
2Basic Constructions

2.1 If Tests, Colon and Indentation

Very often in life, and in computer programs, the next action depends on the out-
come of a question starting with “if”. This gives the possibility to branch into
different types of action depending on some criterion. Let us as usual focus on
a specific example, which is the core of so-called random walk algorithms used in
a wide range of branches in science and engineering, including materials manufac-
turing and brain research. The action is to move randomly to the north (N), east (E),
south (S), or west (W) with the same probability. How can we implement such an
action in life and in a computer program?

We need to randomly draw one out of four numbers to select the direction in
which to move. A deck of cards can be used in practice for this purpose. Let the
four suits correspond to the four directions: clubs to N, diamonds to E, hearts to S,
and spades to W, for instance. We draw a card, perform the corresponding move,
and repeat the process a large number of times. The resulting path is a typical
realization of the path of a diffusing molecule.

In a computer program, we need to draw a random number, and depending on
the number, update the coordinates of the point to be moved. There are many ways
to draw random numbers and translate them into (e.g.) four random directions, but
the technical details usually depend on the programming language. Our technique
here is universal: we draw a random number in the interval Œ0; 1/ and let Œ0; 0:25/

correspond to N, Œ0:25; 0:5/ to E, Œ0:5; 0:75/ to S, and Œ0:75; 1/ to W. Let x and y

29© The Author(s) 2016
S. Linge, H.P. Langtangen, Programming for Computations – Python,
Texts in Computational Science and Engineering 15, DOI 10.1007/978-3-319-32428-9_2



30 2 Basic Constructions

hold the coordinates of a point and let d be the length of the move. A pseudo code
(i.e., not “real” code, just a “sketch of the logic”) then goes like

r = random number in [0,1)

if 0 <= r < 0.25

move north: y = y + d

else if 0.25 <= r < 0.5

move east: x = x + d

else if 0.5 <= r < 0.75

move south: y = y - d

else if 0.75 <= r < 1

move west: x = x - d

Note the need for first asking about the value of r and then performing an action.
If the answer to the “if” question is positive (true), we are done and can skip the
next else if questions. If the answer is negative (false), we proceed with the next
question. The last test if 0:75 � r < 1 could also read just else, since we here
cover all the remaining possible r values.

The exact code in Python reads

import random

r = random.random() # random number in [0,1)

if 0 <= r < 0.25:

# move north

y = y + d

elif 0.25 <= r < 0.5:

# move east

x = x + d

elif 0.5 <= r < 0.75:

# move south

y = y - d

else:

# move west

x = x - d

We use else in the last test to cover the different types of syntax that is allowed.
Python recognizes the reserved words if, elif (short for else if), and else and
expects the code to be compatible with the rules of if tests:

� The test reads if condition:, elif condition:, or else:, where
condition is a boolean expression that evaluates to True or False. Note
the closing colon (easy to forget!).

� If condition is True, the following indented block of statements is executed
and the remaining elif or else branches are skipped.

� If condition is False, the program flow jumps to the next elif or else
branch.

The blocks after if, elif, or else may contain new if tests, if desired. Regard-
ing colon and indent, you will see below that these are required in several other
programming constructions as well.

Working with if tests requires mastering boolean expressions. Here are some
basic boolean expressions involving the logical operators ==, !=, <, <=, >, and



2.2 Functions 31

>=. Given the assignment to temp, you should go through each boolean expression
below and determine if it is true or false.

temp = 21 # assign value to a variable

temp == 20 # temp equal to 20

temp != 20 # temp not equal to 20

temp < 20 # temp less than 20

temp > 20 # temp greater than 20

temp <= 20 # temp less than or equal to 20

temp >= 20 # temp greater than or equal to 20

2.2 Functions

Functions are widely used in programming and is a concept that needs to be mas-
tered. In the simplest case, a function in a program is much like a mathematical
function: some input number x is transformed to some output number. One ex-
ample is the tanh�1.x/ function, called atan in computer code: it takes one real
number as input and returns another number. Functions in Python are more gen-
eral and can take a series of variables as input and return one or more variables, or
simply nothing. The purpose of functions is two-fold:

1. to group statements into separate units of code lines that naturally belong to-
gether ( a strategy which may dramatically ease the problem solving process),
and/or

2. to parameterize a set of statements such that they can be written only once and
easily be re-executed with variations.

Examples will be given to illustrate how functions can be written in various con-
texts.

If we modify the program ball.py from Sect. 1.2 slightly, and include a func-
tion, we could let this be a new program ball_function.py as

def y(t):

v0 = 5 # Initial velocity

g = 9.81 # Acceleration of gravity

return v0*t - 0.5*g*t**2

time = 0.6 # Just pick one point in time

print y(time)

time = 0.9 # Pick another point in time

print y(time)

When Python reads and interprets this program from the top, it takes the code
from the line with def, to the line with return, to be the definition of a function
with the name y (note colon and indentation). The return statement of the function
y, i.e.

return v0*t - 0.5*g*t**2

https://github.com/hplgit/prog4comp/tree/master/src/py/ball_function.py


32 2 Basic Constructions

will be understood by Python as first compute the expression, then send the result
back (i.e., return) to where the function was called from. Both def and return are
reserved words. The function depends on t, i.e., one variable (or we say that it takes
one argument or input parameter), the value of which must be provided when the
function is called.

What actually happens when Python meets this code? The def line just tells
Python that here is a function with name y and it has one argument t. Python does
not look into the function at this stage (except that it checks the code for syntax
errors). When Python later on meets the statement print y(time), it recognizes
a function call y(time) and recalls that there is a function y defined with one ar-
gument. The value of time is then transferred to the y(t) function such that t
= time becomes the first action in the y function. Then Python executes one line
at a time in the y function. In the final line, the arithmetic expression v0*t -
0.5*g*t**2 is computed, resulting in a number, and this number (or more pre-
cisely, the Python object representing the number) replaces the call y(time) in the
calling code such that the word print now precedes a number rather than a function
call.

Python proceeds with the next line and sets time to a new value. The next print
statement triggers a new call to y(t), this time t is set to 0.9, the computations
are done line by line in the y function, and the returned result replaces y(time).
Instead of writing print y(time), we could alternatively have stored the returned
result from the y function in a variable,

h = y(time)

print h

Note that when a function contains if-elif-else constructions, return may
be done from within any of the branches. This may be illustrated by the following
function containing three return statements:

def check_sign(x):

if x > 0:

return ’x is positive’

elif x < 0:

return ’x is negative’

else:

return ’x is zero’

Remember that only one of the branches is executed for a single call on check_
sign, so depending on the number x, the return may take place from any of the
three return alternatives.

To return at the end or not
Programmers disagree whether it is a good idea to use return inside a function
where you want, or if there should only be one single return statement at the
end of the function. The authors of this book emphasize readable code and think
that return can be useful in branches as in the example above when the function
is short. For longer or more complicated functions, it might be better to have



2.2 Functions 33

one single return statement. Be prepared for critical comments if you return
wherever you want. . .

An expression you will often encounter when dealing with programming, ismain
program, or that some code is in main. This is nothing particular to Python, and sim-
ply refers to that part of the program which is outside functions. However, note that
the def line of functions is counted into main. So, in ball_function.py above,
all statements outside the function y are in main, and also the line def y(t):.

A function may take no arguments, or many, in which case they are just listed
within the parentheses (following the function name) and separated by a comma.
Let us illustrate. Take a slight variation of the ball example and assume that the
ball is not thrown straight up, but at an angle, so that two coordinates are needed to
specify its position at any time. According to Newton’s laws (when air resistance is
negligible), the vertical position is given by y.t/ D v0yt �0:5gt2 and the horizontal
position by x.t/ D v0xt . We can include both these expressions in a new version of
our program that prints the position of the ball for chosen times. Assume we want
to evaluate these expressions at two points in time, t D 0:6s and t D 0:9s. We
can pick some numbers for the initial velocity components v0y and v0x, name the
program ball_position_xy.py, and write it for example as

def y(v0y, t):

g = 9.81 # Acceleration of gravity

return v0y*t - 0.5*g*t**2

def x(v0x, t):

return v0x*t

initial_velocity_x = 2.0

initial_velocity_y = 5.0

time = 0.6 # Just pick one point in time

print x(initial_velocity_x, time), y(initial_velocity_y, time)

time = 0.9 # ... Pick another point in time

print x(initial_velocity_x, time), y(initial_velocity_y, time)

Now we compute and print the two components for the position, for each of the
two chosen points in time. Notice how each of the two functions now takes two
arguments. Running the program gives the output

1.2 1.2342

1.8 0.52695

A function may also have no return value, in which case we simply drop the re-
turn statement, or it may return more than one value. For example, the two functions
we just defined could alternatively have been written as one:

def xy(v0x, v0y, t):

g = 9.81 # acceleration of gravity

return v0x*t, v0y*t - 0.5*g*t**2

https://github.com/hplgit/prog4comp/tree/master/src/py/ball_position_xy.py


34 2 Basic Constructions

Notice the two return values which are simply separated by a comma. When call-
ing the function (and printing), arguments must appear in the same order as in the
function definition. We would then write

print xy(initial_x_velocity, initial_y_velocity, time)

The two returned values from the function could alternatively have been assigned
to variables, e.g., as

x_pos, y_pos = xy(initial_x_velocity, initial_y_velocity, time)

The variables x_pos and y_pos could then have been printed or used in other ways
in the code.

There are possibilities for having a variable number of function input and output
parameters (using *args and **kwargs constructions for the arguments). How-
ever, we do not go further into that topic here.

Variables that are defined inside a function, e.g., g in the last xy function, are
local variables. This means they are only known inside the function. Therefore,
if you had accidentally used g in some calculation outside the function, you would
have got an error message. The variable time is defined outside the function and is
therefore a global variable. It is known both outside and inside the function(s). If
you define one global and one local variable, both with the same name, the function
only sees the local one, so the global variable is not affected by what happens with
the local variable of the same name.

The arguments named in the heading of a function definition are by rule local
variables inside the function. If you want to change the value of a global variable
inside a function, you need to declare the variable as global inside the function.
That is, if the global variable was x, we would need to write global x inside the
function definition before we let the function change it. After function execution,
x would then have a changed value. One should strive to define variables mostly
where they are needed and not everywhere.

Another very useful way of handling function parameters in Python, is by defin-
ing parameters as keyword arguments. This gives default values to parameters and
allows more freedom in function calls, since the order and number of parameters
may vary.

Let us illustrate the use of keyword arguments with the function xy. Assume we
defined xy as

def xy(t, v0x=0, v0y=0):

g = 9.81 # acceleration of gravity

return v0x*t, v0y*t - 0.5*g*t**2

Here, t is an ordinary or positional argument, whereas v0x and v0y are keyword
arguments or named arguments. Generally, there can be many positional argu-
ments and many keyword arguments, but the positional arguments must always be
listed before the keyword arguments in function definition. Keyword arguments
are given default values, as shown here with v0x and v0y, both having zero as de-



2.2 Functions 35

fault value. In a script, the function xy may now be called in many different ways.
For example,

print xy(0.6)

would make xy perform the computations with t = 0.6 and the default values (i.e
zero) of v0x and v0y. The two numbers returned from xy are printed to the screen.
If we wanted to use another initial value for v0y, we could, e.g., write

print xy(0.6,v0y=4.0)

which would make xy perform the calculations with t = 0.6, v0x = 0 (i.e. the
default value) and v0y = 4.0. When there are several positional arguments, they
have to appear in the same order as defined in the function definition, unless we
explicitly use the names of these also in the function call. With explicit name spec-
ification in the call, any order of parameters is acceptable. To illustrate, we could,
e.g., call xy as

print xy(v0y=4.0, v0x=1.0, t=0.6)

In any programming language, it is a good habit to include a little explanation
of what the function is doing, unless what is done by the function is obvious, e.g.,
when having only a few simple code lines. This explanation is called a doc string,
which in Python should be placed just at the top of the function. This explanation
is meant for a human who wants to understand the code, so it should say something
about the purpose of the code and possibly explain the arguments and return values
if needed. If we do that with our xy function from above, we may write the first
lines of the function as

def xy(v0x, v0y, t):

"""Compute the x and y position of the ball at time t"""

Note that other functionsmay be called fromwithin other functions, and function
input parameters are not required to be numbers. Any object will do, e.g., string
variables or other functions.

Functions are straightforwardly passed as arguments to other functions, as illus-
trated by the following script function_as_argument.py:

def sum_xy(x, y):

return x + y

def prod_xy(x, y):

return x*y

def treat_xy(f, x, y):

return f(x, y)

x = 2; y = 3

print treat_xy(sum_xy, x, y)

print treat_xy(prod_xy, x, y)

https://github.com/hplgit/prog4comp/tree/master/src/py/function_as_argument.py


36 2 Basic Constructions

When run, this program first prints the sum of x and y (i.e., 5), and then it
prints the product (i.e., 6). We see that treat_xy takes a function name as its first
parameter. Inside treat_xy, that function is used to actually call the function that
was given as input parameter. Therefore, as shown, we may call treat_xy with
either sum_xy or prod_xy, depending on whether we want the sum or product of x
and y to be calculated.

Functions may also be defined within other functions. It that case, they become
local functions, or nested functions, known only to the function inside which they
are defined. Functions defined in main are referred to as global functions. A nested
function has full access to all variables in the parent function, i.e. the function within
which it is defined.

Short functions can be defined in a compact way, using what is known as
a lambda function:

f = lambda x, y: x + 2*y

# Equivalent

def f(x, y):

return x + 2*y

The syntax consists of lambda followed by a series of arguments, colon, and some
Python expression resulting in an object to be returned from the function. Lambda
functions are particularly convenient as function arguments:

print treat_xy(lambda x, y: x*y, x, y)

Overhead of function calls
Function calls have the downside of slowing down program execution. Usu-
ally, it is a good thing to split a program into functions, but in very computing
intensive parts, e.g., inside long loops, one must balance the convenience of call-
ing a function and the computational efficiency of avoiding function calls. It is
a good rule to develop a program using plenty of functions and then in a later
optimization stage, when everything computes correctly, remove function calls
that are quantified to slow down the code.

Here is a little example in IPython where we calculate the CPU time for doing
array computations with and without a helper function:

In [1]: import numpy as np

In [2]: a = np.zeros(1000000)

In [3]: def add(a, b):

...: return a + b

...:

In [4]: %timeit for i in range(len(a)): a[i] = add(i, i+1)

The slowest run took 16.01 times longer than the fastest.

This could mean that an intermediate result is being cached

1 loops, best of 3: 178 ms per loop

In [5]: %timeit for i in range(len(a)): a[i] = i + (i+1)

10 loops, best of 3: 109 ms per loop



2.3 For Loops 37

We notice that there is some overhead in function calls. The impact of the over-
head reduces quickly with the amount of computational work inside the function.

2.3 For Loops

Many computations are repetitive by nature and programming languages have cer-
tain loop structures to deal with this. Here we will present what is referred to as
a for loop (another kind of loop is a while loop, to be presented afterwards). Assume
you want to calculate the square of each integer from 3 to 7. This could be done
with the following two-line program.

for i in [3, 4, 5, 6, 7]:

print i**2

Note the colon and indentation again!
What happens when Python interprets your code here? First of all, the word

for is a reserved word signalling to Python that a for loop is wanted. Python then
sticks to the rules covering such constructions and understands that, in the present
example, the loop should run 5 successive times (i.e., 5 iterations should be done),
letting the variable i take on the numbers 3; 4; 5; 6; 7 in turn. During each iteration,
the statement inside the loop (i.e. print i**2) is carried out. After each iteration,
i is automatically (behind the scene) updated. When the last number is reached,
the last iteration is performed and the loop is finished. When executed, the program
will therefore print out 9; 16; 25; 36 and 49. The variable i is often referred to as
a loop index, and its name (here i) is a choice of the programmer.

Note that, had there been several statements within the loop, they would all be
executed with the same value of i (before i changed in the next iteration). Make
sure you understand how program execution flows here, it is important.

In Python, integer values specified for the loop variable are often produced by
the built-in function range. The function range may be called in different ways,
that either explicitly, or implicitly, specify the start, stop and step (i.e., change) of
the loop variable. Generally, a call to range reads

range(start, stop, step)

This call makes range return the integers from (and including) start, up to
(but excluding!) stop, in steps of step. Note here that stop-1 is the last integer
included. With range, the previous example would rather read

for i in range(3, 8, 1):

print i**2

By default, if range is called with only two parameters, these are taken to be
start and stop, in which case a step of 1 is understood. If only a single parameter
is used in the call to range, this parameter is taken to be stop. The default step of



38 2 Basic Constructions

1 is then used (combined with the starting at 0). Thus, calling range, for example,
as

range(6)

would return the integers 0, 1, 2, 3, 4, 5.
Note that decreasing integers may be produced by letting start > stop com-

bined with a negative step. This makes it easy to, e.g., traverse arrays in either
direction.

Let us modify ball_plot.py from Sect. 1.4 to illustrate how useful for loops
are if you need to traverse arrays. In that example we computed the height of the
ball at every milli-second during the first second of its (vertical) flight and plotted
the height versus time.

Assume we want to find the maximum height during that time, how can we do
it with a computer program? One alternative may be to compute all the thousand
heights, store them in an array, and then run through the array to pick out the maxi-
mum. The program, named ball_max_height.py, may look as follows.

import matplotlib.pyplot as plt

v0 = 5 # Initial velocity

g = 9.81 # Acceleration of gravity

t = linspace(0, 1, 1000) # 1000 points in time interval

y = v0*t - 0.5*g*t**2 # Generate all heights

# At this point, the array y with all the heights is ready.

# Now we need to find the largest value within y.

largest_height = y[0] # Starting value for search

for i in range(1, 1000):

if y[i] > largest_height:

largest_height = y[i]

print "The largest height achieved was %f m" % (largest_height)

# We might also like to plot the path again just to compare

plt.plot(t,y)

plt.xlabel(’Time (s)’)

plt.ylabel(’Height (m)’)

plt.show()

There is nothing new here, except the for loop construction, so let us look at it
in more detail. As explained above, Python understands that a for loop is desired
when it sees the word for. The range() function will produce integers from, and
including, 1, up to, and including, 999, i.e. 1000 � 1. The value in y[0] is used
as the preliminary largest height, so that, e.g., the very first check that is made is
testing whether y[1] is larger than this height. If so, y[1] is stored as the largest
height. The for loop then updates i to 2, and continues to check y[2], and so on.
Each time we find a larger number, we store it. When finished, largest_height

https://github.com/hplgit/prog4comp/tree/master/src/py/ball_max_height.py


2.3 For Loops 39

will contain the largest number from the array y. When you run the program, you
get

The largest height achieved was 1.274210 m

which compares favorably to the plot that pops up.
To implement the traversing of arrays with loops and indices, is sometimes chal-

lenging to get right. You need to understand the start, stop and step length choices
for an index, and also how the index should enter expressions inside the loop. At the
same time, however, it is something that programmers do often, so it is important
to develop the right skills on these matters.

Having one loop inside another, referred to as a double loop, is sometimes useful,
e.g., when doing linear algebra. Say we want to find the maximum among the
numbers stored in a 4 � 4 matrix A. The code fragment could look like

largest_number = A[0][0]

for i in range(4):

for j in range(4):

if A[i][j] > largest_number:

largest_number = A[i][j]

Here, all the j indices (0 - 3) will be covered for each value of index i. First, i
stays fixed at i = 0, while j runs over all its indices. Then, i stays fixed at i = 1
while j runs over all its indices again, and so on. Sketch A on a piece of paper and
follow the first few loop iterations by hand, then you will realize how the double
loop construction works. Using two loops is just a special case of using multiple or
nested loops, and utilizing more than two loops is just a straightforward extension
of what was shown here. Note, however, that the loop index name in multiple loops
must be unique to each of the nested loops. Note also that each nested loop may
have as many code lines as desired, both before and after the next inner loop.

The vectorized computation of heights that we did in ball_plot.py (Sect. 1.4)
could alternatively have been done by traversing the time array (t) and, for each t
element, computing the height according to the formula y D v0t � 1

2
gt2. However,

it is important to know that vectorization goes much quicker. So when speed is
important, vectorization is valuable.

Use loops to compute sums
One important use of loops, is to calculate sums. As a simple example, assume
some variable x given by the mathematical expression

x D
NX

iD1

2 � i;

i.e., summing up the N first even numbers. For some given N , say N D 5, x

would typically be computed in a computer program as:



40 2 Basic Constructions

N = 5

x = 0

for i in range(1, N+1):

x += 2*i

print x

Executing this code will print the number 30 to the screen. Note in particular
how the accumulation variable x is initialized to zero. The value of x then gets
updated with each iteration of the loop, and not until the loop is finished will
x have the correct value. This way of building up the value is very common in
programming, so make sure you understand it by simulating the code segment
above by hand. It is a technique used with loops in any programming language.

2.4 While Loops

Python also has another standard loop construction, the while loop, doing iterations
with a loop index very much like the for loop. To illustrate what such a loop may
look like, we consider another modification of ball_plot.py in Sect. 1.4. We will
now change it so that it finds the time of flight for the ball. Assume the ball is
thrown with a slightly lower initial velocity, say 4:5 ms�1, while everything else is
kept unchanged. Since we still look at the first second of the flight, the heights at the
end of the flight become negative. However, this only means that the ball has fallen
below its initial starting position, i.e., the height where it left the hand, so there is
no problem with that. In our array y we will then have a series of heights which
towards the end of y become negative. Let us, in a program named ball_time.py
find the time when heights start to get negative, i.e., when the ball crosses y D 0.
The program could look like this

from numpy import linspace

v0 = 4.5 # Initial velocity

g = 9.81 # Acceleration of gravity

t = linspace(0, 1, 1000) # 1000 points in time interval

y = v0*t - 0.5*g*t**2 # Generate all heights

# Find where the ball hits y=0

i = 0

while y[i] >= 0:

i += 1

# Now, y[i-1]>0 and y[i]<0 so let’s take the middle point

# in time as the approximation for when the ball hits h=0

print "y=0 at", 0.5*(t[i-1] + t[i])

# We plot the path again just for comparison

import matplotlib.pyplot as plt

plt.plot(t, y)

plt.plot(t, 0*t, ’g--’)

plt.xlabel(’Time (s)’)

plt.ylabel(’Height (m)’)

plt.show()

https://github.com/hplgit/prog4comp/tree/master/src/py/ball_time.py


2.5 Lists and Tuples – Alternatives to Arrays 41

If you type and run this program you should get

y=0 at 0.917417417417

The new thing here is the while loop only. The loop (note colon and indentation)
will run as long as the boolean expression y[i] > 0 evaluates to True. Note that
the programmer introduced a variable (the loop index) by the name i, initialized it
(i = 0) before the loop, and updated it (i += 1) in the loop. So for each iteration,
i is explicitly increased by 1, allowing a check of successive elements in the array y.

Compared to a for loop, the programmer does not have to specify the number
of iterations when coding a while loop. It simply runs until the boolean expression
becomes False. Thus, a loop index (as we have in a for loop) is not required. Fur-
thermore, if a loop index is used in a while loop, it is not increased automatically;
it must be done explicitly by the programmer. Of course, just as in for loops and
if blocks, there might be (arbitrarily) many code lines in a while loop. Any for
loop may also be implemented as a while loop, but while loops are more general
so not all of them can be expressed as a for loop.

A problem to be aware of, is what is usually referred to as an infinite loop. In
those unintentional (erroneous) cases, the boolean expression of the while test
never evaluates to False, and the program can not escape the loop. This is one
of the most frequent errors you will experience as a beginning programmer. If you
accidentally enter an infinite loop and the program just hangs forever, press Ctrl+c
to stop the program.

2.5 Lists and Tuples – Alternatives to Arrays

We have seen that a group of numbers may be stored in an array that we may treat
as a whole, or element by element. In Python, there is another way of organiz-
ing data that actually is much used, at least in non-numerical contexts, and that is
a construction called list.

A list is quite similar to an array in many ways, but there are pros and cons
to consider. For example, the number of elements in a list is allowed to change,
whereas arrays have a fixed length that must be known at the time of memory allo-
cation. Elements in a list can be of different type, i.e you may mix integers, floats
and strings, whereas elements in an array must be of the same type. In general, lists
provide more flexibility than do arrays. On the other hand, arrays give faster com-
putations than lists, making arrays the prime choice unless the flexibility of lists is
needed. Arrays also require less memory use and there is a lot of ready-made code
for various mathematical operations. Vectorization requires arrays to be used.

The range() function that we used above in our for loop actually returns a list.
If you for example write range(5) at the prompt in ipython, you get [0, 1,
2, 3, 4] in return, i.e., a list with 5 numbers. In a for loop, the line for i in
range[5] makes i take on each of the numbers 0; 1; 2; 3; 4 in turn, as we saw
above. Writing, e.g., x = range(5), gives a list by the name x, containing those
five numbers. These numbers may now be accessed (e.g., as x[2], which contains
the number 2) and used in computations just as we saw for array elements. As with
arrays, indices run from 0 to n � 1, when n is the number of elements in a list. You
may convert a list to an array by x = array(L).



42 2 Basic Constructions

A list may also be created by simply writing, e.g.,

x = [’hello’, 4, 3.14, 6]

giving a list where x[0] contains the string hello, x[1] contains the integer 4, etc.
We may add and/or delete elements anywhere in the list as shown in the following
example.

x = [’hello’, 4, 3.14, 6]

x.insert(0, -2) # x then becomes [-2, ’hello’, 4, 3.14, 6]

del x[3] # x then becomes [-2, ’hello’, 4, 6]

x.append(3.14) # x then becomes [-2, ’hello’, 4, 6, 3.14]

Note the ways of writing the different operations here. Using append()will always
increase the list at the end. If you like, you may create an empty list as x = []
before you enter a loop which appends element by element. If you need to know
the length of the list, you get the number of elements from len(x), which in our
case is 5, after appending 3.14 above. This function is handy if you want to traverse
all list elements by index, since range(len(x)) gives you all legal indices. Note
that there are many more operations on lists possible than shown here.

Previously, we saw how a for loop may run over array elements. When we want
to do the same with a list in Python, we may do it as this little example shows,

x = [’hello’, 4, 3.14, 6]

for e in x:

print ’x element: ’, e

print ’This was all the elements in the list x’

This is how it usually is done in Python, and we see that e runs over the elements
of x directly, avoiding the need for indexing. Be aware, however, that when loops
are written like this, you can not change any element in x by “changing” e. That is,
writing e += 2 will not change anything in x, since e can only be used to read (as
opposed to overwrite) the list elements.

There is a special construct in Python that allows you to run through all elements
of a list, do the same operation on each, and store the new elements in another list.
It is referred to as list comprehension and may be demonstrated as follows.

List_1 = [1, 2, 3, 4]

List_2 = [e*10 for e in List_1]

This will produce a new list by the name List_2, containing the elements 10,
20, 30 and 40, in that order. Notice the syntax within the brackets for List_2,
for e in List_1 signals that e is to successively be each of the list elements in
List_1, and for each e, create the next element in List_2 by doing e*10. More
generally, the syntax may be written as

List_2 = [E(e) for e in List_1]

where E(e)means some expression involving e.



2.6 Reading from and Writing to Files 43

In some cases, it is required to run through 2 (or more) lists at the same time.
Python has a handy function called zip for this purpose. An example of how to use
zip is provided in the code file_handling.py below.

We should also briefly mention about tuples, which are very much like lists, the
main difference being that tuples cannot be changed. To a freshman, it may seem
strange that such “constant lists” could ever be preferable over lists. However, the
property of being constant is a good safeguard against unintentional changes. Also,
it is quicker for Python to handle data in a tuple than in a list, which contributes to
faster code. With the data from above, we may create a tuple and print the content
by writing

x = (’hello’, 4, 3.14, 6)

for e in x:

print ’x element: ’, e

print ’This was all the elements in the tuple x’

Trying insert or append for the tuple gives an error message (because it cannot
be changed), stating that the tuple object has no such attribute.

2.6 Reading from andWriting to Files

Input data for a program often come from files and the results of the computations
are often written to file. To illustrate basic file handling, we consider an example
where we read x and y coordinates from two columns in a file, apply a function f

to the y coordinates, and write the results to a new two-column data file. The first
line of the input file is a heading that we can just skip:

# x and y coordinates
1.0 3.44

2.0 4.8

3.5 6.61

4.0 5.0

The relevant Python lines for reading the numbers and writing out a similar file are
given in the file file_handling.py

filename = ’tmp.dat’

infile = open(filename, ’r’) # Open file for reading

line = infile.readline() # Read first line

# Read x and y coordinates from the file and store in lists

x = []

y = []

for line in infile:

words = line.split() # Split line into words

x.append(float(words[0]))

y.append(float(words[1]))

infile.close()

https://github.com/hplgit/prog4comp/tree/master/src/py/file_handling.py


44 2 Basic Constructions

# Transform y coordinates

from math import log

def f(y):

return log(y)

for i in range(len(y)):

y[i] = f(y[i])

# Write out x and y to a two-column file

filename = ’tmp_out.dat’

outfile = open(filename, ’w’) # Open file for writing

outfile.write(’# x and y coordinates\n’)

for xi, yi in zip(x, y):

outfile.write(’%10.5f %10.5f\n’ % (xi, yi))

outfile.close()

Such a file with a comment line and numbers in tabular format is very com-
mon so numpy has functionality to ease reading and writing. Here is the same
example using the loadtxt and savetxt functions in numpy for tabular data (file
file_handling_numpy.py):

filename = ’tmp.dat’

import numpy

data = numpy.loadtxt(filename, comments=’#’)

x = data[:,0]

y = data[:,1]

data[:,1] = numpy.log(y) # insert transformed y back in array

filename = ’tmp_out.dat’

filename = ’tmp_out.dat’

outfile = open(filename, ’w’) # open file for writing

outfile.write(’# x and y coordinates\n’)

numpy.savetxt(outfile, data, fmt=’%10.5f’)

2.7 Exercises

Exercise 2.1: Errors with colon, indent, etc.
Write the program ball_function.py as given in the text and confirm that the
program runs correctly. Then save a copy of the program and use that program
during the following error testing.

You are supposed to introduce errors in the code, one by one. For each error
introduced, save and run the program, and comment how well Python’s response
corresponds to the actual error. When you are finished with one error, re-set the
program to correct behavior (and check that it works!) before moving on to the next
error.

a) Change the first line from def y(t): to def y(t), i.e., remove the colon.
b) Remove the indent in front of the statement v0 = 5 inside the function y, i.e.,

shift the text four spaces to the left.

https://github.com/hplgit/prog4comp/tree/master/src/py/file_handling_numpy.py


2.7 Exercises 45

c) Now let the statement v0 = 5 inside the function y have an indent of three
spaces (while the remaining two lines of the function have four).

d) Remove the left parenthesis in the first statement def y(t):
e) Change the first line of the function definition from def y(t): to def y():,

i.e., remove the parameter t.
f) Change the first occurrence of the statement print y(time) to print y().

Filename: errors_colon_indent_etc.py.

Exercise 2.2: Compare integers a and b
Explain briefly, in your own words, what the following program does.

a = input(’Give an integer a: ’)

b = input(’Give an integer b: ’)

if a < b:

print "a is the smallest of the two numbers"

elif a == b:

print "a and b are equal"

else:

print "a is the largest of the two numbers"

Proceed by writing the program, and then run it a few times with different values
for a and b to confirm that it works as intended. In particular, choose combinations
for a and b so that all three branches of the if construction get tested.
Filename: compare_a_and_b.py.

Exercise 2.3: Functions for circumference and area of a circle
Write a program that takes a circle radius r as input from the user and then computes
the circumference C and area A of the circle. Implement the computations of C and
A as two separate functions that each takes r as input parameter. Print C and A to
the screen along with an appropriate text. Run the program with r D 1 and confirm
that you get the right answer.
Filename: functions_circumference_area.py.

Exercise 2.4: Function for area of a rectangle
Write a program that computes the area A D bc of a rectangle. The values of b

and c should be user input to the program. Also, write the area computation as
a function that takes b and c as input parameters and returns the computed area.
Let the program print the result to screen along with an appropriate text. Run the
program with b D 2 and c D 3 to confirm correct program behavior.
Filename: function_area_rectangle.py.

Exercise 2.5: Area of a polygon
One of the most important mathematical problems through all times has been to
find the area of a polygon, especially because real estate areas often had the shape
of polygons, and it was necessary to pay tax for the area. We have a polygon as
depicted below.



46 2 Basic Constructions

The vertices (“corners”) of the polygon have coordinates .x1; y1/, .x2; y2/, : : :,
.xn; yn/, numbered either in a clockwise or counter clockwise fashion. The area A

of the polygon can amazingly be computed by just knowing the boundary coordi-
nates:

A D 1

2
j.x1y2 C x2y3 C � � � C xn�1yn C xny1/

�.y1x2 C y2x3 C � � � C yn�1xn C ynx1/j :

Write a function polyarea(x, y) that takes two coordinate arrays with the ver-
tices as arguments and returns the area. Assume that x and y are either lists or
arrays.

Test the function on a triangle, a quadrilateral, and a pentagon where you can
calculate the area by alternative methods for comparison.

Hint Since Python lists and arrays has 0 as their first index, it is wise to rewrite the
mathematical formula in terms of vertex coordinates numbered as x0; x1; : : : ; xn�1

and y0; y1; : : : ; yn�1.
Filename: polyarea.py.

Exercise 2.6: Average of integers
Write a program that gets an integer N > 1 from the user and computes the average
of all integers i D 1; : : : ; N . The computation should be done in a function that
takes N as input parameter. Print the result to the screen with an appropriate text.
Run the program with N D 5 and confirm that you get the correct answer.
Filename: average_1_to_N.py.



2.7 Exercises 47

Exercise 2.7: While loop with errors
Assume some program has been written for the task of adding all integers i D
1; 2; : : : ; 10:

some_number = 0

i = 1

while i < 11

some_number += 1

print some_number

a) Identify the errors in the program by just reading the code and simulating the
program by hand.

b) Write a new version of the program with errors corrected. Run this program and
confirm that it gives the correct output.

Filename: while_loop_errors.py.

Exercise 2.8: Area of rectangle versus circle
Consider one circle and one rectangle. The circle has a radius r D 10:6. The
rectangle has sides a and b, but only a is known from the outset. Let a D 1:3 and
write a program that uses a while loop to find the largest possible integer b that
gives a rectangle area smaller than, but as close as possible to, the area of the circle.
Run the program and confirm that it gives the right answer (which is b D 271).
Filename: area_rectangle_vs_circle.py.

Exercise 2.9: Find crossing points of two graphs
Consider two functions f .x/ D x and g.x/ D x2 on the interval Œ�4; 4�.

Write a program that, by trial and error, finds approximately for which values
of x the two graphs cross, i.e., f .x/ D g.x/. Do this by considering N equally
distributed points on the interval, at each point checking whether jf .x/�g.x/j < �,
where � is some small number. Let N and � be user input to the program and let
the result be printed to screen. Run your program with N D 400 and � D 0:01.
Explain the output from the program. Finally, try also other values of N , keeping
the value of � fixed. Explain your observations.
Filename: crossing_2_graphs.py.

Exercise 2.10: Sort array with numbers
The import statement from random import * will give access to a function
uniform that may be used to draw (pseudo-)random numbers from a uniform
distribution between two numbers a (inclusive) and b (inclusive). For example,
writing x = uniform(0,10)makes x a float value larger than, or equal to, 0, and
smaller than, or equal to, 10.

Write a script that generates an array of 6 random numbers between 0 and 10.
The program should then sort the array so that numbers appear in increasing order.
Let the program make a formatted print of the array to the screen both before and
after sorting. The printouts should appear on the screen so that comparison is made
easy. Confirm that the array has been sorted correctly.
Filename: sort_numbers.py.



48 2 Basic Constructions

Exercise 2.11: Compute �

Up through history, great minds have developed different computational schemes
for the number � . We will here consider two such schemes, one by Leibniz (1646�
1716), and one by Euler (1707 � 1783).

The scheme by Leibniz may be written

� D 8

1X

kD0

1

.4k C 1/.4k C 3/
;

while one form of the Euler scheme may appear as

� D
vu
u
t6

1X

kD1

1

k2
:

If only the first N terms of each sum are used as an approximation to � , each
modified scheme will have computed � with some error.

Write a program that takes N as input from the user, and plots the error develop-
ment with both schemes as the number of iterations approaches N . Your program
should also print out the final error achieved with both schemes, i.e. when the num-
ber of terms is N. Run the program with N D 100 and explain briefly what the
graphs show.
Filename: compute_pi.py.

Exercise 2.12: Compute combinations of sets
Consider an ID number consisting of two letters and three digits, e.g., RE198. How
many different numbers can we have, and how can a program generate all these
combinations?

If a collection of n things can have m1 variations of the first thing, m2 of the sec-
ond and so on, the total number of variations of the collection equals m1m2 � � � mn.
In particular, the ID number exemplified above can have 26�26�10�10�10 D 676; 000

variations. To generate all the combinations, we must have five nested for loops.
The first two run over all letters A, B, and so on to Z, while the next three run over
all digits 0; 1; : : : ; 9.

To convince yourself about this result, start out with an ID number on the form
A3 where the first part can vary among A, B, and C, and the digit can be among 1,
2, or 3. We must start with A and combine it with 1, 2, and 3, then continue with
B, combined with 1, 2, and 3, and finally combine C with 1, 2, and 3. A double for
loop does the work.

a) In a deck of cards, each card is a combination of a rank and a suit. There are 13
ranks: ace (A), 2, 3, 4, 5, 6, 7, 8, 9, 10, jack (J), queen (Q), king (K), and four
suits: clubs (C), diamonds (D), hearts (H), and spades (S). A typical card may
be D3. Write statements that generate a deck of cards, i.e., all the combinations
CA, C2, C3, and so on to SK.

b) A vehicle registration number is on the form DE562, where the letters vary from
A to Z and the digits from 0 to 9. Write statements that compute all the possible
registration numbers and stores them in a list.



2.7 Exercises 49

c) Generate all the combinations of throwing two dice (the number of eyes can
vary from 1 to 6). Count how many combinations where the sum of the eyes
equals 7.

Filename: combine_sets.py.

Exercise 2.13: Frequency of random numbers
Write a program that takes a positive integer N as input and then draws N random
integers in the interval Œ1; 6� (both ends inclusive). In the program, count how many
of the numbers, M , that equal 6 and write out the fraction M=N . Also, print all the
random numbers to the screen so that you can check for yourself that the counting
is correct. Run the program with a small value for N (e.g., N = 10) to confirm that
it works as intended.

Hint Use random.randint(1,6) to draw a random integer between 1 and 6.
Filename: count_random_numbers.py.

Remarks For large N , this program computes the probability M=N of getting six
eyes when throwing a die.

Exercise 2.14: Game 21
Consider some game where each participant draws a series of random integers
evenly distributed from 0 and 10, with the aim of getting the sum as close as pos-
sible to 21, but not larger than 21. You are out of the game if the sum passes 21.
After each draw, you are told the number and your total sum, and are asked whether
you want another draw or not. The one coming closest to 21 is the winner.

Implement this game in a program.

Hint Use random.randint(0,10) to draw random integers in Œ0; 10�.
Filename: game_21.py.

Exercise 2.15: Linear interpolation
Some measurements yi , i D 0; 1; : : : ; N (given below), of a quantity y have been
collected regularly, once every minute, at times ti D i , i D 0; 1; : : : ; N . We want
to find the value y in between the measurements, e.g., at t D 3:2 min. Computing
such y values is called interpolation.

Let your program use linear interpolation to compute y between two consecutive
measurements:

1. Find i such that ti � t � tiC1.
2. Find a mathematical expression for the straight line that goes through the points

.i; yi / and .i C 1; yiC1/.
3. Compute the y value by inserting the user’s time value in the expression for the

straight line.

a) Implement the linear interpolation technique in a function that takes an array
with the yi measurements as input, together with some time t , and returns the
interpolated y value at time t .



50 2 Basic Constructions

b) Write another function with a loop where the user is asked for a time on the
interval Œ0; N � and the corresponding (interpolated) y value is written to the
screen. The loop is terminated when the user gives a negative time.

c) Use the following measurements: 4:4; 2:0; 11:0; 21:5; 7:5, corresponding to
times 0; 1; : : : ; 4 (min), and compute interpolated values at t D 2:5 and t D 3:1

min. Perform separate hand calculations to check that the output from the
program is correct.

Filename: linear_interpolation.py.

Exercise 2.16: Test straight line requirement
Assume the straight line function f .x/ D 4x C 1. Write a script that tests the
“point-slope” form for this line as follows. Within a chosen interval on the x-axis
(for example, for x between 0 and 10), randomly pick 100 points on the line and
check if the following requirement is fulfilled for each point:

f .xi / � f .c/

xi � c
D a; i D 1; 2; : : : ; 100 ;

where a is the slope of the line and c defines a fixed point .c; f .c// on the line. Let
c D 2 here.
Filename: test_straight_line.py.

Exercise 2.17: Fit straight line to data
Assume some measurements yi ; i D 1; 2; : : : ; 5 have been collected, once every
second. Your task is to write a program that fits a straight line to those data.

a) Make a function that computes the error between the straight line f .x/ D axCb

and the measurements:

e D
5X

iD1

.axi C b � yi /
2 :

b) Make a function with a loop where you give a and b, the corresponding value of
e is written to the screen, and a plot of the straight line f .x/ D ax C b together
with the discrete measurements is shown.

Hint To make the plotting from the loop to work, you may have to insert from
matplotlib.pylab import * at the top of the script and also add show() after
the plot command in the loop.

c) Given the measurements 0:5; 2:0; 1:0; 1:5; 7:5, at times 0; 1; 2; 3; 4, use the func-
tion in b) to interactively search for a and b such that e is minimized.

Filename: fit_straight_line.py.

Remarks Fitting a straight line to measured data points is a very common task. The
manual search procedure in c) can be automated by using a mathematical method
called the method of least squares.



2.7 Exercises 51

Exercise 2.18: Fit sines to straight line
A lot of technology, especially most types of digital audio devices for processing
sound, is based on representing a signal of time as a sum of sine functions. Say the
signal is some function f .t/ on the interval Œ��; �� (a more general interval Œa; b�

can easily be treated, but leads to slightly more complicated formulas). Instead of
working with f .t/ directly, we approximate f by the sum

SN .t/ D
NX

nD1

bn sin.nt/; (2.1)

where the coefficients bn must be adjusted such that SN .t/ is a good approximation
to f .t/. We shall in this exercise adjust bn by a trial-and-error process.

a) Make a function sinesum(t, b) that returns SN .t/, given the coefficients bn

in an array b and time coordinates in an array t. Note that if t is an array, the
return value is also an array.

b) Write a function test_sinesum() that calls sinesum(t, b) in a) and deter-
mines if the function computes a test case correctly. As test case, let t be an
array with values ��=2 and �=4, choose N D 2, and b1 D 4 and b2 D �3.
Compute SN .t/ by hand to get reference values.

c) Make a function plot_compare(f, N, M) that plots the original function f .t/

together with the sum of sines SN .t/, so that the quality of the approximation
SN .t/ can be examined visually. The argument f is a Python function imple-
menting f .t/, N is the number of terms in the sum SN .t/, and M is the number
of uniformly distributed t coordinates used to plot f and SN .

d) Write a function error(b, f, M) that returns a mathematical measure of the
error in SN .t/ as an approximation to f .t/:

E D
sX

i

.f .ti / � SN .ti //
2;

where the ti values are M uniformly distributed coordinates on Œ��; ��. The
array b holds the coefficients in SN and f is a Python function implementing the
mathematical function f .t/.

e) Make a function trial(f, N) for interactively giving bn values and getting
a plot on the screen where the resulting SN .t/ is plotted together with f .t/.
The error in the approximation should also be computed as indicated in d). The
argument f is a Python function for f .t/ and N is the number of terms N in the
sum SN .t/. The trial function can run a loop where the user is asked for the bn

values in each pass of the loop and the corresponding plot is shown. You must
find a way to terminate the loop when the experiments are over. Use M=500 in
the calls to plot_compare and error.

Hint To make this part of your program work, you may have to insert from
matplotlib.pylab import * at the top and also add show() after the plot
command in the loop.



52 2 Basic Constructions

f) Choose f .t/ to be a straight line f .t/ D 1
�

t on Œ��; ��. Call trial(f, 3)
and try to find through experimentation some values b1, b2, and b3 such that the
sum of sines SN .t/ is a good approximation to the straight line.

g) Now we shall try to automate the procedure in f). Write a function that has
three nested loops over values of b1, b2, and b3. Let each loop cover the interval
Œ�1; 1� in steps of 0.1. For each combination of b1, b2, and b3, the error in the
approximation SN should be computed. Use this to find, and print, the smallest
error and the corresponding values of b1, b2, and b3. Let the program also plot
f and the approximation SN corresponding to the smallest error.

Filename: fit_sines.py.

Remarks

1. The function SN .x/ is a special case of what is called a Fourier series. At
the beginning of the 19th century, Joseph Fourier (1768-1830) showed that any
function can be approximated analytically by a sum of cosines and sines. The
approximation improves as the number of terms (N ) is increased. Fourier series
are very important throughout science and engineering today.
(a) Finding the coefficients bn is solved much more accurately in Exercise 3.12,

by a procedure that also requires much less human and computer work!
(b) In real applications, f .t/ is not known as a continuous function, but func-

tion values of f .t/ are provided. For example, in digital sound applications,
music in a CD-quality WAV file is a signal with 44,100 samples of the cor-
responding analog signal f .t/ per second.

Exercise 2.19: Count occurrences of a string in a string
In the analysis of genes one encounters many problem settings involving searching
for certain combinations of letters in a long string. For example, we may have
a string like

gene = ’AGTCAATGGAATAGGCCAAGCGAATATTTGGGCTACCA’

We may traverse this string, letter by letter, by the for loop for letter in gene.
The length of the string is given by len(gene), so an alternative traversal over an
index i is for i in range(len(gene)). Letter number i is reached through
gene[i], and a substring from index i up to, but not including j, is created by
gene[i:j].

a) Write a function freq(letter, text) that returns the frequency of the letter
letter in the string text, i.e., the number of occurrences of letter divided
by the length of text. Call the function to determine the frequency of C and G
in the gene string above. Compute the frequency by hand too.

b) Write a function pairs(letter, text) that counts how many times a pair
of the letter letter (e.g., GG) occurs within the string text. Use the function
to determine how many times the pair AA appears in the string gene above.
Perform a manual counting too to check the answer.



2.7 Exercises 53

c) Write a function mystruct(text) that counts the number of a certain structure
in the string text. The structure is defined as G followed by A or T until a double
GG. Perform a manual search for the structure too to control the computations
by mystruct.

Filename: count_substrings.py.

Remarks You are supposed to solve the tasks using simple programming with
loops and variables. While a) and b) are quite straightforward, c) quickly involves
demanding logic. However, there are powerful tools available in Python that can
solve the tasks efficiently in very compact code: a) text.count(letter)/float
(len(text)); b) text.count(letter*2); c) len(re.findall(’G[AT]+?GG’,
text)). That is, there is rich functionality for analysis of text in Python and this is
particularly useful in analysis of gene sequences.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

