N0, . . . ,Nm) is a solution, so is α (N0, . . . ,Nm) for arbitrary
α ∈ R). Concluding, the portfolio we have found is long the bond. ��

We present an example that demonstrates how different the three presented mea-
surements of negative basis can be in practice. The specifications are inspired by a
real-world case.

Example 1 We consider a bond with maturity T = 3.5 years paying a semi-annual
coupon rate of C = 8.25%. It trades far below par value, namely at B = 46.5%. An
almost maturity-matched CDS contract is available at an upfront value of upf(T) =
53% with a running coupon of s(T) = 5%, payed quarterly. This means a nominal-
matched negative basis investment comes at a package price of 46.5 + 53 = 99.5%,
and pays a coupon rate of 8.25 − 5 = 3.25% until default (however, the bond and
CDS coupon payments have different frequencies and payment dates). In the sequel
we assume a recovery rate of R = 20%, and the reference rate r(.) is bootstrapped
from 3-month tenor-based interest rate swaps according to the raw interpolation
method described in [15, 16]. Because the bond trades far below par, the measure-
ment (Z) is highly questionable and returns NB(Z) = −0.42%, which is clearly not
an appropriate measurement. As indicated earlier, improved versions of earnings
and costs-measurements must be used in order to deal with such extreme situations
of highly distressed bonds, but this lies outside the scope of the present article.
The par-equivalent CDS methodology returns the measurement NB(PE) = 2.29%,
whereas the hidden yield methodology returns the significantly lower number
NB(HY) = 1.18%. While the authors are not aware of a strategy how to monetize the
(PE)-measurement 2.29%, Lemma 1 provides a clear interpretation for the (HY)-
measurement 1.18% in terms of an internal rate of return that can be earned on top
of the risk-free rate, when the negative basis investment is structured as indicated in
the proof of Lemma 1.

Now if the described nominal-matched investment seems to earn a rate of 3.25%,
which equals a spread of around 1.75% above the chosen reference rate r(.) in
the present example, why is the measurement NB(HY) so low? Fig. 1 visualizes the
discounted value of the sumover all cash flows from the nominal-matched investment
in dependence of the default time. For instance, in case of survival until maturity, this
value equals approximately 104%, yielding a return (after discounting) of 5.61%
on the initial investment of 98.39% (which equals the package price minus accrued
CDS coupon, the bond accrued equals zero). Distributed on the 3.5-year investment
horizon, this corresponds to a rate of approximately 1.6% per annum. However,
in case of a default just before the first or second bond coupon payment date the
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Fig. 1 Sum over all
discounted cash flows arising
from the described
nominal-matched negative
basis investment are
depicted, in dependence on
the time of default
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described negative basis investment faces a loss. The additional short-dated CDS-
protection required in order to hedge these potential losses decreases the earnings
potential of the investment, which is accounted for in the (HY)-methodology, as
explained in the proof of Lemma 1.

6 Conclusion

We proposed an innovative measurement for the negative basis, denoted NB(HY).
Compared to traditional approaches, it is based on an arbitrage-free pricing model
for the simultaneous pricing of the bond and the CDS, which provides a sound
economic interpretation. Within a simple model with only default risk being present,
the negative basis is perfectly explained as the spread on top of a reference interest
rate curve r(.). It was pointed out how the rate r(.) + NB(HY) can be earned without
exposure to default risk.

Acknowledgements The KPMG Center of Excellence in Risk Management is acknowledged for
organizing the conference “Challenges in Derivatives Markets - Fixed IncomeModeling, Valuation
Adjustments, Risk Management, and Regulation”.

Appendix: The algorithm in Definition 3 is well-defined

The following technical lemma guarantees that Step 3 in Definition 3 admits a unique
solution that can be found efficiently by means of a bisection routine.

Lemma A.1 (Method (HY) is well-defined)

(a) The function x �→ Bond(λx(.), r(.) + x,R,C,T) is continuous.
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(b) The function x �→ Bond(λx(.), r(.) + x,R,C,T) is decreasing on the interval
[− inf{r(t) : t ≥ 0},∞).

(c) We have the lower bound Bond(λx(.), r(.) + x,R,C,T) ≥ R
1−R upf(T).

Proof We prove parts (a), (b), and (c) separately.

(a) For fixed x, the function λx(.) is piecewise constant, so actually we only deal
with a finite vector of values of the default intensity, depending on x. For the
remainder of the proof we denote these values by (y1(x), . . . , ym(x)). In other
words, we observe m CDS maturities T1, . . . ,Tm and the value yk(x) is the level
of the default intensity on the piece (Tk−1,Tk], for k = 1, . . . ,m, with T0 := 0.
Obviously, the bond price then equals a concatenation of continuous functions
if each yk(x) is continuous in x. However, this is guaranteed by the implicit
function theorem since yk(x) is defined as the implicit function yielding the root
of a smooth function. Concluding, continuity of the bond price is clear.

(b) In order to see that the bond price is decreasing in x, we first re-write it as

Bond(λx(.), r(.) + x,R,C,T) = e− ∫ T
0 λx(s)+r(s)+x ds

+ C
∑

0<t(B)
j ≤T

(
t(B)
j − t(B)

j−1

)
e− ∫ t(B)

j
0 λx(s)+r(s)+x ds

+ R

1 − R
EDPL(λx(.), r(.) + x, upf(T),T),

where we have used EDPL = EDDL from the CDS boostrap. This shows that it
suffices to check that the function

x �→ λx(t) + x

is increasing for each fixed t, because all summands in the above bond formula
are then obviously decreasing.
We proceed with an auxiliary observation. If τ1 and τ2 are two positive random
variables with distribution functions F1 and F2, satisfying F1 ≥ F2 pointwise
on an interval (T ,∞) and F1 ≡ F2 on [0,T ], then E[g(τ1)] ≥ E[g(τ2)] for any
bounded function g : (0,∞) → [0,K], which is non-increasing on (T ,∞). To
verify this,11 define the non-decreasing function h := −g and use integration by
parts:

11One says that τ1 is less than τ2 in the usual stochastic order, and the following computation is
standard in the respective theory.
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E[g(τ1)] = −
∫

h dF1 = −
∫

(0,T ]
h dF1 −

∫

(T ,∞)

h dF1

= −
∫

(0,T ]
h dF2 −

(
h(∞) F1(∞)︸ ︷︷ ︸

=1=F2(∞)

−h(T) F1(T)︸ ︷︷ ︸
=F2(T)

−
∫

(T ,∞)

F1 dh
)

≥ −
∫

(0,T ]
h dF2 −

(
h(∞)F2(∞) − h(T)F2(T) −

∫

(T ,∞)

F2 dh
)

= −
∫

(0,T ]
h dF2 −

∫

(T ,∞)

h dF2 = −
∫

h dF2 = E[g(τ2)].

Now we proceed inductively over k = 1, . . . ,m by showing that x �→ λx(t) + x
is non-decreasing for all fixed t ∈ (Tk−1,Tk], i.e. that x �→ yk(x) + x is non-
decreasing. We start the induction for k = 1. To this end, recall that y1(x) is the
unique root of the equation

EDPL(y1(x), r(.) + x, s(T1), upf(T1),T1) = EDDL(y1(x), r(.) + x,R,T1).

For the sake of a more compact notation we denote the left-hand side of
the last equation by LHS(x, y1(x)) and the right-hand side by RHS(x, y1(x)).
Furthermore, we denote the value of both sides by V(x) := LHS(x, y1(x)) =
RHS(x, y1(x)). Since all the summands of LHS depend on the function x �→
x + y1(x) in a monotonic way, it is obvious that V(x) is non-increasing in x if
and only if the function x �→ x + y1(x) is non-decreasing. Hence, it suffices to
prove that V(x) is non-increasing in x. To this end, we (obviously) observe with
ε > 0 that

LHS(x + ε, y1(x)) ≤ LHS(x, y1(x)) = V(x), (4)

RHS(x + ε, y1(x)) ≤ RHS(x, y1(x)) = V(x). (5)

Furthermore, the function y �→ LHS(x + ε, y) is obviously strictly decreasing.
Concerning the right-hand side, we denote byEy[f (τ )] the expectation over f (τ )

when the default time τ has an exponential distribution with parameter y. The
function

y �→ RHS(x + ε, y) = (1 − R)Ey

[
e− ∫ τ

0 r(s)+x+ε ds 1{τ≤T1}
]

is non-decreasing on the claimed interval by the auxiliary observation we have
derived above (increasing y corresponds to increasing the distribution function
of the default time τ pointwise12). We now distinguish two cases:

12Here, we have used that the function τ �→ exp(− ∫ τ

0 r(s) + x + ε ds) 1{τ≤T1} is non-increasing if
x ≥ − inf{r(t) : t ≥ 0}.
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(i) LHS(x + ε, y1(x)) ≤ RHS(x + ε, y1(x)):
In this case y1(x + ε) ≤ y1(x), because otherwise we would observe the follow-
ing contradiction:

LHS(x + ε, y1(x + ε)) < LHS(x + ε, y1(x)) ≤ RHS(x + ε, y1(x))

≤ RHS(x + ε, y1(x + ε)).

This implies that

V(x + ε) = RHS(x + ε, y1(x + ε)) ≤ RHS(x + ε, y1(x))
(5)≤ V(x).

(ii) LHS(x + ε, y1(x)) > RHS(x + ε, y1(x)):
In this case y1(x + ε) ≥ y1(x), because otherwise we would observe the follow-
ing contradiction:

RHS(x + ε, y1(x + ε)) ≤ RHS(x + ε, y1(x)) < LHS(x + ε, y1(x))

≤ LHS(x + ε, y1(x + ε)).

This implies that

V(x + ε) = LHS(x + ε, y1(x + ε)) ≤ LHS(x + ε, y1(x))
(4)≤ V(x).

Concluding, V(x) is non-increasing in x and the induction start is finished.
Weproceedwith the induction step, assuming thatwe alreadyknow that x + λx(t)
is non-decreasing in x for each fixed t ≤ Tk−1. To this end, recall that yk(x) is
the unique root of the equation

EDPL(λx(.), r(.) + x, s(Tk), upf(Tk),Tk) = EDDL(λx(.), r(.) + x,R,Tk),

where yk(x) enters the equation as the function value of λx(.) on the interval
(Tk−1,Tk]. The left-hand side of the last equation can be rewritten as follows,
using the standardmarket convention of standardized CDS strike rates s(Tk−1) =
s(Tk) =: s:

EDPL(λx(.), r(.) + x, s, upf(Tk),Tk)

= EDPL(λx(.), r(.) + x, s, upf (Tk−1),Tk−1) + upf(Tk) − upf(Tk−1)

+ s
∑

Tk−1<t(C)
i ≤Tk

(
t(C)
i − t(C)

i−1

)
e− ∫ t(C)

i
0 λx(s)+r(s)+x ds.

Similarly, the right-hand side can be rewritten as follows:
EDDL(λx(.), r(.) + x,R,Tk) = EDDL(λx(.), r(.) + x,R,Tk−1)

+ (1 − R) yk(x)
∫ Tk

Tk−1

e− ∫ t
0 r(s)+x+λx(s) ds dt.
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Since the values (y1(x), . . . , yk−1(x)) have been determined before, we may
subtract the EDDL and EDPL with maturity Tk−1 on both sides of the defining
equation for yk(x), simplifying the latter to

upf(Tk) − upf(Tk−1) + s
∑

Tk−1<t(C)
i ≤Tk

(
t(C)
i − t(C)

i−1

)
e− ∫ t(C)

i
0 λx(s)+r(s)+x ds

= (1 − R) yk(x)
∫ Tk

Tk−1

e− ∫ t
0 r(s)+x+λx(s) ds dt.

Again, we denote the left-hand side of the last equation by LHS(x, y1(x), . . . ,
yk(x)), and the right-hand side is denoted RHS(x, y1(x), . . . , yk(x)). Further-
more, we denote the value of both sides by

V(x) := LHS(x, y1(x), . . . , yk(x)) = RHS(x, y1(x), . . . , yk(x)).

By induction hypothesis, the function x �→ x + λx(t) is non-decreasing for each
t ≤ Tk−1. With ε > 0 this obviously implies that

LHS(x+ ε, y1(x+ ε), . . . , yk−1(x+ ε), yk(x))

≤LHS(x, y1(x), . . . , yk(x))=V(x), (6)

RHS(x+ ε, y1(x+ ε), . . . , yk−1(x+ ε), yk(x))

≤RHS(x, y1(x), . . . , yk(x))=V(x). (7)

Also, the function y �→ LHS(x + ε, y1(x + ε), . . . , yk−1(x + ε), y) is obviously
non-increasing, whereas the function y �→ RHS(x + ε, y1(x + ε), . . . ,

yk−1(x + ε), y) is non-decreasing by a similar argument as in the induction start,
namely: the right-hand side has the form13

RHS(x + ε, y1(x + ε), . . . , yk−1(x + ε), y)

= (1 − R)Ey

[
e− ∫ τ

0 r(s)+x+ε ds 1{τ∈(Tk−1,Tk ]}
]
,

which is non-decreasing in y. Why? Because an increase of y increases the
distribution function of τ pointwise on [Tk−1,∞) but leaves it unchanged on
[0,Tk−1], and the function τ �→ exp(− ∫ τ

0 r(s) + x ds) 1{τ∈(Tk−1,Tk ]} is clearly
non-increasing on (Tk−1,∞) (so that our auxiliary observation above applies).
Like in the induction start, showing that x �→ x + yk(x) is non-decreasing in x
is equivalent to showing that V(x) is non-increasing in x. The remaining proof
is now completely analogous to the induction start (this is an exercise we leave
to the reader).

13Similar as in the induction start, we denote by Ey[f (τ )] the expectation over f (τ )when the default
time has piecewise constant intensity with the level y on the piece (Tk−1,Tk].
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(c) Denoting byQx the probability measure in dependence of the default intensities
λx(.), we have

Bond(λx(.), r(.) + x,R,C,T) : = C
∑

0<t(B)
j ≤T

DF
(
t(B)
j

) (
t(B)
j − t(B)

j−1

)
Qx

(
τ > t(B)

j

)

+ DF(T)Qx(τ > T) + REx[1{τ≤T} DF(τ )].

We know from the consistent CDS pricing that the appearing expectation can be
replaced by the premium leg of the CDS, which allows to be estimated by the
upfront, i.e.

Ex[1{τ≤T} DF(τ )] = R

1 − R
EDPL(λx(.), r(.) + x, s(T), upf(T),T)

≥ R

1 − R
upf(T),

which in turn implies the claim.
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The Impact of a New CoCo Issuance
on the Price Performance of Outstanding
CoCos

Jan De Spiegeleer, Stephan Höcht, Ine Marquet and Wim Schoutens

Abstract Contingent convertible bonds (CoCos) are new hybrid capital instruments
that have a loss absorbing capacity which is enforced either automatically via the
breachingof a particularCET1 level or via a regulatory trigger. Theprice performance
of outstanding CoCos, after a new CoCo issue is announced by the same issuer, is
investigated in this paper via two methods. The first method compares the returns
of the outstanding CoCos after an announcement of a new issue with some overall
CoCo indices. This method does not take into account idiosyncratic movements and
basically compares with the general trend. A second model-based method compares
the actual market performance of the outstanding CoCos with a theoretical model.
The main conclusion of the investigation of 24 cases of new CoCo bond issues is a
moderated negative effect on the outstanding CoCos.

Keywords Contingent convertibles · CoCo bonds · New issuance

1 Introduction

Contingent convertible bonds or CoCo bonds are new hybrid capital instruments
that have a loss absorbing capacity which is enforced either automatically via the
breaching of a particular CET1 level or via a regulatory trigger. CoCos either convert
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into equity or suffer a write-down of the face value upon the appearance of such a
trigger event.

The financial crisis of 2007–2008 triggered an avalanche of financial worries
for financial institutions around the globe. After the collapse of Lehman Brothers,
governments intervened and bailed out banks using tax-payers money. Preventing
such bail-outs in the future, and designing a more stable banking sector in general,
requires both higher capital levels and regulatory capital of a higher quality. The
implementation under the new regulatory frameworks like Basel III and Capital
Requirement Directive IV (CRD IV) tries to achieve this in various ways, i.e. with
the use of CoCo bonds (Basel Committee on Banking Supervision [1], European
Commision [2]). CoCo bonds are allowed as new capital instruments by the Basel III
guidelines. The Swiss regulators have forced their systemic important banks to issue
large amounts of these instruments. Further, the European CRD IV which entered
into force on 17 July 2013 enforces all new additional Tier 1 instruments to have
CoCo features.

The specific design of a CoCo bond enhances the capital of a bank when it is in
trouble in an automatic way. Hence, a loss-absorbing cushion is created with the aim
to avoid or at least to reduce potential interventions using tax-payers’ money.

The first CoCos have been issued in the aftermath of the credit crisis. In December
2009 Lloyds exchanged some of their old hybrid instruments into this new type of
bonds in order to strengthen their capital position after the bank had been hit very
hard due to the financial crisis of 2008. Since then a lot of other banks have been
issuing CoCos and one is expecting that many will follow in the next years. The
market of CoCos is currently above USD 100bn and is expanding very rapidly.1

When an issuer has already some CoCos outstanding and is announcing the
issuance of a new CoCo bond, there are at least two opposite forces at work. On
one hand, a new issue means that the capital of the issuing institute is strengthened
(at the additional Tier 1 or Tier 2 level). Due to the new issue, the losses in case of a
future trigger event will be shared over a larger bucket and hence recovery rates are
expected to be higher. On the other hand, there are the market dynamics and investors
who often prefer to invest rather in the new CoCo than in the older ones. This can be
just due to the fact that one prefers new things above old stuff, but also because one
believes there is a basis spread to be earned on a new issuance. Some believe a new
issuance is brought to the market with a certain discount, to attract investors and to
make the whole capital raising exercise a success. Investors then will move out of
the old bonds and ask for allocation in the new issue.

In this paper, we estimate the price impact on the outstanding CoCos via two
methods. The first method compares the returns of the outstanding CoCo bonds after
an announcement of a new issue with some overall CoCo indices. More precisely, we
compare the performance with CS Contingent Convertible Euro Total Return index
and the BofA Merrill Lynch Contingent Capital index. Here we basically compare
the performance of the outstanding CoCos with the general market performance.
However such a comparison does not take into account idiosyncratic movements; it

1Source: Bloomberg.
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basically compares with the general market trend. The issuing company is neverthe-
less exposed to market dynamics. Its stock price, its credit worthiness etc. can exhibit
different timely evolutions compared with the respective quantities of their competi-
tors. This can be especially the case around capital raising announcements since then
financial details of the company are published and discussed at, for example road-
shows around the new issuance. Therefore, we also deploy a second methodology
taking into account idiosyncratic movements. Using an equity derivatives model, we
compare the actual market performance of the outstanding CoCo bonds, with a theo-
retical model performance taking into account idiosyncratic effects, like movements
in the underlying stock, credit default spreads or volatilities. The model is derivatives
based and is taking as such forward-looking expectations into account.

In total, we investigate 24 cases of new CoCo bond issues. The main conclusion
of the investigation is that there is a moderated negative effect on outstanding CoCo
bonds. This is confirmed by both methodologies and the impact is an underperfor-
mance of about 25–50 bps on average in between the announcement date and the
issue date. An extra negative impact of 40 bps was observed in the 10 trading days
after the issue.

The analysis in this paper is constrained to CoCo bonds only, but a similar study
could be done for other types of bonds as well. A comparative study for corporate
bonds was, e.g. done in Akigbe et al. [3], where the authors investigate the impact of
574 outstanding debt issues. The investigation was divided by different reasons of a
new debt issue. A significant negative impact on the price of the outstanding debt and
equity was observed in case the public debt securities were issued to finance unex-
pected cash flow shortfalls. No significant reaction was observed when the new debt
issues were motivated by unexpected increase in capital expenditures, unexpected
increase in leverage or expected refinancing of outstanding debt.

This paper is organized as follows. We first provide in the next section the details
of the equity derivatives model. In Sect. 3, we provide details on the data set used and
in particular overview the new issuances of a whole battery of issuers that are part of
our study. Next, we report on the exact methodology and results of our comparison
with other CoCo indices. The final part of that section reports and discusses the
results of the Equity Derivatives model. The final section concludes.

2 The Equity Derivatives Model

CoCos are hybrid instruments, with characteristics of both debt and equity. This gives
rise to different approaches for pricing CoCos. Without considering the heuristic
models, twomain schools of thoughts exist, namely the structuralmodels andmarket-
impliedmodels. Structuralmodels are based on the theory ofMerton and can be found
in Pennacchi [4] and Pennacchi et al. [5]. We will apply a market-implied model
where the derivation is based on market data such as share prices, credit default
spreads and volatilities. The models were introduced in a Black–Scholes framework
in De Spiegeleer and Schoutens [6] and De Spiegeleer et al. [7]. Pricing CoCos under
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smile conformmodels can be found inCorcuera et al. [8]. Based on theHestonmodel,
the impact of skew is discussed in De Spiegeleer et al. [9]. In De Spiegeleer et al.
[10] the implied CET1 volatility is derived from the market price of a CoCo bond.
Further extensions and variations can be found in De Spiegeleer and Schoutens
[11, 12], Corcuera et al. [13], De Spiegeleer and Schoutens [14], Cheridito and
Zhikai [15], Madan and Schoutens [16].

The actual valuation of a CoCo incorporates the modelling of both the trigger
probability and the expected loss for the investor. Notice that the trigger is defined
by a particular CET1 level or decided upon a regulator’s decision. Since these trigger
mechanisms are hard to model or even quantify, we project the trigger into the stock
price framework as considered in the equity derivatives model of De Spiegeleer
and Schoutens [6]. This means that the CoCo will be triggered under the model
once the share price drops below a specified barrier level, denoted by S�. We infer
from existing CoCo market data the share price at the moment the CoCo bond gets
triggered and we will call this the (implied) trigger level. As a result the valuation of
a CoCo bond is transformed into a barrier-pricing exercise in an equity setting.

Under such a framework the CoCo bond can be broken down to several differ-
ent derivative instruments. In first place, the CoCo behaves like a standard (non-
defaultable) corporate bond where the holder will receive coupons ci on regular time
points ti together with the principal N at maturity T . However, in case the share
price drops below the trigger level S�, the investor will lose his initial investment and
all future coupons. This will be modelled by short positions in binary down-and-in
(BIDINO) options with maturities ti for each coupon ci and a BIDINOwith maturity
T to model the cancelling of the initial value. After the trigger event has occurred,
the investor of a conversion CoCo will receive Cr shares. We can model this with Cr

down-and-in asset-(at hit)-or-nothing options on the stock. For a write-down CoCo,
the investor does not receive any shares and we can just set Cr equal to zero in this
case. Therefore, the price of a CoCo can be calculated with the following formula:

P = Corporate bond

−N × binary down-and-in option

−
∑

i

ci × binary down-and-in option

+Cr × down-and-in asset-(at hit)-or-nothing option on the stock

Under the Black–Scholes model, we can find an explicit formula for the price of
the CoCo at time t :

P = N exp(−r(T − t)) +
k∑

i=1

ci exp(−r(ti − t))

−N × exp(−r(T − t))[Φ(−x1 + σ
√
T − t) + (S�/S)2λ−2Φ(y1 − σ

√
T − t)]

−
∑

i

ci × exp(−r(ti − t))[Φ(−x1i + σ
√
ti − t) + (S�/S)2λ−2Φ(y1i − σ

√
ti − t)]

+Cr × S�

[(
S�

S

)a+b
Φ(z) +

(
S�

S

)a−b
Φ(z − 2bσ

√
T − t)

]

(1)
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with

z = log(S�/S)

σ
√
T − t

+ bσ
√
T − t

a = r − q − 1
2σ

2

σ 2

b =
√

(r − q − 1
2σ

2)2 + 2rσ 2

σ 2

λ = r − q + σ 2/2

σ 2

x1 = log(S/S�)

σ
√
T − t

+ λσ
√
T − t

y1 = log(S�/S)

σ
√
T − t

+ λσ
√
T − t

x1i = log(S/S�)

σ
√
ti − t

+ λσ
√
ti − t

y1i = log(S�/S)

σ
√
ti − t

+ λσ
√
ti − t

where Φ is the cdf of a standard normal distribution, r is the risk free rate, q the
dividend yield and σ the volatility.

Applying this equity derivatives pricing model, a CoCo price can be found for a
trigger level S�. However, the other way around is often more interesting. Knowing
the market CoCo price, we can filter out an implied trigger Ŝ� in such a way that
market and model price match. Since CoCos of one financial institution with the
same contractual trigger should trigger at the same time, their implied trigger levels
should theoretically also be the same. Hence the implied barriers give us a way to
compare different CoCos in order to detect over- or undervaluation, irrespectively of
different currencies and maturities.

Our goal is to compare the actual market performance of the outstanding CoCo
bonds with the theoretical model performance. This theoretical price takes idiosyn-
cratic effects into account. Any changes in the actual market performance compared
to the theoretical model performance will be described to the effect of the announce-
ment of a newCoCo issuance. The research can also be translated in terms of implied
trigger levels. In case the new CoCo does not influence the outstanding CoCo, the
implied barrier of the outstanding CoCo should remain constant. Whereas if its
implied barrier derived from the market will change, this change will be caused by
the new CoCo issuance.

3 Measuring the Price Performance
of the Outstanding CoCos

3.1 New Issuances

The impact of a new CoCo issuance is investigated on the outstanding CoCos of
the same issuing company. The issuers in our study contain UBS, Barclays, Crédit
Agricole, Sociéty Général, Deutsche Bank, UniCredit, Credit Suisse, Santander,
Rabobank, Danske and BBVA. The effect on the outstanding CoCos is investigated
in the period between announcement and issuance of the new CoCo, which are
summarised in Table1. Notice that UBS, Barclays and Crédit Agricole all have
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Table 1 Announcement date, issue date and issue size (in bn) of the new CoCos

Name ISIN Announc. Issue Size Curr.

ACAFP 6 5/8
09/29/49

USF22797YK86 11/09/2014 18/09/2014 1,250 USD

ACAFP 6 1/2
04/29/49

XS1055037177a 01/04/2014 08/04/2014 1,000 EUR

ACAFP 7 7/8
01/29/49

USF22797RT78 15/01/2014 23/01/2014 1,750 USD

BACR 7
06/15/49

XS1068561098b 13/06/2014 17/06/2014 697.60 GBP

BACR 8
12/15/49

XS1002801758 03/12/2013 10/12/2013 1,000 EUR

BACR 8 1/4
12/29/49

US06738EAA38 13/11/2013 20/11/2013 2,000 USD

BBVASM 6
3/4 12/29/49

XS1190663952 10/02/2015 18/02/2015 1,500 EUR

CS 6 1/4
12/29/49

XS1076957700 10/06/2014 18/06/2014 2,500 USD

CS 7 1/2
12/29/49

XS0989394589 04/12/2013 11/12/2013 2,250 USD

CS 5 3/4
09/18/25

XS0972523947 11/09/2013 18/09/2013 1,250 EUR

CS 6
09/29/49

CH0221803791 20/08/2013 04/09/2013 290 CHF

DANBNK 5
7/8 04/29/49

XS1190987427 11/02/2015 18/02/2015 750 EUR

DB 7 1/2
12/29/49

US251525AN16 18/11/2014 21/11/2014 1,500 USD

RABOBK 5
1/2 01/22/49

XS1171914515 15/01/2015 22/01/2015 1,500 EUR

SANTAN 6
1/4 09/11/49

XS1107291541 02/09/2014 11/09/2014 1,500 EUR

SANTAN 6
3/8 05/29/49

XS1066553329 08/05/2014 19/05/2014 1,500 USD

SOCGEN 6
10/27/49

USF8586CXG25 19/06/2014 25/06/2014 1,500 USD

SOCGEN 6
3/4 04/07/49

XS0867620725 28/03/2014 07/04/2014 1,000 EUR

SOCGEN 7
7/8 12/29/49

USF8586CRW49 11/12/2013 18/12/2013 1,750 USD

UBS 7 1/8
12/29/49

CH0271428317c 13/02/2015 19/02/2015 1,250 USD

(continued)
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Table 1 (continued)

Name ISIN Announc. Issue Size Curr.

UBS 5 1/8
05/15/24

CH0244100266 08/05/2014 15/05/2014 2,500 USD

UBS 4 3/4
02/12/26

CH0236733827 06/02/2014 13/02/2014 2,000 EUR

UBS 4 3/4
05/22/23

CH0214139930 15/05/2013 22/05/2013 1,500 USD

UCGIM 6 3/4
09/29/49

XS1107890847 03/09/2014 10/09/2014 1,000 EUR

aIncl. XS1055037920
bIncl. US06738EAB11 and XS1068574828
cIncl. CH0271428333 and CH0271428309
Source Bloomberg/own calculations

issued different CoCos on the same day. Since it is not possible to distinguish their
influence from each other, these new CoCos are assumed to have one general impact
on all the outstanding CoCos of the same issuing company.

3.2 CoCo Index Comparison

The first analysis is based on indices as a benchmark to observe a certain impact. It
basically compares the returns of the outstandingCoCo bonds after an announcement
of a new issue with some overall CoCo indices. More precisely, we compare the per-
formance with the CS Contingent Convertible Euro Total Return index and the BofA
Merrill Lynch Contingent Capital Index (whenever the data is available). The meth-
ods are explained for one particular newCoCo issuance, namely theUSF22797YK86
CoCo of Crédit Agricole. In the end, the overall results and conclusions are shown.

3.2.1 Method

In a first step, we analyse the impact of each new CoCo separately on all the out-
standing CoCos of the same issuer. The simple returns are derived for the outstanding
CoCos during the period between the announcement date and the issue date of the
new CoCo. In a second step, we accumulate these simple returns and obtain the
returns between announcement and issue date. As an example, the first steps are
shown for two outstanding CoCos of Crédit Agricole in Fig. 1.

On each day, we calculate the (equallyweighted) average of the cumulative simple
returns of all outstanding CoCos. In a last step, we take the difference between these
averages and the cumulative returns of the CoCo index on each day between the
announcement date and issue date of the new CoCo.
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Fig. 1 Impact of USF22797YK86. a Daily returns. b Cumulative returns

3.2.2 Results

In Table2, the difference in cumulative returns over the observation period, meaning
the period between announcement and issuance, is shown. For some observation
periods, the Merrill Lynch index did not yet exist. When the CoCo does show a
significant change compared to the global index, we can assume that this change is
due to the new CoCo issuance. The averaged difference over all new CoCos analysed
is shown in Fig. 2. These averaged differences in cumulative returns are shown for
one day until five days after the announcement of the new CoCo and also over the
full period as was given in Table2. As a conclusion, we see that on average the
outstanding CoCos get a negative impact of around 25 bps on their return between
announcement and issuance due to a new CoCo.

Multiple CoCo indices can be used for this analysis but CoCo indices are relatively
new on the market. As such we are obliged to restrict our analysis to indices already
available during the period of each analysis. Remark also that we need to handle these
indices with care, in the sense that the indices are applied to give a global market
view on the CoCos. A point of criticism to this approach can be that the indices are
not that representative for the true market. There is also high concentration on some
issuers in the indices, e.g. for the ML index the top 5 issuers almost make 50% of
the index (as of December 2014).

Furthermore, this comparison with the general market performance does not take
into account idiosyncratic movements but compares with the general market trend.
The issuing company is nevertheless exposed to individual dynamics. Its stock price,
its credit worthiness, etc. can change differently from their competitors. This can be
especially the case around capital raising announcements since then financial details
of the company are published and discussed at, for example road-shows around the
new issuance. Therefore, we move on to a second methodology taking into account
idiosyncratic movements.
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Table 2 Averaged difference in cumulative returns (in %) between the outstanding CoCos and the
Credit Suisse CoCo index (left column) and Merrill Lynch CoCo index (right column) over the
observation period of the new CoCo

Issuer ISIN CS index ML index

ACAFP USF22797YK86 0.06 −0.21

XS1055037177 −0.06 0.07

USF22797RT78 −0.21 −0.47

BACR XS1068561098 −0.25 −0.12

XS1002801758 0.08 /

US06738EAA38 0.56 /

BBVA XS1190663952 −0.51 −1.18

CS XS1076957700 0.31 0.60

XS0989394589 −0.28 /

XS0972523947 −0.50 /

CH0221803791 1.09 /

DANBNK XS1190987427 −1.32 −2.27

DB US251525AN16 −0.13 −0.29

RABOBK XS1171914515 −0.36 −0.41

SANTAN XS1107291541 −1.38 −1.19

XS1066553329 −0.49 −0.06

SOCGEN USF8586CXG25 0.23 0.17

XS0867620725 −0.27 −0.02

USF8586CRW49 1.24 /

UBS CH0271428317 −0.46 −1.01

CH0244100266 −0.12 0.42

CH0236733827 0.37 0.31

CH0214139930 −1.15 /

UCGIM XS1107890847 −1.75 −1.48

Mean −0.22 −0.42

Std Dev 0.71 0.77

Source Bloomberg/own calculations

Fig. 2 Averaged difference
in cumulative returns
between the outstanding
CoCos and the Credit Suisse
and Merrill Lynch CoCo
index
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3.3 Model-Based Performance

As experienced by all CoCo investors, the difficulty in these financial products lies
in their different characteristics which are hard to compare like the trigger type, con-
version type, maturity, coupon cancellation, and so on. However, the implied barrier
methodology can be used as a tool to compare CoCos with different characteristics.
In this second approach, we will use the implied barrier to derive theoretical values
for the outstanding CoCos under the assumption of no impact by the new CoCo
issuance and compare them with the actual market values.

3.3.1 Method

The implied barrier can be interpreted as the stock price level (assumed by the
market) that is hit (for the first time) when the CoCo gets converted or written down.
If nothing changes, the market will keep the same idea about the implied barrier level
and hence result in a constant implied barrier over time. In other words, when there
is no impact due to this new CoCo, no change could theoretically be observed in
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the implied barrier. As such we can see in the levels of the implied barrier if there
is an impact due to the announced new CoCo. This leads us easily to the second
approach of our impact analysis. As an example, we show the implied barriers of the
two outstanding CoCos of ACAFP from the previous section in Fig. 3a.

As from the previous section, the implied barriers can be translated into CoCo
quotes. The theoretical CoCo price does not take any information of a new CoCo
issuance into account by assuming a constant implied barrier. These values can be
used as our reference. Any change in the market compared with this reference, is
then due to the impact of the announcement of a new CoCo issuance. As such we can
calculate the theoretical CoCo prices from a constant implied barrier and compare
them with the market values. The results of our CoCo examples are shown in Fig. 3b.
As a last step, we define cheapness as the difference between the market CoCo return
and the theoretical CoCo return until the announcement date. In Fig. 3, the cheapness
of the two outstanding CoCos of Crédit Agricole is shown.

Table 3 Averaged difference
between the market and
model CoCo cumulative
returns (in %)

Issuer ISIN Cheapness

ACAFP USF22797YK86 0.14

XS1055037177 −1.45

USF22797RT78 −0.19

BACR XS1068561098 0.17

XS1002801758 −0.05

US06738EAA38 −0.38

BBVA XS1190663952 −1.91

CS XS1076957700 0.12

XS0989394589 0.53

XS0972523947 −2.63

CH0221803791 1.44

DANBNK XS1190987427 −3.25

DB US251525AN16 0.65

RABOBK XS1171914515 0.31

SANTAN XS1107291541 −2.24

XS1066553329 0.07

SOCGEN USF8586CXG25 1.26

XS0867620725 −2.31

USF8586CRW49 1.67

UBS CH0271428317 0.71

CH0244100266 −1.23

CH0236733827 1.03

CH0214139930 −0.89

UCGIM XS1107890847 −1.60

Mean −0.42

Std Dev 1.37
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Fig. 4 Overall difference
between the market and
model CoCo cumulative
returns
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3.3.2 Results

An overall view is derived for the cheapness by averaging the differences in theo-
retical and market CoCo prices for each outstanding CoCo during the observation
period of the new CoCo. We averaged the differences of all the CoCos on one day
until five days after the announcement and also on the issue date of the new CoCo
(Table 3).

Clearly, from Fig. 4, on average the cheapness on each day of our observation
period is negative, meaning that market price is below the theoretical price assuming
no impact. As such we conclude also from this approach that there is a negative
impact of about 42 bps on average on the outstanding CoCos when a new CoCo
issuance is announced.

4 Impact After Issue Date

At this point, we investigated the impact of a new CoCo issuance between the
announcement and issue date. In this section, we show the results for a longer obser-
vation period. More concrete, both analyses are extended to 10 trading days after the
issue date.

From our first analysis, where we compare the outstanding CoCos with the CoCo
indices, a downward trending impact is observed in Fig. 5a. The second analysis
which compares the market and model prices of the outstanding CoCos is shown in
Fig. 5b. In both analyses, the negative impact gets more significant after the issue
dates. Hence until 10 trading days after the issue date, there is still a negative impact
observable.
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Fig. 5 Impact from the
announcement date until 10
days after the issue date. a
Method 1. bMethod 2
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5 Conclusion

The price performance of outstanding CoCos was investigated after a new CoCo
issue is announced by the same issuer. Based on two approaches, we estimated the
price impact on the outstanding CoCos. The first method compared returns of the
outstanding CoCos with some overall CoCo indices. As a conclusion, we found
that the return of the outstanding CoCos, during the period between announcement
and issuance, was slightly lower than the returns of the CoCo indices. There was
an underperformance of about 22 bps compared with the Credit Suisse index and
about 42 bps with the Merrill Lynch index (although with relative high standard
deviations). Since this first study did not take idiosyncratic movements into account,
we used also a second method based on the equity derivatives model for CoCos. In
this method we compared the actual market performance of the outstanding CoCo
bondswith a theoretical model performance taking into account idiosyncratic effects,
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like movements in the underlying stock, credit default spreads and volatilities. This
second approach also concludes that the averaged market returns of the outstanding
CoCos were about 42 bps lower than one would expect in case of no influence.

In total, we investigate 24 cases of new CoCo bond issues. The main conclusion
of the investigation is that there is a moderated negative effect on outstanding CoCo
bonds. This is confirmed by both methodologies and the impact is an underperfor-
mance of about 20–40 bps on average in between the announcement date and the
issue date. During the period of 10 trading days after the issue date, an extra decrease
of 40 bps was observed.
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The Impact of Cointegration on Commodity
Spread Options

Walter Farkas, Elise Gourier, Robert Huitema and Ciprian Necula

Abstract In this work we explore the implications of cointegration in a system of
commodity prices on the premiums of options written on various spreads on the
futures prices of these commodities. We employ a parsimonious, yet comprehen-
sive model for cointegration in a system of commodity prices. The model has an
exponential affine structure and is flexible enough to allow for an arbitrary number
of cointegration relationships. We conduct an extensive simulation study on pricing
spread options. We argue that cointegration creates an upward sloping term structure
of correlation, that in turn lowers the volatility of spreads and consequently the price
of options on them.

Keywords Cointegration · Futures prices · Commodities · Spread options · Simu-
lation

1 Introduction

A distinctive feature of commodity markets is the existence of long-run equilibrium
relationships that exist between the levels of various commodity prices, such as
the one between the price of crude oil and the price of heating oil. These long-run

W. Farkas (B) · R. Huitema · C. Necula
Department of Banking and Finance, University of Zurich,
Plattenstrasse 14, 8032 Zurich, Switzerland
e-mail: walter.farkas@bf.uzh.ch

W. Farkas
Department of Mathematics, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland

W. Farkas
Swiss Finance Institute, Zurich, Switzerland

E. Gourier
School of Economics and Finance, Queen Mary, University of London, London, UK

C. Necula
Department of Money and Banking, Bucharest University of Economic Studies,
Bucharest, Romania

© The Author(s) 2016
K. Glau et al. (eds.), Innovations in Derivatives Markets, Springer Proceedings
in Mathematics & Statistics 165, DOI 10.1007/978-3-319-33446-2_20

421



422 W. Farkas et al.

equilibrium relations can be captured in economic models by so-called cointegration
relations.

In this work we employ the continuous time model of cointegrated commodity
prices developed by the authors in Farkas et al. [6] in order to conduct a simulation
study for assessing the impact of cointegration on spread options. In our model,
commodity prices are non-stationary and several cointegration relations are allowed
amongst them, capturing long-run equilibrium relationships. Cointegration (Engle
and Granger [5]) is the property of two or more non-stationary time series of having
at least one linear combination that is stationary.

There is a vast literature on modeling the price of a single commodity as a non-
stationary process (see Back and Prokopczuk [1] for a comprehensive recent review).
For example, Schwartz and Smith [13] assume the log price of a commodity to be the
sum of two latent factors: the long-term equilibrium level, modeled as a geometric
Brownianmotion, and a short-term deviation from the equilibrium,modeled as a zero
mean Ornstein–Uhlenbeck (OU) process. More recently, Paschke and Prokopczuk
[11] propose to model these deviations as a more general CARMA process and
Cortazar and Naranjo [3] generalize the Schwartz and Smith [13] model in a multi-
factor framework.

However, the literature on modeling a system of commodity prices is still quite
scarce. Two fairly recent models are proposed in Cortazar et al. [4] and Paschke and
Prokopczuk [10], both of which account for cointegration by incorporating common
and commodity-specific factors into their modeling framework. Amongst the com-
mon factors, only one is assumed non-stationary. Although they explicitly take into
account cointegration between prices, the cointegrated systems generated by these
two models are not covering the whole range of possible number of cointegration
relations, but allow for none or for exactly n − 1 relations to exist between the n
prices. In Farkas et al. [6] we propose an easy-to-use, yet comprehensive, model for
a system of cointegrated commodity prices that retains the exponential affine struc-
ture of previous approaches and allows, in the same time, for an arbitrary number of
cointegration relationships.

The rest of the work is organized as follows. In Sect. 2 we briefly describe the
model proposed in Farkas et al. [6] and point out some qualitative aspects regarding
the dynamics of the system. Section3 is devoted to an extensive simulation study
focused on computing spread options prices and on assessing the impact of cointe-
gration on pricing spread options. Section4 is reserved for concluding remarks.

2 Outline of the Model

Before proceeding to the simulation study, in this section we present for the sake of
completeness, a short description of the model developed in Farkas et al. [6].

Consider n commodities with spot prices S(t) = (S1(t), . . . , Sn(t))�.
First it is assumed that the spot log-prices X(t) = log S(t) can be decomposed

into three components:
X(t) = Y(t) + ε(t) + φ(t), (1)
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where Y(t) signifies the long-run levels, ε(t) is an n-dimensional stationary process
capturing short-term deviations, and φ(t) = χ1 cos(2π t) + χ2 sin(2π t) controls for
seasonal effects with χ1 and χ2 being n-dimensional vectors of constants.

The notion of cointegration (Engle and Granger [5], Johansen [7], Phillips [12])
refers to the property of two or more non-stationary time series of having a linear
combination that is stationary. For example, if X1(t) and X2(t) are two non-stationary
processes, one says that they are cointegrated if there is a linear combination of them,
X1(t) − αX2(t), that is stationary for some positive real α. Intuitively, cointegration
occurswhen twoormore non-stationary variables are linked in a long-run equilibrium
relationship from which they might depart only temporarily.

Regarding cointegration in the model, we stress that n cointegration relationships
are implicitly assumed by (1): the n seasonally adjusted spot log-prices X(t) −
φ(t) are cointegrated with their corresponding long-run levels, Y(t), since the linear
combination X(t) − φ(t) − Y(t) is stationary.

Secondly, cointegration is allowed to exist between the variables in Y(t) as well.
We denote the number of cointegration relationships between them by h, where
h ≥ 0 and h < n. The corresponding cointegration matrix is symbolized by Θ , an
n × n matrix with the last n − h rows equal to zero vectors. Each of the h non-zero
rows of Θ encodes a stationary (i.e., cointegrating) combination of the variables
in Y(t), normalized such that Θi i = 1, i ≤ h. The total n + h cointegration rela-
tionships between the variables in the vector Z(t) := (X(t) − φ(t),Y(t))� can be

characterized by the (2n × 2n)-matrix

[
In −In
On Θ

]
whereOn denotes the zero-matrix

with dimension n × n.
The dynamics of X(t) and Y(t) under the real-world probability measure is

assumed to be given by:

d

[
X(t) − φ(t)

Y(t)

]
=

[
0n
μy

]
dt +

[−Kx On

On −Ky

] [
In −In
On Θ

] [
X(t) − φ(t)

Y(t)

]
dt

+
[

Σ
1
2
x On

Σ
1
2
xy Σ

1
2
y

]

d

[
Wx (t)
Wy(t)

]
, (2)

where 0n is an n-dimensional vector of zeros, and W := (Wx ,Wy)
� is a 2n-

dimensional standard Brownian motion. Furthermore, the matrix

[−Kx On

On −Ky

]
mea-

sures the speed bywhichZ(t) reverts to its long-run (cointegration) equilibrium level.
More specifically, Kx quantifies the speed of mean reversion of the elements in X
around the long term levels inY. Thematrix Ky is an n × nmatrix with the last n − h
columns equal to zero vector, such that KyΘ is an n × n matrix of rank h. Each of
the h non-zero columns in Ky quantifies the speed of adjustment of each element
in Y to the corresponding cointegration relation. The dynamics given by Eq. (2) is
“error-correcting” in that a deviation from a given cointegration relation induces an
appropriate change in variables in the direction of correcting the deviation.
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Fig. 1 Simulated price paths for various choices of theΘ matrix.Toppanel prices are non-stationary
and there is one cointegration relation. Middle panel prices are non-stationary and there is no
cointegration. Bottom panel prices are stationary

In order to assess qualitatively the role of the cointegration matrix Θ on the
properties of the dynamics of the system, Fig. 1 depicts the results of a simulation of
a system of three variables for various choices of the Θ matrix.

In the top panel of Fig. 1 we assume that there is a cointegration relation and the
first line of theΘ matrix is

[
1 1 −1

]
and, therefore, the residual of the cointegration

relation, Y1(t) + Y2(t) − Y3(t), is stationary. On the other hand, in the middle panel,
depicts the casewhenΘ is the nullmatrix and, therefore, the prices are non-stationary
and not cointegrated. For example, the residual of the cointegration relation from
the previous case, Y1(t) + Y2(t) − Y3(t), is no longer stationary. In fact, there is no



The Impact of Cointegration on Commodity Spread Options 425

stationary linear combination of the long run levels in this case.Moreover, as depicted
in the bottom panel, the model also allows for stationary prices, if the Θ matrix is of
full rank.

The characteristic functions ofX andY can be readily computed analytically given
they are normally distributed since the dynamics of Z(t) = (X(t) − φ(t),Y(t))� is
in fact given by a multivariate Ornstein–Uhlenbeck (OU) process:

dZ(t) = [μ − KZ(t)] dt + Σ
1
2 dW(t), (3)

with μ :=
[
0n
μy

]
, K :=

[
Kx −Kx

On KyΘ

]
, Σ

1
2 :=

[
Σ

1
2
x On

Σ
1
2
xy Σ

1
2
y

]

, W(t) :=
[
Wx (t)
Wy(t)

]
.

At the same time, the vector of spot prices S(T ) can be written as an exponential
function of X(t) and Y(t):

S(T ) = exp

{
e−Kx (T−t)X(t) + ψ(T − t)Y(t) +

[
φ(T ) − e−Kx (T−t)φ(t)

]

+
[∫ T

t
ψ(T − u)du

]

μy +
∫ T

t

[
e−Kx (T−u)Σ

1
2
x + ψ(T − u)Σ

1
2
xy

]
dWx (u)

+
∫ T

t
ψ(T − u)Σ

1
2
y dWy(u)

}
. (4)

where

ψ(τ) := Kx

[∫ τ

0
e−Kx (τ−u)e−KyΘudu

]
.

Given the affine structure of the model, futures prices can also be obtained in
closed form. Under the simplifying assumption of constant market prices of risk, one

has that d

[
W∗

x (t)
W∗

y(t)

]
= d

[
Wx (t)
Wy(t)

]
+

[
λx

λy

]
dt where W∗

x (t) and W∗
y(t) are standard

Brownian motions under the risk-neutral measure, and λx , λy are the market prices
of Wx (t) and Wy(t) risks, respectively.

Under these circumstances it can be shown that at time t the vector of futures
prices for the contracts with maturity T is given by

F(t, T ) = exp {α(t, T ) + β(T − t)X(t) + ψ(T − t)Y(t)} , (5)

with β(τ) := e−Kx τ and with α(t, T ) defined by

α(t, t + τ) :=
[
φ(t + τ) − e−Kx τ φ(t)

]
−

(
In − e−Kx τ

)
K−1
x μ∗

x +
(∫ τ

0
ψ(τ − u)du

)
μ∗
y

+ diag

{
1

2

[
In On

]
[
e−K τ

(∫ τ

0
eKuΣeKudu

)
e−K τ

] [
In
On

]}
, (6)
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Fig. 2 The relative contribution of various components to log futures prices

where diag(A) returns the vector with diagonal elements of A, and where

μ∗ =
[
μ∗

x
μ∗

y

]
= μ + Σ

1
2

[
λx

λy

]
.

To better assess qualitatively the impact of the two factors, X(t) and Y(t), on the
term structure of futures prices, we depict in Fig. 2 the relative contribution of the
corresponding two terms in Eq. (5) to the logarithm of the futures prices on one of
the commodities in a cointegrated system.

The contribution of the X(t) component decreases exponentially as a function of
time to maturity. On the other hand, theY(t) component contributes significantly for
higher maturities. Therefore, the two factors capture the short-end and, respectively,
the long-end of the term-structure of futures prices.

By Itô’s lemma, the risk-neutral dynamics of F(t, T ) is given by

dF(t, T )

F(t, T )
=

[
e−Kx (T−t)Σ

1
2
x + ψ(T − t)Σ

1
2
xy

]
dW∗

x (t) + ψ(T − t)Σ
1
2
y dW∗

y(t),

(7)

and it follows immediately that the variance–covariance matrix of returns on futures
prices is given by:

Ξ(τ) = e−Kx τΣxe
−K�

x τ + ψ(τ)Σ
1
2
xy(Σ

1
2
x )�e−K�

x τ + e−Kx τΣ
1
2
x (Σ

1
2
xy)

�ψ�(τ )

+ ψ(τ)Σxyψ
�(τ ) + ψ(τ)Σyψ

�(τ ) (8)

where τ = T − t .
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Since the term structure of correlation of futures prices returns plays an impor-
tant role in the results of the simulations performed in the following section, it is
worthwhile to point out some qualitative results about this term structure.

First, Eq. (8) shows that unless Kx = On , the variance–covariance matrix Ξ(τ)

depends on τ .
Second, let us consider the case that there is no instantaneous correlation between

the shocks driving the dynamics, meaning that Σx and Σy are diagonal matrices and
Σxy is the null matrix. Moreover, let us assume that Kx is diagonal, meaning that the
spot price of a commodity reacts only to its deviation from the long run level and
not to deviations of the other commodities. It follows that the first term in Eq. (8) is a
diagonal matrix and the next three terms are null matrices. If, in addition, there is no
cointegration in the system, meaning that Θ is the null matrix, then the last term in
Eq. (8) is a diagonal matrix since ψ(τ) is also a diagonal matrix. So, in this case, the
variance–covariance matrix Ξ(τ) is diagonal and, therefore, there is no correlation
at any maturity. However, if there is at least one cointegration relation in the system,
then the last term in Eq. (8) is no longer a diagonal matrix sinceψ(τ) is not diagonal.
Therefore, cointegration induces correlation at various maturities although it was
assumed there is no instantaneous correlation between the Brownian motions in the
model.

3 Spread Option Prices

In this section,we focus on futures prices and prices ofEuropean-style optionswritten
on the spread between two or more commodities, such as the difference between the
price of electric power and the cost of the natural gas needed to produce it, or the price
difference between crude oil and a basket of various refined products, known as the
crack spread. The crack spread is in fact related to the profit margin that an oil refiner
realizes when “cracking” crude oil while simultaneously selling the refined products
in the wholesale market. The oil refiner can hedge the risk of losing profits by buying
an appropriate number of futures contract on the crack spread or, alternatively, by
buying call options of the crack spread. Since spread options have become regularly
and widely used instruments in financial markets for hedging purposes, there is a
growing need for a better understanding of the effects of cointegration on their prices.

There is extensive literature on approximation methods for spread and basket
options on two (e.g. Kirk [8]) or more than two commodities, with recent contribu-
tions from Li et al. [9] and Caldana and Fusai [2]. However, mostly for simplicity,
we relay in this chapter on the Monte-Carlo simulation method for pricing spread
options written on two or more than two commodities.

From Eq. (7), it follows that F(t, T ) (conditional on information available up to
time s ≤ t ≤ T ) is distributed as follows:
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F(t, T ) ∼ logN

(
logF(s, T ) − 1

2

∫ t

s
diag(Ξ(T − u))du,

∫ t

s
Ξ(T − u)du

)
,

(9)

where diag(X) denotes the vector containing the diagonal elements of the matrix X .
Note that F(s, T ) can be either computed from (5) or observed from data.

The fact that the distribution function of F(t, T ) is known in an easy-to-use and
analytic form is one of the key features of the model we employ. It allows us to
simulate futures price curves at any time t in the future based on today’s curves
(time s) almost effortlessly. Hence, the price of a call option on the time-T value of
a certain spread can be simply obtained by carrying out the following steps:

(i) compute or observe today’s futures price curves F(s, T );
(ii) compute M realizations F(m) (m = 1, . . . , M) of F(T, T ) by sampling from

(9) as follows:
F(m) = F(s, T ) exp

{
ε(m)

}
,

where ε(m) is generated from a multivariate normal distribution with mean
− 1

2

∫ T
s diag(Ξ(T − u))du and variance–covariance matrix

∫ T
s Ξ(T − u)du1;

(iii) compute the Monte-Carlo estimate of a call with strike k on the spread

N∑

n=1

ωn Sn(T )

(

=
N∑

n=1

ωn Fn(T, T )

)

,

withωn , n = 1, . . . , N the weights of each component in the spread, as follows:

1

M

M∑

m=1

max

{[
N∑

n=1

ωn F
(m)
n

]

− k, 0

}

. (10)

For the sake of clarity we have set the risk-free rate curve equal to zero. We note
that the random variables ε(m) can be simply re-used for pricing spread options with
different maturity dates.

In the following we consider a system of three commodities2 characterized by one

cointegration relationwithΘ =
⎡

⎣
1 −0.4 −0.6
0 0 0
0 0 0

⎤

⎦. The rest of the parameters describ-

ing the dynamics are Kx =
⎡

⎣
1.5 0 0
0 1 0
0 0 0.5

⎤

⎦, Σx =
⎡

⎣
0.0625 0.0562 0.0437
0.0562 0.0900 0.0262
0.0437 0.0262 0.1225

⎤

⎦, μy =

1Here the technique of antithetic variables is used to reduce the number of random samples needed
for a given level of accuracy.
2The structure of the parameters is chosen, in a parsimonious manner, taking into consideration the
key facts of the empirical study conducted in Farkas et al. [6], where the results provide compelling
evidence of cointegration between various commodities.
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⎡

⎣
0.025
0.025
0.025

⎤

⎦, Ky =
⎡

⎣
1.5 0 0
0 0 0
0 0 0

⎤

⎦, Σy =
⎡

⎣
0.0225 0 0

0 0.0225 0
0 0 0.0225

⎤

⎦, Σxy = O3. Since Kx

is diagonal, each spot price is error-corrected only with respect to deviations from its
own long-run level. Moreover, given the specific form of the Ky matrix, deviations
from the cointegration relationships between the long-run levels influence only the
dynamics of the first spot price. In this respect, the second and third commodities are
“exogenous” in that their dynamics is not influenced by the variables characterizing
the other commodities. Regarding instantaneous dependence, the shocks driving the
dynamics of the long-run factors are not correlated, whereas we imposed positive
correlations between the shocks driving the dynamics of theX(t). More specifically,
the instantaneous variance–covariance matrixΣy for long-run shocks corresponds to
an annual volatility of 0.15 for all three commodities. At the same time, the instanta-
neous variance–covariance matrix Σx for short-run shocks corresponds to an annual
volatility of 0.25 for the first commodity, of 0.30 for the second and of 0.35 for the
third and to a correlation coefficient of 0.75 between the first and the second com-
modities, of 0.50 between the first and the last and of 0.25 between the second and
the third. For simplicity, we also assume there is no correlation between the two cat-
egories of shocks. Since we focus on the impact of cointegration on spread options,
in the following simulations we have set, for illustration purposes, the vector of risk
premiums λx and λy and the risk-free rate curve equal to zero.3

Figure3 depicts the term structure of correlation, over a period of 5 years, between
the returns of futures prices of the three commodities in the system in two cases: the
one when the cointegration relation is taken into account and, respectively, the one
where the cointegration relation is abstracted from (i.e. Θ = O3).

One can observe that, regarding the correlation term structure between commodi-
ties 2 and 3, the two curves are identical (Fig. 3, bottom panel). This is not surprising
since these two commodities are “exogenous” as explained above and their dynam-
ics is not influenced by the cointegration relation. However, cointegration induces
additional correlation when it comes to the commodities 1 and 2 and commodities 1
and 3, as also pointed out at the end of the previous section. In the absence of coin-
tegration, the correlation vanishes after 2–3 years, whereas when the cointegration
relation is taken into account the correlation exists also in the long run.

Next, we consider three spreads on two commodities, respectively S1(t) − S2(t),
S1(t) − S3(t), S2(t) − S3(t), and one spread on all the three commodities in the
system S1(t) − 0.5(S2(t) + S3(t)).We assume that at time 0, the two factors are such

that X(0) = Y(0) =
⎡

⎣
2
2
2

⎤

⎦ and, therefore, the current spot prices of all four spreads

equal 0. We focus on studying the prices of the at-the-money (ATM) European-style
call spread options with up to 5 years tomaturity. Figure4 shows the term structure of

3In a real-world application the parameters of the model can be estimated using futures prices
data for the corresponding commodities. Given the features of the model one can implement an
estimation procedure based on the Kalman filter.
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Fig. 3 Term structure of correlation, over a period of 5 years, between the futures log-returns of
three commodities (from top to bottom: between 1 and 2, between 1 and 3, between 2 and 3)
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Fig. 4 Relative ATM call spread option prices with up to 5 years to maturity, and relative standard
deviations of the spread distribution at maturities up to 5 years. Top panel for the spread S1(t) −
S2(t). Bottom panel for the spread S1(t) − 0.5(S2(t) + S3(t))
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Fig. 5 The distribution of the spread at maturity (5 years). Top panel for the spread S1(t) − S2(t).
Bottom panel for the spread S1(t) − 0.5(S2(t) + S3(t))

prices in the case with cointegration relative to the prices in the case the cointegration
is not accounted for.4

Cointegration has a significant impact on spread option prices, with the price for
the call with 5 years to maturity on the S1(t) − S2(t) spread being almost 30% lower
in the casewith cointegration and for the call on the S1(t) − 0.5(S2(t) + S3(t)) spread
being almost 60% lower. This can be explained by the fact that cointegration induces
additional correlation that acts to lower the standard deviation of the distribution of
the spread at maturity. To give a better grasp of this fact, Fig. 5 depicts the distribution
of the spread at maturity in the two cases. We omitted from the figures the other two
spreads, because the results for the S1(t) − S3(t) spread are similar to those for the
S1(t) − S2(t) spread, and for the S2(t) − S3(t) spread there is, as expected given the
“exogenous” nature of these two prices, no difference between the cases with and
without cointegration.

If one were to add another cointegration relation to the system, linking the second
and the third commodities in a long-run relationship, then the new cointegration
relation would affect the prices of the options written on the S2(t) − S3(t) spread.
Moreover, the newcointegration relationmight also affect the option priceswritten on
the other three spreads, the magnitude of this influence depending on the structure
of the Ky matrix that captures the strength of responses in various spot prices to
deviations in the new long-run relationship.

To have a better grasp of the influence of cointegration, next we run a series of
sensitivity analyses concerning the existence of a second cointegration relationship in
the system. To account for the new cointegration relation, we assume a new structure

4Relative quantities in Fig. 4 are determined as the ratio between the quantity computed with the
model accounting for cointegration and the correspondingquantity computedwith themodelwithout
cointegration.
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Fig. 6 The impact of k2 and k3 on the distribution of the spread S2(t) − S3(t) at maturity (5 years).
Top left panel correlation between the futures log-returns of the two commodities in the basket.
Top right panel relative standard deviations of the spread distribution (the values are normalized by
division with the standard deviation in the case k2 = k3 = 0). Bottom panel the distribution for the
two extreme cases in the analysis

for Θ =
⎡

⎣
1 −0.4 −0.6

−θ 1 −0.8
0 0 0

⎤

⎦ and Ky =
⎡

⎣
1.5 k1 0
0 k2 0
0 −k3 0

⎤

⎦, where θ, k1, k2, k3 > 0. The

other parameters have the same values as before. We first focus on the impact of
the parameters k2 and k3 on the S2(t) − S3(t) spread. These two parameters quantify
the strength that the second and, respectively, the third commodity reacts to deviations
in the newly added cointegration relation. In the extreme case when both k2 and k3 are
zero, we are in the same situation as before since the two commodities do not react
to deviations. However, with the increase of these parameters the new cointegration
relation will start to matter for the dynamics of the two commodities, and will have
an impact on the distribution of the spread at maturity. Figure6 presents the results
of the sensitivity analysis when k2 and k3 are varied between 0 and 0.5, with the other
parameters kept fixed at a level θ = 0.2 and k1 = 0.

A higher value for the two reaction parameters produces a higher extra correlation
induced by the second cointegration relation, which, in turn, is reflected in a lower
standard deviation of the distribution of the spread atmaturity.Over a 5-years horizon,
the standard deviation for the case k2 = k3 = 0.5 is 32% lower than in the case the
two parameters are equal to zero, and the ATM call price is 35% lower.
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Fig. 7 The impact of k1 and θ on the distribution of the spread S1(t) − 0.5(S2(t) + S3(t)) at
maturity (5 years). Top left panel correlation between the futures log-returns of the first commodity
and the sum of the other two. Top right panel relative standard deviations of the spread distribution
(the values are normalized by division with the standard deviation in the case k1 = 0, θ = 0.2).
Bottom panel the distribution for two specific cases in the analysis

Next, we focus on the impact of θ and k1 on the S1(t) − 0.5(S2(t) + S3(t)) spread.
The parameter θ is a free variable that determines the second cointegration rela-
tionship and the parameter k1 measures the magnitude of the response of the first
commodity to deviations from the second cointegration relation. Figure7 presents
the results of the sensitivity analysis when k1 and θ are varied between 0 and 1 and,
respectively, between 0.1 and 0.3, with the other parameters kept fixed at a level
k2 = 0.25 and k3 = 0.25. An increase of k1 generates a reduction in the correlation
between the components of the spread, showing that the second cointegration rela-
tionship has the effect of pulling the components of the spread away from each other.
This effect is marginally stronger for the smaller θ . The result of the reduction in
correlation is a higher standard deviation of the distribution of the spread at maturity.

For amaturity of 5 years, the standard deviation for the case k1 = 1 is around 33%
higher than in the case the parameter equals zero, and the ATM call price is about
40% higher. Therefore, the two cointegration relations influence the distribution of
the S1(t) − 0.5(S2(t) + S3(t)) spread in different directions, the first one generating
a reduction, and the second one an increase in the standard deviation. The overall
impact depends on the magnitude of the parameters quantifying the responses of the
commodities to deviations in the two cointegration relations.
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4 Concluding Remarks

In this work, we explored the implications of cointegration between commodity
prices on the premiums of options written on various spreads between these com-
modities.We employed the continuous timemodel of cointegrated commodity prices
developed in Farkas et al. [6] and conducted a simulation study for a cointegrated
system of three commodities. We calculated the prices of several spread options
and found that cointegration significantly influences these prices. Furthermore, we
pointed out that cointegration leads to an upward sloping correlation term-structure
which lowers the volatility of spreads and therefore it also lowers the value of options
on spreads. Although we restricted in this chapter to a simulation study, it is worth-
while to mention that the model can also be estimated using futures prices on various
commodities, as shown in Farkas et al. [6].
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The Dynamic Correlation Model
and Its Application to the Heston Model

L. Teng, M. Ehrhardt and M. Günther

Abstract Correlation plays an essential role in many problems of finance and eco-
nomics, such as pricing financial products and hedging strategies, since it models
the degree of relationship between, e.g., financial products and financial institutions.
However, usually for simplicity the correlation coefficient is assumed to be a constant
in many models, although financial quantities are correlated in a strongly nonlinear
way in the real market. This work provides a new time-dependent correlation func-
tion, which can be easily used to construct dynamically (time-dependent) correlated
Brownian motions and flexibly incorporated in many financial models. The aim of
using our time-dependent correlation function is to reasonably choose additional
parameters to increase the fitting quality on the one hand, but also add an economic
concept on the other hand. As examples, we illustrate the applications of dynamic
correlation in the Heston model. From our numerical results we conclude that the
Heston model extended by incorporating time-dependent correlations can provide a
better volatility smile than the pure Heston model.

Keywords Time-dependent correlations ·Heston model · Implied volatility ·Non-
linear dependence

1 Introduction

Correlation is a well-established concept for quantifying interdependence. It plays an
essential role in several problems of finance and economics, such as pricing financial
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products and hedging strategies. For example, in [3] the arbitrage pricing model is
based on that correlation as a measure for the dependence among the assets, and
in portfolio credit models the default correlation is one fundamental factor of risk
evaluation, see [1, 2, 12].

In most of the financial models, the correlation has been considered as a constant.
However, this is not a realistic assumption due to the well-known fact that the cor-
relation is hardly a fixed constant, see e.g. [7, 13]. For example, in many situations
the pure Heston model [9] cannot provide enough skews or smiles in the implied
volatility surface as market requires, especially for a short maturity. A reason for
this might be that deterministically correlated Brownian motions (BMs) of the price
process and the variance process are used, as the correlation mainly affects the slope
of implied volatility smile. If the correlation is modeled as a time-dependent dynamic
function, better skews or smiles will be provided in the implied volatility surface by
reasonably choosing additional parameters. Furthermore, compared with the way
to extend a model by using time-dependent parameter, e.g., [6, 10] for the Heston
model, a time-dependent correlation function adds an economic concept (nonlinear
relationship) and its application will be considerably simpler.

The key of modeling correlation as a time-dependent function is being able to
ensure that the boundaries −1 and 1 of the correlation function are not attractive and
unattainable for any time. In this work, we build up a appropriate time-dependent
correlation function, so that one can reasonably choose additional parameters to
increase the fitting quality on the one hand but also add an economic concept on the
other hand.

The outline of the remaining part is as follows. Section2 is devoted to a specific
dynamic correlation function and its (analytical) computation. In Sect. 3, we present
the concept of dynamically (time-dependent) correlated Brownian motions and the
corresponding construction. The incorporation of our newdynamic correlationmodel
in the Heston model is illustrated in Sect. 4. Finally, in Sect. 5 we conclude.

2 The Dynamic Correlation Function

In this section we introduce a dynamic correlation function. Actually, it is in high
demand to find such a correlation function which must satisfy the correlation prop-
erties: it provides only the values in the interval (−1, 1) for any time; it converges
for increasing time. We find the following simple idea: we denote the dynamic cor-
relation by ρ̄ and propose simply using

ρ̄t := E [tanh(Xt)] , t > 0 (1)

for the dynamic correlation function, where Xt is any mean-reverting process with
positive and negative values. For the known parameters ofXt , the correlation function
ρ̄t : [0, t] → (−1, 1) depends only on t. We observe that the dynamic correlation
model (1) satisfies the desired properties: first, it is obvious that ρ̄t takes values only
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in (−1, 1) for all t. Besides, it converges for increasing time due to themean reversion
of the used process Xt .

Although we could intuitively observe that the function tanh is eminently suit-
able for transforming value to the interval (−1, 1), one might still ask whether
other functions can also be applied for this purpose, like trigonometric functions
or 2

π
arctan( π

2 x). In theory, such functions could be used for this purpose. However,
the problem is whether one can obtain the expectation of the transformed mean-
reverting process by such functions in a closed-form expression. Furthermore, our
experiments show that the tendency of the function tanh ismore suitable formodeling
correlations, see [13].

Xt in (1) could be any mean-reverting process which allows positive and negative
outcomes. As an example, let Xt be the Ornstein–Uhlenbeck process [14]

dXt = κ(μ − Xt)dt + σdWt, t ≥ 0. (2)

We are interested in computing E[ρ̄t] as a function of the given parameters in (2).
We compute ρ̄t = E[tanh(Xt)] as

ρ̄t = E[tanh(Xt)] = E

[
1 − e−Xt · 2

e−Xt + eXt

]
= 1 − E

[
e−Xt · 1

cosh(Xt)

]
. (3)

We set g(Xt) = 1/ cosh(Xt). Applying the results by Chen and Joslin [4], the expec-
tation in (3) can be found in closed-form expression (up to an integral) as

1

2π

∫ ∞

−∞
ĝ(u) · E[e−XteiuXt ] du, (4)

where i = √−1 denotes the imaginary unit and ĝ is the Fourier transform of g, in this
case is known analytically by ĝ(u) = π/ cosh( πu

2 ).DenotingCF(t, u|X0, κ, μ, σ ) as
the characteristic function of Xt , the expectation in (4) can be presented by CF(t, i+
u|X0, κ, μ, σ ). Thus, we obtain the closed-form expression for ρ̄t :

ρ̄t = 1 − 1

2

∫ ∞

−∞
1

cosh( πu
2 )

· CF(t, i + u|X0, κ, μ, σ )du. (5)

The next step is to calculate CF(t, i + u|X0, κ, μ, σ ). The process Xt is an
Ornstein–Uhlenbeck process and its characteristic function CF(t, u|X0, κ, μ, σ ) can
be obtained analytically, e.g. using the framework of the affine process, see [5]. Then,
we only need to substitute u+ i for u in the characteristic function of Xt to calculate
CF(t, i + u|X0, κ, μ, σ ) which is given by

CF(t, i + u|X0, κ, μ, σ ) = e−A(t)− B(t)
2 +iu(A(t)+B(t))+u2 B(t)

2 , (6)
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with

A(t) = e−κtX0 + μ(1 − e−κt), B(t) = −σ 2

2κ
(1 − e−2κt) (7)

Finally, the dynamic correlation function ρ̄t can be computed by

ρ̄t = 1 − e−A(t)− B(t)
2

2

∫ ∞

−∞
1

cosh( πu
2 )

· eiu(A(t)+B(t))+u2 B(t)
2 du, (8)

where A(t) and B(t) are defined in (7). In fact, X0 in A(t) is equal to artanh(ρ̄0).
To illustrate the role of each parameter in (8), we plot ρ̄t for several values of

the parameters. First in Fig. 1, we let κ = 2 and σ = 0.5 and display ρ̄t with
different values of μ, which is set to be 0.5, 0, and −0.5, respectively. Obviously,
μ determines the long term mean of ρ̄t . However, μ is not the exact limiting value.
Considering Fig. 1a where the initial value of the correlation function is 0, we see
that ρ̄t is increasing to a value around μ = 0.5 and decreasing to a value around
μ = −0.5 as t become larger, when μ = 0.5 and −0.5, respectively. Besides, for
μ = ρ̄0 = 0 we observe that the correlation function ρ̄t yields always 0 which is the
same as constant correlation ρ = 0. Now, we set ρ̄0 = 0.3 and keep the value of all
other parameters unchanged, then display the curves of ρ̄t in Fig. 1b.

Next, we fix κ = 2 and μ = 0.5 and then display ρ̄t for the varying σ = 0.5, 1
and 2 in Fig. 2. Obviously, σ shows the magnitude of variation from the transformed
mean value ofXt (μ = 0.5). In Fig. 2a we see, the larger the value of σ is, the stronger
the deviations of ρ̄t is from the transformed mean value of Xt . More interesting is
that ρ̄t first decreases until t ≈ 0.25, then increases and converges to a value, see
Fig. 2b where ρ̄0 = 0.3 and σ = 2.

Again, in order to illustrate the role of κ , we set μ = 0.5, σ = 2 and vary the
value of κ , see Fig. 3. From Fig. 3a it is easy to observe that κ represents the speed
of ρ̄t tending to its limit. Especially, as we have seen in Fig. 2b, the curve is more
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Fig. 1 Dynamic correlation ρ̄t for varying μ (κ = 2 and σ = 0.5). a ρ̄0 = 0. b ρ̄0 = 0.3
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Fig. 2 Dynamic correlation ρ̄t for varying σ (κ = 2 and μ = 0.5). a ρ̄0 = 0. b ρ̄0 = 0.3
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Fig. 3 Dynamic correlation ρ̄t for varying κ (μ = 0.5 and σ = 2). a ρ̄0 = 0. b ρ̄0 = 0.3

unstable for κ = 2 and σ = 2 in Fig. 3b. However, if σ remains constant while the
value of κ is increased, we can see that curves of ρ̄t become more stable and tend
straightly to its limit. If one incorporates the dynamic correlation function (8) to a
financial model, the parameter ρ̄0, κ, μ, and σ could be estimated by fitting the
model to market data.

3 Dynamically Correlated BMs and Their Construction

We fix a probability space (Ω,F ,P) and an information filtration (Ft)t∈R+ , satis-
fying the usual conditions, see e.g. [11]. At a time t > 0, the correlation coefficient
of two Brownian motions (BMs) W 1

t and W 2
t is defined as
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ρ1,2
t = E

[
W 1

t W
2
t

]

t
. (9)

If we assume that ρ
1,2
t is constant, ρ

1,2
t = ρ1,2 for all t > 0, say W 1

t and W 2
t are

correlated with the constant ρ1,2.
Therefore, we give the definition of dynamically correlated BMs.

Definition 1 Two Brownian motionsW 1
t andW 2

t are called dynamically correlated
with correlation function ρt , if they satisfy

E
[
W 1

t W
2
t

] =
∫ t

0
ρsds, (10)

where ρt : [0, t] → [−1, 1]. The average correlation of W 1
t and W 2

t , ρAv , is given
by ρAv := 1

t

∫ t
0 ρsds.

We consider first the two-dimensional case and let ρt be a correlation function.
For two independent BMs W 1

t and W 3
t we define

W 2
t =

∫ t

0
ρsdW

1
s +

∫ t

0

√
1 − ρ2

s dW
3
s , (11)

with the symbolic expression

dW 2
t = ρtdW

1
t +

√
1 − ρ2

t dW
3
t . (12)

It can be easily verified that W 2
t is a BM and correlated with W 1

t dynamically by ρt .
Besides, the covariancematrix and the average correlationmatrix ofWt = (W 1

t ,W 2
t )

can be determined, given by

(
t

∫ t
0 ρsds∫ t

0 ρsds t

)
and

(
1 1

t

∫ t
0 ρsds

1
t

∫ t
0 ρsds 1

)
,

respectively.
The construction above could be also generalized to n-dimensions. We denote

a standard n-dimensional BM by Zt = (Z1,t, . . . ,Zn,t) and the matrix of dynamic
correlationsRt = (ρ

i,j
t )1<i,j<n which has the Cholesky decomposition for each time

t, Rt = AtA
�
t with At = (ai,jt )1<i,j<n. We define a new n-dimensional process

Wt = (W1,t, . . . ,Wn,t) by

Wi,t =
n∑

j=1

aijt dZj,t, i = 1, . . . , n. (13)



The Dynamic Correlation Model and Its Application … 443

We can easily verify that Wt satisfies the following properties:

• W0 = 0 and the paths are continuous with probability 1.
• The incrementsWt1 −Wt0 andWt2 −Wt1 are independent for 0 ≤ t0 < t1 < t2 < t.
• For 0 ≤ s < t, the increment Wt − Ws is multivariate normally distributed with
mean zero and covariance matrix � : Wt − Ws ∼ N(0, �) with

� =

⎛

⎜⎜⎜
⎝

t − s
∫ t
s ρ1,2

u du . . .
∫ t
s ρ1,n

u du∫ t
s ρ2,1

u du t − s . . .
∫ t
s ρ2,n

u du
...

...
. . .

...∫ t
s ρn,1

u du
∫ t
s ρn,2

u du . . . t − s

⎞

⎟⎟⎟
⎠

.

We call the process (Wt)t≥0 an n-dimensional dynamically correlated Brownian
motion, with the correlation matrixRt .

4 Dynamic Correlation in the Heston Model

As mentioned before, in many situations the pure Heston model has a limitation on
reproducing properly a volatility smile. For this problem, several time-dependent
Heston models have been proposed for good fitting to implied volatilities, e.g. [6]
and [10]. In this section, we show how to incorporate our time-dependent correlation
function into the Heston model.

4.1 Incorporating Dynamic Correlations

Heston’s stochastic volatility model is specified as

dSt = μSStdt + √
νt St dW

S
t , (14)

dνt = κν(μν − νt)dt + σν

√
νt dW

ν
t , (15)

where (14) is the price of the spot asset, (15) is the volatility (variance) andWS
t andW

ν
t

are correlated with a constant correlation ρSν . To incorporate the time-dependent cor-
relations, we assume that dSt and dνt are correlated by a time-dependent correlation
function ρ̄t instead of the constant correlation ρSν . The extended Heston model with
dynamic correlation ρ̄ is specified as

dSt = μSStdt + √
νt St dW

1
t , (16)

dνt = κν(μν − νt)dt + σν

√
νt

(
ρ̄t dW

1
t +

√
1 − ρ̄2

t dW
2
t

)
, (17)
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where W 1
t and W 2

t are independent. Applying Itô’s lemma and no-arbitrage argu-
ments yields [9]

1

2
νS2

∂2U

∂S2
+ ρ̄tσννS

∂2U

∂S∂ν
+ 1

2
σ 2

ν ν
∂2U

∂ν2
+ rS

∂U

∂S

+ [κν(μν − ν) − λ̃(S, ν, ρ̄, t)ν]∂U
∂ν

− rU + ∂U

∂t
= 0, (18)

where ρ̄t is defined in (8) but with the parameter ρ̄0, κρ, μρ, and νρ . It is worth
mentioning that the market price of volatility risk depends also on the dynamic cor-
relation, which could be written as λ̃(S, ν, ρ̄t, t). This means, the price of correlation
risk embedding in the price of volatility risk has been considered.

We consider, e.g. a European call option with strike price K and maturity T in the
Heston model

C(S, ν, t, ρ̄t) = SP1 − KP(t,T)P2, τ = T − t, (19)

where P(t,T) is the discount factor and both in-the-money probabilities P1,P2 must
satisfy the PDE (18) as well as their characteristic functions, f1(St, νt, ρ̄t, φ, t) and
f2(St, νt, ρ̄t, φ, t)

fj(St, νt, ρ̄t, φ, t) = E[eiφ ln ST |St, νt, ρ̄t] = eCj(τ,φ)+Dj(τ,φ)ν+iφ ln St , j = 1, 2, (20)

where Cj(0, φ) = 0 and Dj(0, φ) = 0. By substituting this functional form (20) into
the PDE (18) we can obtain the following ordinary differential equations (ODEs) for
the unknown functions C and D:

−1

2
φ2 + ρ̄tσνφiDj + 1

2
σ 2

ν D
2
j + ujφi − bjDj + ∂Dj

∂t
= 0, (21)

rφi + κνμνDj + ∂Cj

∂t
= 0, (22)

with the initial conditions Cj(0, φ) = Dj(0, φ) = 0

u1 = 0.5, u2 = −0.5, b1 = κν + λ − ρ̄tσν and b2 = κν + λ, (23)

where

ρ̄t = 1 − e−A(t)− B(t)
2

2

∫ ∞

−∞
1

cosh( πu
2 )

· eiu(A(t)+B(t))+u2 B(t)
2

︸ ︷︷ ︸
:=g(u)

du, (24)

with A(t) = e−κρ tartanh(ρ̄0) + μρ(1 − e−κρ t), B(t) = − σ 2
ρ

2κρ
(1 − e−2κρ t).

Obviously, (21) and (22) cannot be solved analytically. Therefore, we need to
find an efficient way to compute the option price numerically. We firstly generate the
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Fig. 4 g(u) under ρ0 = 0.3, κρ = 2, μρ = −0.8, σρ = 0.1. a t = 0.1. b t = 10

dynamic correlations using (24). We observe that g(u) is a symmetric function about
u = 0 and vanishes (approaches zero) for a sufficiently large absolute value of u, see
Fig. 4. For these two reasons, the numerical integration in (24) is computationally
fast. Next we use an explicit Runge–Kutta method, the matlab routine ode45, to
obtain C and D in (21) and (22) and thus also the characteristic functions (20).
Finally, we employ the COS method [8] to obtain the option price C(S, ν, t, ρ̄) in
(19). Thanks to the COS method, although we solved that ODE system numerically,
the time for obtaining European option prices is less than 0.1 s so that a calibration
can be performed. Obviously, the error consists of the error using ode45 for (21)
and (22) and the error using COS method. The detailed analysis of error using COS
method has been provided in [8].

4.2 Calibration of the Heston Model Under
Dynamic Correlation

In this section we calibrate the Heston model extended by our time-dependent corre-
lation function to the real market data (Nikk300 index call options on July 16, 2012)
and compare these to the pure Heston model [9] and the time-dependent Heston
model [10].

We consider a set of N maturities Ti, i = 1, . . . ,N and a set ofM strikes Kj, j =
1, . . . ,M. Then for each combination of maturity and strike we have a market price
VM(Ti,Kj) = VM

ij and a corresponding model price V (Ti,Kj;Θ) = VΘ
ij generated

by using (19). We choose the relative mean error sum of squares (RMSE) for the

loss function 1
M×N

∑
i,j

(VM
ij −VΘ

ij )2

VM
ij

, which can be minimized to obtain the parameter

estimates

Θ̂ = argmin
1

M × N

∑

i,j

(VM
ij − VΘ

ij )2

VM
ij

. (25)
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For the optimization we restrict ρ̄0 to the interval (−1, 1) but not the value of μρ .
Since it is not the direct limit of the correlation function but the mean reversion of
the Ornstein–Uhlenbeck process, thus, it could take any value inR. Our experiments
showed, that it is sufficient and appropriate to restrict μρ to the interval [−4, 4].

We state our estimated parameters and the estimation error for the pure Heston
model (abbr. PH), the Hestonmodel under our time-dependent correlations (CH), the
time-dependent Heston model by Mikhailov and Ngel [10] (MN) in Tables1, 2 and
3, respectively. We see that the estimation error using the CH model is significantly
less than the error using the PHmodel and almost the same to the error (sum of errors
for each maturity) under the MNmodel. To illustrate more clearly, for each maturity
we compare the implied volatilities for all the models to the market volatilities in
Fig. 5. We can observe that the implied volatilities for the CHmodel are much closer
to the market volatilities than the implied volatilities for the PHmodel, especially the
CH model has better volatility smile for the short maturity T = 1/12. Compared to
the MN model, the implied volatilities for our model are almost the same. However,
our CH model has an economic interpretation, namely the correlation is nonlinear

Table 1 The estimated parameters for the pure Heston model using call options on the Nikk300
index on July 16, 2012 for the maturities 1/12, 1/4, 1/2, 1

The pure heston model

ν̂0 κ̂ν μ̂ν σ̂ν ρ̂ Estimation
error

0.029 4.746 0.053 1.108 −0.355 1.10 × 10−3

Table 2 The estimated parameters for the Heston model under time-dependent correlations using
call options on the Nikk300 index on July 16, 2012 for the maturities 1/12, 1/4, 1/2, 1

The extended Heston model by using our time-dependent correlation function

ν̂0 κ̂ν μ̂ν σ̂ν
ˆ̄ρ0 κ̂ρ μ̂ρ σ̂ρ Estimation

error

0.027 5.542 0.055 1.224 −0.165 5.333 −0.752 0.434 2.38 ×
10−4

Table 3 The estimated parameters for the time-dependent Heston model by Mikhailov and Ngel
using call options on the Nikk300 index on July 16, 2012

The time-dependent Heston model by Mikhailov and Ngel

Maturity ν̂0 κ̂ν μ̂ν σ̂ν ρ̂ Estimation
error

1/12 0.025 2.749 0.095 1.172 −0.201 1.78× 10−4

1/4 0.012 2.936 0.076 0.524 −0.411 2.45× 10−5

1/2 0.011 2.890 0.058 0.592 −0.430 1.14× 10−5

1 0.001 2.911 0.051 0.558 −0.389 4.28× 10−6



The Dynamic Correlation Model and Its Application … 447

145 150 155

0.14

0.16

0.18

0.2

0.22
Maturity T=1/12

145 150 155

0.14

0.16

0.18

0.2

0.22
Maturity T=1/4

145 150 155

0.14

0.16

0.18

0.2

0.22
Maturity T=1/2

145 150 155

0.14

0.16

0.18

0.2

0.22
Maturity T=1

Fig. 5 The comparison of implied volatilities for all the models to the market volatilities of the
call options on the Nikk300 index on July 16, 2012, where the spot price is 150.9

and time-dependent as market requires.We conclude that the Hestonmodel extended
by incorporating our time-dependent correlations can provide better volatility smiles
compared to the pure Heston model. The time-dependent correlation function can
be easily and directly introduced into the financial models.

5 Conclusion

In this work, we first investigated the dynamically (time-dependent) correlated
Brownian motions and their construction. Furthermore, we proposed a new dynamic
correlation function which can be easily incorporated into another financial model.
The aim of using our dynamic correlation function is to reasonably choose addi-
tional parameters to increase the fitting quality on the one-hand side, but also add an
economically meaningful perspective.

As an application, we incorporated our time-dependent correlation function into
the Heston model. An experiment on estimation of the models using real market data
has been provided. The numerical calibration results show that the Heston model
extended by using our time-dependent correlation function provides better volatility
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smiles compared to the pure Heston model. Besides, this time-dependent correlation
function could be easily and directly imposed to the financial models and thus it is
preferred to use instead of a constant correlation.
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