
3Generalizations

It is time to consider generalizations of the simple decay model u0 D �au and also
to look at additional numerical solution methods. We consider first variable coeffi-
cients, u0 D a.t/uC b.t/, and later a completely general scalar ODE u0 D f .u; t/

and its generalization to a system of such general ODEs. Among numerical meth-
ods, we treat implicit multi-step methods, and several families of explicit methods:
Leapfrog schemes, Runge–Kutta methods, and Adams–Bashforth formulas.

3.1 Model Extensions

This section looks at the generalizations to u0 D �a.t/u and u0 D �a.t/u C
b.t/. We sketch the corresponding implementations of the �-rule for such variable-
coefficient ODEs. Verification can no longer make use of an exact solution of the
numerical problem so we make use of manufactured solutions, for deriving an exact
solution of the ODE problem, and then we can compute empirical convergence rates
for the method and see if these coincide with the expected rates from theory. Finally,
we see how our numerical methods can be applied to systems of ODEs.

The example programs associated with this chapter are found in the directory
src/genz1.

3.1.1 Generalization: Including a Variable Coefficient

In the ODE for decay, u0 D �au, we now consider the case where a depends on
time:

u0.t/ D �a.t/u.t/; t 2 .0; T �; u.0/ D I : (3.1)

A Forward Euler scheme consists of evaluating (3.1) at t D tn and approximating
the derivative with a forward difference ŒDCt u�n:

unC1 � un

�t
D �a.tn/un : (3.2)

1 http://tinyurl.com/ofkw6kc/genz

67© The Author(s) 2016
H.P. Langtangen, Finite Difference Computing with Exponential Decay Models,
Lecture Notes in Computational Science and Engineering 110,
DOI 10.1007/978-3-319-29439-1_3

http://tinyurl.com/ofkw6kc/genz

68 3 Generalizations

The Backward Euler scheme becomes

un � un�1

�t
D �a.tn/un : (3.3)

The Crank–Nicolson method builds on sampling the ODE at tnC 1
2
. We can evaluate

a at tnC 1
2

and use an average for u at times tn and tnC1:

unC1 � un

�t
D �a.tnC 1

2
/
1

2
.un C unC1/ : (3.4)

Alternatively, we can use an average for the product au:

unC1 � un

�t
D �1

2
.a.tn/un C a.tnC1/u

nC1/ : (3.5)

The �-rule unifies the three mentioned schemes. One version is to have a evaluated
at the weighted time point .1 � �/tn C � tnC1,

unC1 � un

�t
D �a..1 � �/tn C � tnC1/..1 � �/un C �unC1/ : (3.6)

Another possibility is to apply a weighted average for the product au,

unC1 � un

�t
D �.1 � �/a.tn/un � �a.tnC1/u

nC1 : (3.7)

With the finite difference operator notation the Forward Euler and Backward
Euler schemes can be summarized as

ŒDCt u D �au�n; (3.8)

ŒD�t u D �au�n : (3.9)

The Crank–Nicolson and � schemes depend on whether we evaluate a at the sample
point for the ODE or if we use an average. The various versions are written as

ŒDtu D �aut �nC
1
2 ; (3.10)

ŒDtu D �aut �nC
1
2 ; (3.11)

ŒDtu D �aut;� �nC� ; (3.12)

ŒDtu D �aut;� �nC� : (3.13)

3.1.2 Generalization: Including a Source Term

A further extension of the model ODE is to include a source term b.t/:

u0.t/ D �a.t/u.t/C b.t/; t 2 .0; T �; u.0/ D I : (3.14)

3.1 Model Extensions 69

The time point where we sample the ODE determines where b.t/ is evaluated.
For the Crank–Nicolson scheme and the �-rule we have a choice of whether to
evaluate a.t/ and b.t/ at the correct point or use an average. The chosen strategy
becomes particularly clear if we write up the schemes in the operator notation:

ŒDCt u D �auC b�n; (3.15)

ŒD�t u D �auC b�n; (3.16)

ŒDt u D �aut C b�nC
1
2 ; (3.17)

ŒDt u D �auC b
t
�nC

1
2 ; (3.18)

ŒDt u D �aut;� C b�nC� ; (3.19)

ŒDt u D �auC b
t;�

�nC� : (3.20)

3.1.3 Implementation of the Generalized Model Problem

Deriving the �-rule formula Writing out the �-rule in (3.20), using (1.44) and
(1.45), we get

unC1 � un

�t
D �.�anC1unC1 C bnC1//C .1 � �/.�anun C bn//; (3.21)

where an means evaluating a at t D tn and similar for anC1, bn, and bnC1. We solve
for unC1:

unC1 D ..1��t.1��/an/unC�t.�bnC1C.1��/bn//.1C�t�anC1/�1 : (3.22)

Python code Here is a suitable implementation of (3.21) where a.t/ and b.t/ are
given as Python functions:

def solver(I, a, b, T, dt, theta):
"""
Solve u’=-a(t)*u + b(t), u(0)=I,
for t in (0,T] with steps of dt.
a and b are Python functions of t.
"""
dt = float(dt) # avoid integer division
Nt = int(round(T/dt)) # no of time intervals
T = Nt*dt # adjust T to fit time step dt
u = zeros(Nt+1) # array of u[n] values
t = linspace(0, T, Nt+1) # time mesh

u[0] = I # assign initial condition
for n in range(0, Nt): # n=0,1,...,Nt-1

u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + \
dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/\
(1 + dt*theta*a(t[n+1]))

return u, t

This function is found in the file decay_vc.py2 (vc stands for “variable coeffi-
cients”).

2 http://tinyurl.com/ofkw6kc/genz/decay_vc.py

http://tinyurl.com/ofkw6kc/genz/decay_vc.py

70 3 Generalizations

Coding of variable coefficients The solver function shown above demands the
arguments a and b to be Python functions of time t, say

def a(t):
return a_0 if t < tp else k*a_0

def b(t):
return 1

Here, a(t) has three parameters a0, tp, and k, which must be global variables.
A better implementation, which avoids global variables, is to represent a by

a class where the parameters are attributes and where a special method __call__
evaluates a.t/:

class A:
def __init__(self, a0=1, k=2):

self.a0, self.k = a0, k

def __call__(self, t):
return self.a0 if t < self.tp else self.k*self.a0

a = A(a0=2, k=1) # a behaves as a function a(t)

For quick tests it is cumbersome to write a complete function or a class. The
lambda function construction in Python is then convenient. For example,

a = lambda t: a_0 if t < tp else k*a_0

is equivalent to the def a(t) definition above. In general,

f = lambda arg1, arg2, ...: expression

is equivalent to

def f(arg1, arg2, ...):
return expression

One can use lambda functions directly in calls. Say we want to solve u0 D �uC 1,
u.0/ D 2:

u, t = solver(2, lambda t: 1, lambda t: 1, T, dt, theta)

Whether to use a plain function, a class, or a lambda function depends on the
programmer’s taste. Lazy programmers prefer the lambda construct, while very
safe programmers go for the class solution.

3.1.4 Verifying a Constant Solution

An extremely useful partial verification method is to construct a test problem with
a very simple solution, usually u D const. Especially the initial debugging of

3.1 Model Extensions 71

a program code can benefit greatly from such tests, because 1) all relevant numerical
methods will exactly reproduce a constant solution, 2) many of the intermediate
calculations are easy to control by hand for a constant u, and 3) even a constant u

can uncover many bugs in an implementation.
The only constant solution for the problem u0 D �au is u D 0, but too many

bugs can escape from that trivial solution. It is much better to search for a problem
where u D C D const ¤ 0. Then u0 D �a.t/u C b.t/ is more appropriate: with
u D C we can choose any a.t/ and set b D a.t/C and I D C . An appropriate test
function is

def test_constant_solution():
"""
Test problem where u=u_const is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""
def u_exact(t):

return u_const

def a(t):
return 2.5*(1+t**3) # can be arbitrary

def b(t):
return a(t)*u_const

u_const = 2.15
theta = 0.4; I = u_const; dt = 4
Nt = 4 # enough with a few steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
print u
u_e = u_exact(t)
difference = abs(u_e - u).max() # max deviation
tol = 1E-14
assert difference < tol

An interesting question is what type of bugs that will make the computed un

deviate from the exact solution C . Fortunately, the updating formula and the initial
condition must be absolutely correct for the test to pass! Any attempt to make
a wrong indexing in terms like a(t[n]) or any attempt to introduce an erroneous
factor in the formula creates a solution that is different from C .

3.1.5 Verification via Manufactured Solutions

Following the idea of the previous section, we can choose any formula as the exact
solution, insert the formula in the ODE problem and fit the data a.t/, b.t/, and
I to make the chosen formula fulfill the equation. This powerful technique for
generating exact solutions is very useful for verification purposes and known as the
method of manufactured solutions, often abbreviated MMS.

One common choice of solution is a linear function in the independent vari-
able(s). The rationale behind such a simple variation is that almost any relevant
numerical solution method for differential equation problems is able to reproduce
a linear function exactly to machine precision (if u is about unity in size; precision
is lost if u takes on large values, see Exercise 3.1). The linear solution also makes
some stronger demands to the numerical method and the implementation than the

72 3 Generalizations

constant solution used in Sect. 3.1.4, at least in more complicated applications.
Still, the constant solution is often ideal for initial debugging before proceeding
with a linear solution.

We choose a linear solution u.t/ D ct C d . From the initial condition it follows
that d D I . Inserting this u in the left-hand side of (3.14), i.e., the ODE, we get

c D �a.t/uC b.t/ :

Any function u D ct C I is then a correct solution if we choose

b.t/ D c C a.t/.ct C I / :

With this b.t/ there are no restrictions on a.t/ and c.
Let us prove that such a linear solution obeys the numerical schemes. To this

end, we must check that un D ca.tn/.ctn C I / fulfills the discrete equations. For
these calculations, and later calculations involving linear solutions inserted in finite
difference schemes, it is convenient to compute the action of a difference operator
on a linear function t :

ŒDCt t �n D tnC1 � tn

�t
D 1; (3.23)

ŒD�t t �n D tn � tn�1

�t
D 1; (3.24)

ŒDt t�
n D

tnC 1
2
� tn� 1

2

�t
D .nC 1

2
/�t � .n � 1

2
/�t

�t
D 1 : (3.25)

Clearly, all three finite difference approximations to the derivative are exact for
u.t/ D t or its mesh function counterpart un D tn.

The difference equation for the Forward Euler scheme

ŒDCt u D �auC b�n;

with an D a.tn/, bn D c C a.tn/.ctn C I /, and un D ctn C I then results in

c D �a.tn/.ctn C I /C c C a.tn/.ctn C I / D c

which is always fulfilled. Similar calculations can be done for the Backward Euler
and Crank–Nicolson schemes, or the �-rule for that matter. In all cases, un D
ctnC I is an exact solution of the discrete equations. That is why we should expect
that un � ue.tn/ D 0 mathematically and jun � ue.tn/j less than a small number
about the machine precision for n D 0; : : : ; Nt .

The following function offers an implementation of this verification test based
on a linear exact solution:

def test_linear_solution():
"""
Test problem where u=c*t+I is the exact solution, to be
reproduced (to machine precision) by any relevant method.
"""

3.1 Model Extensions 73

def u_exact(t):
return c*t + I

def a(t):
return t**0.5 # can be arbitrary

def b(t):
return c + a(t)*u_exact(t)

theta = 0.4; I = 0.1; dt = 0.1; c = -0.5
T = 4
Nt = int(T/dt) # no of steps
u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
u_e = u_exact(t)
difference = abs(u_e - u).max() # max deviation
print difference
tol = 1E-14 # depends on c!
assert difference < tol

Any error in the updating formula makes this test fail!
Choosing more complicated formulas as the exact solution, say cos.t/, will not

make the numerical and exact solution coincide to machine precision, because finite
differencing of cos.t/ does not exactly yield the exact derivative � sin.t/. In such
cases, the verification procedure must be based on measuring the convergence rates
as exemplified in Sect. 3.1.6. Convergence rates can be computed as long as one has
an exact solution of a problem that the solver can be tested on, but this can always
be obtained by the method of manufactured solutions.

3.1.6 Computing Convergence Rates

We expect that the error E in the numerical solution is reduced if the mesh size �t

is decreased. More specifically, many numerical methods obey a power-law relation
between E and �t :

E D C�tr ; (3.26)

where C and r are (usually unknown) constants independent of �t . The formula
(3.26) is viewed as an asymptotic model valid for sufficiently small �t . How small
is normally hard to estimate without doing numerical estimations of r .

The parameter r is known as the convergence rate. For example, if the conver-
gence rate is 2, halving �t reduces the error by a factor of 4. Diminishing �t then
has a greater impact on the error compared with methods that have r D 1. For
a given value of r , we refer to the method as of r-th order. First- and second-order
methods are most common in scientific computing.

Estimating r There are two alternative ways of estimating C and r based on a set
of m simulations with corresponding pairs .�ti ; Ei /, i D 0; : : : ; m � 1, and �ti <

�ti�1 (i.e., decreasing cell size).

1. Take the logarithm of (3.26), ln E D r ln �t C ln C , and fit a straight line to the
data points .�ti ; Ei /, i D 0; : : : ; m � 1.

74 3 Generalizations

2. Consider two consecutive experiments, .�ti ; Ei / and .�ti�1; Ei�1/. Dividing
the equation Ei�1 D C�tr

i�1 by Ei D C�tr
i and solving for r yields

ri�1 D ln.Ei�1=Ei /

ln.�ti�1=�ti /
(3.27)

for i D 1; : : : ; m � 1. Note that we have introduced a subindex i � 1 on r

in (3.27) because r estimated from a pair of experiments must be expected to
change with i .

The disadvantage of method 1 is that (3.26) might not be valid for the coarsest
meshes (largest �t values). Fitting a line to all the data points is then misleading.
Method 2 computes convergence rates for pairs of experiments and allows us to see
if the sequence ri converges to some value as i ! m � 2. The final rm�2 can then
be taken as the convergence rate. If the coarsest meshes have a differing rate, the
corresponding time steps are probably too large for (3.26) to be valid. That is, those
time steps lie outside the asymptotic range of �t values where the error behaves
like (3.26).

Implementation We can compute r0; r1; : : : ; rm�2 from Ei and �ti by the follow-
ing function

def compute_rates(dt_values, E_values):
m = len(dt_values)
r = [log(E_values[i-1]/E_values[i])/

log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

Round to two decimals
r = [round(r_, 2) for r_ in r]
return r

Experiments with a series of time step values and � D 0; 1; 0:5 can be set up as
follows, here embedded in a real test function:

def test_convergence_rates():
Create a manufactured solution
define u_exact(t), a(t), b(t)

dt_values = [0.1*2**(-i) for i in range(7)]
I = u_exact(0)

for theta in (0, 1, 0.5):
E_values = []
for dt in dt_values:

u, t = solver(I=I, a=a, b=b, T=6, dt=dt, theta=theta)
u_e = u_exact(t)
e = u_e - u
E = sqrt(dt*sum(e**2))
E_values.append(E)

r = compute_rates(dt_values, E_values)
print ’theta=%g, r: %s’ % (theta, r)
expected_rate = 2 if theta == 0.5 else 1
tol = 0.1
diff = abs(expected_rate - r[-1])
assert diff < tol

3.1 Model Extensions 75

The manufactured solution is conveniently computed by sympy. Let us choose
ue.t/ D sin.t/e�2t and a.t/ D t2. This implies that we must fit b as b.t/ D
u0.t/ � a.t/. We first compute with sympy expressions and then we convert the
exact solution, a, and b to Python functions that we can use in the subsequent
numerical computing:

Create a manufactured solution with sympy
import sympy as sym
t = sym.symbols(’t’)
u_e = sym.sin(t)*sym.exp(-2*t)
a = t**2
b = sym.diff(u_e, t) + a*u_exact

Turn sympy expressions into Python function
u_exact = sym.lambdify([t], u_e, modules=’numpy’)
a = sym.lambdify([t], a, modules=’numpy’)
b = sym.lambdify([t], b, modules=’numpy’)

The complete code is found in the function test_convergence_rates in the file
decay_vc.py3.

Running this code gives the output

Terminal

theta=0, r: [1.06, 1.03, 1.01, 1.01, 1.0, 1.0]
theta=1, r: [0.94, 0.97, 0.99, 0.99, 1.0, 1.0]
theta=0.5, r: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0]

We clearly see how the convergence rates approach the expected values.

Why convergence rates are important
The strong practical application of computing convergence rates is for verifi-
cation: wrong convergence rates point to errors in the code, and correct conver-
gence rates bring strong support for a correct implementation. Experience shows
that bugs in the code easily destroy the expected convergence rate.

3.1.7 Extension to Systems of ODEs

Many ODE models involve more than one unknown function and more than one
equation. Here is an example of two unknown functions u.t/ and v.t/:

u0 D auC bv; (3.28)

v0 D cuC dv; (3.29)

for constants a; b; c; d . Applying the Forward Euler method to each equation results
in a simple updating formula:

unC1 D un C�t.aun C bvn/; (3.30)

vnC1 D un C�t.cun C dvn/ : (3.31)

3 http://tinyurl.com/ofkw6kc/genz/decay_vc.py

http://tinyurl.com/ofkw6kc/genz/decay_vc.py

76 3 Generalizations

On the other hand, the Crank–Nicolson or Backward Euler schemes result in a 2
2

linear system for the new unknowns. The latter scheme becomes

unC1 D un C�t.aunC1 C bvnC1/; (3.32)

vnC1 D vn C�t.cunC1 C dvnC1/ : (3.33)

Collecting unC1 as well as vnC1 on the left-hand side results in

.1 ��ta/unC1 C bvnC1 D un; (3.34)

cunC1 C .1 ��td/vnC1 D vn; (3.35)

which is a system of two coupled, linear, algebraic equations in two unknowns.
These equations can be solved by hand (using standard techniques for two algebraic
equations with two unknowns x and y), resulting in explicit formulas for unC1 and
vnC1 that can be directly implemented. For systems of ODEs with many equations
and unknowns, one will express the coupled equations at each time level in matrix
form and call software for numerical solution of linear systems of equations.

3.2 General First-Order ODEs

We now turn the attention to general, nonlinear ODEs and systems of such ODEs.
Our focus is on numerical methods that can be readily reused for time-discretization
of PDEs, and diffusion PDEs in particular. The methods are just briefly listed,
and we refer to the rich literature for more detailed descriptions and analysis – the
books [2–4, 12] are all excellent resources on numerical methods for ODEs. We
also demonstrate the Odespy Python interface to a range of different software for
general first-order ODE systems.

3.2.1 Generic Form of First-Order ODEs

ODEs are commonly written in the generic form

u0 D f .u; t/; u.0/ D I; (3.36)

where f .u; t/ is some prescribed function. As an example, our most general expo-
nential decay model (3.14) has f .u; t/ D �a.t/u.t/C b.t/.

The unknown u in (3.36) may either be a scalar function of time t , or a vector
valued function of t in case of a system of ODEs with m unknown components:

u.t/ D .u.0/.t/; u.1/.t/; : : : ; u.m�1/.t// :

In that case, the right-hand side is a vector-valued function with m components,

f .u; t/ D .f .0/.u.0/.t/; : : : ; u.m�1/.t//;

f .1/.u.0/.t/; : : : ; u.m�1/.t//;

:::

f .m�1/.u.0/.t/; : : : ; u.m�1/.t/// :

3.2 General First-Order ODEs 77

Actually, any system of ODEs can be written in the form (3.36), but higher-order
ODEs then need auxiliary unknown functions to enable conversion to a first-order
system.

Next we list some well-known methods for u0 D f .u; t/, valid both for a single
ODE (scalar u) and systems of ODEs (vector u).

3.2.2 The �-Rule

The �-rule scheme applied to u0 D f .u; t/ becomes

unC1 � un

�t
D �f .unC1; tnC1/C .1 � �/f .un; tn/ : (3.37)

Bringing the unknown unC1 to the left-hand side and the known terms on the right-
hand side gives

unC1 ��t�f .unC1; tnC1/ D un C�t.1 � �/f .un; tn/ : (3.38)

For a general f (not linear in u), this equation is nonlinear in the unknown unC1

unless � D 0. For a scalar ODE (m D 1), we have to solve a single nonlinear alge-
braic equation for unC1, while for a system of ODEs, we get a system of coupled,
nonlinear algebraic equations. Newton’s method is a popular solution approach in
both cases. Note that with the Forward Euler scheme (� D 0) we do not have to
deal with nonlinear equations, because in that case we have an explicit updating
formula for unC1. This is known as an explicit scheme. With � ¤ 1 we have to
solve (systems of) algebraic equations, and the scheme is said to be implicit.

3.2.3 An Implicit 2-Step Backward Scheme

The implicit backward method with 2 steps applies a three-level backward differ-
ence as approximation to u0.t/,

u0.tnC1/ � 3unC1 � 4un C un�1

2�t
;

which is an approximation of order �t2 to the first derivative. The resulting scheme
for u0 D f .u; t/ reads

unC1 D 4

3
un � 1

3
un�1 C 2

3
�tf .unC1; tnC1/ : (3.39)

Higher-order versions of the scheme (3.39) can be constructed by including more
time levels. These schemes are known as the Backward Differentiation Formulas
(BDF), and the particular version (3.39) is often referred to as BDF2.

Note that the scheme (3.39) is implicit and requires solution of nonlinear equa-
tions when f is nonlinear in u. The standard 1st-order Backward Euler method or
the Crank–Nicolson scheme can be used for the first step.

78 3 Generalizations

3.2.4 Leapfrog Schemes

The ordinary Leapfrog scheme The derivative of u at some point tn can be ap-
proximated by a central difference over two time steps,

u0.tn/ � unC1 � un�1

2�t
D ŒD2tu�n (3.40)

which is an approximation of second order in �t . The scheme can then be written
as

ŒD2t u D f .u; t/�n;

in operator notation. Solving for unC1 gives

unC1 D un�1 C 2�tf .un; tn/ : (3.41)

Observe that (3.41) is an explicit scheme, and that a nonlinear f (in u) is trivial
to handle since it only involves the known un value. Some other scheme must be
used as starter to compute u1, preferably the Forward Euler scheme since it is also
explicit.

The filtered Leapfrog scheme Unfortunately, the Leapfrog scheme (3.41) will
develop growing oscillations with time (see Problem 3.6). A remedy for such unde-
sired oscillations is to introduce a filtering technique. First, a standard Leapfrog step
is taken, according to (3.41), and then the previous un value is adjusted according
to

un un C �.un�1 � 2un C unC1/ : (3.42)

The �-terms will effectively damp oscillations in the solution, especially those with
short wavelength (like point-to-point oscillations). A common choice of � is 0.6
(a value used in the famous NCAR Climate Model).

3.2.5 The 2nd-Order Runge–Kutta Method

The two-step scheme

u� D un C�tf .un; tn/; (3.43)

unC1 D un C�t
1

2
.f .un; tn/C f .u�; tnC1// ; (3.44)

essentially applies a Crank–Nicolson method (3.44) to the ODE, but replaces the
term f .unC1; tnC1/ by a prediction f .u�; tnC1/ based on a Forward Euler step
(3.43). The scheme (3.43)–(3.44) is known as Huen’s method, but is also a 2nd-
order Runge–Kutta method. The scheme is explicit, and the error is expected to
behave as �t2.

3.2 General First-Order ODEs 79

3.2.6 A 2nd-Order Taylor-Series Method

One way to compute unC1 given un is to use a Taylor polynomial. We may write up
a polynomial of 2nd degree:

unC1 D un C u0.tn/�t C 1

2
u00.tn/�t2 :

From the equation u0 D f .u; t/ it follows that the derivatives of u can be expressed
in terms of f and its derivatives:

u0.tn/ D f .un; tn/;

u00.tn/ D @f

@u
.un; tn/u0.tn/C @f

@t

D f .un; tn/
@f

@u
.un; tn/C @f

@t
;

resulting in the scheme

unC1 D un C f .un; tn/�t C 1

2

�
f .un; tn/

@f

@u
.un; tn/C @f

@t

�
�t2 : (3.45)

More terms in the series could be included in the Taylor polynomial to obtain meth-
ods of higher order than 2.

3.2.7 The 2nd- and 3rd-Order Adams–Bashforth Schemes

The following method is known as the 2nd-order Adams–Bashforth scheme:

unC1 D un C 1

2
�t
�
3f .un; tn/ � f .un�1; tn�1/

�
: (3.46)

The scheme is explicit and requires another one-step scheme to compute u1 (the
Forward Euler scheme or Heun’s method, for instance). As the name implies, the
error behaves like �t2.

Another explicit scheme, involving four time levels, is the 3rd-order Adams–
Bashforth scheme

unC1 D un C 1

12

�
23f .un; tn/ � 16f .un�1; tn�1/C 5f .un�2; tn�2/

�
: (3.47)

The numerical error is of order �t3, and the scheme needs some method for com-
puting u1 and u2.

More general, higher-order Adams–Bashforth schemes (also called explicit
Adams methods) compute unC1 as a linear combination of f at kC 1 previous time
steps:

unC1 D un C
kX

jD0

ǰ f .un�j ; tn�j /;

where ǰ are known coefficients.

80 3 Generalizations

3.2.8 The 4th-Order Runge–Kutta Method

The perhaps most widely used method to solve ODEs is the 4th-order Runge–Kutta
method, often called RK4. Its derivation is a nice illustration of common numerical
approximation strategies, so let us go through the steps in detail to learn about
algorithmic development.

The starting point is to integrate the ODE u0 D f .u; t/ from tn to tnC1:

u.tnC1/ � u.tn/ D
tnC1Z
tn

f .u.t/; t/dt :

We want to compute u.tnC1/ and regard u.tn/ as known. The task is to find good ap-
proximations for the integral, since the integrand involves the unknown u between
tn and tnC1.

The integral can be approximated by the famous Simpson’s rule4:

tnC1Z
tn

f .u.t/; t/dt � �t

6

�
f n C 4f nC 1

2 C f nC1
�

:

The problem now is that we do not know f nC 1
2 D f .unC 1

2 ; tnC 1
2
/ and f nC1 D

.unC1; tnC1/ as we know only un and hence f n. The idea is to use various ap-
proximations for f nC 1

2 and f nC1 based on well-known schemes for the ODE in
the intervals Œtn; tnC 1

2
� and Œtn; tnC1�. We split the integral approximation into four

terms:
tnC1Z
tn

f .u.t/; t/dt � �t

6

�
f n C 2 Of nC 1

2 C 2 Qf nC 1
2 C Nf nC1

�
;

where Of nC 1
2 , Qf nC 1

2 , and Nf nC1 are approximations to f nC 1
2 and f nC1, respectively,

that can be based on already computed quantities. For Of nC 1
2 we can apply an ap-

proximation to unC 1
2 using the Forward Euler method with step 1

2
�t :

Of nC 1
2 D f .un C 1

2
�tf n; tnC 1

2
/ (3.48)

Since this gives us a prediction of f nC 1
2 , we can for Qf nC 1

2 try a Backward Euler
method to approximate unC 1

2 :

Qf nC 1
2 D f .un C 1

2
�t Of nC 1

2 ; tnC 1
2
/ : (3.49)

With Qf nC 1
2 as a hopefully good approximation to f nC 1

2 , we can for the final term
Nf nC1 use a Crank–Nicolson method on Œtn; tnC1� to approximate unC1:

Nf nC1 D f .un C�t Of nC 1
2 ; tnC1/ : (3.50)

4 http://en.wikipedia.org/wiki/Simpson’s_rule

http://en.wikipedia.org/wiki/Simpson's_rule

3.2 General First-Order ODEs 81

We have now used the Forward and Backward Euler methods as well as the Crank–
Nicolson method in the context of Simpson’s rule. The hope is that the combination
of these methods yields an overall time-stepping scheme from tn to tnC1 that is
much more accurate than the O.�t/ and O.�t2/ of the individual steps. This is
indeed true: the overall accuracy is O.�t4/!

To summarize, the 4th-order Runge–Kutta method becomes

unC1 D un C �t

6

�
f n C 2 Of nC 1

2 C 2 Qf nC 1
2 C Nf nC1

�
; (3.51)

where the quantities on the right-hand side are computed from (3.48)–(3.50). Note
that the scheme is fully explicit so there is never any need to solve linear or nonlinear
algebraic equations. However, the stability is conditional and depends on f . There
is a whole range of implicit Runge–Kutta methods that are unconditionally stable,
but require solution of algebraic equations involving f at each time step.

The simplest way to explore more sophisticated methods for ODEs is to apply
one of the many high-quality software packages that exist, as the next section ex-
plains.

3.2.9 The Odespy Software

A wide range of methods and software exist for solving (3.36). Many of the meth-
ods are accessible through a unified Python interface offered by the Odespy5 [10]
package. Odespy features simple Python implementations of the most fundamen-
tal schemes as well as Python interfaces to several famous packages for solving
ODEs: ODEPACK6, Vode7, rkc.f8, rkf45.f9, as well as the ODE solvers in SciPy10,
SymPy11, and odelab12.

The code below illustrates the usage of Odespy the solving u0 D �au, u.0/ D
I , t 2 .0; T �, by the famous 4th-order Runge–Kutta method, using �t D 1 and
Nt D 6 steps:

def f(u, t):
return -a*u

import odespy
import numpy as np

I = 1; a = 0.5; Nt = 6; dt = 1
solver = odespy.RK4(f)
solver.set_initial_condition(I)
t_mesh = np.linspace(0, Nt*dt, Nt+1)
u, t = solver.solve(t_mesh)

5 https://github.com/hplgit/odespy
6 https://computation.llnl.gov/casc/odepack/odepack_home.html
7 https://computation.llnl.gov/casc/odepack/odepack_home.html
8 http://www.netlib.org/ode/rkc.f
9 http://www.netlib.org/ode/rkf45.f
10 http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
11 http://docs.sympy.org/dev/modules/mpmath/calculus/odes.html
12 http://olivierverdier.github.com/odelab/

https://github.com/hplgit/odespy
https://computation.llnl.gov/casc/odepack/odepack_home.html
https://computation.llnl.gov/casc/odepack/odepack_home.html
http://www.netlib.org/ode/rkc.f
http://www.netlib.org/ode/rkf45.f
http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.ode.html
http://docs.sympy.org/dev/modules/mpmath/calculus/odes.html
http://olivierverdier.github.com/odelab/

82 3 Generalizations

The previously listed methods for ODEs are all accessible in Odespy:

� the �-rule: ThetaRule
� special cases of the �-rule: ForwardEuler, BackwardEuler,

CrankNicolson
� the 2nd- and 4th-order Runge–Kutta methods: RK2 and RK4
� The BDF methods and the Adam-Bashforth methods: Vode, Lsode, Lsoda,

lsoda_scipy
� The Leapfrog schemes: Leapfrog and LeapfrogFiltered

3.2.10 Example: Runge–Kutta Methods

Since all solvers have the same interface in Odespy, except for a potentially different
set of parameters in the solvers’ constructors, one can easily make a list of solver
objects and run a loop for comparing a lot of solvers. The code below, found in
complete form in decay_odespy.py13, compares the famous Runge–Kutta meth-
ods of orders 2, 3, and 4 with the exact solution of the decay equation u0 D �au.
Since we have quite long time steps, we have included the only relevant �-rule for
large time steps, the Backward Euler scheme (� D 1), as well. Figure 3.1 shows
the results.

import numpy as np
import matplotlib.pyplot as plt
import sys

def f(u, t):
return -a*u

I = 1; a = 2; T = 6
dt = float(sys.argv[1]) if len(sys.argv) >= 2 else 0.75
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1)

solvers = [odespy.RK2(f),
odespy.RK3(f),
odespy.RK4(f),]

BackwardEuler must use Newton solver to converge
(Picard is default and leads to divergence)
solvers.append(

odespy.BackwardEuler(f, nonlinear_solver=’Newton’))
Or tell BackwardEuler that it is a linear problem
solvers[-1] = odespy.BackwardEuler(f, f_is_linear=True,

jac=lambda u, t: -a)]
legends = []
for solver in solvers:

solver.set_initial_condition(I)
u, t = solver.solve(t)

plt.plot(t, u)
plt.hold(’on’)
legends.append(solver.__class__.__name__)

13 http://tinyurl.com/ofkw6kc/genz/decay_odespy.py

http://tinyurl.com/ofkw6kc/genz/decay_odespy.py

3.2 General First-Order ODEs 83

Fig. 3.1 Behavior of different schemes for the decay equation

Compare with exact solution plotted on a very fine mesh
t_fine = np.linspace(0, T, 10001)
u_e = I*np.exp(-a*t_fine)
plt.plot(t_fine, u_e, ’-’) # avoid markers by specifying line type
legends.append(’exact’)

plt.legend(legends)
plt.title(’Time step: %g’ % dt)
plt.show()

With the odespy.BackwardEuler method we must either tell that the problem is
linear and provide the Jacobian of f .u; t/, i.e., @f=@u, as the jac argument, or we
have to assume that f is nonlinear, but then specify Newton’s method as solver for
the nonlinear equations (since the equations are linear, Newton’s method will con-
verge in one iteration). By default, odespy.BackwardEuler assumes a nonlinear
problem to be solved by Picard iteration, but that leads to divergence in the present
problem.

Visualization tip
We use Matplotlib for plotting here, but one could alternatively import
scitools.std as plt instead. Plain use of Matplotlib as done here results
in curves with different colors, which may be hard to distinguish on black-and-
white paper. Using scitools.std, curves are automatically given colors and

84 3 Generalizations

markers, thus making curves easy to distinguish on screen with colors and on
black-and-white paper. The automatic adding of markers is normally a bad idea
for a very fine mesh since all the markers get cluttered, but scitools.std
limits the number of markers in such cases. For the exact solution we use a very
fine mesh, but in the code above we specify the line type as a solid line (-),
which means no markers and just a color to be automatically determined by the
backend used for plotting (Matplotlib by default, but scitools.std gives the
opportunity to use other backends to produce the plot, e.g., Gnuplot or Grace).

Also note the that the legends are based on the class names of the solvers, and
in Python the name of the class type (as a string) of an object obj is obtained by
obj.__class__.__name__.

The runs in Fig. 3.1 and other experiments reveal that the 2nd-order Runge–Kutta
method (RK2) is unstable for �t > 1 and decays slower than the Backward Euler
scheme for large and moderate �t (see Exercise 3.5 for an analysis). However, for
fine �t D 0:25 the 2nd-order Runge–Kutta method approaches the exact solution
faster than the Backward Euler scheme. That is, the latter scheme does a better job
for larger �t , while the higher order scheme is superior for smaller �t . This is
a typical trend also for most schemes for ordinary and partial differential equations.

The 3rd-order Runge–Kutta method (RK3) also has artifacts in the form of os-
cillatory behavior for the larger �t values, much like that of the Crank–Nicolson
scheme. For finer �t , the 3rd-order Runge–Kutta method converges quickly to the
exact solution.

The 4th-order Runge–Kutta method (RK4) is slightly inferior to the Backward
Euler scheme on the coarsest mesh, but is then clearly superior to all the other
schemes. It is definitely the method of choice for all the tested schemes.

Remark about using the �-rule in Odespy The Odespy package assumes that
the ODE is written as u0 D f .u; t/ with an f that is possibly nonlinear in u. The
�-rule for u0 D f .u; t/ leads to

unC1 D un C�t
�
�f .unC1; tnC1/C .1 � �/f .un; tn/

�
;

which is a nonlinear equation in unC1. Odespy’s implementation of the �-rule
(ThetaRule) and the specialized Backward Euler (BackwardEuler) and Crank–
Nicolson (CrankNicolson) schemes must invoke iterative methods for solving the
nonlinear equation in unC1. This is done even when f is linear in u, as in the
model problem u0 D �au, where we can easily solve for unC1 by hand. There-
fore, we need to specify use of Newton’s method to solve the equations. (Odespy
allows other methods than Newton’s to be used, for instance Picard iteration, but
that method is not suitable. The reason is that it applies the Forward Euler scheme
to generate a start value for the iterations. Forward Euler may give very wrong so-
lutions for large �t values. Newton’s method, on the other hand, is insensitive to
the start value in linear problems.)

3.2 General First-Order ODEs 85

3.2.11 Example: Adaptive Runge–Kutta Methods

Odespy also offers solution methods that can adapt the size of �t with time to match
a desired accuracy in the solution. Intuitively, small time steps will be chosen in
areas where the solution is changing rapidly, while larger time steps can be used
where the solution is slowly varying. Some kind of error estimator is used to adjust
the next time step at each time level.

A very popular adaptive method for solving ODEs is the Dormand-Prince
Runge–Kutta method of order 4 and 5. The 5th-order method is used as a reference
solution and the difference between the 4th- and 5th-order methods is used as an
indicator of the error in the numerical solution. The Dormand-Prince method is the
default choice in MATLAB’s widely used ode45 routine.

We can easily set up Odespy to use the Dormand-Prince method and see how
it selects the optimal time steps. To this end, we request only one time step from
t D 0 to t D T and ask the method to compute the necessary non-uniform time
mesh to meet a certain error tolerance. The code goes like

import odespy
import numpy as np
import decay_mod
import sys
#import matplotlib.pyplot as plt
import scitools.std as plt

def f(u, t):
return -a*u

def u_exact(t):
return I*np.exp(-a*t)

I = 1; a = 2; T = 5
tol = float(sys.argv[1])
solver = odespy.DormandPrince(f, atol=tol, rtol=0.1*tol)

Nt = 1 # just one step - let the scheme find
its intermediate points

t_mesh = np.linspace(0, T, Nt+1)
t_fine = np.linspace(0, T, 10001)

solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)

u and t will only consist of [I, u^Nt] and [0,T]
solver.u_all and solver.t_all contains all computed points
plt.plot(solver.t_all, solver.u_all, ’ko’)
plt.hold(’on’)
plt.plot(t_fine, u_exact(t_fine), ’b-’)
plt.legend([’tol=%.0E’ % tol, ’exact’])
plt.savefig(’tmp_odespy_adaptive.png’)
plt.show()

Running four cases with tolerances 10�1, 10�3, 10�5, and 10�7, gives the results
in Fig. 3.2. Intuitively, one would expect denser points in the beginning of the decay
and larger time steps when the solution flattens out.

86 3 Generalizations

Fig. 3.2 Choice of adaptive time mesh by the Dormand-Prince method for different tolerances

3.3 Exercises

Exercise 3.1: Experiment with precision in tests and the size of u

It is claimed in Sect. 3.1.5 that most numerical methods will reproduce a linear
exact solution to machine precision. Test this assertion using the test function
test_linear_solution in the decay_vc.py14 program. Vary the parameter c
from very small, via c=1 to many larger values, and print out the maximum differ-
ence between the numerical solution and the exact solution. What is the relevant
value of the tolerance in the float comparison in each case?

Filename: test_precision.

Exercise 3.2: Implement the 2-step backward scheme
Implement the 2-step backward method (3.39) for the model u0.t/ D �a.t/u.t/C
b.t/, u.0/ D I . Allow the first step to be computed by either the Backward Euler
scheme or the Crank–Nicolson scheme. Verify the implementation by choosing
a.t/ and b.t/ such that the exact solution is linear in t (see Sect. 3.1.5). Show
mathematically that a linear solution is indeed a solution of the discrete equations.

Compute convergence rates (see Sect. 3.1.6) in a test case using a D const
and b D 0, where we easily have an exact solution, and determine if the choice

14 http://tinyurl.com/ofkw6kc/genz/decay_vc.py

http://tinyurl.com/ofkw6kc/genz/decay_vc.py

3.3 Exercises 87

of a first-order scheme (Backward Euler) for the first step has any impact on the
overall accuracy of this scheme. The expected error goes like O.�t2/.

Filename: decay_backward2step.

Exercise 3.3: Implement the 2nd-order Adams–Bashforth scheme
Implement the 2nd-order Adams–Bashforth method (3.46) for the decay problem
u0 D �a.t/u C b.t/, u.0/ D I , t 2 .0; T �. Use the Forward Euler method for
the first step such that the overall scheme is explicit. Verify the implementation
using an exact solution that is linear in time. Analyze the scheme by searching for
solutions un D An when a D const and b D 0. Compare this second-order scheme
to the Crank–Nicolson scheme.

Filename: decay_AdamsBashforth2.

Exercise 3.4: Implement the 3rd-order Adams–Bashforth scheme
Implement the 3rd-order Adams–Bashforth method (3.47) for the decay problem
u0 D �a.t/uC b.t/, u.0/ D I , t 2 .0; T �. Since the scheme is explicit, allow it to
be started by two steps with the Forward Euler method. Investigate experimentally
the case where b D 0 and a is a constant: Can we have oscillatory solutions for
large �t?

Filename: decay_AdamsBashforth3.

Exercise 3.5: Analyze explicit 2nd-order methods
Show that the schemes (3.44) and (3.45) are identical in the case f .u; t/ D �a,
where a > 0 is a constant. Assume that the numerical solution reads un D An for
some unknown amplification factor A to be determined. Find A and derive stability
criteria. Can the scheme produce oscillatory solutions of u0 D �au? Plot the
numerical and exact amplification factor.

Filename: decay_RK2_Taylor2.

Project 3.6: Implement and investigate the Leapfrog scheme
A Leapfrog scheme for the ODE u0.t/ D �a.t/u.t/C b.t/ is defined by

ŒD2t u D �auC b�n : (3.52)

A separate method is needed to compute u1. The Forward Euler scheme is a possi-
ble candidate.

a) Implement the Leapfrog scheme for the model equation. Plot the solution in the
case a D 1, b D 0, I D 1, �t D 0:01, t 2 Œ0; 4�. Compare with the exact
solution ue.t/ D e�t .

b) Show mathematically that a linear solution in t fulfills the Forward Euler scheme
for the first step and the Leapfrog scheme for the subsequent steps. Use this lin-
ear solution to verify the implementation, and automate the verification through
a test function.

Hint It can be wise to automate the calculations such that it is easy to redo the
calculations for other types of solutions. Here is a possible sympy function that

88 3 Generalizations

takes a symbolic expression u (implemented as a Python function of t), fits the b
term, and checks if u fulfills the discrete equations:

import sympy as sym

def analyze(u):
t, dt, a = sym.symbols(’t dt a’)

print ’Analyzing u_e(t)=%s’ % u(t)
print ’u(0)=%s’ % u(t).subs(t, 0)

Fit source term to the given u(t)
b = sym.diff(u(t), t) + a*u(t)
b = sym.simplify(b)
print ’Source term b:’, b

Residual in discrete equations; Forward Euler step
R_step1 = (u(t+dt) - u(t))/dt + a*u(t) - b
R_step1 = sym.simplify(R_step1)
print ’Residual Forward Euler step:’, R_step1

Residual in discrete equations; Leapfrog steps
R = (u(t+dt) - u(t-dt))/(2*dt) + a*u(t) - b
R = sym.simplify(R)
print ’Residual Leapfrog steps:’, R

def u_e(t):
return c*t + I

analyze(u_e)
or short form: analyze(lambda t: c*t + I)

c) Show that a second-order polynomial in t cannot be a solution of the discrete
equations. However, if a Crank–Nicolson scheme is used for the first step,
a second-order polynomial solves the equations exactly.

d) Create a manufactured solution u.t/ D sin.t/ for the ODE u0 D �au C b.
Compute the convergence rate of the Leapfrog scheme using this manufactured
solution. The expected convergence rate of the Leapfrog scheme is O.�t2/.
Does the use of a 1st-order method for the first step impact the convergence
rate?

e) Set up a set of experiments to demonstrate that the Leapfrog scheme (3.52) is
associated with numerical artifacts (instabilities). Document the main results
from this investigation.

f) Analyze and explain the instabilities of the Leapfrog scheme (3.52):
1. Choose a D const and b D 0. Assume that an exact solution of the discrete

equations has the form un D An, where A is an amplification factor to be
determined. Derive an equation for A by inserting un D An in the Leapfrog
scheme.

2. Compute A either by hand and/or with the aid of sympy. The polynomial for
A has two roots, A1 and A2. Let un be a linear combination un D C1A

n
1 C

C2A
n
2 .

3. Show that one of the roots is the reason for instability.
4. Compare A with the exact expression, using a Taylor series approximation.
5. How can C1 and C2 be determined?

g) Since the original Leapfrog scheme is unconditionally unstable as time grows,
it demands some stabilization. This can be done by filtering, where we first find

3.3 Exercises 89

unC1 from the original Leapfrog scheme and then replace un by un C �.un�1 �
2un C unC1/, where � can be taken as 0.6. Implement the filtered Leapfrog
scheme and check that it can handle tests where the original Leapfrog scheme is
unstable.

Filename: decay_leapfrog.

Problem 3.7: Make a unified implementation of many schemes
Consider the linear ODE problem u0.t/ D �a.t/u.t/ C b.t/, u.0/ D I . Explicit
schemes for this problem can be written in the general form

unC1 D
mX

jD0

cj un�j ; (3.53)

for some choice of c0; : : : ; cm. Find expressions for the cj coefficients in case of
the �-rule, the three-level backward scheme, the Leapfrog scheme, the 2nd-order
Runge–Kutta method, and the 3rd-order Adams–Bashforth scheme.

Make a class ExpDecay that implements the general updating formula (3.53).
The formula cannot be applied for n < m, and for those n values, other schemes
must be used. Assume for simplicity that we just repeat Crank–Nicolson steps until
(3.53) can be used. Use a subclass to specify the list c0; : : : ; cm for a particular
method, and implement subclasses for all the mentioned schemes. Verify the im-
plementation by testing with a linear solution, which should be exactly reproduced
by all methods.

Filename: decay_schemes_unified.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

http://creativecommons.org/licenses/by-nc/4.0/

