
Chapter 3

Homogeneous Lie groups

By definition a homogeneous Lie group is a Lie group equipped with a family of
dilations compatible with the group law. The abelian group (Rn,+) is the very
first example of homogeneous Lie group. Homogeneous Lie groups have proved to
be a natural setting to generalise many questions of Euclidean harmonic analysis.
Indeed, having both the group and dilation structures allows one to introduce
many notions coming from the Euclidean harmonic analysis. There are several
important differences between the Euclidean setting and the one of homogeneous
Lie groups. For instance the operators appearing in the latter setting are usually
more singular than their Euclidean counterparts. However it is possible to adapt
the technique in harmonic analysis to still treat many questions in this more
abstract setting.

As explained in the introduction (see also Chapter 4), we will in fact study
operators on a subclass of the homogeneous Lie group, more precisely on graded
Lie groups. A graded Lie group is a Lie group whose Lie algebra admits a (N)-
gradation. Graded Lie groups are homogeneous and in fact the relevant structure
for the analysis of graded Lie groups is their natural homogeneous structure and
this justifies presenting the general setting of homogeneous Lie groups. From the
point of view of applications, the class of graded Lie groups contains many inter-
esting examples, in fact all the ones given in the introduction. Indeed these groups
appear naturally in the geometry of certain symmetric domains and in some subel-
liptic partial differential equations. Moreover, they serve as local models for contact
manifolds and CR manifolds, or for more general Heisenberg manifolds, see the
discussion in the Introduction.

The references for this chapter of the monograph are [FS82, ch. I] and
[Goo76], as well as Fulvio Ricci’s lecture notes [Ric]. However, our conventions
and notation do not always follow the ones of these references. The treatment
in this chapter is, overall, more general than that in the above literature since
we also consider distributions and kernels of complex homogeneous degrees and
adapt our analysis for subsequent applications to Sobolev spaces and to the op-

© The Editor(s) (if applicable) and The Author(s) 2016 
V. Fischer, M. Ruzhansky, Quantization on Nilpotent Lie Groups, Progress in Mathematics 314, 
DOI 10.1007/978-3-319-29558-9_3 

91



92 Chapter 3. Homogeneous Lie groups

erator quantization developed in the following chapters. Especially, our study of
complex homogeneities allows us to deal with complex powers of operators (e.g.
in Section 4.3.2).

3.1 Graded and homogeneous Lie groups

In this section we present the definition and the first properties of graded Lie
groups. Since many of their properties can be explained in the more general setting
of homogeneous Lie groups, we will also present these groups.

3.1.1 Definition and examples of graded Lie groups

We start with definitions and examples of graded and stratified Lie groups.

Definition 3.1.1. (i) A Lie algebra g is graded when it is endowed with a vector
space decomposition (where all but finitely many of the Vj ’s are {0}):

g =

∞⊕
j=1

Vj such that [Vi, Vj ] ⊂ Vi+j .

(ii) A Lie group is graded when it is a connected simply connected Lie group
whose Lie algebra is graded.

The condition that the group is connected and simply connected is technical
but important to ensure that the exponential mapping is a global diffeomorphism
between the group and its Lie algebra.

The classical examples of graded Lie groups and algebras are the following.

Example 3.1.2 (Abelian case). The abelian group (Rn,+) is graded: its Lie algebra
Rn is trivially graded, i.e. V1 = Rn.

Example 3.1.3 (Heisenberg group). The Heisenberg group Hno
given in Example

1.6.4 is graded: its Lie algebra hno
can be decomposed as

hno
= V1 ⊕ V2 where V1 = ⊕no

i=1RXi ⊕ RYi and V2 = RT.

(For the notation, see Example 1.6.4 in Section 1.6.)

Example 3.1.4 (Upper triangular matrices). The group Tno of no × no matrices
which are upper triangular with 1 on the diagonal is graded: its Lie algebra tno of
no × no upper triangular matrices with 0 on the diagonal is graded by

tno = V1 ⊕ . . .⊕ Vno−1 where Vj = ⊕no−j
i=1 REi,i+j .

(For the notation, see Example 1.6.5 in Section 1.6.) The vector space Vj is formed
by the matrices with only non-zero coefficients on the j-th upper off-diagonal.



3.1. Graded and homogeneous Lie groups 93

As we will show in Proposition 3.1.10, a graded Lie algebra (hence possessing
a natural dilation structure) must be nilpotent. The converse is not true, see
Remark 3.1.6, Part 2.

Examples 3.1.2–3.1.4 are stratified in the following sense:

Definition 3.1.5. (i) A Lie algebra g is stratified when g is graded, g = ⊕∞
j=1Vj ,

and the first stratum V1 generates g as an algebra. This means that every
element of g can be written as a linear combination of iterated Lie brackets
of various elements of V1.

(ii) A Lie group is stratified when it is a connected simply connected Lie group
whose Lie algebra is stratified.

Remark 3.1.6. Let us make the following comments on existence and uniqueness
of gradations.

1. A gradation over a Lie algebra is not unique: the same Lie algebra may
admit different gradations. For example, any vector space decomposition of
Rn yields a graded structure on the group (Rn,+). More convincingly, we
can decompose the 3 dimensional Heisenberg Lie algebra h1 as

h1 =

3⊕
j=1

Vj with V1 = RX1, V2 = RY1, V3 = RT.

This last example can be easily generalised to find several gradations on the
Heisenberg groups Hno

, no = 2, 3, . . . , which are not the classical ones given
in Example 3.1.3. Another example would be

h1 =

8⊕
j=1

Vj with V3 = RX1, V5 = RY1, V8 = RT, (3.1)

and all the other Vj = {0}.
2. A gradation may not even exist. The first obstruction is that the existence

of a gradation implies nilpotency; in other words, a graded Lie group or a
graded Lie algebra are nilpotent, as we shall see in the sequel (see Proposition
3.1.10). Even then, a gradation of a nilpotent Lie algebra may not exist. As a
curiosity, let us mention that the (dimensionally) lowest nilpotent Lie algebra
which is not graded is the seven dimensional Lie algebra given by the following
commutator relations:

[X1, Xj ] = Xj+1 for j = 2, . . . , 6, [X2, X3] = X6,

[X2, X4] = [X5, X2] = [X3, X4] = X7.

They define a seven dimensional nilpotent Lie algebra of step 6 (with basis
{X1, . . . , X7}). It is the (dimensionally) lowest nilpotent Lie algebra which
is not graded. See, more generally, [Goo76, ch.I §3.2].
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3. To go back to the problem of uniqueness, different gradations may lead to
‘morally equivalent’ decompositions. For instance, if a Lie algebra g is graded
by g = ⊕∞

j=1Vj then it is also graded by g = ⊕∞
j=1Wj whereW2j′+1 = {0} and

W2j′ = Vj′ . This last example motivates the presentation of homogeneous Lie
groups: indeed graded Lie groups are homogeneous and the natural homoge-
neous structure for the graded Lie algebra

g = ⊕∞
j=1Vj = ⊕∞

j=1Wj

is the same for the two gradations.

Moreover, the relevant structure for the analysis of graded Lie groups
is their natural homogeneous structure.

4. There are plenty of graded Lie groups which are not stratified, simply because
the first vector subspace of the gradation may not generate the whole Lie
algebra (it may be {0} for example). This can also be seen in terms of dilations
defined in Section 3.1.2. Moreover, a direct product of two stratified Lie
groups is graded but may be not stratified as their stratification structures
may not ‘match’. We refer to Remark 3.1.13 for further comments on this
topic.

3.1.2 Definition and examples of homogeneous Lie groups

We now deal with a more general subclass of Lie groups, namely the class of
homogeneous Lie groups.

Definition 3.1.7. (i) A family of dilations of a Lie algebra g is a family of linear
mappings

{Dr, r > 0}
from g to itself which satisfies:

– the mappings are of the form

Dr = Exp(A ln r) =
∞∑
�=0

1

�!
(ln(r)A)�,

where A is a diagonalisable linear operator on g with positive eigen-
values, Exp denotes the exponential of matrices and ln(r) the natural
logarithm of r > 0,

– each Dr is a morphism of the Lie algebra g, that is, a linear mapping
from g to itself which respects the Lie bracket:

∀X,Y ∈ g, r > 0 [DrX,DrY ] = Dr[X,Y ].

(ii) A homogeneous Lie group is a connected simply connected Lie group whose
Lie algebra is equipped with dilations.
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(iii) We call the eigenvalues of A the dilations’ weights or weights. The set of
dilations’ weights, or in other worlds, the set of eigenvalues of A is denoted
by WA.

We can realise the mappings A and Dr in a basis of A-eigenvectors as the
diagonal matrices

A ≡

⎛⎜⎜⎜⎝
υ1

υ2
. . .

υn

⎞⎟⎟⎟⎠ and Dr ≡

⎛⎜⎜⎜⎝
rυ1

rυ2

. . .

rυn

⎞⎟⎟⎟⎠ .

The dilations’ weights are υ1, . . . , υn.

Remark 3.1.8. Note that if {Dr} is a family of dilations of the Lie algebra g, then
D̃r := Drα := Exp(αA ln r) defines a new family of dilations {D̃r, r > 0} for any
α > 0. By adjusting α if necessary, we may assume that the dilations’ weights
satisfy certain properties in order to compare different families of dilations and
in order to fix one of such families. For example in [FS82], it is assumed that the
minimum eigenvalue is 1.

Graded Lie algebras are naturally equipped with dilations: if the Lie algebra
g is graded by

g = ⊕∞
j=1Vj ,

then we define the dilations

Dr := Exp(A ln r)

where A is the operator defined by AX = jX for X ∈ Vj .

The converse is true:

Lemma 3.1.9. If a Lie algebra g has a family of dilations such that the weights are
all rational, then g has a natural gradation.

Proof. By adjusting the weights (see Remark 3.1.8), we may assume that all the
eigenvalues are positive integers. Then the decomposition in eigenspaces gives the
the gradation of the Lie algebra. �

Before discussing the dilations in the examples given in Section 3.1.1 and
other examples of homogeneous Lie groups, let us state the following crucial prop-
erty.

Proposition 3.1.10. The following holds:

(i) A Lie algebra equipped with a family of dilations is nilpotent.

(ii) A homogeneous Lie group is a nilpotent Lie group.
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Proof of Proposition 3.1.10. Let {Dr = Exp(A ln r)} be the family of dilations.
By Remark 3.1.8, we may assume that the smallest weight is 1. For υ ∈ WA let
Wυ ⊂ g be the corresponding eigenspace of A. If υ ∈ R but υ /∈ WA then we set
Wυ := {0}.

Thus DrX = rυX for X ∈Wυ. Moreover, if X ∈Wυ and Y ∈Wυ′ then

Dr[X,Y ] = [DrX,DrY ] = rυ+υ′
[X,Y ]

and hence
[Wυ,Wυ′ ] ⊂Wυ+υ′ .

In particular, since υ ≥ 1 for υ ∈ WA, we see that the ideals in the lower series of
g (see (1.18)) satisfy

g(j) ⊂ ⊕a≥jWa.

Since the set WA is finite, it follows that g(j) = {0} for j sufficiently large. Con-
sequently the Lie algebra g and its corresponding Lie group G are nilpotent. �

Let G be a homogeneous Lie group with Lie algebra g endowed with dilations
{Dr}r>0. By Proposition 3.1.10, the connected simply connected Lie group G
is nilpotent. We can transport the dilations to the group using the exponential
mapping expG = exp of G (see Proposition 1.6.6 (a)) in the following way: the
maps

expG ◦Dr ◦ exp−1
G , r > 0,

are automorphisms of the group G; we shall denote them also by Dr and call them
dilations on G. This explains why homogeneous Lie groups are often presented as
Lie groups endowed with dilations.

We may write

rx := Dr(x) for r > 0 and x ∈ G.

The dilations on the group or on the Lie algebra satisfy

Drs = DrDs, r, s > 0.

As explained above, Examples 3.1.2, 3.1.3 and, 3.1.4 are naturally homoge-
neous Lie groups:

In Example 3.1.2: The abelian group (Rn,+) is homogeneous when equipped with
the usual dilations Drx = rx, r > 0, x ∈ Rn.

In Example 3.1.3: The Heisenberg group Hno
is homogeneous when equipped with

the dilations

rh = (rx, ry, r2t), h = (x, y, t) ∈ Rno × Rno × R.

The corresponding dilations on the Heisenberg Lie algebra hno
are given by

Dr(Xj) = rXj , Dr(Yj) = rYj , j = 1, . . . , no, and Dr(T ) = r2T.
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In Example 3.1.4: The group Tno
is homogeneous when equipped with the dilations

defined by

[Dr(M)]i,j = rj−i[M ]i,j 1 ≤ i < j ≤ no, M ∈ Tno
.

The corresponding dilations on the Lie algebra tno are given by

Dr(Ei,j) = rj−iEi,j 1 ≤ i < j ≤ no.

As already seen for the graded Lie groups, the same homogeneous Lie group
may admit various homogeneous structures, that is, a nilpotent Lie group or al-
gebra may admit different families of dilations, even after renormalisation of the
eigenvalues (see Remark 3.1.8). This can already be seen from the examples in
the graded case (see Remark 3.1.6 part 1). These examples can be generalised as
follows.

Example 3.1.11. On Rn we can define

Dr(x1, . . . , xn) = (rυ1x1, . . . , r
υnxn),

where 0 < υ1 ≤ . . . ≤ υn, and on Hno we can define

Dr(x1, . . . , xno , y1, . . . , yno , t) = (rυ1x1, . . . , r
υnoxno , r

υ′
1y1, . . . , r

υ′
no yno , r

υ′′
t),

where υj > 0, υ′
j > 0 and υj + υ′

j = υ′′ for all j = 1, . . . , no.
These families of dilations give graded structures whenever the weights υj

for Rn and υj , υ
′
j , υ

′′ for Hno
are all rational or, more generally, all in αQ+ for

a fixed α ∈ R+. From this remark it is not difficult to construct a homogeneous
non-graded structure: on R3, consider the diagonal 3 × 3 matrix A with entries,
e.g., 1 and π and 1 + π.

Example 3.1.12. Continuing the example above, choosing the υj and υ′
j ’s rational

in a certain way, it is also possible to find a homogeneous structure for Hno such
that the corresponding gradation of hno = ⊕∞

j=1Vj does exist but is necessarily
such that V1 = {0}: we choose υj , υ

′
j positive integers different from 1 but with

1 as greatest common divisor (for instance for no = 2, take υ1 = 3, υ2 = 2, υ′
1 =

5, υ′
2 = 6 and υ′′ = 8). As an illustration for Corollary 4.1.10 in the sequel, with

this example, the homogeneous dimension is Q = 3+ 2+ 5+ 6+ 8 = 24 while the
least common multiple is νo = 2× 3× 5 = 30, so we have here Q < νo.

If nothing is specified, we assume that the groups (Rn,+) and Hno
are en-

dowed with their classical structure of graded Lie groups as described in Examples
3.1.2 and 3.1.3.

Remark 3.1.13. We continue with several comments following those given in Re-
mark 3.1.6.
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1. The converse of Proposition 3.1.10 does not hold, namely, not every nilpotent
Lie algebra or group admits a family of dilations. An example of a nine di-
mensional nilpotent Lie algebra which does not admit any family of dilations
is due to Dyer [Dye70].

2. A direct product of two stratified Lie groups is graded but may be not strat-
ified as their stratification structures may not ‘match’. This can be also seen
on the level of dilations defined in Section 3.1.2. Jumping ahead and using
the notion of homogeneous operators, we see that this remark may be an
advantage for example when considering the sub-Laplacian L = X2 + Y 2 on
the Heisenberg group H1. Then the operator

−L+ ∂k
t

for k ∈ N odd, becomes homogeneous on the direct product H1 × R when it
is equipped with the dilation structure which is not the one of a stratified
Lie group, see Lemma 4.2.11 or, more generally, Remark 4.2.12.

3. In our definition of a homogeneous structure we started with dilations defined
on the Lie algebra inducing dilations on the Lie group. If we start with a Lie
group the situation may become slightly more involved. For example, R3 with
the group law

xy = (arcsinh(sinh(x1) + sinh(y1)), x2 + y2 + sinh(x1)y3, x3 + y3)

is a 2-step nilpotent stratified Lie group, the first stratum given by

X = cosh(x1)
−1∂x1 , Y = sinh(x1)∂x2 + ∂x3 ,

and their commutator is
T = [X,Y ] = ∂x2 .

It may seem like there is no obvious homogeneous structure on this group
but we can see it going to its Lie algebra which is isomorphic to the Lie
algebra h1 of the Heisenberg group H1. Consequently, the above group itself
is isomorphic to H1 with the corresponding dilation structure.

4. In fact, the same argument as above shows that if we defined a stratified
Lie group by saying that there is a collection of vector fields on it stratified
with respect to their commutation relations, then for every such stratified
Lie group there always exists a homogeneous stratified Lie group isomorphic
to it. Indeed, since the Lie algebra is stratified and has a natural dilation
structure with integer weights, we obtain the required homogeneous Lie group
by exponentiating this Lie algebra. We refer to e.g. [BLU07, Theorem 2.2.18]
for a detailed proof of this.

Refining the proof of Proposition 3.1.10, we can obtain the following techni-
cal result which gives the existence of an ‘adapted’ basis of eigenvectors for the
dilations.
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Lemma 3.1.14. Let g be a Lie algebra endowed with a family of dilations {Dr, r >
0}. Then there exists a basis {X1, . . . , Xn} of g, positive numbers υ1, . . . , υn > 0,
and an integer n′ with 1 ≤ n′ ≤ n such that

∀t > 0 ∀j = 1, . . . , n Dt(Xj) = tυjXj , (3.2)

and
[g, g] ⊂ RXn′+1 ⊕ . . .⊕ RXn. (3.3)

Moreover, X1, . . . , Xn′ generate the algebra g, that is, any element of g can be
written as a linear combination of these vectors together with all their iterated Lie
brackets.

This result and its proof are due to ter Elst and Robinson (see [tER97,
Lemma 2.2]). Condition (3.2) says that {Xj}nj=1 is a basis of eigenvectors for the
mapping A given by

Dr = Exp(A ln r).

Condition (3.3) says that this basis can be chosen so that the first n′ vectors of
this basis generate the whole Lie algebra and the others span (linearly) the derived
algebra [g, g].

Proof of Lemma 3.1.14. We continue with the notation of the proof of Proposi-
tion 3.1.10. For each weight υ ∈ WA, we choose a basis

{Yυ,1, . . . , Yυ,d′
υ
, Yυ,d′

υ+1, . . . , Yυ,dυ
} of Wυ

such that {Yυ,d′
υ+1, . . . , Yυ,dυ} is a basis of the subspace

Wυ

⋂(
Span

⋃
υ′+υ′′=υ

[Wυ′ ,Wυ′′ ]

)
.

Since g = ⊕υ∈WA
Wυ, we have by construction that

[g, g] ⊂ Span {Yυ,j : υ ∈ WA, d′υ + 1 ≤ j ≤ dυ} .
Let h be the Lie algebra generated by

{Yυ,j : υ ∈ WA, 1 ≤ j ≤ d′υ} . (3.4)

We now label and order the weights, that is, we write

WA = {υ1, . . . , υm}
with 1 ≤ υ1 < . . . < υm. It follows by induction on N = 1, 2 . . . ,m that ⊕N

j=1Wυj

is contained in h and hence h = g and the set (3.4) generate (algebraically) g.
A basis with the required property is given by

Yυ1,1, . . . , Yυ1,d′
υ1
, . . . , Yυm,1, . . . , Yυm,d′

υm
for X1, . . . , Xn′ ,

and

Yυ1,d′
υ1

+1, . . . , Yυ1,dυ1
, . . . , Yυm,d′

υm
+1, . . . , Yυm,dυm

for Xn′+1, . . . , Xn.

�
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3.1.3 Homogeneous structure

In this section, we shall be working on a fixed homogeneous Lie group G of di-
mension n with dilations

{Dr = Exp(A ln r)}.
We denote by υ1, . . . , υn the weights, listed in increasing order and with each value
listed as many times as its multiplicity, and we assume without loss of generality
(see Remark 3.1.8) that υ1 ≥ 1. Thus,

1 ≤ υ1 ≤ υ2 ≤ . . . ≤ υn. (3.5)

If the group G is graded, then the weights are also assumed to be integers with
one as their greatest common divisor (again see Remark 3.1.8).

By Proposition 3.1.10 the Lie group G is nilpotent connected simply con-
nected. Thus it may be identified with Rn equipped with a polynomial law, using
the exponential mapping expG of the group (see Section 1.6). With this identifi-
cation its unit element is 0 ∈ Rn and it may also be denoted by 0G or simply by
0.

We fix a basis {X1, . . . , Xn} of g such that

AXj = υjXj

for each j. This yields a Lebesgue measure on g and a Haar measure on G by
Proposition 1.6.6. If x or g denotes a point in G the Haar measure is denoted by
dx or dg. The Haar measure of a measurable subset S of G is denoted by |S|.

We easily check that

|Dr(S)| = rQ|S|,
∫
G

f(rx)dx = r−Q

∫
G

f(x)dx, (3.6)

where
Q = υ1 + . . .+ υn = TrA. (3.7)

The number Q is larger (or equal) than the usual dimension of the group:

n = dimG ≤ Q,

and may replace it for certain questions of analysis. For this reason the number Q
is called the homogeneous dimension of G.

Homogeneity

Any function defined on G or on G\{0} can be composed with the dilations Dr.
Using property (3.6) of the Haar measure and the dilations, we have for any
measurable functions f and φ on G, provided that the integrals exist,∫

G

(f ◦Dr)(x) φ(x) dx = r−Q

∫
G

f(x) (φ◦D 1
r
)(x) dx. (3.8)



3.1. Graded and homogeneous Lie groups 101

Therefore, we can extend the map f �→ f ◦Dr to distributions via

〈f ◦Dr, φ〉 := r−Q〈f, φ ◦D 1
r
〉, f ∈ D′(G), φ ∈ D(G). (3.9)

We can now define the homogeneity of a function or a distribution in the
same way:

Definition 3.1.15. Let ν ∈ C.

(i) A function f on G\{0} or a distribution f ∈ D′(G) is homogeneous of degree
ν ∈ C (or ν-homogeneous) when

f ◦Dr = rνf for any r > 0.

(ii) A linear operator T : D(G) → D′(G) is homogeneous of degree ν ∈ C (or
ν-homogeneous) when

T (φ ◦Dr) = rν(Tφ) ◦Dr for any φ ∈ D(G), r > 0.

Remark 3.1.16. We will also say that a linear operator T : E → F , where E is a
Fréchet space containing D(G) as a dense subset, and F is a Fréchet space included
in D′(G), is homogeneous of degree ν ∈ C when its restriction as an operator from
D(G) to D′(G) is. For example, it will apply to the situation when T is a linear
operator from Lp(G) to some Lq(G).

Example 3.1.17 (Coordinate function). The coordinate function xj = [x]j given
by

G � x = (x1, . . . , xn) �−→ xj = [x]j , (3.10)

is homogeneous of degree υj .

Example 3.1.18 (Koranyi norm). The function defined on the Heisenberg group
Hno

by

Hno
� (x, y, t) �−→

((
|x|2 + |y|2

)2
+ t2

)1/4

,

where |x| and |y| denote the canonical norms of x and y in Rno , is homogeneous
of degree 1. It is sometimes called the Koranyi norm.

Example 3.1.19 (Haar measure). Equality (3.8) shows that the Haar measure,
viewed as a tempered distribution, is a homogeneous distribution of degree Q (see
(3.7)). We can write this informally as

d(rx) = rQdx,

see (3.6).
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Example 3.1.20 (Dirac measure at 0). The Dirac measure at 0 is the probability
measure δ0 given by ∫

G

fdδ0 = f(0).

It is homogeneous of degree −Q since for any φ ∈ D(G) and r > 0, we have

〈δ0 ◦Dr, φ〉 = r−Q〈δ0, φ ◦D 1
r
〉 = r−Qφ(

1

r
0) = r−Qφ(0) = 〈r−Qδ0, φ〉.

Example 3.1.21 (Invariant vector fields). Let X ∈ g be viewed as a left-invariant
vector field X or a right-invariant vector field X̃ (cf. Section 1.3). We assume
that X is in the υj-eigenspace of A. Then the left and right-invariant differential

operators X and X̃ are homogeneous of degree υj . Indeed,

X(f ◦Dr) (x) = ∂t=0 {f ◦Dr (x expG(tX))} = ∂t=0 {f (rx expG(r
υj tX))}

= rυj∂t′=0 {f (rx expG(t
′X))} = rυj (Xf)(rx),

and similarly for X̃.

The following properties are very easy to check:

Lemma 3.1.22. (i) Whenever it makes sense, the product of two functions, dis-
tributions or operators of degrees ν1 and ν2 is homogeneous of degree ν1ν2.

(ii) Let T : D(G)→ D′(G) be a ν-homogeneous operator. Then its formal adjoint
and transpose T ∗ and T t, given by∫

G

(Tf)g =

∫
G

f(T ∗g),
∫
G

(Tf)g =

∫
G

f(T tg), f, g ∈ D(G),

are also homogeneous with degree ν̄ and ν respectively.

Consequently for any non-zero multi-index α = (α1, . . . , αn) ∈ Nn
0\{0}, the

function
xα := xα1

1 . . . xαn
n , (3.11)

and the operators(
∂

∂x

)α

:=

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn

, Xα := Xα1
1 . . . Xαn

n and X̃α := X̃α1
1 . . . X̃αn

n ,

are homogeneous of degree

[α] := υ1α1 + . . .+ υnαn. (3.12)

Formula (3.12) defines the homogeneous degree of the multi-index α. It is usually
different from the length of α given by

|α| := α1 + . . .+ αn.
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For α = 0, the function xα and the operators ( ∂
∂x )

α, Xα, X̃α are defined
to be equal, respectively, to the constant function 1 and the identity operator I,
which are of degree [α] := 0.

With this convention for each α ∈ Nn
0 , the differential operators ( ∂

∂x )
α, Xα

and X̃α are of order |α| but of homogeneous degree [α].
One easily checks for α1, α2 ∈ Nn

0 that

[α1] + [α2] = [α1 + α2], |α1|+ |α2| = |α1 + α2|.

Proposition 3.1.23. Let the operator T be homogeneous of degree νT and let f be
a function or a distribution homogeneous of degree νf . Then, whenever Tf makes
sense, the distribution Tf is homogeneous of degree νf − νT .

In particular, if f ∈ D′(G) is homogeneous of degree ν, then

Xαf, X̃αf, ∂αf

are homogeneous of degree ν − [α].

Proof. The first claim follows from the formal calculation

(Tf) ◦Dr = r−νT T (f ◦Dr) = r−νT T (rνf f) = r−νT+νfTf.

The second claim follows from the first one since Xα, X̃αf and ∂αf are well
defined on distributions and are homogeneous of the same degree [α] given by
(3.12). �

3.1.4 Polynomials

By Propositions 3.1.10 and 1.6.6 we already know that the group law is polynomial.
This means that each [xy]j is a polynomial in the coordinates of x and of y. The
homogeneous structure implies certain additional properties of this polynomial.

Proposition 3.1.24. For any j = 1, . . . , n, we have

[xy]j = xj + yj +
∑

α,β∈N
n
0 \{0}

[α]+[β]=υj

cj,α,βx
αyβ .

In particular, this sum over [α] and [β] can involve only coordinates in x or y with
degrees of homogeneity strictly less than υj.

For example,

for υ1 : [xy]1 = x1 + y1,

for υ2 : [xy]2 = x2 + y2 +
∑

[α]=[β]=υ1

c2,α,βx
αyβ ,

for υ3 : [xy]3 = x3 + y3 +
∑

[α]=υ1, [β]=υ2

or [α]=υ2, [β]=υ1

c3,α,βx
αyβ ,
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and so on.

Proof. Let j = 1, . . . , n. From the Baker-Campbell-Hausdorff formula (see Theo-
rem 1.3.2) applied to the two vectors X = x1X1 + . . . + xnXn and Y = y1X1 +
. . .+ ynXn of g, we have with our notation that

[xy]j = xj + yj +Rj(x, y)

where Rj(x, y) is a polynomial in x1, y1, . . . , xn, yn. Moreover, Rj must be a finite
linear combination of monomials xαyβ with |α|+ |β| ≥ 2:

Rj(x, y) =
∑

α,β∈N
n
0

|α|+|β|≥2

cj,α,βx
αyβ .

We now use the dilations. Since the function xj is homogeneous of degree υj ,
we easily check

Rj(rx, ry) = rυjRj(x, y)

for any r > 0 and this forces all the coefficients cj,α,β with [α] + [β] �= υj to be
zero. The formula follows. �

Recursively using Proposition 3.1.24, we obtain for any α ∈ Nn
0\{0}:

(xy)α = [xy]α1
1 . . . [xy]αn

n =
∑

β1,β2∈N
n
0

[β1]+[β2]=[α]

cβ1,β2
(α)xβ1yβ2 , (3.13)

with

cβ1,0(α) =

{
0 ifβ1 �= α
1 ifβ1 = α

and c0,β2
(α) =

{
0 ifβ2 �= α
1 ifβ2 = α

. (3.14)

Definition 3.1.25. A function P on G is a polynomial if P ◦ expG is a polynomial
on g.

For example the coordinate functions x1, . . . , xn defined in (3.10) or, more
generally, the monomials xα defined in (3.11) are (homogeneous) polynomials on
G.

It is clear that every polynomial P on G can be written as a unique finite
linear combination of the monomials xα, that is,

P =
∑
α∈Nn

0

cαx
α, (3.15)

where all but finitely many of the coefficients cα ∈ C vanish. The homogeneous
degree of a polynomial P written as (3.15) is

D◦P := max{[α] : α ∈ Nn
0 with cα �= 0},
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which is often different from its isotropic degree:

d◦P := max{|α| : α ∈ Nn
0 with cα �= 0}.

For example on Hno
, 1 + t is a polynomial of homogeneous degree 2 but

isotropic degree 1.

Definition 3.1.26. We denote by P(G) the set of all polynomials on G. For any
M ≥ 0 we denote by P≤M the set of polynomials P on G such that D◦P ≤ M
and by Piso

≤M the set of polynomials on G such that d◦P ≤ M . We also define in

the same way P<M , P=M , P≥M and so on, and similarly for Piso.

It is clear that P(G) is an algebra, for pointwise multiplication, which is
generated by the xj ’s.

It is not difficult to see:

Lemma 3.1.27. The subspaces P≤M and Piso
≤M of P are finite dimensional with

bases {xα : α ∈ Nn
0 , [α] ≤ M} and {xα : α ∈ Nn

0 , |α| ≤ M}, respectively.
Furthermore,

∀M ≥ 0 P≤M ⊂ Piso
≤M ⊂ P≤υnM .

Proof. The first part of the lemma is clear. For the second, because of (3.5), we
have

∀α ∈ Nn
0 |α| ≤ [α] ≤ υn|α|. (3.16)

Therefore,
∀P ∈ P d◦P ≤ D◦P ≤ υnd

◦P,

and the inclusions follow. �

By Proposition 3.1.24, [xy]j is in P≤υj
as a function of x for each y, and also

as a function of y for each x. Hence each subspace P≤M is invariant under left and
right translation. This is not the case for Piso

≤M (unless Piso
≤M ∼ C or G = (Rn,+));

consequently, it will not be of much use to us.

3.1.5 Invariant differential operators on homogeneous Lie groups

We now investigate expressions for left- and right-invariant operators on homoge-
neous Lie groups.

Proposition 3.1.28. The left and right-invariant vector fields Xj and X̃j, for any
j = 1, . . . , n, can be written as

Xj =
∂

∂xj
+

∑
1≤k≤n
υj<υk

Pj,k
∂

∂xk
=

∂

∂xj
+

∑
1≤k≤n
υj<υk

∂

∂xk
Pj,k

X̃j =
∂

∂xj
+

∑
1≤k≤n
υj<υk

Qj,k
∂

∂xk
=

∂

∂xj
+

∑
1≤k≤n
υj<υk

∂

∂xk
Qj,k,
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where Pj,k and Qj,k are homogeneous polynomials on G of homogeneous degree
υk − υj > 0.

Proof. For any x ∈ G, we denote by Lx : G→ G the left-translation, i.e. Lx(y) =
xy. Let j = 1, . . . , n. Recall that Xj is the differential operator invariant under
left-translation which agrees with ∂

∂xj
at 0, that is, for any f ∈ C∞(G) and xo ∈ G,

we have

(Xjf) ◦ Lxo
(0) = Xj(f ◦ Lxo

)(0) and Xj(f)(0) =
∂f

∂xj
(0).

Thus

(Xjf)(xo) = (Xjf) ◦ Lxo
(0) = Xj(f ◦ Lxo

)(0) =
∂

∂xj
(f ◦ Lxo

)(0)

=
n∑

k=1

∂f

∂xk
(xo)

∂[xox]k
∂xj

(0),

by the chain rule. But by Proposition 3.1.24,

∂[xox]k
∂xj

(0) =
∂

∂xj

⎧⎪⎪⎨⎪⎪⎩[xo]k + xk +
∑

α,β∈N
n
0 \{0}

[α]+[β]=υk

ck,α,βx
α
o x

β

⎫⎪⎪⎬⎪⎪⎭ (0)

= δj,k +
∑

β=ej , α∈N
n
0 \{0}

[α]+[β]=υk

ck,α,βx
α
o ,

where ej is the multi-index with 1 in the j-th place and zeros elsewhere, and δj,k
is the Kronecker delta. The assertion for Xj now follows immediately, and the

assertion for X̃j is proved in the same way using right translations. �
Proposition 3.1.28 gives, in particular,

for υn : Xn =
∂

∂xn
,

for υn−1 : Xn−1 =
∂

∂xn−1
+ Pn−1,n

∂

∂xn
,

for υn−2 : Xn−2 =
∂

∂xn−2
+ Pn−2,n−1

∂

∂xn−1
+ Pn−2,n

∂

∂xn
,

so that

∂

∂xn
= Xn,

∂

∂xn−1
= Xn−1 − Pn−1,nXn,

∂

∂xn−2
= Xn−2 − Pn−2,n−1 (Xn−1 − Pn−1,nXn)− Pn−2,nXn,
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and so forth, with similar formulae for the right-invariant vector fields. This shows
that there are formulas for the ∂

∂xj
’s of the same sort as for the Xj ’s and X̃j ’s,

that is,
∂

∂xj
= Xj +

∑
1≤k≤n
υj<υk

pj,kXk = X̃j +
∑

1≤k≤n
υj<υk

qj,kX̃k, (3.17)

where pj,k and qj,k are homogeneous polynomials on G of homogeneous degree
υk − υj > 0.

Remark 3.1.29. 1. Given the formulae above and the condition on the degree,
it is not difficult to see that the Pj,k and Qj,k in Proposition 3.1.28 and the
pj,k and qj,k in (3.17), with υk > υj , are polynomials in (x1, . . . , xk−1) and

commute with Xk, X̃k and ∂
∂xk

respectively.

2. The first part of Proposition 3.1.28 and its proof are valid for any nilpotent
Lie group (see Remark 1.6.7, part (1)). In our setting here, the homoge-
neous structure implies the additional property that the Pj,k and Qj,k are
homogeneous.

Corollary 3.1.30. For any α ∈ Nn
0\{0},

Xα =
∑

β∈N
n
0 , |β|≤|α|
[β]≥[α]

Pα,βX̃
β =

∑
β∈N

n
0 , |β|≤|α|
[β]≥[α]

X̃βpα,β ,

X̃α =
∑

β∈N
n
0 , |β|≤|α|
[β]≥[α]

Qα,βX
β =

∑
β∈N

n
0 , |β|≤|α|
[β]≥[α]

Xβqα,β ,

where Pα,β , pα,β , Qα,β , qα,β are homogeneous polynomials of homogeneous degree
[β]− [α].

Proof. By Proposition 3.1.28 we obtain recursively for any α ∈ Nn
0\{0} that

Xα =
∑

β∈N
n
0 , |β|≤|α|
[β]≥[α]

Pα,β

(
∂

∂x

)β

, (3.18)

with Pα,β homogeneous polynomial of degree [β]− [α]. Similar formulae yield X̃α

in terms of the
(

∂
∂x

)β
’s.

Recursively from (3.17), we also obtain similar formulae for
(

∂
∂x

)α
in terms

of the Xβ or X̃β .

The assertion comes form combining these formulae, with a similar argument
for pα,β and qα,β . �
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Corollary 3.1.31. For any M ≥ 0, the maps

(i) P �−→
{(

∂

∂x

)α

P (0)

}
α∈Nn

0 , [α]≤M

,

(ii) P �−→ {XαP (0)}α∈Nn
0 , [α]≤M ,

(iii) P �−→
{
X̃αP (0)

}
α∈Nn

0 , [α]≤M
,

are linear isomorphisms from P≤M to CdimP≤M . Also, the maps

(i) P �−→
{(

∂

∂x

)α

P (0)

}
α∈Nn

0 , [α]=M

,

(ii) P �−→ {XαP (0)}α∈Nn
0 , [α]=M ,

(iii) P �−→
{
X̃αP (0)

}
α∈Nn

0 , [α]=M
,

are linear isomorphisms from P=M to CdimP=M .

Proof. By Lemma 3.1.27, the vector subspace P≤M of P is finite dimensional, with
basis {xα : α ∈ Nn

0 , [α] ≤M}. Hence case (i) is a simple consequence of Taylor’s
Theorem on Rn.

Note that in the formula (3.18), Pα,β is a constant function when [α] = [β]
and Pα,β(0) = 0 when [α] > [β]. Hence

Xα|0 =
∑

β∈N
n
0 , |β|≤|α|
[β]=[α]

Pα,β

(
∂

∂x

)β ∣∣∣∣
0

.

We have similar result from the other formulae relating Xα, X̃α and
(

∂
∂x

)α
.

Cases (ii) and (iii) follow from these observations together with case (i). The
case of the homogeneous polynomials of order M is similar. �

We may use the following property without referring to it.

Corollary 3.1.32. Let α, β ∈ Nn
0 . The differential operator XαXβ is a linear com-

bination of Xγ with [γ] ∈ Nn
0 , [γ] = [α] + [β]:

XαXβ =
∑

γ∈N
n
0 , |γ|≤|α|+|β|
[γ]=[α]+[β]

c′α,β,γX
γ . (3.19)

The differential operator X̃αX̃β is a linear combination of X̃γ with [γ] ∈ Nn
0 ,

|γ| ≤ |α|+ |β| and [γ] = [α] + [β].
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Proof. The differential operator XαXβ is a left-invariant differential operator of
order |α|+ |β| by (3.18), and it is a linear combination of Xγ , |γ| ≤ |α|+ |β| (see
Section 1.3),

XαXβ =
∑

γ∈Nn
0 , |γ|≤|α|+|β|

c′α,β,γX
γ .

By homogeneity, for any r > 0 and any function f ∈ C∞(G), we have on one
hand,

XαXβ(f ◦Dr) = r[α]+[β](XαXβf) ◦Dr,

and on the other hand,

XαXβ(f ◦Dr) =
∑

γ∈Nn
0 , |γ|≤|α|+|β|

c′α,β,γX
γ(f ◦Dr)

=
∑

γ∈Nn
0 , |γ|≤|α|+|β|

c′α,β,γr
[γ](Xγf) ◦Dr.

Choosing f suitably (for example f being polynomials of homogeneous degree
at most [α] + [β], see Corollary 3.1.31), this implies that if [α] + [β] �= [γ] then
c′α,β,γ = 0, showing (3.19).

The property for the right-invariant vector fields is similar. �

3.1.6 Homogeneous quasi-norms

We can define an Euclidean norm |·|E on g by declaring theXj ’s to be orthonormal.
We may also regard this norm as a function on G via the exponential mapping,
that is,

|x|E = | exp−1
G x|E .

However, this norm is of limited use for our purposes, since it does not interact in
a simple fashion with dilations. We therefore define:

Definition 3.1.33. A homogeneous quasi-norm is a continuous non-negative func-
tion

G � x �−→ |x| ∈ [0,∞),

satisfying

(i) (symmetric) |x−1| = |x| for all x ∈ G,

(ii) (1-homogeneous) |rx| = r|x| for all x ∈ G and r > 0,

(iii) (definite) |x| = 0 if and only if x = 0.

The | · |-ball centred at x ∈ G with radius R > 0 is defined by

B(x,R) := {y ∈ G : |x−1y| < R}.
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Remark 3.1.34. With such definition, we have for any x, xo ∈ G, R > 0,

xoB(x,R) = B(xox,R), (3.20)

since

z ∈ xoB(x,R)⇐⇒ x−1
o z ∈ B(x,R)⇐⇒ |x−1x−1

o z| < R⇐⇒ z ∈ B(xox,R).

In particular, we see that

B(x, r) = xB(0, r).

It is also easy to check that

B(0, r) = Dr(B(0, 1)).

Note that in our definition of quasi-balls, we choose to privilege the left
translations. Indeed, the set {y ∈ G : |yx−1| < R} may also be defined as
a quasi-ball but one would have to use the right translation instead of the left
xo-translation to have a similar property to (3.20).

An important example of a quasi-norm is given by Example 3.1.18 on the
Heisenberg group Hno

. More generally, on any homogeneous Lie group, the follow-
ing functions are homogeneous quasi-norms:

|(x1, . . . , xn)|p =

⎛⎝ n∑
j=1

|xj |
p
υj

⎞⎠ 1
p

, (3.21)

for 0 < p <∞, and for p =∞:

|(x1, . . . , xn)|∞ = max
1≤j≤n

|xj |
1
υj . (3.22)

In Definition 3.1.33 we do not require a homogeneous quasi-norm to be
smooth away from the origin but some authors do. Quasi-norms with added regu-
larity always exist as well but, in fact, a distinction between different quasi-norms
is usually irrelevant for many questions of analysis because of the following prop-
erty:

Proposition 3.1.35. (i) Every homogeneous Lie group G admits a homogeneous
quasi-norm that is smooth away from the unit element.

(ii) Any two homogeneous quasi-norms | · | and | · |′ on G are mutually equivalent:

‖ · ‖ 
 ‖ · ‖′ in the sense that ∃a, b > 0 ∀x ∈ G a|x|′ ≤ |x| ≤ b|x|′.
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Proof. Let us consider the function

Ψ(r, x) = |Drx|2E =

n∑
j=1

r2υjx2
j .

Let us fix x �= 0. The function Ψ(r, x) is continuous, strictly increasing in r
and satisfies

Ψ(r, x) −→
r→0

0 and Ψ(r, x) −→
r→+∞ +∞.

Therefore, there is a unique r > 0 such that |Drx|E = 1. We set |x|o := r−1.

Hence we have defined a map

G\{0} � x �→ |x|−1
o ∈ (0,∞)

which is the implicit function for Ψ(r, x) = 1. This map is smooth since the
function Ψ(r, x) is smooth from (0,+∞)×G\{0} to (0,∞) and ∂rΨ(r, x) is always
different from zero. Setting |0G|o := 0, the map | · |o clearly satisfies the properties
of Definition 3.1.33. This shows part (i).

For Part (ii), it is sufficient to prove that any homogeneous quasi-norm is
equivalent to | · |o constructed above. Before doing so, we observe that the unit
spheres in the Euclidean norm and the homogeneous quasi-norm | · |o coincide,
that is,

S := {x ∈ G : |x|E = 1} = {x ∈ G : |x|o = 1}.

Let | · | be any other homogeneous norm. Since it is a definite function (see
(iii) of Definition 3.1.33) its restriction to S is never zero. By compactness of S
and continuity of | · |, there are constants a, b > 0 such that

∀x ∈ S a ≤ |x| ≤ b.

For any x ∈ G\{0}, let t > 0 be given by t−1 = |x|o. We have Dtx ∈ S, and thus

a ≤ |Dtx| ≤ b and a|x|o = t−1a ≤ |x| ≤ t−1b = b|x|o.

The conclusion of Part (ii) follows. �

Remark 3.1.36. If G is graded, the formula (3.21) for p = 2υ1 . . . υn gives another
concrete example of a homogeneous quasi-norm smooth away from the origin since
x �→ |x|pp is then a polynomial in the coordinate functions {xj}.

Proposition 3.1.35 and our examples of homogeneous quasi-norms show that
the usual Euclidean topology coincides with the topology associated with any
homogeneous quasi-norm:
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Proposition 3.1.37. If | · | is a homogeneous quasi-norm on G ∼ Rn, the topology
induced by the | · |-balls

B(x,R) := {y ∈ G : |x−1y| < R},

x ∈ G and R > 0, coincides with the Euclidean topology of Rn.
Any closed ball or sphere for any homogeneous quasi-norm is compact. It

is also bounded with respect to any norm of the vector space Rn or any other
homogeneous quasi-norm on G.

Proof of Proposition 3.1.37. It is a routine exercise of topology to check that the
equivalence of norm given in Proposition 3.1.35 implies that the topology induced
by the balls of two different homogeneous quasi-norms coincide. Hence we can
choose the norm | · |∞ given by (3.22) and the corresponding balls

B∞(x,R) := {y ∈ G : |x−1y|∞ < R}.

We also consider the supremum Euclidean norm given by

|(x1, . . . , xn)|E,∞ = max
1≤j≤n

|xj |,

and its corresponding balls

BE,∞(x,R) := {y ∈ G : | − x+ y|E,∞ < R}.

That the topologies induced by the two families of balls

{B∞(x,R)}x∈G,R>0 and {BE,∞(x,R)}x∈G,R>0

must coincide follows from the following two observations. Firstly it is easy to
check for any R ∈ (0, 1)

B∞(0, R
1
υ1 ) ⊂ BE,∞(0, R) ⊂ B∞(0, R

1
υn ).

Secondly for each x ∈ G, the mappings Ψx : y �→ x−1y and ΨE,x : y �→ −x+ y are
two smooth diffeomorphisms of Rn. Hence these mappings are continuous with
continuous inverses (with respect to the Euclidean topology). Furthermore, by
Remark 3.1.34, we have

Ψx(B∞(x,R)) = B∞(0, R) and ΨE,x(BE,∞(x,R)) = BE,∞(0, R).

The second part of the statement follows from the first and from the conti-
nuity of homogeneous quasi-norms. �

The next proposition justifies the terminology of ‘quasi-norm’ by stating that
every homogeneous quasi-norm satisfies the triangle inequality up to a constant,
the other properties of a norm being already satisfied.
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Proposition 3.1.38. If | · | is a homogeneous quasi-norm on G, there is a constant
C > 0 such that

|xy| ≤ C (|x|+ |y|) ∀x, y ∈ G.

Proof. Let |·| be a quasi-norm onG. Let B̄ := {x : |x| ≤ 1} be its associated closed
unit ball. By Proposition 3.1.37, B̄ is compact. As the product law is continuous
(even polynomial), the set {xy : x, y ∈ B̄} is also compact. Therefore, there is a
constant C > 0 such that

∀x, y ∈ B̄ |xy| ≤ C.

Let x, y ∈ G. If both of them are 0, there is nothing to prove. If not, let t > 0 be
given by t−1 = |x|+ |y| > 0. Then Dt(x) and Dt(y) are in B̄, so that

t|xy| = |Dt(xy)| = |Dt(x)Dt(y)| ≤ C,

and this concludes the proof. �
Note that the constant C in Proposition 3.1.38 satisfies necessarily C ≥ 1

since |0| = 0 implies |x| ≤ C|x| for all x ∈ G. It is natural to ask whether
a homogeneous Lie group G may admit a homogeneous quasi-norm | · | which
is actually a norm or, equivalently, which satisfies the triangle inequality with
constant C = 1. For instance, on the Heisenberg group Hno

, the homogeneous
quasi-norm given in Example 3.1.18 turns out to be a norm (cf. [Cyg81]). In the
stratified case, the norm built from the control distance of the sub-Laplacian, often
called the Carnot-Caratheodory distance, is also 1-homogeneous (see, e.g., [Pan89]
or [BLU07, Section 5.2]). This can be generalised to all homogeneous Lie groups.

Theorem 3.1.39. Let G be a homogeneous Lie group. Then there exist a homoge-
neous quasi-norm on G which is a norm, that is, a homogeneous quasi-norm | · |
which satisfies the triangle inequality

|xy| ≤ |x|+ |y| ∀x, y ∈ G.

A proof of Theorem 3.1.39 by Hebisch and Sikora uses the correspondence
between homogeneous norms and convex sets, see [HS90]. Here we sketch a differ-
ent proof. Its idea may be viewed as an adaptation of a part of the proof that the
control distance in the stratified case is a distance. Our proof may be simpler than
the stratified case though, since we define a distance without using ‘horizontal’
curves.

Sketch of the proof of Theorem 3.1.39. If γ : [0, T ] → G is a smooth curve, its
tangent vector γ′(to) at γ(to) is usually defined as the element of the tangent
space Tγ(to)G at γ(to) such that

γ′(to)(f) =
d

dt
f(γ(t))

∣∣∣∣
t=to

, f ∈ C∞(G).
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It is more convenient for us to identify the tangent vector of γ at γ(to) with an
element of the Lie algebra g = T0G. We therefore define γ̃′(to) ∈ g via

γ̃′(to)(f) :=
d

dt
f(γ(to)

−1γ(t))

∣∣∣∣
t=to

, f ∈ C∞(G).

We now fix a basis {Xj}nj=1 of g such that DrXj = rυjXj . We also define
the map | · |∞ : g→ [0,∞) by

|X|∞ := max
j=1,...,n

|xj |
1
υj , X =

n∑
j=1

xjXj ∈ g.

Given a piecewise smooth curve γ : [0, T ]→ G, we define its length adapted
to the group structure by

�̃(γ) :=

∫ T

0

|γ̃′(t)|∞dt.

If x and y are in G, we denote by d(x, y) the infimum of the lengths �̃(γ)
of the piecewise smooth curves γ joining x and y. Since two points x and y can
always be joined by a smooth compact curve, e.g. γ(t) = ((1−t)x) ty, the quantity
d(x, y) is always finite. Hence we have obtained a map d : G×G→ [0,∞). It is a
routine exercise to check that d is symmetric and satisfies the triangle inequality
in the sense that we have for all x, y, z ∈ G, that

d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) + d(z, y).

Moreover, one can check easily that �̃(Dr(γ)) = r�̃(γ) and �̃(zγ) = �̃(γ), thus we
also have for all x, y, z ∈ G and r > 0, that

d(zx, zy) = d(x, y) and d(rx, ry) = rd(x, y). (3.23)

Let us show that d is non-degenerate, that is, d(x, y) = 0⇒ x = y. First let
|·|E be the Euclidean norm on g ∼ Rn such that the basis {Xj}nj=1 is orthonormal.
We endow each tangent space TxG with the Euclidean norm obtained by left
translation of the Euclidean norm | · |E . Hence we have for any smooth curve γ at
any point to

|γ′(to)|Tγ(to)G = |γ̃′(to)|E .

Now we see that if X =
∑n

j=1 xjXj ∈ g is such that

|X|E,∞ := max
j=1,...,n

|xj | ≤ 1,

then
|X|E 
 |X|E,∞ ≤ |X|∞.
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This implies that if γ : [0, T ]→ G is a smooth curve satisfying

∀t ∈ [0, T ] |γ′(t)|Tγ(t)G < 1, (3.24)

then
�(γ) ≤ C�̃(γ), (3.25)

where � is the usual length

�(γ) :=

∫ T

0

|γ′(t)|Tγ(t)Gdt,

and C > 0 a positive constant independent of γ.
Let dG be the Riemaniann distance induced by our choice of metric on the

manifold G, that is, the infimum of the lengths �(γ) of the piecewise smooth curves
γ joining x and y. Very well known results in Riemaniann geometry imply that
dG induces the same topology as the Euclidean topology. Moreover, there exists
a small open set Ω containing 0 such that any point in Ω may be joined to 0 by
a smooth curve satisfying (3.24) at any point. Then (3.25) yields that we have
dG(0, x) ≤ Cd(0, x) for any x ∈ Ω. This implies that d is non-degenerate since d
is invariant under left-translation and is 1-homogeneous in the sense of (3.23),

Checking that the associated map x �→ |x| = d(0, x) is a quasi-norm concludes
the sketch of the proof of Theorem 3.1.39. �

Even if homogeneous norms do exist, it is often preferable to use homogeneous
quasi-norms. Because the triangle inequality is up to a constant in this case, we
do not necessarily have the inequality ||xy| − |x|| ≤ C|y|. However, the following
lemma may help:

Proposition 3.1.40. We fix a homogeneous quasi-norm | · | on G. For any f ∈
C1(G\{0}) homogeneous of degree ν ∈ C, for any b ∈ (0, 1) there is a constant
C = Cb > 0 such that

|f(xy)− f(x)| ≤ C|y| |x|Re ν−1 whenever |y| ≤ b|x|.

Indeed, applying it to a C1(G\{0}) homogeneous quasi-norm, we obtain

∀b ∈ (0, 1) ∃C = Cb > 0 ∀x, y ∈ G |y| ≤ b|x| =⇒
∣∣|xy| − |x|∣∣ ≤ C|y|. (3.26)

Proof of Proposition 3.1.40. Let f ∈ C1(G\{0}). Both sides of the desired in-
equality are homogeneous of degree Re ν so it suffices to assume that |x| = 1
and |y| ≤ b. By Proposition 3.1.37 and the continuity of multiplication, the set
{xy : |x| = 1and |y| ≤ b} is a compact which does not contain 0. So by the
(Euclidean) mean value theorem on Rn, we get

|f(xy)− f(x)| ≤ C|y|E .

We conclude using the next lemma. �
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The next lemma shows that locally a homogeneous quasi-norm and the Eu-
clidean norm are comparable:

Lemma 3.1.41. We fix a homogeneous quasi-norm | · | on G. Then there exist
C1, C2 > 0 such that

C1|x|E ≤ |x| ≤ C2|x|
1

υn

E whenever |x| ≤ 1.

Proof of Lemma 3.1.41. By Proposition 3.1.37, the unit sphere {y : |y| = 1} is
compact and does not contain 0. Hence the Euclidean norm assumes a positive
maximum C−1

1 and a positive minimum C−υn
2 on it, for some C1, C2 > 0.

Let x ∈ G. We may assume x �= 0. Then we can write it as x = ry with
|y| = 1 and r = |x|. We observe that since

|ry|2E =

n∑
j=1

y2j r
2υj ,

we have if r ≤ 1
rυn |y|E ≤ |ry|E ≤ r|y|E .

Hence for r = |x| ≤ 1, we get

|x|E = |ry|E ≤ r|y|E ≤ |x|C−1
1 and |x|E = |ry|E ≥ rυn |y|E ≥ |x|υnC−υn

2 ,

implying the statement. �

3.1.7 Polar coordinates

There is an analogue of polar coordinates on homogeneous Lie groups.

Proposition 3.1.42. Let G be a homogeneous Lie group equipped with a homoge-
neous quasi-norm | · |. Then there is a (unique) positive Borel measure σ on the
unit sphere

S := {x ∈ G : |x| = 1},
such that for all f ∈ L1(G), we have∫

G

f(x)dx =

∫ ∞

0

∫
S

f(ry)rQ−1dσ(y)dr. (3.27)

In order to prove this claim, we start with the following averaging property:

Lemma 3.1.43. Let G be a homogeneous Lie group equipped with a homogeneous
quasi-norm | · |. If f is a locally integrable function on G\{0}, homogeneous of
degree −Q, then there exists a constant mf ∈ C (the average value of f) such that
for all u ∈ L1((0,∞), r−1dr), we have∫

G

f(x)u(|x|)dx = mf

∫ ∞

0

u(r)r−1dr. (3.28)
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The proof of Lemma 3.1.43 yields the formula for mf in terms of the homo-
geneous quasi-norm | · |,

mf =

∫
1≤|x|≤e

f(x)dx. (3.29)

However, in Lemma 3.1.45 we will give an invariant meaning to this value.

Proof of Lemma 3.1.43. Let f be locally integrable function on G\{0}, homoge-
neous of degree −Q. We set for any r > 0,

ϕ(r) :=

{ ∫
1≤|x|≤r

f(x)dx if r ≥ 1,

−
∫
r≤|x|≤1

f(x)dx if r < 1.

The mapping ϕ : (0,∞)→ C is continuous and one easily checks that

ϕ(rs) = ϕ(r) + ϕ(s) for all r, s > 0,

by making the change of variable x �→ sx and using the homogeneity of f . It
follows that ϕ(r) = ϕ(e) ln r and we set

mf := ϕ(e).

Then the equation (3.28) is easily satisfied when u is the characteristic function
of an interval. By taking the linear combinations and limits of such functions, the
equation (3.28) is also satisfied when u ∈ L1((0,∞), r−1dr). �

Proof of Proposition 3.1.42. For any continuous function f on the unit sphere S,
we define the homogeneous function f̃ on G\{0} by

f̃(x) := |x|−Qf(|x|−1x).

Then f̃ satisfies the hypotheses of Lemma 3.1.43. The map f �→ mf̃ is clearly a
positive functional on the space of continuous functions on S. Hence it is given
by integration against a regular positive measure σ (see, e.g. [Rud87, ch.VI]).

For u ∈ L1((0,∞), r−1dr), we have∫
f(|x|−1x)u(|x|)dx =

∫
f̃(x)|x|Qu(|x|)dx = mf̃

∫ ∞

r=0

rQ−1u(r)dr

=

∫ ∞

0

∫
S

f(y)u(r)rQ−1dσ(y)dr.

Since linear combinations of functions of the form f(|x|−1x)u(|x|) are dense in
L1(G), the proposition follows. �

We view the formula (3.27) as a change in polar coordinates.
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Example 3.1.44. For 0 < a < b <∞ and α ∈ C, we have∫
a<|x|<b

|x|α−Qdx = C

{
α−1(bα − aα) if α �= 0
ln

(
b
a

)
if α = 0

with C = σ(S).

And if α ∈ R and f is a measurable function on G such that f(x) = O(|x|α−Q)
then f is integrable either near ∞ if α < 0, or near 0 if α > 0.

The measure σ in the polar coordinates decomposition actually has a smooth
density. We will not need this fact and will not prove it here, but refer to [FR66]
and [Goo80].

Now, the polar change of coordinates depends on the choice of a homogeneous
quasi-norm to fix the unit sphere. But it turns out that the average value of the
(−Q)-homogeneous function considered in Lemma 3.1.43 does not. Let us prove
this fact for the sake of completeness.

Lemma 3.1.45. Let G be a homogeneous Lie group and let f be a locally integrable
function on G\{0}, homogeneous of degree −Q.

Given a homogeneous quasi-norm, let σ be the Radon measure on the unit
sphere S giving the polar change of coordinate (3.27). Then the average value of
f defined in (3.28) is given by

mf =

∫
S

fdσ. (3.30)

This average value mf is independent of the choice of the homogeneous quasi-
norm.

Proof of Lemma 3.1.45. For any homogeneous quasi-norm, using the polar change
of coordinates (3.27), we obtain∫

a<|x|<b

f(x)dx =

∫ b

a

∫
S

f(rx)dσ(x)rQ−1dr

=

∫ b

a

∫
S

f(x)dσ(x)r−1dr =

∫ b

a

r−1dr

∫
S

f(x)dσ(x) =

(
ln

b

a

)
mf .

This shows (3.30), taking a = 1 and b = e, see (3.29) and the proof of Lemma
3.1.43.

Let | · | and | · |′ be two homogeneous quasi-norms on G. We denote by

B̄r := {x ∈ G : |x| ≤ r} and B̄′
r := {x ∈ G : |x|′ ≤ r},

the closed balls around 0 of radius r for | · | and | · |′, respectively. By Proposi-
tion 3.1.35, Part (ii), there exists a constant a > 0 such that B̄′

a ⊂ B̄1. We also
have B̄′

a ⊂ B̄′
2a ⊂ B̄2 and, with the usual sign convention for integration, we have∫
B̄2\B̄1

=

∫
B̄2\B̄′

a

−
∫
B̄1\B̄′

a

=

∫
B̄2\B̄′

2a

+

∫
B̄′

2a\B̄′
a

−
∫
B̄1\B̄′

a

.
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Using the homogeneities of f and of the Haar measure, we see, after the changes
of variables x = 2y and x = az, that∫

B̄2\B̄′
2a

f(x)dx =

∫
B̄1\B̄′

a

f(y)dy and

∫
B̄′

2a\B̄′
a

f(x)dx =

∫
B̄′

2\B̄′
1

f(z)dz.

Hence ∫
B̄2\B̄1

f =

∫
B̄′

2\B̄′
1

f.

Using the first computations of this proof, the left and right hand sides are equal to
(ln b/a)mf and (ln b/a)m′

f , respectively, where mf and m′
f are the average values

for | · | and | · |′. Thus mf = m′
f . �

3.1.8 Mean value theorem and Taylor expansion

Here we prove the mean value theorem and describe the Taylor series on homoge-
neous Lie groups. Naturally, the space C1(G) here is the space of functions f such
that Xjf are continuous on G for all j, etc. The following mean value theorem
can be partly viewed as a refinement of Proposition 3.1.40.

Proposition 3.1.46. We fix a homogeneous quasi-norm | · | on G. There exist group
constants C0 > 0 and η > 1 such that for all f ∈ C1(G) and all x, y ∈ G, we have

|f(xy)− f(x)| ≤ C0

n∑
j=1

|y|υj sup
|z|≤η|y|

|(Xjf)(xz)|.

In order to prove this proposition, we first prove the following property.

Lemma 3.1.47. The map φ : Rn → G defined by

φ(t1, . . . , tn) = expG(t1X1) expG(t2X2) . . . expG(tnXn),

is a global diffeomorphism.

Moreover, fixing a homogeneous quasi-norm | · | on G, there is a constant
C1 > 0 such that

∀(t1, . . . , tn) ∈ Rn, j = 1, . . . , n, |tj |
1
υj ≤ C1|φ(t1, . . . , tn)|.

The first part of the lemma is true for any nilpotent Lie group (see Remark
1.6.7 Part (ii)). But we will not use this fact here.

Proof. Clearly the map φ is smooth. By the Baker-Campbell-Hausdorff formula
(see Theorem 1.3.2), the differential dφ(0) : Rn → T0G is the isomorphism

dφ(0)(t1, . . . , tn) =

n∑
j=1

tjXj |0,
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so that φ is a local diffeomorphism near 0 (this is true for any Lie group). More
precisely, there exist δ, C ′ > 0 such that φ is a diffeomorphism from U to the ball
Bδ := {x ∈ G : |x| < δ} with

φ−1(Bδ) = U ⊂ {(t1, . . . , tn) : max
j=1,...,n

|tj |
1
υj < C ′}.

We now use the dilations and for any r > 0, we see that

φ(rυ1t1, . . . , r
υntn) = expG(r

υ1t1X1) . . . expG(r
υntnXn)

= (r expG(t1X1)) . . . (r expG(tnXn))

= r (expG(t1X1) . . . expG(tnXn)) ,

hence
φ(rυ1t1, . . . , r

υntn) = rφ(t1, . . . , tn). (3.31)

If φ(t1, . . . , tn) = φ(s1, . . . , sn), formula (3.31) implies that for all r > 0, we
have

φ(rυ1t1, . . . , r
υntn) = φ(rυ1s1, . . . , r

υnsn).

For r sufficiently small, this forces tj = sj for all j since φ is a diffeomorphism on
U . So the map φ : Rn → G is injective.

Moreover, any x ∈ G\{0} can be written as

x = ry with r :=
2

δ
|x| and y := r−1x ∈ B δ

2
⊂ φ(U).

We may write y = φ(s1, . . . sn) with |sj |
1
υj ≤ C ′ and formula (3.31) then implies

that x = φ(t1, . . . , tn) is in φ(Rn) with tj := rυjsj satisfying |tj |
1
υj ≤ C ′r. Setting

C1 = 2C ′/δ, the assertion follows. �

Proof of Proposition 3.1.46. First let us assume that y = expG(tXj). Then

f(xy)− f(x) =

∫ t

0

∂s′=s {f(x expG(s′Xj))} ds

=

∫ t

0

∂s′=0 {f(x expG(sXj) expG(s
′Xj))} ds

=

∫ t

0

Xjf(x expG(sXj))ds,

and hence

|f(xy)− f(x)| ≤ |t| sup
0≤s≤t

|Xjf(x expG(sXj))|

≤ |t| sup
|z|≤|y|

|Xjf(xz)|.
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Since | expG(sXj)| = |s|
1
υj | expG Xj | and hence |y| = |t|

1
υj | expG Xj |, setting

C2 := max
k=1,...,n

| expG Xk|−υk ,

we obtain
|f(xy)− f(x)| ≤ C2|y|υj sup

|z|≤|y|
|Xjf(xz)|. (3.32)

We now prove the general case, so let y be any point of G. By Lemma 3.1.47,
it can be written uniquely as y = y1y2 . . . yn with yj = expG(tjXj), and hence

|yj | = |t|
1
υj | expG Xj | ≤ C1C3|y| where C3 := max

k=1,...,n
| expG Xk|, (3.33)

and C1 is as in Lemma 3.1.47. We write

|f(xy)− f(x)| ≤ |f(xy1 . . . yn)− f(xy1 . . . yn−1)|
+|f(xy1 . . . yn−1)− f(xy1 . . . yn−2)|+ . . .+ |f(xy1)− f(x)|,

and applying (3.32) to each term, we obtain

|f(xy)− f(x)| ≤
n∑

j=1

C2|yj |υj sup
|z|≤|yj |

|Xjf(xy1 . . . yj−1z)|.

Let C4 ≥ 1 be the constant of the triangle inequality for |·| (see Proposition 3.1.38).
If |z| ≤ |yj |, then z′ = y1 . . . yj−1z satisfies

|z′| ≤ C4(|y1 . . . yj−1|+ |yj |) ≤ C4

(
C4(|y1 . . . yj−2|+ |yj−1|) + |yj |

)
≤ C2

4 (|y1 . . . yj−2|+ |yj−1|+ |yj |) ≤ . . . ≤ Cj−1
4 (|y1|+ |y2|+ . . . |yj |)

≤ Cj−1
4 jC1C3|y|,

using (3.33). Therefore, setting η := Cn
4 nC1C3, using again (3.33), we have ob-

tained

|f(xy)− f(x)| ≤ C2

n∑
j=1

(C1C3|y|)υj sup
|z′|≤η|y|

|Xjf(xz
′)|,

completing the proof. �
Remark 3.1.48. Let us make the following remarks.

1. In the same way, we can prove the following version of Proposition 3.1.46 for
right-invariant vector fields: a homogeneous quasi-norm | · | being fixed on G,
there exists group constants C > 0 and b > 0 such that for all f ∈ C1(G)
and all x, y ∈ G, we have

|f(yx)− f(x)| ≤ C

n∑
j=1

|y|υj sup
|z|≤b|y|

|(X̃jf)(zx)|.
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2. If the homogeneous Lie group G is stratified, a more precise version of the
mean value theorem exists involving only the vector fields of the first stratum,
see Folland and Stein [FS82, (1.41)], but we will not use this fact here.

3. The statement and the proof of the mean value theorem can easily be adapted
to hold for functions which are valued in a Banach space, the modulus being
replaced by the Banach norm.

Taylor expansion

In view of Corollary 3.1.31, we can define Taylor polynomials:

Definition 3.1.49. The Taylor polynomial of a suitable function f at a point x ∈ G
of homogeneous degree ≤M ∈ N0 is the unique P ∈ P≤M such that

∀α ∈ Nn
0 , [α] ≤M XαP (0) = Xαf(x).

More precisely, we have defined the left Taylor polynomial, and a similar
definition using the right-invariant differential operators X̃α yields the right Taylor
polynomial. However, in this monograph we will use only left Taylor polynomials.

We may use the following notation for the Taylor polynomial P of a function
f at x and for its remainder of order M :

P
(f)
x,M := P and R

(f)
x,M (y) := f(xy)− P (y). (3.34)

For instance, P
(f)
x,M (0) = f(x). We will also extend the notation for negative M

with
P

(f)
x,M := 0 and R

(f)
x,M (y) := f(xy) when M < 0.

With this notation, we easily see (whenever it makes sense), the following
properties.

Lemma 3.1.50. For any M ∈ N0, α ∈ Nn
0 and suitable function f , we have

XαP
(f)
x,M = P

(Xαf)
x,M−[α] and XαR

(f)
x,M = R

(Xαf)
x,M−[α].

Proof. It is easy to check that the polynomial Po := XαP
(f)
x,M is homogeneous of

degree M − [α]. Furthermore, using (3.19), it satisfies for every β ∈ Nn
0 , such that

[α] + [β] ≤M , the equality

XβPo(0) = XβXαP
(f)
x,M (0)

=
∑

|γ|≤|α|+|β|
[γ]=[α]+[β]

c′α,β,γX
γP

(f)
x,M (0) =

∑
|γ|≤|α|+|β|
[γ]=[α]+[β]

c′α,β,γX
γf(x)

= XβXαf(x).

This shows the claim. �
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In Definition 3.1.49 the suitable functions f are distributions on a neigh-
bourhood of x in G whose (distributional) derivatives Xαf are continuous in a
neighbourhood of x for [α] ≤M . We will see in the sequel that in order to control
(uniformly) a remainder of a function f of order M we would like f to be at least
(k + 1) times continuously differentiable, i.e. f ∈ Ck+1(G), where k ∈ N0 is equal
to

�M� := max{|α| : α ∈ Nn
0 with [α] ≤M}; (3.35)

this is indeed a maximum over a finite set because of (3.16).

We can now state and prove Taylor’s inequality.

Theorem 3.1.51. We fix a homogeneous quasi-norm | · | on G and obtain a corre-
sponding constant η from the mean value theorem (see Proposition 3.1.46). For any
M ∈ N0, there is a constant CM > 0 such that for all functions f ∈ C�M�+1(G)
and all x, y ∈ G, we have

|R(f)
x,M (y)| ≤ CM

∑
|α|≤�M�+1

[α]>M

|y|[α] sup
|z|≤η�M�+1|y|

|(Xαf) (xz)| ,

where R
(f)
x,M and �M� are defined by (3.34) and (3.35).

Theorem 3.1.51 for M = 0 boils down exactly to the mean value theorem as
stated in Proposition 3.1.46. Similar comments as in Remark 3.1.48 for the mean
value theorem are also valid for Taylor’s inequality.

Proof. Under the hypothesis of the theorem, a remainder R
(f)
x,M is always C1 and

vanishes at 0. Let us apply the mean value theorem (see Proposition 3.1.46) at the

point 0 to the remainders R
(f)
x,M , R

(Xj0f)

x,M−υj0
, R

(Xυj1
Xυj0

f)

x,M−(υj0+υj1 )
, and so on as long as

M − (υj0 + . . .+ υjk) ≥ 0; using this together with Lemma 3.1.50, we obtain∣∣∣R(f)
x,M (y0)

∣∣∣ ≤ C0

n∑
j0=1

|y0|υj0 sup
|y1|≤η|y0|

∣∣∣∣R(Xυj0
f)

x,M−υj0
(y1)

∣∣∣∣ ,∣∣∣∣R(Xυj0
f)

x,M−υj0
(y1)

∣∣∣∣ ≤ C0

n∑
j1=1

|y1|υj1 sup
|y2|≤η|y1|

∣∣∣∣R(Xυj1
Xυj0

f)

x,M−(υj0
+υj1

)(y2)

∣∣∣∣ ,
...∣∣∣∣R(Xυjk

...Xυj0
f)

x,M−(υj0
+...+υjk

)(yk)

∣∣∣∣ ≤ C0

n∑
jk=1

|yk|υjk sup
|yk+1|≤η|yk|

∣∣∣∣R(Xυjk+1
...Xυj0

f)

x,M−(υj0
+...+υjk+1

)(yk)

∣∣∣∣ .
We combine these inequalities together, to obtain∣∣∣R(f)

x,M (y0)
∣∣∣ ≤ Ck+1

0 ηk
∑

ji=1,...,n
i=0,...,k+1

|y0|υj0
+...+υjk sup

|yk+1|≤ηk+1|y0|

∣∣∣R(X
υjk+1 ...X

υj0 f)
x,M−(υj0+...+υjk+1

)(yk)
∣∣∣ .



124 Chapter 3. Homogeneous Lie groups

The process stops exactly for k = �M� by the very definition of �M�. For this value
of k, Corollary 3.1.32 and the change of discrete variable α := υj0ej0+. . . υjk+1

ejk+1

(where ej denotes the multi-index with 1 in the j-th place and zeros elsewhere)
yield the result. �

Remark 3.1.52. 1. We can consider Taylor polynomials for right-invariant vec-
tor fields. The corresponding Taylor estimates would then approximate f(yx)
with a polynomial in y. See Part 1 of Remark 3.1.48, about the mean value
theorem for the case of order 0. Note that in Theorem 3.1.51 we consider
f(xy) and its approximation by a polynomial in y.

2. If the homogeneous Lie group G is stratified, a more precise versions of Tay-
lor’s inequality exists involving only the vector fields of the first stratum, see
Folland and Stein [FS82, (1.41)], but we will not use this fact here.

3. The statement and the proof of Theorem 3.1.51 can easily be adapted to
hold for functions which are valued in a Banach space, the modulus being
replaced by the Banach norm.

4. One can derive explicit formulae for Taylor’s polynomials and the remainders
on homogeneous Lie groups, see [Bon09] (see also [ACC05] for the case of
Carnot groups), but we do not require these here.

As a corollary of Theorem 3.1.51 that will be useful to us later, the right-
derivatives of Taylor polynomials and of the remainder will have the following
properties, slightly different from those for the left derivatives in Lemma 3.1.50.

Corollary 3.1.53. Let f ∈ C∞(G). For any M ∈ N0 and α ∈ Nn
0 , we have

X̃αP
(f)
x,M = P

(Xα
x f(x ·))

0,M−[α] and X̃αR
(f)
x,M = R

(Xα
x f(x ·))

0,M−[α] .

Proof. Recall from (1.12) that for any X ∈ g identified with a left-invariant vector
field, we have

X̃y{f(xy)} =
d

dt
f(xetXy)t=0 = Xx{f(xy)},

and recursively, we obtain

X̃α
y {f(xy)} = Xα

x {f(xy)}. (3.36)

Therefore, we have

X̃αP
(f)
x,M (y)− P

(Xα
x f(x ·))

0,M−[α] (y)

= X̃α
y

{
f(xy)−R

(f)
x,M (y)

}
−

{
Xα

x f(xy)−R
(Xα

x f(x ·))
0,M−[α] (y)

}
= −X̃αR

(f)
x,M (y) +R

(Xα
x f(x ·))

0,M−[α] (y). (3.37)
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By Corollary 3.1.30, we can write

X̃αR
(f)
x,M (y) =

∑
|β|≤|α|, [β]≥[α]

Qα,β(y)X
βR

(f)
x,M (y)

=
∑

|β|≤|α|, [β]≥[α]

Qα,β(y)R
(Xβf)
x,M−[β](y),

where each Qα,β is a homogeneous polynomial of degree [β]− [α].
Fixing a homogeneous quasi-norm | · | on G, the Taylor inequality (Theorem

3.1.51) applied to R
(Xα

x f(x ·))
0,M−[α] and R

(Xβf)
x,M−[β] implies that, for |y| ≤ 1,

|R(Xα
x f(x ·))

0,M−[α] (y)| ≤ C|y|M−[α]+1 and |R(Xβf)
x,M−[β](y)| ≤ C|y|M−[β]+1.

Hence
|X̃αR

(f)
x,M (y)| ≤ C|y|M−[α]+1.

Going back to (3.37), we have obtained that its left hand side can be estimated as

|X̃αP
(f)
x,M (y)− P

(Xα
x f(x ·))

0,M−[α] (y)| ≤ C|y|M−[α]+1.

But X̃αP
(f)
x,M (y) − P

(Xα
x f(x ·))

0,M−[α] (y) is a polynomial of homogeneous degree at most

M − [α]. Therefore, this polynomial is identically 0. This concludes the proof of
Corollary 3.1.53. �

3.1.9 Schwartz space and tempered distributions

The Schwartz space on a homogeneous Lie groupG is defined as the Schwartz space
on any connected simply connected nilpotent Lie group, namely, by identifying G
with the underlying vector space of its Lie algebra (see Definition 1.6.8). The
vector space S(G) is naturally endowed with a Fréchet topology defined by any of
a number of families of seminorms.

In the ‘traditional’ Schwartz seminorm on Rn (see (1.13)) we can replace
(without changing anything for the Fréchet topology):

•
(

∂
∂x

)α
and the isotropic degree |α| by Xα and the homogeneous degree [α],

respectively, in view of Section 3.1.5,

• the Euclidean norm by the norm | · |p given in (3.21), and then by any ho-
mogeneous norm since homogeneous quasi-norms are equivalent (cf. Propo-
sition 3.1.35).

Hence we choose the following family of seminorms for S(G), where G is a
homogeneous Lie group:

‖f‖S(G),N := sup
[α]≤N, x∈G

(1 + |x|)N |Xαf(x)| (N ∈ N0),
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after having fixed a homogeneous quasi-norm | · | on G.
Another equivalent family is given by a similar definition with the right-

invariant vector fields X̃α replacing Xα.

The following lemma proves, in particular, that translations, taking the in-
verse, and convolutions, are continuous operations on Schwartz functions.

Lemma 3.1.54. Let f ∈ S(G) and N ∈ N. Then we have∥∥f(y · )∥∥S(G),N
≤ CN (1 + |y|)N‖f‖S(G),N (y ∈ G), (3.38)∥∥∥f̃∥∥∥

S(G),N
≤ CN‖f‖S(G),(υn+1)N where f̃(x) = f(x−1), (3.39)∥∥f( · y)∥∥S(G),N
≤ CN (1 + |y|)(υn+1)N‖f‖S(G),(υn+1)2N (y ∈ G). (3.40)

Moreover,∥∥f(y · )− f
∥∥
S(G),N

−→y→0 0 and
∥∥f( · y)− f

∥∥
S(G),N

−→y→0 0. (3.41)

The group convolution of two Schwartz functions f1, f2 ∈ S(G) satisfies

‖f1 ∗ f2‖S(G),N ≤ CN‖f1‖S(G),N+Q+1‖f2‖S(G),N . (3.42)

Proof. Let Co ≥ 1 be the constant of the triangle inequality, cf. Proposition 3.1.38.
We have easily that

∀x, y ∈ G (1 + |x|) ≤ Co(1 + |y|)(1 + |yx|). (3.43)

Thus, ∥∥f(y · )∥∥S(G),N
≤ sup

[α]≤N, x∈G

(Co(1 + |y|)(1 + |yx|))N |Xαf(yx)|

≤ CN
o (1 + |y|)N‖f‖S(G),N .

This shows (3.38).

For (3.39), using (1.11) and Corollary 3.1.30, we have∥∥∥f̃∥∥∥
S(G),N

≤ sup
[α]≤N, x∈G

(1 + |x|)N |(X̃αf)(x−1)|

≤ sup
[α]≤N, x∈G

∑
β∈N

n
0 , |β|≤|α|
[β]≥[α]

(1 + |x|)N |
(
Qα,βX

βf
)
(x−1)|

≤ CN sup
[β]≤υnN, x∈G

(1 + |x′|)N+[β]|Xβf(x′)|

by homogeneity of the polynomials Qα,β and (3.16).

Since f
(
· y

)
= (f̃

(
y−1 ·

)
)̃, we deduce (3.40) from (3.38) and (3.39).
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By the mean value theorem (cf. Proposition 3.1.46),∥∥f(y · )− f
∥∥
S(G),N

= sup
[α]≤N, x∈G

(1 + |x|)N |Xαf(yx)−Xαf(x)|

≤ C
n∑

j=1

|y|υj sup
[α]≤N

x∈G, |z|≤η|y|

(1 + |x|)N |(XjX
αf)(xz)|

≤ C
n∑

j=1

|y|υj ‖f‖S(G),N+υn
, (3.44)

and this proves (3.41) for the left invariance. The proof is similar for the right
invariance and is left to the reader.

Since using (3.43) we have

(1 + |x|)N |Xα(f1 ∗ f2)(x)| ≤
∫
G

(1 + |x|)N |f1(y)| |Xαf2(y
−1x)|dy

≤ CN
o

∫
G

(1 + |y|)N |f1(y)|(1 + |y−1x|)N |Xαf2(y
−1x)|dy

≤ CN
o sup

z∈G
(1 + |z|)N |Xαf2(z)|

∫
G

(1 + |y|)N |f1(y)|dy,

we obtain (3.42) by the convergence in Example 3.1.44. �
The space of tempered distributions S ′(G) is the (continuous) dual of S(G).

Hence a linear form f on S(G) is in S ′(G) if and only if

∃N ∈ N0, C > 0 ∀φ ∈ S(G) |〈f, φ〉| ≤ C‖φ‖S(G),N . (3.45)

The topology of S ′(G) is given by the family of seminorms given by

‖f‖S′(G),N := sup{|〈f, φ〉|, ‖φ‖S(G),N ≤ 1}, f ∈ S ′(G), N ∈ N0.

Now, with these definitions, we can repeat the construction in Section 1.5
and define convolution of a distribution in S ′(G) with the test function in S(G).
Then we have

Lemma 3.1.55. For any f ∈ S ′(G) there exist N ∈ N and C > 0 such that

∀φ ∈ S(G) ∀x ∈ G |(φ ∗ f)(x)| ≤ C(1 + |x|)N‖φ‖S(G),N . (3.46)

The constant C may be chosen of the form C = C ′‖f‖S′(G),N ′ for some C ′ and
N ′ independent of f .

For any f ∈ S ′(G) and φ ∈ S(G), φ∗f ∈ C∞(G). Moreover, if f� −→�→∞ f
in S ′(G) then for any φ ∈ S(G),

φ ∗ f� −→�→∞ φ ∗ f
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in C∞(G).
Furthermore, if f ∈ S ′(G) is compactly supported then φ ∗ f ∈ S(G) for any

φ ∈ S(G).

Proof. Let f ∈ S ′(G) and φ ∈ S(G). By definition of the convolution in Definition
1.5.3 and continuity of f (see (3.45)) we have

|(φ ∗ f)(x)| = |〈f, φ̃(·x−1)〉| ≤ C‖φ̃(·x−1)‖S(G),N

≤ C(1 + |x−1|)(υn+1)N‖φ̃‖S(G),(υn+1)2N (by (3.40))

≤ C(1 + |x|)(υn+1)N‖φ‖S(G),(υn+1)3N (by (3.39)).

This shows (3.46). Consequently

X̃α(φ ∗ f) = (X̃αφ) ∗ f

is also bounded for every α ∈ Nn
0 and hence φ ∗ f is smooth. The convergence

statement then follows from the definition of the convolution for distributions.
Let us now assume that the distribution f is compactly supported. Its support

is included in the ball of radius R for R large enough. There exists N ∈ N0 such
that

|(φ ∗ f)(x)| = |〈f, φ̃(·x−1)〉| ≤ C sup
|y|≤R, |α|≤N

∣∣∣∣( ∂

∂y

)α

(φ(xy−1))

∣∣∣∣
≤ CR sup

|y|≤R, [α]≤υnN

∣∣∣X̃α
y {φ(xy−1)}

∣∣∣ ,
using (3.16) and (3.17). By (1.11), we have

X̃α
y {φ(xy−1)} = (−1)|α|(Xαφ)(xy−1),

and so for every M ∈ N0 with M ≥ [α], we obtain∣∣∣X̃α
y {φ(xy−1)}

∣∣∣ = ∣∣Xαφ(xy−1)
∣∣ ≤ ‖φ‖S(G),M (1 + |xy−1|)−M .

By (3.43), we have also

(1 + |xy−1|)−1 ≤ Co(1 + |y|)(1 + |x|)−1.

Therefore, for every M ∈ N with M ≥ υnN we get

|(φ ∗ f)(x)| ≤ CR sup
|y|≤R

CM
o (1 + |y|)M (1 + |x|)−M‖φ‖S(G),M

≤ C ′
R(1 + |x|)−M‖φ‖S(G),M .

This shows φ ∗ f ∈ S(G). �
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We note that there are certainly different ways of introducing the topology
of the Schwartz spaces by different choices of families of seminorms.

Lemma 3.1.56. Other families of Schwartz seminorms defining the same Fréchet
topology on S(G) are

• φ �→ max[α],[β]≤N ‖xαXβφ‖p

• φ �→ max[α],[β]≤N ‖Xβxαφ‖p

• φ �→ max[β]≤N ‖(1 + | · |)NXβφ‖p

(for the first two we don’t need a homogeneous quasi-norm) where p ∈ [1,∞].

Proof. The first two families with the usual Euclidean derivatives instead of left-
invariant vector fields are known to give the Fréchet topologies. Therefore, by e.g.
using Proposition 3.1.28, this is also the case for the first two families.

The last family would certainly be equivalent to the first one for the homo-
geneous quasi-norm | · |p in (3.21), for p being a multiple of υ1, . . . , υn, since |x|pp
is a polynomial. Therefore, the last family also yields the Fréchet topology for any
choice of homogeneous quasi-norm since any two homogeneous quasi-norms are
equivalent by Proposition 3.1.35. �

3.1.10 Approximation of the identity

The family of dilations gives an easy way to define approximations to the identity.

If φ is a function on G and t > 0, we define φt by

φt := t−Qφ ◦Dt−1 i.e. φt(x) = t−Qφ(t−1x).

If φ is integrable then
∫
φt is independent of t.

We denote by Co(G) the space of continuous functions on G which vanish at
infinity:

Definition 3.1.57. We denote by Co(G) the space of continuous function f : G→ C
such that for every ε > 0 there exists a compact set K outside which we have
|f | < ε.

Endowed with the supremum norm ‖ · ‖∞ = ‖ · ‖L∞(G), Co(G) is a Banach
space.

We also denote by Cc(G) the space of continuous and compactly supported
functions on G. It is easy to see that Cc(G) is dense in Lp(G) for p ∈ [1,∞) and
in Co(G) (in which case we set p =∞).

Lemma 3.1.58. Let φ ∈ L1(G) and
∫
G
φ = c.
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(i) For every f ∈ Lp(G) with 1 ≤ p < ∞ or every f ∈ Co(G) with p = ∞, we
have

φt ∗ f −→
t→0

cf in Lp(G) or Co(G), i.e. ‖φt ∗ f − cf‖Lp(G) −→
t→0

0.

The same holds for f ∗ φt.

(ii) If φ ∈ S(G), then for any ψ ∈ S(G) and f ∈ S ′(G), we have

φt ∗ ψ −→
t→0

cψ in S(G) and φt ∗ f −→
t→0

cf in S ′(G).

The same holds for ψ ∗ φt and f ∗ ψt.

The proof is very similar to its Euclidean counterpart.

Proof. Let φ ∈ L1(G) and c =
∫
G
φ. If f ∈ Cc(G) then

(φt ∗ f)(x)− cf(x) =

∫
G

t−Qφ(t−1y)f(y−1x)dy − cf(x)

=

∫
G

φ(z)f((tz)−1x)dz −
∫
G

φ(z)dzf(x)

=

∫
G

φ(z)
(
f((tz)−1x)− f(x)

)
dz.

Hence by the Minkowski inequality we have

‖φt ∗ f − cf‖p ≤
∫
G

|φ(z)|
∥∥f((tz)−1· )− f

∥∥
p
dz.

Since
∥∥f((tz)−1· )− f

∥∥
p
≤ 2‖f‖p, this shows (i) for any f ∈ Cc(G) by the

Lebesgue dominated convergence theorem. Let f be in Lp(G) or Co(G) (in this
case p = ∞). By density of Cc(G), for any ε > 0, we can find fε ∈ Cc(G) such
that ‖f − fε‖p ≤ ε. We have

‖φt ∗ (f − fε)‖p ≤ ‖φt‖1‖f − fε‖p ≤ ‖φ‖1ε,

thus

‖φt ∗ f − cf‖p ≤ ‖φt ∗ (f − fε)‖p + |c|‖fε − f‖p + ‖φt ∗ fε − cfε‖p
≤ (‖φ‖1 + |c|)ε+ ‖φt ∗ fε − cfε‖p.

Since ‖φt ∗ fε − cfε‖p → 0 as t→ 0, there exists η > 0 such that

∀t ∈ (0, η) ‖φt ∗ fε − cfε‖p < ε.

Hence if 0 < t < η, we have

‖φt ∗ f − cf‖p ≤ (‖φ‖1 + |c|+ 1)ε.
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This shows the convergence of φt ∗ f − cf for any f ∈ Lp(G) or Co(G).

With the notation ·̃ for the operation given by g̃(x) = g(x−1), we also have

(f ∗ g)̃ = g̃ ∗ f̃ .

Hence applying the previous result to f̃ and φ̃, we obtain the convergence of
f ∗ φt − cf .

Let us prove (ii) for φ, ψ ∈ S(G). We have as above

(φt ∗ ψ)(x)− cψ(x) =

∫
G

φ(z)
(
ψ((tz)−1x)− ψ(x)

)
dz,

thus

‖φt ∗ ψ − cψ‖S(G),N ≤
∫
G

|φ(z)|
∥∥ψ((tz)−1·)− ψ

∥∥
S(G),N

dz

≤
∫
G

|φ(z)| C
n∑

j=1

|(tz)−1|υj ‖ψ‖S(G),N+υn
dz

by (3.44). And this shows

‖φt ∗ ψ − cψ‖S(G),N ≤ C

n∑
j=1

‖φ‖S(G),Q+1+υj
‖ψ‖S(G),N+υn

tυj −→
t→0

0.

Hence we have obtained the convergence of φt ∗ ψ − cψ. As above, applying the
previous result to ψ̃ and φ̃, we obtain the convergence of ψ ∗ φt.

Let f ∈ S ′(G). By (1.14) for distributions, we see for any ψ ∈ S(G), that

〈f ∗ φt, ψ〉 = 〈f, ψ ∗ φ̃t〉 −→
t→0

c〈f, ψ〉

by the convergence just shown above. This shows that f ∗ φt converges to f in
S ′(G). As above, applying the previous result to f̃ and φ̃, we obtain the conver-
gence of f ∗ φt. �

In the sequel we will need (only in the proof of Theorem 4.4.9) the follow-
ing collection of technical results. Recall that a simple function is a measurable
function which takes only a finite number of values.

Lemma 3.1.59. Let B denote the space of simple and compactly supported functions
on G. Then we have the following properties.

(i) The space B is dense in Lp(G) for any p ∈ [1,∞).

(ii) If φ ∈ S(G) and f ∈ B, then φ ∗ f and f ∗ φ are in S(G).
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(iii) For every f ∈ B and p ∈ [1,∞],

φt ∗ f −→
t→0

(

∫
G

φ)f

in Lp(G). The same holds for f ∗ φt.

Proof. Part (i) is well-known (see, e.g., Rudin [Rud87, ch. 1]).
As a convolution of a Schwartz function φ with a compactly supported tem-

pered distribution f ∈ B, f ∗ φ and φ ∗ f are Schwartz by Lemma 3.1.55. This
proves (ii).

Part (iii) follows from Lemma 3.1.58 (i) for 1 ≤ p <∞. For the case p =∞,
we proceed as in the first part of the proof of Lemma 3.1.58 (i) taking f not in
Cc(G) but a simple function with compact support. �
Remark 3.1.60. In Section 4.2.2 we will see that the heat semi-group associated
to a positive Rockland operator gives an approximation of the identity ht, t > 0,
which is commutative:

ht ∗ hs = hs ∗ ht = hs+t.

3.2 Operators on homogeneous Lie groups

In this section we analyse operators on a (fixed) homogeneous Lie group G. We
first study sufficient conditions for a linear operator to extend boundedly from
some Lp-space to an Lq-space. We will be particularly interested in the case of
left-invariant homogeneous linear operators. In the last section, we will focus our
attention on such operators which are furthermore differential and on the possible
existence of their fundamental solutions. As an application, we will give a version
of Liouville’s Theorem which holds on homogeneous Lie groups. All these results
have well-known Euclidean counterparts.

All the operators we consider here will be linear so we will not emphasise
their linearity in every statement.

3.2.1 Left-invariant operators on homogeneous Lie groups

The Schwartz kernel theorem (see Theorem 1.4.1) says that, under very mild
hypothesis, an operator on a smooth manifold has an integral representation. An
easy consequence is that a left-invariant operator on a Lie group has a convolution
kernel.

Corollary 3.2.1 (Kernel theorem on Lie groups). We have the following statements.

• Let G be a connected Lie group and let T : D(G) → D′(G) be a continuous
linear operator which is invariant under left-translations, i.e.

∀xo ∈ G, f ∈ D(G) T (f(xo ·)) = (Tf)(xo ·).
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Then there exists a unique distribution κ ∈ D′(G) such that

Tf1 : x �−→ f1 ∗ κ(x) =
∫
G

κ(y−1x)f1(y)dy.

In other words, T is a convolution operator with (right convolution) kernel κ.
The converse is also true.

• Let G be a connected simply connected nilpotent Lie group identified with Rn

endowed with a polynomial law (see Proposition 1.6.6). Let T : S(G)→ S ′(G)
be a continuous linear operator which is invariant under left translations, i.e.

∀xo ∈ G, f ∈ S(G) T (f(xo ·)) = (Tf)(xo ·).

Then there exists a unique distribution κ ∈ S ′(Rn) such that

Tf1 : x �−→ f1 ∗ κ(x) =
∫
G

κ(y−1x)f1(y)dy.

In other words, T is a convolution operator with (right convolution) kernel κ.
The converse is also true.

In both cases, for any test function f1, the function Tf1 is smooth. Further-
more, the map κ �→ T is an isomorphism of topological vector spaces.

A similar statement holds for right-invariant operators.
We omit the proof: it relies on approaching the kernels κ(x, y) by continuous

functions for which the invariance forces them to be of the form κ(y−1x). The
converses are much easier and have been shown in Section 1.5.

In this monograph, we will often use the following notation:

Definition 3.2.2. Let T be an operator on a connected Lie group G which is con-
tinuous as an operator D(G)→ D′(G) or as S(G)→ S ′(G). Its right convolution
kernel κ, as given in Corollary 3.2.1, is denoted by

Tδ0 = κ.

In the case of left-invariant differential operators, we obtain easily the fol-
lowing properties.

Proposition 3.2.3. If T is a left-invariant differential operator on a connected Lie
group G, then its kernel is by definition the distribution Tδ0 ∈ D′(G) such that

∀φ ∈ D(G) Tφ = φ ∗ Tδ0.

The distribution Tδ0 ∈ S ′(G) is supported at the origin. The equality

f ∗ Tδ0 = Tf
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holds for any f ∈ E ′(G), the left-hand side being the group convolution of a distri-
bution with a compactly supported distribution. The equality

Tδ0 ∗ f = T̃ f

for the right-invariant differential operator corresponding to T also holds for any
f ∈ E ′(G).

The kernel of T tδ0 is given formally by

T tδ0(x) = Tδ0(x
−1).

If T = X�, for a left-invariant vector field X on G and � ∈ N, then the
distribution (−1)�X�δ0(x

−1) is the left convolution kernel of the right-invariant
differential operator T̃ .

We can also see from (1.14) and Definition 1.5.4 that the adjoint of the
bounded on L2(G) operator Tf = f ∗ κ is the convolution operator T ∗f = f ∗ κ̃,
well defined on D(G), with the right convolution kernel given by

κ̃(x) = κ̄(x−1). (3.47)

The transpose operation is defined in Definition A.1.5, and for left-invariant
differential operators it takes the form given by (1.10). Clearly the transpose of a
left-invariant differential operator on G is a left-invariant differential operator on
G.

Proof. A left-invariant differential operator is necessarily continuous as D(G) →
D(G). Hence it admits the kernel Tδ0. We have for φ ∈ D(G) with φ̃(x) = φ(x−1)
that

〈Tδ0, φ̃〉 = (φ ∗ Tδ0)(0) = Tφ(0).

So if 0 /∈ suppφ then 〈Tδ0, φ〉 = 0. This shows that Tδ0 is supported at 0.
If φ, ψ ∈ D(G), then

〈φ ∗ Tδ0, ψ〉 = 〈Tφ, ψ〉 = 〈φ, T tψ〉 = 〈φ, ψ ∗ T tδ0〉.

By (1.14) this shows that T tδ0 = (Tδ0)̃. Furthermore, if f ∈ D′(G), then

〈Tf, φ〉 = 〈f, T tφ〉 = 〈f, φ ∗ T tδ0〉 = 〈f, φ ∗ (Tδ0)̃〉 = 〈f ∗ Tδ0, φ〉.

This shows Tf = f ∗ Tδ0.

Now we can check easily (see (1.11)) that

X̃f = −(Xf̃ )̃

and, more generally,
X̃�f = (−1)�(X�f̃ )̃
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for � ∈ N. Since the equality (f ∗ g)̃ = g̃ ∗ f̃ holds as long as it makes sense, this
shows that

(−1)�(X�δ0)̃ ∗ f = T̃ f.

�

In fact, our primary concern will be to study operators of a different nature,
and their possible extensions to some Lp-spaces. This (i.e. the Lp-boundedness) is
certainly not the case for general differential operators.

Assuming that an operator is continuous as S(G) → S ′(G) or as D(G) →
D′(G) is in practice a very mild hypothesis. It ensures that a potential extension
into a bounded operator Lp(G)→ Lq(G) is necessarily unique, by density of D(G)
in Lp(G). Hence we may abuse the notation, and keep the same notation for an
operator which is continuous as S(G) → S ′(G) or as D(G) → D′(G) and its
possible extension, once we have proved that it gives a bounded operator from
Lp(G) to Lq(G).

We want to study in the context of homogeneous Lie groups the condition
which implies that an operator as above extends to a bounded operator from
Lp(G) to Lq(G).

As the next proposition shows, only the case p ≤ q is interesting.

Proposition 3.2.4. Let G be a homogeneous Lie group and let T be a linear left-
invariant operator bounded from Lp(G) to Lq(G), for some (given) finite p, q ∈
[1,∞). If p > q then T = 0.

The proof is based on the following lemma:

Lemma 3.2.5. Let f ∈ Lp(G) with 1 ≤ p <∞. Then

lim
x→∞ ‖f − f(x ·)‖Lp(G) = 2

1
p ‖f‖Lp(G).

Proof of Lemma 3.2.5. First let us assume that the function f is continuous with
compact support E. For xo ∈ G, the function f(xo ·) is continuous and supported
in x−1

o E. Therefore, if xo is not in EE−1 = {yz : y ∈ E, z ∈ E−1}, then f and
f(xo ·) have disjoint supports, and

‖f − f(xo ·)‖pp =

∫
E

|f |p +
∫
x−1
o E

|f(xo ·)|p = 2‖f‖pp.

Now we assume that f ∈ Lp(G). For each sufficiently small ε > 0, let fε be a
continuous function with compact support Eε ⊂ {|x| ≤ ε−1} satisfying ‖f−fε‖p <
ε. We claim that for any sufficiently small ε > 0, we have

|xo| > 2ε−1 =⇒
∣∣∣‖f − f(xo ·)‖p − 2

1
p ‖f‖p

∣∣∣ ≤ (2 + 2
1
p )ε. (3.48)
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Indeed, using the triangle inequality, we obtain∣∣∣‖f − f(xo ·)‖p − 2
1
p ‖f‖p

∣∣∣ ≤ ∣∣∣‖f − f(xo ·)‖p − 2
1
p ‖fε‖p

∣∣∣+ 2
1
p

∣∣‖fε‖p − ‖f‖p∣∣.
For the last term of the right-hand side we have∣∣‖fε‖p − ‖f‖p∣∣ ≤ ‖fε − f‖p < ε,

whereas for the first term, if xo �∈ EεE
−1
ε , using the first part of the proof and

then the triangle inequality, we get∣∣‖f − f(xo ·)‖p − 2
1
p ‖fε‖p

∣∣ = ∣∣‖f − f(xo ·)‖p − ‖fε − fε(xo ·)‖p
∣∣

≤ ‖(f − f(xo ·))− (fε − fε(xo ·))‖p
≤ ‖f − fε‖p + ‖f(xo ·)− fε(xo ·)‖p < 2ε.

This shows (3.48) and concludes the proof of Lemma 3.2.5. �
Proof of Proposition 3.2.4. Let f ∈ D(G). As T is left-invariant, we have

‖(Tf)(xo ·)− Tf‖q =
∥∥T (

f(xo ·)− f
)∥∥

q
≤ ‖T‖L (Lp(G),Lq(G)) ‖f(xo ·)− f‖p .

Taking the limits as xo tends to infinity, by Lemma 3.2.5, we get

2
1
q ‖Tf‖q ≤ ‖T‖L (Lp(G),Lq(G))2

1
p ‖f‖p .

But then
‖T‖L (Lp(G),Lq(G)) ≤ 2

1
p− 1

q ‖T‖L (Lp(G),Lq(G)).

Hence p > q implies ‖T‖L (Lp(G),Lq(G)) = 0 and T = 0. �
As in the Euclidean case, Proposition 3.2.4 is all that can be proved in the

general framework of left-invariant bounded operators from Lp(G) to Lq(G). How-
ever, if we add the property of homogeneity more can be said and we now focus
our attention on this case.

3.2.2 Left-invariant homogeneous operators

The next statement says that if the operator T is left-invariant, homogeneous
and bounded from Lp(G) to Lq(G), then the indices p and q must be related in
the same way as in the Euclidean case but with the topological dimension being
replaced by the homogeneous dimension Q.

Proposition 3.2.6. Let T be a left-invariant linear operator on G which is bounded
from Lp(G) to Lq(G) for some (given) finite p, q ∈ [1,∞). If T is homogeneous of
degree ν ∈ C (and T �= 0), then

1

q
− 1

p
=

Re ν

Q
.
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Proof. We compute easily,

‖f ◦Dt‖p = t−
Q
p ‖f‖p, f ∈ Lp(G), t > 0.

Thus, since T is homogeneous of degree ν, we have

tRe ν−Q
q ‖Tf‖q = ‖tν

(
Tf

)
◦Dt‖q = ‖T

(
f ◦Dt

)
‖q ≤ ‖T‖L (Lp(G),Lq(G))‖f ◦Dt‖p

= ‖T‖L (Lp(G),Lq(G))t
−Q

p ‖f‖p,

so
∀t > 0 ‖T‖L (Lp(G),Lq(G)) ≤ t−Re ν+Q

q −Q
p ‖T‖L (Lp(G),Lq(G)).

Hence we must have

−Re ν +
Q

q
− Q

p
= 0

as claimed. �
Combining together Propositions 3.2.4 and 3.2.6, we see that it makes sense

to restrict one’s attention to
Re ν

Q
∈ (−1, 0].

The case Re ν = 0 is the most delicate and we leave it aside for the moment (see
Section 3.2.5). We shall discuss instead the case

−Q < Re ν < 0.

Let us observe that the homogeneity of the operator is equivalent to the
homogeneity of its kernel:

Lemma 3.2.7. Let T be a continuous left-invariant linear operator as S(G) →
S ′(G) or as D(G) → D′(G), where G is a homogeneous Lie group. Then T is ν-
homogeneous if and only if its (right) convolution kernel is −(Q+ν)-homogeneous.

Proof. On one hand we have

T (f(r ·))(x) =
∫
G

f(ry)κ(y−1x)dy,

and on the other hand,

Tf (rx) =

∫
G

f(z)κ(z−1rx)dz =

∫
G

f(ry)κ((ry)−1rx)rQdy

= rQ
∫
G

f(ry)(κ ◦Dr)(y
−1x)dy.

Now the statement follows from these and the uniqueness of the kernel. �
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The following proposition gives a sufficient condition on the homogeneous
kernel so that the corresponding left-invariant homogeneous operator extends to
a bounded operator from Lp(G) to Lq(G).

Proposition 3.2.8. Let T be a linear continuous operator as S(G) → S ′(G) or as
D(G) → D′(G) on a homogeneous Lie group G. We assume that the operator T
is left-invariant and homogeneous of degree ν, that

Re ν ∈ (−Q, 0),

and that the (right convolution) kernel κ of T is continuous away from the origin.

Then T extends to a bounded operator from Lp(G) to Lq(G) whenever p, q ∈
(1,∞) satisfy

1

q
− 1

p
=

Re ν

Q
.

The integral kernel κ then can also be identified with a locally integrable
function at the origin.

We observe that, by Corollary 3.2.1, κ is a distribution (in S ′(G) or D′(G))
on G. The hypothesis on κ says that its restriction to G\{0} coincides with a
continuous function κo on G\{0}.

Proof of Proposition 3.2.8. We fix a homogeneous norm | · | on G. We denote by
B̄R := {x : |x| ≤ R} and S := {x : |x| = 1} the ball of radius R and the unit
sphere around 0. By Lemma 3.2.7, κo is a continuous homogeneous function of
degree −(Q + ν) on G\{0}. Denoting by C its maximum on the unit sphere, we
have

∀x ∈ G\{0} |κo(x)| ≤
C

|x|Q+Re ν
.

Hence κo defines a locally integrable function on G, even around 0, and we keep
the same notation for this function. Therefore, the distribution κ′ = κ − κo on
G is, in fact, supported at the origin. It is also homogeneous of degree −Q − ν.
Due to the compact support of κ′, |〈κ′, f〉| is controlled by some Ck norm of f on
a fixed small neighbourhood of the origin. But, because of its homogeneity, and
using (3.9), we get

∀t > 0 〈κ′, f〉 = t−Q−ν〈κ′ ◦D 1
t
, f〉 = t−ν〈κ′, f ◦Dt〉.

Letting t tend to 0, the Ck norms of f ◦Dt remain bounded, so that 〈κ′, f〉 = 0
since Re ν < 0. This shows that κ′ = 0 and so κ = κo.

Note that the weak Lr(G)-norm of κ is finite for r = Q/(Q+Re ν). Indeed,
if s > 0,

|κo(x)| > s =⇒ |x|Q+Re ν ≤ C

s
,
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so that

|{x : |κo(x)| > s}| ≤
∣∣∣∣B(C/s)

1
Q+Re ν

∣∣∣∣ ≤ c

(
C

s

) Q
Q+Re ν

,

with c = |B1|, and hence

‖κo‖w−Lr(G) ≤ cC
Q

Q+Re ν with r =
Q

Q+Re ν
.

The proposition is now easy using the generalisation of Young’s inequalities (see
Proposition 1.5.2), so that we get that T is bounded from Lp(G) to Lq(G) for

1

q
− 1

p
=

1

r
− 1 =

Re ν

Q
,

as claimed. �
We may use the usual vocabulary for homogeneous kernels as in [Fol75] and

[FS82]:

Definition 3.2.9. Let G be a homogeneous Lie group and let ν ∈ C.
A distribution κ ∈ D′(G) which is smooth away from the origin and homo-

geneous of degree ν −Q is called a kernel of type ν on G.
A (right) convolution operator T : D(G)→ D′(G) whose convolution kernel

is of type ν is called an operator of type ν. That is, T is given via

T (φ) = φ ∗ κ,

where κ kernel of type ν.

Remark 3.2.10. We will mainly be interested in the Lp → Lq-boundedness of
operators of type ν. Thus, by Propositions 3.2.4 and 3.2.6, we will restrict ourselves
to ν ∈ C with Re ν ∈ [0, Q).

If Re ν ∈ (0, Q), then a (ν − Q)-homogeneous function in C∞(G\{0}) is
integrable on a neighbourhood of 0 and hence extends to a distribution in D′(G),
see the proof of Proposition 3.2.8. Hence, in the case Re ν ∈ (0, Q), the restriction
to G\{0} yields a one-to-one correspondence between the (ν − Q)-homogeneous
functions in C∞(G\{0}) and the kernels of type ν.

We will see in Remark 3.2.29 that the case Re ν = 0 is more subtle.

In view of Lemma 3.2.7 and Proposition 3.2.8, we have the following state-
ment for operators of type ν with Re ν ∈ (0, Q).

Corollary 3.2.11. Let G be a homogeneous Lie group and let ν ∈ C with

Re ν ∈ (0, Q).

Any operator of type ν is (−ν)-homogeneous and extends to a bounded operator
from Lp(G) to Lq(G) whenever p, q ∈ (1,∞) satisfy

1

p
− 1

q
=

Re ν

Q
.
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As we said earlier the case of a left-invariant operator which is homogeneous
of degree 0 is more complicated and is postponed until the end of Section 3.2.4. In
the meantime, we make a useful parenthesis about the Calderón-Zygmund theory
in our context.

3.2.3 Singular integral operators on homogeneous Lie groups

In the case of R, a famous example of a left-invariant 0-homogeneous operator is the
Hilbert transform. This particular example has motivated the development of the
theory of singular integrals in the Euclidean case as well as in other more general
settings. In Section A.4, the interested reader will find a brief presentation of this
theory in the setting of spaces of homogeneous type (due to Coifman and Weiss). In
this section here, we check that homogeneous Lie groups are spaces of homogeneous
type and we obtain the corresponding theorem of singular integrals together with
some useful consequences for left-invariant operators. We also propose a definition
of Calderón-Zygmund kernels on homogeneous Lie groups, thereby extending the
one on Euclidean spaces (cf. Section A.4).

First let us check that homogeneous Lie groups equipped with a quasi-norm
are spaces of homogeneous type in the sense of Definition A.4.2 and that the Haar
measure is doubling (see Section A.4):

Lemma 3.2.12. Let G be a homogeneous Lie groups and let | · | be a quasi-norm.
Then the set G endowed with the usual Euclidean topology together with the quasi-
distance

d : (x, y) �→ |y−1x|

is a space of homogeneous type and the Haar measure has the doubling property
given in (A.5).

Proof of Lemma 3.2.12. We keep the notation of the statement. The defining
properties of a quasi-norm and the fact that it satisfies the triangular inequality up
to a constant (see Proposition 3.1.38) imply easily that d is indeed a quasi-distance
on G in the sense of Definition A.4.1. By Proposition 3.1.37, the corresponding
quasi-balls B(x, r) := {y ∈ G : d(x, y) < r}, x ∈ G, r > 0, generate the usual
topology of the underlying Euclidean space. Hence the first property listed in
Definition A.4.2 is satisfied.

By Remark 3.1.34, the quasi-balls satisfy B(x, r) = xB(0, r) and B(0, r) =
Dr(B(0, 1)). By (3.6), the volume of B(0, r) is |B(0, r)| = rQ|B(0, 1)|. Hence we
have obtained that the volume of any open quasi-ball is |B(x, r)| = rQ|B(0, 1)|.
This implies that the Haar measure satisfies the doubling condition given in (A.5).
We can now conclude the proof of the statement with Lemma A.4.3. �

Lemma 3.2.12 implies that we can apply the theorem of singular integrals on
spaces of homogeneous type recalled in Theorem A.4.4 and we obtain:
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Theorem 3.2.13 (Singular integrals). Let G be a homogeneous Lie group and let T
be a bounded linear operator on L2(G), i.e.

∃Co ∀f ∈ L2 ‖Tf‖2 ≤ Co‖f‖2. (3.49)

We assume that the integral kernel κ of T coincides with a locally integrable
function away from the diagonal, that is, on (G × G)\{(x, y) ∈ G × G : x = y}.
We also assume that there exist C1, C2 > 0 satisfying

∀y, yo ∈ G

∫
|y−1

o x|>C1|y−1
o y|
|κ(x, y)− κ(x, yo)|dx ≤ C2, (3.50)

for a quasi-norm | · |.
Then for all p, 1 < p ≤ 2, T extends to a bounded operator on Lp because

∃Ap > 0 ∀f ∈ L2 ∩ Lp ‖Tf‖p ≤ Ap‖f‖p;

for p = 1, the operator T extends to a weak-type (1,1) operator since

∃A1 > 0 ∀f ∈ L2 ∩ L1 μ{x : |Tf(x)| > α} ≤ A1
‖f‖1
α

;

the constants Ap, 1 ≤ p ≤ 2, depend only on Co, C1 and C2.

Remark 3.2.14. • The L2-boundedness, that is, Condition (3.49), implies that
the operator satisfies the Schwartz kernel theorem (see Theorem 1.4.1) and
thus yields the existence of a distributional integral kernel. We still need to
assume that this distribution is locally integrable away from the diagonal.

• Since any two quasi-norms on G are equivalent (see Proposition 3.1.35), if
the kernel condition in (3.50) holds for one quasi-norm, it then holds for any
quasi-norm (maybe with different constants C1, C2).

As recalled in Section A.4, the notion of Calderón-Zygmund kernels in the
Euclidean setting appear naturally as sufficient conditions (often satisfied ‘in prac-
tice’) for (A.7) to be satisfied by the kernel of the operator and the kernel of its
formal adjoint. This leads us to define the Calderón-Zygmund kernels in our setting
as follows:

Definition 3.2.15. A Calderón-Zygmund kernel on a homogeneous Lie group G is
a measurable function κo defined on (G×G)\{(x, y) ∈ G×G : x = y} satisfying
for some γ, 0 < γ ≤ 1, C1 > 0, A > 0, and a homogeneous quasi-norm | · | the
inequalities

|κo(x, y)| ≤ A|y−1x|−Q,

|κo(x, y)− κo(x
′, y)| ≤ A

|x−1x′|γ
|y−1x|Q+γ

if C1|x−1x′| ≤ |y−1x|,

|κo(x, y)− κo(x, y
′)| ≤ A

|y−1y′|γ
|y−1x|Q+γ

if C1|y−1y′| ≤ |y−1x|.
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A linear continuous operator T as D(G) → D′(G) or as S(G) → S ′(G) is called
a Calderón-Zygmund operator if its integral kernel coincides with a Calderón-
Zygmund kernel on (G×G)\{(x, y) ∈ G×G : x = y}.
Remark 3.2.16. 1. In other words, we have modified the definition of a classical

Calderón-Zygmund kernel (as in Section A.4)

• by replacing the Euclidean norm by a homogeneous quasi-norm

• and, more importantly, the topological (Euclidean) dimension of the
underlying space n by the homogeneous dimension Q.

2. By equivalence of homogeneous quasi-norms, see Proposition 3.1.35, the def-
inition does not depend on a particular choice of a homogeneous quasi-norm
as we can change the constants C1, A.

As in the Euclidean case, we have

Proposition 3.2.17. Let G be a homogeneous Lie group and let T be a bounded
linear operator on L2(G).

If T is a Calderón-Zygmund operator on G (in the sense of Definition 3.2.15),
then T is bounded on Lp(G), p ∈ (1,∞), and weak-type (1,1).

Proof of Proposition 3.2.17. Let T be a bounded operator on L2(G) and κ :
(x, y) �→ κ(x, y) its distributional kernel. Then its formal adjoint T ∗ is also bounded
on L2(G) with the same operator norm. Furthermore its distributional kernel is
κ(∗) : (x, y) �→ κ̄(y, x). We assume that κ coincides with a Calderón-Zygmund
kernel κo away from the diagonal. We fix a quasi-norm | · |. The first inequality in

Definition 3.2.15 shows that κo and κ
(∗)
o coincide with locally integrable functions

away from the diagonal. Using the last inequality, we have for any y, yo ∈ G,∫
|y−1

o x|≥C1|y−1
o y|
|κo(x, y)− κo(x, yo)|dx ≤ A

∫
|y−1

o x|≥C1|y−1
o y|

|y−1yo|γ

|y−1
o x|Q+γ

dx

and, using the change of variable x′ = y−1
o x, we have∫

|y−1
o x|≥C1|y−1

o y|

1

|y−1
o x|Q+γ

dx =

∫
|x′|≥C1|y−1

o y|
|x′|−(Q+γ)dx′

≤
∫
|x′|≥C1|y−1

o y|
|x′|−(Q+γ)dx′

= c

∫ +∞

r=C1|y−1
o y|

r−(Q+γ)rQ−1dr = c1|y−1
o y|−γ ,

having also used the polar coordinates (Proposition 3.1.42) with c denoting the
mass of the Borel measure on the unit sphere, and c1 a new constant (of C1, γ
and Q). Hence we have obtained∫

|y−1
o x|≥C1|y−1

o y|
|κo(x, y)− κo(x, yo)|dx ≤ c1A.
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Similarly for κ
(∗)
o , we have∫

|y−1
o x|≥C1|y−1

o y|
|κ(∗)

o (x, y)− κ(∗)
o (x, yo)|dx =

∫
|y−1

o x|≥C1|y−1
o y|
|κo(y, x)− κo(yo, x)|dx

≤ A

∫
|y−1

o x|≥C1|y−1
o y|

|y−1
o y|γ

|y−1
o x|Q+γ

dx,

having used the second inequality in Definition 3.2.15. The same computation as

above shows that the last left-hand side is bounded by c1A. Hence κo and κ
(∗)
o

satisfy (3.50). Proposition 3.2.17 now follows from Theorem 3.2.13. �
Remark 3.2.18. As in the Euclidean case, Calderón-Zygmund kernels do not nec-
essarily satisfy the other condition of the L2-boundedness (see (3.49)) and a condi-
tion of ‘cancellation’ is needed in addition to the Calderón-Zygmund condition to
ensure the L2-boundedness. Indeed, one can prove adapting the Euclidean case (see
the proof of Proposition 1 in [Ste93, ch.VII §3]) that if κo is a Calderón-Zygmund
kernel satisfying the inequality

∃c > 0 ∀x �= y κo(x, y) ≥ c|y−1x|−Q,

then there does not exist an L2-bounded operator T having κo as its kernel.

The following statement gives sufficient conditions for a kernel to be Calderón-
Zygmund in terms of derivatives:

Lemma 3.2.19. Let G be a homogeneous Lie group. If κo is a continuously differ-
entiable function on (G×G)\{(x, y) ∈ G×G : x = y} satisfying the inequalities
for any x, y ∈ G, x �= y, j = 1, . . . , n,

|κo(x, y)| ≤ A|y−1x|−Q,

|(Xj)xκo(x, y)| ≤ A|y−1x|−(Q+υj),

|(Xj)yκo(x, y)| ≤ A|y−1x|−(Q+υj),

for some constant A > 0 and homogeneous quasi-norm | · |, then κo is a Calderón-
Zygmund kernel in the sense of Definition 3.2.15 with γ = 1.

Again, if these inequalities are satisfied for one quasi-norm, then they are
satisfied for all quasi-norms, maybe with different constants A > 0.

Proof of Lemma 3.2.19. We fix a quasi-norm | · |. We assume that it is a norm
without loss of generality because of the remark just above and the existence of a
homogeneous norm (Theorem 3.1.39); although we could give a proof without this
hypothesis, it simplifies the constants below. Let κo be as in the statement. Using
the Taylor expansion (Theorem 3.1.51) or the Mean Value Theorem (Proposition
3.1.46), we have

|κo(x
′, y)− κo(x, y)| ≤ Co

n∑
j=1

|x−1x′|υj sup
|z|≤η|x−1x′|

|(Xj)x1=xzκo(x1, y)|.
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Using the second inequality in the statement, we have

sup
|z|≤η|x−1x′|

|(Xj)x1=xzκo(x1, y)| ≤ A sup
|z|≤η|x−1x′|

|y−1xz|−(Q+υj).

The reverse triangle inequality yields

|y−1xz| ≥ |y−1x| − |z| ≥ 1

2
|y−1x| if |z| ≤ 1

2
|y−1x|.

Hence, if 2η|x−1x′| ≤ |y−1x|, then we have

sup
|z|≤η|x−1x′|

|y−1xz|−(Q+υj) ≤ 2Q+υj |y−1x|−(Q+υj),

and we have obtained

|κo(x, y)− κo(x
′, y)| ≤ Co

n∑
j=1

|x−1x′|υj2Q+υj |y−1x|−(Q+υj)

≤ Co

⎛⎝ n∑
j=1

(2η)−(υj−1)2Q+υj

⎞⎠ |x−1x′||y−1x|−(Q−1).

This shows the second inequality in Definition 3.2.15.
We proceed in a similar way to prove the third inequality in Definition 3.2.15:

the Taylor expansion yields

|κo(x, y)− κo(x, y
′)| ≤ Co

n∑
j=1

|y−1y′|υj sup
|z|≤η|y−1y′|

|(Xj)y1=yzκo(x, y1)|

while one checks easily

sup
|z|≤η|y−1y′|

|(Xj)y1=yzκo(x, y1)| ≤ A sup
|z|≤η|y−1y′|

|(yz)−1x|−(Q+υj)

≤ A2Q+υj |y−1x|−(Q+υj),

when 2η|y−1y′| ≤ |y−1x|. We conclude in the same way as above and this shows
that κo is a Calderón-Zygmund kernel. �

Corollary 3.2.20. Let G be a homogeneous Lie group and let κ be a continuously
differentiable function on G\{0}. If κ satisfies for any x ∈ G\{0}, j = 1, . . . , n,

|κ(x)| ≤ A|x|−Q,

|Xjκ(x)| ≤ A|x|−(Q+υj),

|X̃jκ(x)| ≤ A|x|−(Q+υj),

for some constant A > 0 and homogeneous quasi-norm | · |, then

κo : (x, y) �→ κ(y−1x)

is a Calderón-Zygmund kernel in the sense of Definition 3.2.15 with γ = 1.
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Corollary 3.2.20 will be useful when dealing with convolution kernels which
are smooth away from the origin, in particular when they are also (−Q)-homoge-
neous, see Theorem 3.2.30.

Proof of Corollary 3.2.20. Keeping the notation of the statement, using properties
(1.11) of left and right invariant vector fields, we have

(Xj)xκo(x, y) = (Xjκ)(y
−1x),

(Xj)yκo(x, y) = −(X̃jκ)(y
−1x).

The statement now follows easily from Lemma 3.2.19. �
Often, the convolution kernel decays quickly enough at infinity and the main

singularity to deal with is about the origin. The next statement is an illustration
of this idea:

Corollary 3.2.21. Let G be a homogeneous Lie group and let T be a linear operator
which is bounded on L2(G) and invariant under left translations.

We assume that its distributional convolution kernel coincides on G\{0} with
a continuously differentiable function κ which satisfies∫

|x|≥1/2

|κ(x)|dx ≤ A,

sup
0<|x|≤1

|x|Q|κ(x)| ≤ A,

sup
0<|x|≤1

|x|Q+υj |Xjκ(x)| ≤ A, j = 1, . . . , n,

for some constant A > 0 and a homogeneous quasi-norm | · |. Then T is bounded
on Lp(G), p ∈ (1,∞), and is weak-type (1,1).

Proof. Let χ ∈ D(G) be [0, 1]-valued function such that χ ≡ 0 on {|x| ≥ 1}
and χ ≡ 1 on {|x| ≤ 1/2}. As

∫
|x|≥1/2

|κ(x)|dx is finite, (1 − χ)κ is integrable

and the convolution operator with convolution kernel (1 − χ)κ is bounded on
Lp(G) for p ∈ [1,∞]. Hence it suffices to prove that the kernel κo given via
κo(x, y) = (χκ)(y−1x) is Calderón-Zygmund.

From the estimates satisfied by κ, it is clear that the quantities

sup
x∈G\{0}

|x|Q|(χκ)(x)| and sup
x∈G\{0}

|x|−(Q+υj)|Xj(χκ)(x)|

are finite. As each X̃j may be expressed as a combination of Xk with homogeneous
polynomial coefficients, see Section 3.1.5, we have for any (regular enough) function
f with compact support

sup
x∈G\{0}

|x|−(Q+υj)|X̃jf(x)| ≤ C sup
x∈G\{0}
k=1,...,n

|x|−(Q+υk)|Xkf(x)|.
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Consequently, the quantities supx∈G\{0} |x|−(Q+υj)|X̃j(χκ)(x)| are also bounded.
Applying Lemma 3.2.19 to κo defined above, one checks easily that it is a Calderón-
Zygmund kernel. Applying Proposition 3.2.17 concludes the proof of Corollary
3.2.21. �

This closes our parenthesis about the Calderón-Zygmund theory in our con-
text, and we can go back to the study of left-invariant homogeneous operators,
this time of homogeneous degree 0.

3.2.4 Principal value distribution

As we will see in the sequel, many interesting operators for our analysis on a
homogeneous Lie group G will be given by convolution operators with (right con-
volution distributional) kernels homogeneous of degree ν with Re ν = −Q. In most
of the ‘interesting’ cases, the distribution κ will be given by a locally integrable
function away from the origin; denoting by κo the restriction of κ to G\{0}, one
may wonder if there is a one-to-one correspondence between κ and κo. As in the
Euclidean case, this leads to the notion of the principal value distribution and we
adapt the ideas here to fit the homogeneous context; in particular, the topological
(Euclidean) dimension is replaced by the homogeneous dimension Q.

So the question is: Considering a locally integrable function κo on G\{0}
which is homogeneous of degree ν with Re ν = −Q, does there exist a distribution
κ ∈ D′(G) on G, homogeneous of the same degree ν on G, whose restriction to
G\{0} coincides with κo? that is,

〈κ, f〉 =
∫
G\{0}

κo(x)f(x)dx,

whenever f ∈ D(G) and 0 �∈ supp f . In other words, can the functional

D(Rn\{0}) � f �−→
∫
G\{0}

κo(x)f(x)dx

be extended to a continuous functional on D(Rn)?

Remark 3.2.22. 1. We observe that if such an extension exists, it is not unique
in general. For ν = −Q, the reason is that the Dirac δ0 at the origin is
homogeneous of degree −Q (see Example 3.1.20), so that if κ is a solution,
then κ + cδ0 for any constant c is another solution. (However, see Proposi-
tion 3.2.27.)

2. The second observation is that the answer is negative in general:

Example 3.2.23. Let |·| be some fixed homogeneous quasi-norm on G smooth away
from the origin. The function defined by κo(x) = |x|ν with ν = −Q+ iτ , τ ∈ R, is
homogeneous of degree ν on G\{0} but can not be extended into a homogeneous
distribution κ ∈ D′(G) of homogeneous degree ν.
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Proof of Example 3.2.23. Indeed, let us assume that such a distribution κ exists
for this κo. Homogeneity of degree −Q+ iτ means that

〈κ, ψ ◦Dt〉 = t−iτ 〈κ, ψ〉, t > 0, ψ ∈ D(G).

Let Bδ := {x ∈ G : |x| < δ} be the ball around 0 of radius δ. Let φ ∈ D(G) be a
real-valued function supported on D2(Bδ)\Bδ, such that∫

G

(φ(x)− φ(2x)) |x|−Qdx �= 0.

We now define

ψ(x) := |x|−iτφ(x) and f := ψ − 2iτ (ψ ◦D2), x ∈ G\{0}.

Immediately we notice that

f(x) = |x|−iτ (φ(x)− φ(2x))

and, therefore, both ψ and f are supported inside D4(Bδ)\Bδ and are smooth.
We compute

〈κo, f〉 =
∫
G

(φ(x)− φ(2x)) |x|−Qdx �= 0

by the choice of φ. On the other hand,

〈κ, f〉 = 〈κ, ψ〉 − 2iτ 〈κ, ψ ◦D2〉 = 0.

We have obtained a contradiction. �
The next statement answers the question above under the assumption that

κo is also continuous on G\{0}.
Proposition 3.2.24. Let G be a homogeneous Lie group and let κo be a continuous
homogeneous function on G\{0} of degree ν with Re ν = −Q.

Then κo extends to a homogeneous distribution in D′(G) if and only if its
average value, defined in Lemmata 3.1.43 and 3.1.45, is mκo

= 0.

Proof. Let us fix a homogeneous quasi-norm | · |. We denote by σ the measure on
the unit sphere S = {x : |x| = 1} which gives the polar change of coordinates
(see Proposition 3.1.42) and |σ| its total mass.

By Lemma 3.1.41, there exists c > 0 such that

|x| ≤ 1 =⇒ |x|E ≤ c|x|. (3.51)

First let us assume mκo
= 0. Therefore, for any a, b ∈ [0,∞),∫

a<|x|<b

κo(x)dx =

∫ b

r=a

∫
S

κo(rx)dσ(x)r
Q−1dr = mκo

∫ b

r=a

rνrQ−1dr = 0,
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see Section 3.1.7. We claim that, for each f ∈ D(G),

∃ lim
ε→0

∫
|x|>ε

κo(x)f(x)dx <∞. (3.52)

Indeed, let us check the Cauchy condition for 0 < ε < ε′. We see that∣∣∣∣∣
∫
|x|>ε

κo(x)f(x)dx−
∫
|x|>ε′

κo(x)f(x)dx

∣∣∣∣∣ =
∣∣∣∣∣
∫
ε<|x|<ε′

κo(x)f(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
ε<|x|<ε′

κo(x) (f(x)− f(0)) dx

∣∣∣∣∣
≤

∫
ε<|x|<ε′

|κo(x)| |f(x)− f(0)| dx.

The (Euclidean) mean value theorem and the estimate (3.51) imply

|f(x)− f(0)| ≤ ‖∇f‖∞|x|E ≤ ‖∇f‖∞c|x| if |x| < 1.

Since κo is ν-homogeneous with Re ν = −Q, denoting by Co the maximum of |κo|
on the unit sphere {x : |x| = 1}, we have

∀x ∈ G\{0} |κo(x)| ≤ Co|x|−Q.

Hence if ε′ < 1,∣∣∣∣∣
∫
|x|>ε

κo(x)f(x)dx−
∫
|x|>ε′

κo(x)f(x)dx

∣∣∣∣∣ ≤
∫
ε<|x|<ε′

‖∇f‖∞cCo|x|1−Qdx

= ‖∇f‖∞cCo(ε
′ − ε).

This implies the Cauchy condition. Therefore, Claim (3.52) is proved and we de-
note the limit by

〈κ, f〉 := lim
ε→0

∫
|x|>ε

κo(x)f(x)dx, f ∈ D(G). (3.53)

This clearly defines a linear functional. Moreover, this functional is continuous
since if f ∈ D(G) is supported in a ball B̄R = {x : |x| ≤ R} for R large enough,
then, for ε < 1,∣∣∣∣∣

∫
|x|>ε

κo(x)f(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
ε<|x|<1

κo(x)f(x)dx

∣∣∣∣∣+
∣∣∣∣∣
∫
1<|x|

κo(x)f(x)dx

∣∣∣∣∣
≤ ‖∇f‖∞cCo(1− ε) + Co

∫
1<|x|≤R

|f(x)|dx

≤ CR(‖∇f‖∞ + ‖f‖∞).
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For the converse, we proceed by contradiction: let us assume that κ exists
and that mκo

�= 0. Then

κo −
mκo

|σ| |x|
ν

is a continuous homogeneous distribution of G\{0} of degree ν with mean average∫
S

(
κo(x)−

mκo

|σ| |x|
ν

)
dσ(x) =

∫
S

κo(x)dσ(x)−
mκo

|σ|

∫
S

dσ(x)

= mκo
−mκo

= 0.

Hence it admits an extension into a homogeneous distribution by the first part
of the proof. But this would imply that |x|ν has such an extension and this is
impossible by Example 3.2.23. �
Remark 3.2.25. (i) In view of the proof above, the hypothesis of continuity in

Proposition 3.2.24 (and also in Proposition 3.2.27) can be relaxed into the
following condition: κo is locally integrable and locally bounded on G\{0}.

This ensures that all the computations make sense and, since the unit
sphere of a given homogeneous quasi-norm is compact, |κo| is bounded there.

We will not use this fact.

(ii) By Lemma 3.1.45 the condition mκo
= 0 is independent of the homogeneous

quasi-norm. However, the distribution defined in (3.53) depends on the choice
of a particular homogeneous quasi-norm. For instance, one can show that the
function on R2 given in polar coordinates by

κo(re
iθ) =

cos 4θ

r2
,

admits two different extensions κ via the procedure (3.53) when considering
the Euclidean norm (x, y) �→ (x2 + y2)1/2 and the �1-norm (x, y) �→ |x|+ |y|.

Definition 3.2.26. The distribution given in (3.53) is called a principal value dis-
tribution denoted by

p.v. κo(x).

The notation is ambiguous unless a homogeneous norm is specified.
The next proposition states that, modulo a Dirac distribution at the origin,

the only possible extension is the principal value distribution:

Proposition 3.2.27. Let κ be a homogeneous distribution of degree ν with Re ν =
−Q on a homogeneous Lie group G. We assume that the restriction of κ to G\{0}
coincides with a continuous function κo.

Then κo is homogeneous of degree ν on G\{0} and mκo
= 0. Moreover, after

the choice of a homogeneous norm,

κ(x) = p.v. κo(x) + cδo,

for some constant c ∈ C, with c = 0 if ν �= −Q.



150 Chapter 3. Homogeneous Lie groups

Proof. By Proposition 3.2.24, mκo
= 0. Then

κ′ := κ− p.v. κo

is also homogeneous of degree ν and supported at the origin.

Let f ∈ D(G) with f(0) = 0. Due to the compact support of κ′, |〈κ′, f〉| is
controlled by some Ck norm of f on a fixed small neighbourhood of the origin.
But, because of its homogeneity of degree ν with Re ν = −Q,

∀t > 0 |〈κ′, f〉| = |〈κ′, f ◦Dt〉|.

Letting t tend to 0, the note that the Ck norms of f ◦Dt remain bounded. Let us
show that as t→ 0, we actually have 〈κ′, f ◦Dt〉 → 0. We claim that f ◦Dt → 0
in Ck(U) for a neighbourhood U of 0. Indeed,

Xα(f ◦Dt) = t[α](Xαf) ◦Dt → 0 as t→ 0,

provided that α �= 0. On the other hand, also (f ◦ Dt)(x) = f(tx) → f(0) = 0
as t → 0, and same for the L∞ norm over the set U . Thus, we have proved that
〈κ′, f〉 = 0 for any f ∈ D(G) vanishing at 0.

We now fix a function χ ∈ D(G) with χ(0) = 1. For any f ∈ D(G),

〈κ′, f〉 = 〈κ′, f − f(0)χ〉+ f(0)〈κ′, χ〉 = f(0)〈κ′, χ〉,

since f − f(0)χ ∈ D(G) vanishes at 0. This shows κ′ = cδ0 where c = 〈κ′, χ〉. But
δ0 is homogeneous of degree −Q, see Example 3.1.20, whereas κ′ is homogeneous
of degree ν. So c = 0 if ν �= −Q.

Alternatively, we can also argue as follows. By Proposition 1.4.2 we must
have

κ′ = κ− p.v. κo =
∑
|α|≤j

aα∂
αδ0

for some j and some constants aα. Now, we know by Example 3.1.20 that δ0 is
homogeneous of degree −Q, and by Proposition 3.1.23 that ∂αδ0 is homogeneous
of degree −Q−[α]. Since κ′ is homogeneous of degree −Q, it follows that all aα = 0
for −Q − [α] �= ν. The statement now follows since, if ν �= −Q, we must have all
aα = 0, and if ν = −Q, we take c = a0. �

Using the vocabulary of kernels of type ν, see Definition 3.2.9, Proposition
3.2.24 implies easily:

Corollary 3.2.28. Let G be a homogeneous Lie group and let κo be a smooth ho-
mogeneous function on G\{0} of degree ν with Re ν = −Q. Then κo extends to
a homogeneous distribution in D′(G) if and only if its average value, defined in
Lemmata 3.1.43 and 3.1.45, is mκo

= 0. In this case, the extension is a kernel of
type ν.
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Remark 3.2.29. Remark 3.2.10 explained the correspondence between the kernels
of type ν and their restriction to G\{0} in the case Re ν ∈ (0, Q).

With Corollary 3.2.28, we obtain the case Re ν = 0: the restriction to G\{0}
yields a correspondence between

• the (ν−Q)-homogeneous functions in C∞(G\{0}) with vanishing mean value

• and the kernels of type ν.

It is one-to-one if ν �= 0 but if ν = 0, we have to consider the kernels of type ν
modulo Cδ0.

3.2.5 Operators of type ν = 0

We can now go back to our original motivation, that is, a condition on a left-
invariant homogeneous operator of degree 0 to obtain continuity on every Lp(G).
Our condition here is that the operator is of type 0, or more generally of type ν,
Re ν = 0.

Theorem 3.2.30. Let G be a homogeneous Lie group and let ν ∈ C with

Re ν = 0.

Any operator of type ν on G is (−ν)-homogeneous and extends to a bounded op-
erator on Lp(G), p ∈ (1,∞).

The proof consists in showing that the operator is Calderón-Zygmund (in
the sense of Definition 3.2.15) and bounded on L2(G). Note that the cancellation
condition (see Remark 3.2.18), is provided by mκo

= 0, see Proposition 3.2.27.

Proof. Let κ ∈ D′(G) be a kernel of type ν, Re ν = 0. We denote by κo its
smooth restriction to G\{0}. One checks easily that κo satisfies the hypotheses of
Corollary 3.2.20. Consequently, κo is a Calderón-Zygmund kernel in the sense of
Definition 3.2.15. By the Singular Integral Theorem, more precisely its form given
in Proposition 3.2.17, to prove the Lp-boundedness for every p ∈ (1,∞), it suffices
to prove the case p = 2.

Fixing a homogeneous norm | · | smooth away from the origin, by Proposi-
tion 3.2.27, we may assume that κ is the principal value distribution of κo (see
Definition 3.2.26). We want to show that

f �→ f ∗ p.v. κo

is bounded on L2(G). For this, we will apply the Cotlar-Stein lemma (see Theo-
rem A.5.2) to the operators

Tj : f �→ f ∗Kj , j ∈ Z,

where
Kj(x) = κo(x)12−j≤|x|≤2−j+1(x).
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We claim that

max
(
‖T ∗

j Tk‖L (L2(G)), ‖TjT
∗
k ‖L (L2(G))

)
≤ C2−|j−k|. (3.54)

Assuming this claim, by the Cotlar-Stein lemma,
∑

j Tj defines a bounded oper-

ator on L2(G) and its (right convolution) kernel is
∑

j Kj which coincides, as a
distribution, with p.v. κo = κ. This would conclude the proof.

Let us start to prove Claim (3.54). It is not difficult to see (see (3.47)) that
the adjoint of the operator Tj on L2(G) is the convolution operator with right
convolution kernel given by

K∗
j (x) = K̄j(x

−1),

which is compactly supported. Therefore, the operators T ∗
j Tk and TjT

∗
k are con-

volution operators with kernels Kk ∗ K∗
j and K∗

k ∗ Kj , respectively. We observe
that, by homogeneity of κo, for any j ∈ N0,

|Kj(x)| = 2jQ|K0(2
jx)| and so ‖Kj‖L1(G) = ‖K0‖L1(G).

By the Young convolution inequality (see Proposition 1.5.2), the operators Tj ,
T ∗
j Tk and TjT

∗
k are bounded on L2(G) with operator norms

‖Tj‖L (L2(G)) ≤ ‖Kj‖1 = ‖K0‖1,
‖T ∗

j Tk‖L (L2(G)) ≤ ‖Kk ∗K∗
j ‖1 ≤ ‖Kk‖1‖K∗

j ‖1 = ‖K0‖21,
‖TjT

∗
k ‖L (L2(G)) ≤ ‖K∗

k ∗Kj‖1 ≤ ‖K∗
k‖1‖Kj‖1 = ‖K0‖21.

In order to prove Claim (3.54) we need to obtain a better decay for ‖Kk ∗K∗
j ‖1

and ‖K∗
k ∗Kj‖1 when j and k are ‘far apart’. Since ‖Kk ∗K∗

j ‖1 = ‖Kj ∗K∗
k‖1 and

‖K∗
k ∗Kj‖1 = ‖K∗

j ∗Kk‖1, we may assume k > j. Quantitatively we assume that

C12
j−k+1 < 1/2 where C1 ≥ 1 is the constant appearing in (3.26) for b = 1/2.

We observe that the cancellation condition mκo
= 0 implies∫

G

Kk(x)dx =

∫
2−k≤|x|≤2−k+1

κo(x)dx = mκo
ln 2 = 0,

and so∣∣Kk ∗K∗
j (x)

∣∣ =

∣∣∣∣∫
G

Kk(y)K
∗
j (y

−1x)dy

∣∣∣∣ = ∣∣∣∣∫
G

Kk(y)
(
K∗

j (y
−1x)−K∗

j (x)
)
dy

∣∣∣∣
≤

∫
G

|Kk(y)|
∣∣K∗

j (y
−1x)−K∗

j (x)
∣∣ dy

≤
∫
2−k≤|y|≤2−k+1

Co|y|−Q
∣∣K∗

j (y
−1x)−K∗

j (x)
∣∣ dy,
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where Co is the maximum of |κo| on the unit sphere {|x| = 1}. Thus after the
change of variable z = 2ky,∣∣Kk ∗K∗

j (x)
∣∣ ≤ ∫

1≤|z|≤2

Co|z|−Q
∣∣K∗

j ((2
−kz)−1x)−K∗

j (x)
∣∣ dz.

We want to estimate the L1-norm with respect to x of the last expression. Hence
we now look at∫

G

∣∣K∗
j ((2

−kz)−1x)−K∗
j (x)

∣∣ dx =

∫
G

∣∣Kj

(
x1 2−kz

)
−Kj(x1)

∣∣ dx1,

after the change of variable x = x−1
1 . Using Kj = 2jνK0 ◦Dj and the change of

variable x2 = 2jx1, we obtain∫
G

∣∣Kj

(
x1 2−kz

)
−Kj(x1)

∣∣ dx1 =

∫
G

∣∣K0

(
x2 2−k+jz

)
−K0(x2)

∣∣ dx2.

Let A0 = {1 ≤ |x| ≤ 2} be the annulus with radii 1 and 2 around 0 and write
momentarily y−1 = 2−k+jz with z ∈ A0. We can write the last integral as∫

G

∣∣K0(xy
−1)−K0(x)

∣∣ dx =

∫
A0∩(A0y)

+

∫
A0\(A0y)

+

∫
(A0y)\A0

.

For the last two integrals, we see with a change of variable x = x′y−1 that∫
A0\(A0y)

=

∫
A0\(A0y)

|K0(x)| dx =

∫
(A0y)\A0

∣∣K0(x
′y−1)

∣∣ dx′ =
∫
(A0y)\A0

,

and ∫
A0\(A0y)

|K0| ≤
∫
|xy−1|>2
1≤|x|≤2

Co|x|−Qdx+

∫
|xy−1|<1
1≤|x|≤2

Co|x|−Qdx.

Thus ∫
G

∣∣K0(xy
−1)−K0(x)

∣∣ dx =

∫
A0∩(A0y)

|K0(xy
−1)−K0(x)|dx (3.55)

+2Co

⎛⎝∫
|xy−1|>2
1≤|x|≤2

|x|−Qdx+

∫
|xy−1|<1
1≤|x|≤2

|x|−Qdx

⎞⎠ .

Since y−1 is relatively small, by (3.26) we get for the two integrals above∫
|xy−1|>2
1≤|x|≤2

+

∫
|xy−1|<1
1≤|x|≤2

≤
∫
2−C1|y|<|x|≤2

+

∫
1≤|x|<1+C1|y|

= ln
2

2− C1|y|
+ ln(1 + C1|y|) ≤ C|y|,
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(see Example 3.1.44), whereas by Proposition 3.1.40 we have for any x ∈ A0,∣∣K0(xy
−1)−K0(x)

∣∣ ≤ C|y| |x|−Q−1,

and so∫
A0∩(A0y)

∣∣K0(xy
−1)−K0(x)

∣∣ dx ≤ C|y|
∫
1≤|x|≤2

|x|−Q−1dx ≤ C|y|.

We have obtained that the expression (3.55) is up to a constant less than 2−k+j

when C12
j−k+1 < 1/2 (and y−1 = 2−k+jz, z ∈ A0). This estimate gives

‖Kk ∗K∗
j ‖1 ≤ Co

∫
z∈A0

|z|−Q

∫
G

∣∣K0(x 2−k+jz)−K0(x)
∣∣ dx dz

≤ Co

∫
z∈A0

|z|−Q+1C2−k+j dz ≤ C2−k+j .

With a very minor modification, we can show in the same way that ‖K∗
k ∗Kj‖1 ≤

C2−k+j .
This shows Claim (3.54) and concludes the proof of Theorem 3.2.30. �

Remark 3.2.31. In view of the proof, we can relax the smoothness condition in
the hypotheses of Theorem 3.2.30: it suffices to assume that κo ∈ C1(G\{0}).

This ensures that we can apply Propositions 3.2.27 and 3.1.40 during the
proof.

3.2.6 Properties of kernels of type ν, Re ν ∈ [0, Q)

The kernels and operators of type ν have been defined in Definition 3.2.9. Sum-
marising results of the previous section, namely Corollary 3.2.11 for Re ν ∈ (0, Q),
and Theorem 3.2.30 for Re ν = 0, we can unite them as

Corollary 3.2.32. Let G be a homogeneous Lie group and let ν ∈ C with

Re ν ∈ [0, Q).

Any operator of type ν on G is (−ν)-homogeneous and extends to a bounded op-
erator from Lp(G) to Lq(G) provided that

1

p
− 1

q
=

Re ν

Q
, 1 < p ≤ q <∞.

When considering kernels of type ν, we have regularly used the following
property: if κ is a kernel of type ν then, fixing a homogeneous quasi-norm | · | on
G, κ admits a maximum Cκ on the unit sphere {|x| = 1}, and by homogeneity we
have

∀x ∈ G\{0} |κ(x)| ≤ Cκ|x|Re ν−Q. (3.56)
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In particular, it is locally integrable if Re ν > 0 and defines a distribution on the
whole group G in this case. In the case when Re ν = 0, by Proposition 3.2.27, κ
also defines a distribution on G of the form

κ = p.v. κ1 + cδ0,

where κ1 is of type ν with vanishing average value and c ∈ C is a constant.

We can also deduce the type of a kernel from the following lemma:

Lemma 3.2.33. Let κ be a kernel of type νκ with Re νκ ∈ (0, Q). Let T be a
homogeneous differential operator of homogeneous degree νT . If Re νκ−νT ∈ [0, Q)
then Tκ defines a kernel of type νκ − νT .

Proof. Clearly Tκ is a (Q − νκ + νT )-homogeneous distribution which coincides
with a smooth function away from 0. �

Remark 3.2.34. We have obtained certain properties of convolution operators with
kernels of type ν in Corollary 3.2.11 for Re ν ∈ (0, Q), and in Theorem 3.2.30 for
Re ν = 0. When composing two such types of operators, we have to deal with
the convolution of two kernels and this is a problematic question in general. In-
deed, the problems about convolving distributions on a non-compact Lie group
are essentially the same as in the case of the abelian convolution on Rn. The con-
volution τ1 ∗ τ2 of two distributions τ1, τ2 ∈ D′(G) is well defined as a distribution
provided that at most one of them has compact support, see Section 1.5. How-
ever, additional assumptions must be imposed in order to define convolutions of
distributions with non-compact supports. Furthermore, the associative law

(τ1 ∗ τ2) ∗ τ3 = τ1 ∗ (τ2 ∗ τ3), (3.57)

holds when at most one of the τj ’s has non-compact support, but not necessarily
when only one of the τj ’s has compact support even if each convolution in (3.57)
could have a meaning.

The following proposition establishes that there is no such pathology appear-
ing when considering convolution with kernel of type ν with Re ν ∈ [0, Q). This
will be useful in the sequel.

Proposition 3.2.35. Let G be a homogeneous Lie group.

(i) Suppose ν ∈ C with 0 ≤ Re ν < Q, p ≥ 1, q > 1, and r ≥ 1 given by

1

r
=

1

p
+

1

q
− Re ν

Q
− 1.

If κ is a kernel of type ν, f ∈ Lp(G), and g ∈ Lq(G), then f ∗ (g ∗ κ) and
(f ∗ g) ∗ κ are well defined as elements of Lr(G), and they are equal.
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(ii) Suppose κ1 is a kernel of type ν1 ∈ C with Re ν1 > 0 and κ2 is a kernel of
type ν2 ∈ C with Re ν2 ≥ 0. We assume Re (ν1 + ν2) < Q. Then κ1 ∗ κ2 is
well defined as a kernel of type ν1 + ν2. Moreover, if f ∈ Lp(G) where

1 < p < Q/(Re (ν1 + ν2))

then (f ∗ κ1) ∗ κ2 and f ∗ (κ1 ∗ κ2) belong to Lq(G),

1

q
=

1

p
− Re (ν1 + ν2)

Q
,

and they are equal.

Proof. Let us prove Part (i). By Corollary 3.2.11, Theorem 3.2.30 and Young’s
inequality (see Proposition 1.5.2), the mappings (f, g) �→ f ∗ (g ∗ κ) and (f, g) �→
(f ∗ g) ∗κ are continuous from Lp(G)×Lq(G) to Lr(G). They coincide when they
have compact support, and hence in general.

Let us prove Part (ii). We fix a homogeneous quasi-norm | · | smooth away
from the origin. We will use the general properties of kernels of type ν explained
at the beginning of this section, especially estimate (3.56).

Let x �= 0 be given. We can find ε > 0 such that the balls

B(0, ε) := {y : |y| < ε} and B(x, ε) := {y : |xy−1| < ε},

do not intersect. We note that these balls are different from those in Definition
3.1.33 (that are used throughout this book) but in this proof only, it will be more
convenient for us to work with the balls defined as above.

If Re ν1, Re ν2 > 0, then both κ1 and κ2 are locally integrable and

∣∣κ1(xy
−1)κ2(y)

∣∣ ≤ Cx,ε

⎧⎨⎩
|y|Re ν2−Q for y ∈ B(0, ε),
|xy−1|Re ν1−Q for y ∈ B(x, ε),
O(|y|Re (ν1+ν2)−2Q) y /∈ B(0, ε) ∪B(x, ε).

Thus we can integrate κ1(xy
−1)κ2(y) against dy on B(0, ε), B(x, ε) and outside of

B(0, ε) ∪B(x, ε) to obtain the sum of three integrals absolutely convergent:⎡⎣∫
y∈B(0,ε)

+

∫
y∈B(x,ε)

+

∫
|y|>ε

|xy−1|>ε

⎤⎦κ1(xy
−1)κ2(y)dy := κ(x).

This defines κ(x) which is independent of ε small enough.

If Re ν2 = 0, by Proposition 3.2.27, we may assume that κ2 is the principal
value of a homogeneous distribution with mean average 0 (see also Definition 3.2.26
and (3.53)). In this case, by smoothness of κ1 away from 0 and Proposition 3.1.40,∣∣(κ1(xy

−1)− κ1(x)
)
κ2(y)

∣∣ ≤ Cx,ε|y|1−Q for y ∈ B(0, ε),
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and we obtain again the sum of three integrals absolutely convergent:∫
y∈B(0,ε)

(
κ1(xy

−1)− κ1(x)
)
κ2(y)dy +

+

⎡⎣∫
y∈B(x,ε)

+

∫
|y|>ε

|xy−1|>ε

⎤⎦κ1(xy
−1)κ2(y)dy =: κ(x).

This defines κ(x) which is independent of ε small enough.
In both cases, we have defined a function κ on G\{0}. A simple change of

variables shows that κ is homogeneous of degree ν1 + ν2 − Q (this is left to the
reader interested in checking this fact).

Let us fix φ1 ∈ D(G) with φ1 ≡ 1 on B(0, ε/2) and φ1 ≡ 0 on the complement
of B(0, ε). We fix again x �= 0 and we set φ2(y) = φ1(xy

−1). Then φ1 and φ2 have
disjoint supports and for Re ν2 > 0 it is easy to check that for z ∈ B(x, ε/2) we
have κ(z) = I1 + I2 + I3, where

I1 =

∫
G

φ1(y)κ1(zy
−1)κ2(y)dy,

I2 =

∫
G

φ2(y)κ1(zy
−1)κ2(y)dy =

∫
G

φ2(y
−1z)κ1(y)κ2(y

−1z)dy,

I3 =

∫
G

(1− φ1(y)− φ2(y))κ1(zy
−1)κ2(y)dy,

with a similar formula for Re ν2 = 0. The integrands of I1, I2, and I3 depend
smoothly on z. Furthermore, one checks easily that their derivatives in z remains
integrable. This shows that κ is smooth near each point x �= 0. Since Re (ν1+ν2) >
0, κ is locally integrable on the whole group G. Hence the distribution κ ∈ D′(G)
is a kernel of type ν1 + ν2.

We can check easily for φ ∈ D(G),

〈κ, φ〉 = 〈κ1, φ ∗ κ̃2〉 = 〈κ2, κ̃1 ∗ φ〉.

So having (1.14) and (1.15) we define κ1 ∗ κ2 := κ.

Let f ∈ Lp(G) where p > 1 and

1

q
=

1

p
− Re (ν1 + ν2)

Q
> 0.

We observe that (f ∗ κ1) ∗ κ2 and f ∗ κ are in Lq(G) by Corollary 3.2.11, Theo-
rem 3.2.30, and Young’s inequality (see Proposition 1.5.2). To complete the proof,
it suffices to show that the distributions (f ∗ κ1) ∗ κ2 and f ∗ (κ1 ∗ κ2) are equal.
For this purpose, we write κ1 = κ0

1 + κ∞
1 with

κ0
1 := κ1 1|x|≤1 and κ∞

1 := κ1 1|x|>1.
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If r = Q/(Q − Re ν1) then κ0
1 ∈ Lr−ε(G) and κ∞

1 ∈ Lr+ε(G) for any ε > 0. We
take ε so small that r − ε > 1 and

p−1 + (r + ε)−1 − Re ν2/Q− 1 > 0.

By Part (i), (f ∗ κ0
1) ∗ κ2 and f ∗ (κ0

1 ∗ κ2) coincide as elements of Ls(G) where

s−1 = p−1 + (r − ε)−1 − Re ν2/Q− 1.

And (f ∗ κ∞
1 ) ∗ κ2 and f ∗ (κ∞

1 ∗ κ2) coincide as elements of Lt(G) where

t−1 = p−1 + (r + ε)−1 − Re ν2/Q− 1.

Thus (f ∗κ1)∗κ2 and f ∗κ coincide as elements of Ls(G) and Lt(G). This concludes
the proof of Part (ii) and of Proposition 3.2.35. �

3.2.7 Fundamental solutions of homogeneous differential operators

On open sets or manifolds, general results about the existence of fundamental
kernels of operators hold, see e.g. [Tre67, Theorems 52.1 and 52.2]. On a Lie group,
we can study the case when the fundamental kernels are of the form κ(x−y) in the
abelian case and κ(y−1x) on a general Lie group, where κ is a distribution, often
called a fundamental solution. It is sometimes possible and desirable to obtain
the existence of such fundamental solutions for left or right invariant differential
operators.

In this section, we first give a definition and two general statements valid
on any connected Lie group, and then analyse in more detail the situation on
homogeneous Lie groups.

Definition 3.2.36. Let L be a left-invariant differential operator on a connected
Lie group G. A distribution κ in D′(G) is called a (global) fundamental solution
of L if

Lκ = δ0.

A distribution κ̃ on a neighbourhood Ω of 0 is called a local fundamental solution
of L (at 0) if Lκ̃ = δ0 on Ω.

On (Rn,+), global fundamental solutions are often called Green functions.

Example 3.2.37. Fundamental solutions for the Laplacian Δ =
∑

j ∂
2
j on Rn are

well-known

G(x) =

⎧⎨⎩
cn

|x|n−2 + p(x) if n ≥ 3

c2 ln |x|+ p(x) if n = 2
x1[0,∞)(x) + p(x) if n = 1

where cn is a (known) constant of n, p is any polynomial of degree ≤ 1, and | · |
the Euclidean norm on Rn.
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Example 3.2.37 shows that fundamental solutions are not unique, unless some
hypotheses, e.g. homogeneity (besides existence), are added.

Although, in practice, ‘computing’ fundamental solutions is usually difficult,
they are useful and important objects.

Lemma 3.2.38. Let L be a left-invariant differential operator with smooth coeffi-
cients on a connected Lie group G.

1. If L admits a fundamental solution κ, then for every distribution u ∈ D′(G)
with compact support, the convolution f = u ∗ κ ∈ D′(G) satisfies

Lf = u

on G.

2. An operator L admits a local fundamental solution if and only if it is locally
solvable at every point.

For the definition of locally solvability, see Definition A.1.4.

Proof. For the first statement,

L
(
u ∗ κ

)
= u ∗ Lκ = u ∗ δ0 = u.

For the second statement, if L is locally solvable, then at least at the origin,
one can solve Lκ̃ = δ0 and this shows that L admits a local fundamental solution.

Conversely, let us assume that L admits a local fundamental solution κ̃ on
the open neighbourhood Ω of 0. We can always find a function χ ∈ D(Ω) such that
χ = 1 on an open neighbourhood Ω1 � Ω of 0; we define κ1 ∈ D′(Ω) by κ1 := χκ̃
and view κ1 also as a distribution with compact support. Then it is easy to check
that Lκ1 = δ0 on Ω1 but that

Lκ1 = δ0 +Φ,

where Φ is a distribution whose support does not intersect Ω1.
Let Ω0 be an open neighbourhood of 0 such that

Ω−1
0 Ω0 = {x−1y : x, y ∈ Ω0} � Ω1.

We can always find a function χ1 ∈ D(Ω0) which is equal to 1 on a neighbourhood
Ω′

0 � Ω0 of 0.
If now u ∈ D′(G), then the convolution f = (χ1u) ∗ κ1 is well defined and

Lf = χ1u+ χ1u ∗ Φ,

showing that Lf = χ1u on Ω0 and hence Lf = u on Ω′
0. Hence L is locally solvable

at 0. By left-invariance, it is locally solvable at any point. �
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Because of the duality between hypoellipticity and solvability, local funda-
mental solutions exist under the following condition:

Proposition 3.2.39. Let L be a left-invariant hypoelliptic operator on a connected
Lie group G. Then Lt is also left-invariant and it has a local fundamental solution.

Proof. The first statement follows easily from the definition of Lt, and the second
from the duality between solvability and hypoellipticity (cf. Theorem A.1.3) and
Lemma 3.2.38. �

The next theorem describes some property of existence and uniqueness of
global fundamental solutions in the context of homogeneous Lie groups.

Theorem 3.2.40. Let L be a ν-homogeneous left-invariant differential operator on
a homogeneous Lie group G. We assume that the operators L and Lt are hypoel-
liptic on a neighbourhood of 0. Then L admits a fundamental solution κ ∈ S ′(G)
satisfying:

(a) if ν < Q, the distribution κ is homogeneous of degree ν −Q and unique,

(b) if ν ≥ Q, κ = κo + p(x) ln |x| where
(i) κo ∈ S ′(G) is a homogeneous distribution of degree ν − Q, which is

smooth away from 0,

(ii) p is a polynomial of degree ν −Q and,

(iii) | · | is any homogeneous quasi-norm, smooth away from the origin.

Necessarily κ is smooth on G\{0}.
Remark 3.2.41. In case (a), the unique homogeneous fundamental solution is a
kernel of type ν, with the uniqueness understood in the class of homogeneous
distributions of degree ν−Q. For case (b), Example 3.2.37 shows that one can not
hope to always have a homogeneous fundamental solution.

The rest of this section is devoted to the proof of Theorem 3.2.40.
The proofs of Parts (a) and (b) as presented here mainly follow the original

proofs of these results due to Folland in [Fol75] and Geller in [Gel83], respectively.

Proof of Theorem 3.2.40 Part (a). Let L be as in the statement and let ν < Q.
By Proposition 3.2.39, L admits a local fundamental solution at 0: there exist a
neighbourhood Ω of 0 and a distribution κ̃ ∈ D′(Ω) such that Lκ̃ = δ0 on Ω. Note
that by the hypoellipticity of L, κ̃ as well as any fundamental solution coincide
with a smooth function away form 0. By shrinking Ω if necessary, we may assume
that after having fixed a homogeneous quasi-norm, Ω is a ball around 0. So if
x ∈ Ω and r ∈ (0, 1] then rx ∈ Ω.

Folland observed that if κ exists then the distribution h := κ̃− κ annihilates
L on Ω, so it must be smooth on Ω, while

κ(x) = rQ−ν κ̃(rx)− rQ−νh(rx)
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yields
κ(x) = lim

r→0
rQ−ν κ̃(rx)

and
h(x) = κ̃(x)− lim

r→0
rQ−ν κ̃(rx).

Going back to our proof, Folland’s idea was to define hr ∈ D′(Ω) by

hr := κ̃− rQ−ν κ̃ ◦Dr on Ω\{0}, r ∈ (0, 1],

which makes sense in view of the smoothness of κ̃ on Ω\{0}. Since for any test
function φ ∈ D(Ω),

〈L(rQ−ν κ̃(r ·)), φ〉 = 〈rQ(Lκ̃)(r ·)), φ〉 = 〈Lκ̃, φ(r−1·)〉 = φ(r−10) = φ(0),

we have Lhr = δ0 − δ0 = 0. So hr is in NL(Ω) ⊂ C∞(Ω) where the D′(Ω) and
C∞(Ω) topologies agree, see Theorem A.1.6. Let us show that

∃ lim
r→0

hr ∈ h ∈ C∞(Ω); (3.58)

for this it suffices to show that {hr} is a Cauchy family in D′(Ω).

We observe that if s ≤ r, we have

hs(x)− hr(x) = rQ−ν κ̃(rx)− sQ−ν κ̃(sx)

= rQ−ν

(
κ̃
(
rx

)
−

(s
r

)Q−ν

κ̃
(s
r
rx

))
= rQ−νh s

r
(rx). (3.59)

In particular, setting s = r2 in (3.59) we obtain

hr2 = rQ−νhr ◦Dr + hr.

This formula yields, first by substituting r by r2,

hr4 = r2(Q−ν)hr2 ◦Dr2 + hr2

= r2(Q−ν)
(
rQ−νhr ◦Dr ◦Dr2 + hr ◦Dr2

)
+ rQ−νhr ◦Dr + hr

= r3(Q−ν)hr ◦Dr3 + r2(Q−ν)hr ◦Dr2 + rQ−νhr ◦Dr + hr.

Continuing inductively, we obtain

hr2�
=

2�−1∑
k=0

rk(Q−ν)hr ◦Drk .

This implies

∀n ∈ N0 sup
x∈(1−ε)Ω

|h
r2�

(x)| ≤ (1− rQ−ν)−1 sup
x∈(1−ε)Ω

|hr(x)|,
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and, since any s ≤ 1
2 can be expressed as s = r2

�

for some � ∈ N0 and some
r ∈ [ 14 ,

1
2 ],

∀s ≤ 1

2
sup

x∈(1−ε)Ω

|hs(x)| ≤ (1− 2ν−Q)−1 sup
x∈(1−ε)Ω
1
4≤r≤ 1

2

|hr(x)|.

Now the Schwartz-Treves lemma (see Theorem A.1.6) implies that the topolo-
gies of D′(Ω) and C∞(Ω) on

NL(Ω) = {f ∈ D′(Ω) : Tf = 0} ⊂ C∞(Ω)

coincide. Since r �→ hr is clearly continuous from (0, 1] to D′(Ω)∩NL(Ω), {hr, r ∈
[ 14 ,

1
2 ]} and {hr, r ∈ [ 12 , 1]} are compact in D(Ω). Therefore, we have

sup
x∈(1−ε)Ω
0<s≤1

|hs(x)| ≤ sup
x∈(1−ε)Ω
0<s≤ 1

2

|hs(x)|+ sup
x∈(1−ε)Ω

1
2≤s≤1

|hs(x)|

≤ (1− 2ν−Q)−1 sup
x∈(1−ε)Ω
1
4≤r≤ 1

2

|hr(x)|+ sup
x∈(1−ε)Ω

1
2≤s≤1

|hs(x)| = Cε <∞,

that is, the hr’s are uniformly bounded on (1− ε)Ω. But if s < r, (3.59) implies

sup
x∈(1−ε)Ω

|hs(x)− hr(x)| ≤ rQ−ν sup
x∈(1−ε)Ω

∣∣h s
r
(rx)

∣∣ ≤ Cεr
Q−ν −→

r→0
0.

This shows that {hr}r∈(0,1] is a Cauchy family of C(K) for any compact subset
K of Ω. Therefore, {hr}r∈(0,1] is a Cauchy family of D′(Ω) and Claim (3.58) is
proved. Let h ∈ C∞(Ω) be the limit of {hr}. Necessarily Lh = 0. We set

κ := κ̃− h ∈ D′(Ω).

Now, on one hand
Lκ = Lκ̃− Lh = δ0

and κ is smooth on Ω\{0}, and on the other,

κ(x) = lim
r→0

rQ−ν κ̃(rx),

so if s ∈ (0, 1], then

κ(sx) = lim
r→0

rQ−ν κ̃(srx) = lim
r′=rs→0

(
r′

s

)Q−ν

κ̃(r′x) = sν−Qκ(x).

By requiring that the formula κ(sx) = sν−Qκ(x) holds for all s > 0 and x �= 0, we
can extend κ into a distribution defined on the whole space. The homogeneity of
L guarantees that the equation Lκ = δ0 holds globally.

Finally, if κ1 were another fundamental solution of L satisfying (a), then
κ − κ1 would be (ν − Q)-homogeneous with ν − Q < 0; κ − κ1 would also be
smooth even at 0 since it annihilates L on G. Thus κ− κ1 = 0. �
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Proof of Theorem 3.2.40 Part (b). Let L be as in the statement and let ν ≥ Q.
Let also κ̃, Ω and hr be defined as in the proof of part (a).

Geller noticed that Folland’s idea could be adapted by taking higher order
derivatives. Indeed from (3.59), we have

Xαhs(x)−Xαhr(x) = rQ−ν+[α]Xαh s
r
(rx);

if α ∈ Nn
0 is large so that Q − ν + [α] > 0, we can proceed as for hr in the proof

of Part (a) and obtain that {Xαhr}r∈(0,1] is a Cauchy family of C∞(Ω).

If [α] ≤ ν −Q, the C∞(Ω)-family {Xαhr}r∈(0,1] may not be Cauchy but by
Taylor’s theorem at the origin for homogeneous Lie groups, cf. Theorem 3.1.51,∣∣∣hr(x)− P

(hr)
0,M (x)

∣∣∣ ≤ CM

∑
|α|≤�M�+1

[α]>M

|x|[α] sup
|z|≤η�M�+1|x|

|(Xαhr) (z)| ,

for any x such that x and η�M�+1x are in the ball Ω. Choosing M = ν − Q and

setting the polynomial pr(x) := P
(hr)
0,M (x) and the ball Ω′ := η−(�M�+1)Ω, this

shows that the C∞(Ω′)-family {hr − pr}r∈(0,1] is Cauchy. We set

C∞(Ω′) � h := lim
r→0

(hr − pr), κo := κ̃− h ∈ D(Ω′).

Note that Lpr = 0, since the polynomial pr is of degree ν −Q and the differential
operator L is ν-homogeneous. Therefore, Lκo = δ0 in Ω′ and κo ∈ C∞(Ω′\{0}).
Furthermore, if [α] > ν −Q and x ∈ Ω′\{0} then(

∂

∂x

)α

κo(x) = lim
r→0

rQ−ν+[α]

(
∂

∂x

)α

κ̃(rx),

so if s ∈ (0, 1],(
∂

∂x

)α

κo(sx) = lim
r→0

rQ−ν+[α]

(
∂

∂x

)α

κ̃(rsx)

= lim
r′=rs→0

(
r′

s

)Q−ν+[α] (
∂

∂x

)α

κ̃(r′x) = sν−Q−[α]

(
∂

∂x

)α

κ(x).

One could describe this property as
(

∂
∂x

)α
κo being homogeneous on Ω′\{0}. We

conclude the proof by applying Lemma 3.2.42 below. �
In order to state Lemma 3.2.42, we first define the set W of all the possible

homogeneous degrees [α], α ∈ Nn
0 ,

W := {υ1α1 + . . .+ υnαn : α1, . . . , αn ∈ N0}. (3.60)

In other words, W is the additive semi-group of R generated by 0 and WA.
For instance, in the abelian case (Rn,+) or on the Heisenberg group Hno

,
with our conventions, W = N0. This is also the case for a stratified Lie group or
for a graded Lie group with g1 non-trivial.
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Lemma 3.2.42. Let B be an open ball around the origin of a homogeneous Lie
group G equipped with a smooth homogeneous quasi-norm | · |. We consider the
sets of functions Kν defined by

if ν ∈ R\W Kν := {f ∈ C∞(B\{0}) : f is ν-homogeneous} ,
if ν ∈ W Kν := {f ∈ C∞(B\{0}) : f = f1 + p(x) ln |x| ,

where f1 is ν-homogeneous and p is a ν-homogeneous polynomial} ,

where W was defined in (3.60), and we say that a function f on B or B\{0} is
ν-homogeneous when f ◦Ds = sνf on B for all s ∈ (0, 1).

For any ν ∈ R and f ∈ C∞(B\{0}), if
(

∂
∂x

)α
f ∈ Kν−[α] with [α] > ν, then

there exists p ∈ P<ν such that f − p ∈ Kν .

Recall (see Definition 3.1.26) that P<M denotes the set of polynomials P on
G such that D◦P < M . It is empty if M < 0.

Proof of Lemma 3.2.42. By induction it suffices to prove that for any ν ∈ R and
f ∈ C∞(B\{0}),

∂(f − pj)

∂xj
∈ Kν−υj with pj ∈ P<ν−υj for all j = 1, . . . , n

=⇒ f − p ∈ Kν for some p ∈ P<ν . (3.61)

To prove (3.61), we start by showing that for any f ∈ C∞(B\{0}),

∂f

∂xj
∈ Kν−υj for all j = 1, . . . , n =⇒ f − c ∈ Kν for some c ∈ C. (3.62)

By convention (see Definition 3.1.26), a homogeneous polynomial of homogeneous
degree which is not inW is 0. With this in mind we continue the proof of (3.62) in
a unified way. We consider f ∈ C∞(B\{0}) satisfying the hypothesis of (3.62): for
each j = 1, . . . , n, ∂f

∂xj
∈ Kν−υj and there exists pj ∈ P=ν−υj

such that f−pj ln | · |
is a ν-homogeneous function on \{0}. We define

A(r, x) := f(rx)− rνf(x), x ∈ B, r ∈ (0, 1].

We see that

∂A(r, x)

∂xj
= rυj

∂f

∂xj
(rx)− rν

∂f

∂xj
(x)

= rυjpj(rx) ln |rx| − rνpj(x) ln |x| = rνpj(x) ln r.

Note that for any j, k we have

∂pj
∂xk

=
∂pk
∂xj

since
∂

∂xk

∂

∂xj
A(r, x) =

∂

∂xj

∂

∂xk
A(r, x).
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Because of this observation we can adapt the proof of the Poincaré Lemma to
construct the polynomial

q(x) := c

n∑
k=1

υkxkpk(x), (3.63)

which is ν-homogeneous and satisfies

∂q

∂xj
= c

n∑
k=1

υkxk
∂pk(x)

∂xj
+ cυjpj(x) = c

n∑
k=1

υkxk
∂pj(x)

∂xk
+ cυjpj(x)

= c∂t=1 (pj(tx)) + cυjpj(x) = c(ν − υj)pj(x) + cυjpj(x)

= pj(x),

by choosing c = ν−1 if ν �= 0; if ν = 0, the polynomials pj and q are zero. So we
have

∂

∂xj
(A(r, x)− q(x)rν ln r) = 0 for all j = 1, . . . , n.

Therefore,

A(r, x) = q(x)rν ln r + a(r) for some a ∈ C∞((0, 1]).

Replacing f by f − (rν ln r) q we may assume that q = 0 in all the cases, so that

∀r ∈ (0, 1], x ∈ B f(rx)− rνf(x) = a(r). (3.64)

Now if 0 < r, s < 1, then using the formula just above twice, we get

a(rs) = f(rsx)− (rs)νf(x) = a(r) + rνf(sx)− (rs)νf(x)

= a(r) + rν(a(s) + sνf(x))− (rs)νf(x)

= a(r) + rνa(s).

Solving this functional equation and setting

fo(x) := f(x)− a(|x|) (x ∈ G\{0}),

for a particular solution a, we check easily that fo is ν-homogeneous:

• If ν = 0, then a satisfies the functional equation

a(rs) = a(r) + a(s)

and must, therefore, be of the form a(r) = C ln(r) for some constant C ∈ C.
Using (3.64) we obtain

fo(rx) = f(rx)− a(|rx|) = f(x) + a(r)− a(|rx|) = f(x)− C ln |x| = fo(x).
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• If ν �= 0, then a satisfies the functional equation

a(r) + rνa(s) = a(s) + sνa(r)

and must therefore be of the form a(r) = C(1−rν) for some constant C ∈ C.
Using (3.64) we obtain

fo(rx) = f(rx)− C(1− |rx|ν) = rνf(x) + C(1− rν)− C(1− |rx|ν)
= rν (f(x)− C(1− |x|ν)) = rνfo(x).

Hence (3.62) is proved and we can now go back to showing the main claim, that
is, the one given in (3.61). Let f and pj be as in the hypotheses of (3.61).

First we see that if ν < 0, then all the polynomials pj are zero and, inspired
by the construction of q above, we check easily that

∂

∂xj

(
ν−1

n∑
k=1

υkxk
∂f

∂xk

)
=

∂f

∂xj
,

thus f and ν−1
∑n

k=1 υkxk
∂f
∂xk

must coincide so (3.61) is proved in this case.

Let us assume ν ≥ 0. We claim that

∀j, k = 1, . . . , n
∂pk
∂xj

=
∂pj
∂xk

. (3.65)

This is certainly true if ν − υj − υk < 0 since both are zero in this case. If instead
ν − υj − υk ≥ 0 then the polynomial

∂pk
∂xj
− ∂pj

∂xk
=

∂

∂xj

(
pk −

∂f

∂xk

)
− ∂

∂xk

(
pj −

∂f

∂xj

)
,

is in Kν−υj−υk and thus must be zero. Indeed if a polynomial p is in some Ka then
either a �∈ W and then p = 0, or a ∈ W and p(rx) is a polynomial in r of degree
≤ a with r−ap(rx) unbounded unless p = 0; in both cases, p = 0.

Therefore, we can construct q as above by (3.63) so that ∂q
∂xj

= pj . Then

∂(f − q)

∂xj
=

∂f

∂xj
− pj ∈ Kν−υj for all j = 1, . . . , n,

so f − q ∈ Kν by (3.62).
This concludes the proof of Claim (3.61) and of Lemma 3.2.42. �

Remark 3.2.43. The class of functions Kν defined in Lemma 3.2.42 is also used in
the definition of the calculus by Christ et al. [CGGP92].

As an application of Theorem 3.2.40, let us extend Liouville’s Theorem to
homogeneous Lie groups.
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3.2.8 Liouville’s theorem on homogeneous Lie groups

Let us consider the following statement and proof of Liouville’s Theorem in Rn:

Theorem 3.2.44 (Liouville). Every harmonic tempered distribution is a polynomial.
This means that if f ∈ S ′(Rn) and Δf = 0 in the sense of distributions where

Δ is the canonical Laplacian, then f is a polynomial on Rn.

Proof. Let f ∈ S ′(Rn) with Δf = 0. Then |ξ|2f̂ = 0 where f̂ is the Euclidean

Fourier transform of f ∈ S ′(Rn) on Rn. Hence the distribution f̂ is supported at
the origin and must be a linear combination of derivatives of the Dirac distribution
at 0, see Proposition 1.4.2. Consequently f is a polynomial. �

Liouville’s Theorem and its proof given above are also valid for any homo-
geneous elliptic constant-coefficient differential operator on Rn. We now show the
following generalisation for homogeneous Lie groups:

Theorem 3.2.45 (Liouville theorem on homogeneous Lie groups). Let L be a ho-
mogeneous left-invariant differential operator on a homogeneous Lie group G. We
assume that L and Lt are hypoelliptic on G. If the distribution f ∈ S ′(G) satisfies
Lf = 0 then f is a polynomial.

The rest of this section is devoted to the proof of Theorem 3.2.45. We follow
the proof given by Geller in [Gel83].

Let ·̂ denote the Euclidean Fourier transform on Rn (cf. (2.25)). In view of

the proof of Theorem 3.2.44, we want to show that the distribution f̂ is supported
at 0. For this purpose, it suffices to show that any test function φ ∈ S(G) whose

Euclidean Fourier transform is supported away from 0, that is, supp φ̂ �� 0, can be
written as Ltψ for some ψ ∈ S(G). Indeed, denoting momentarily ι(x) = −x for
x ∈ G identified with Rn, and by ·̌ the inverse Fourier transform on Rn, we have
φ̌ = φ̂ ◦ ι, so that supp φ̌ = supp φ̂, and

〈f̂ , φ̌〉 = 〈f, φ〉 = 〈f, Ltψ〉 = 〈Lf, ψ〉 = 0.

The set of functions φ with 0 �∈ supp φ̂ is contained in

So(Rn) :=

{
φ ∈ S(Rn) :

(
∂

∂ξ

)α

φ̂(0) = 0, ∀α ∈ Nn
0

}
.

We observe that the space So(Rn) can be also described in terms of the group
structure using the identification of G with Rn, as

So(Rn) = So(G) = {φ ∈ S(G) :

∫
G

xαφ(x)dx = 0, ∀α ∈ Nn
0}.

Indeed
∫
Rn xαφ(x)dx = cα(

∂
∂ξ )

αφ̂(0) with cα a known non-zero constant. Here dx
denotes the Lebesgue measure on Rn and the Haar measure on G since these two
measures coincide via the identification of G with Rn.
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By Theorem 3.2.40, the operator Lt has a fundamental solution κ ∈ S ′(G)
satisfying Part (a) or (b) of the statement. Thus we need only showing that for
any φ ∈ So(G), the function ψ := φ ∗κ is not only smooth (cf. Lemma 3.1.55) but
also Schwartz. This is done in the following lemma:

Lemma 3.2.46. If φ ∈ So(G) is a Schwartz function and κ ∈ S ′(G) is a homo-
geneous distribution smooth away from the origin or a distribution of the form
κ = p(x) ln |x| where p is a polynomial and | · | a homogeneous quasi-norm smooth
away from the origin, then φ ∗ κ ∈ S(G).

The end of this section is devoted to the proof of Lemma 3.2.46; this relies
on consequences of the following versions of Hadamard’s Lemma for S(Rn) and
So(Rn):

Lemma 3.2.47 (Hadamard). Let f ∈ S(Rn) with
∫
f = 0. Then f can be written

as

f =

n∑
j=1

∂fj
∂xj

with fj ∈ S(Rn)

In addition, if f ∈ So(Rn), each function fj can be also taken in So(Rn).

Proof of Lemma 3.2.47. We fix χo ∈ D(Rn) such that χo(ξ) = 1 if |ξ| ≤ 1 and

χo(ξ) = 0 if |ξ| > 2. Since
∫
f = 0 we have f̂(0) = 0 and

f̂(ξ) = χof̂ + (1− χo)f̂ = (χof̂)− (χof̂)(0) + (1− χo)f̂ .

We can write

(χof̂)(ξ)− (χof̂)(0) =

∫ 1

0

∂t

((
χof̂

)
(tξ)

)
dt =

n∑
j=1

ξj

∫ 1

0

∂(χof̂)

∂ξj
(tξ)dt,

and

(1− χo)f̂(ξ) =

n∑
j=1

ξ2j
1− χo(ξ)

|ξ|2 f̂(ξ) (here |ξ|2 =

n∑
j=1

ξ2j ).

We set

hj(ξ) :=

∫ 1

0

∂(χof̂)

∂ξj
(tξ)dt+ ξj

1− χo(ξ)

|ξ|2 f̂(ξ).

The first term is compactly supported (in the ball of radius 2), whereas the second
one is well defined and is identically 0 on the unit ball. Since both terms are
smooth, hj ∈ S(Rn). We have obtained f̂ =

∑
j ξjhj . We define fj ∈ S(Rn) such

that f̂j = cjhj where the constant cj is such that ∂̂j = cjξj . Hence f =
∑

j
∂fj
∂xj

.

Moreover, since (
∂

∂x

)α

hj(0) =

(
∂

∂x

)α
∂

∂ξj
f̂(0),

we see that if f ∈ So(Rn) then fj ∈ So(Rn). �
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We will use the following consequence of Lemma 3.2.47 (in fact only the
second point):

Corollary 3.2.48. • If f ∈ So(Rn), then for any M ∈ N0,

f =
∑

|α|=M

(
∂

∂x

)α

fα with fα ∈ So(Rn).

• If f ∈ So(G) where G is a homogeneous Lie groups, then for any M ≥ 1, we
can write f as a finite sum

f =
∑

[α]>M

Xαfα

with fα ∈ So(G).

Proof of Corollary 3.2.48. Both points are obtained recursively, the first one from
Lemma 3.2.47 and the second from the following observation: if f ∈ So(G), there
exists gj ∈ So(G) such that f =

∑n
j=1 Xjgj . Indeed writing f as in Lemma 3.2.47

and using (3.17) with Remark 3.1.29 (1), we set

gj := fj +
∑

1≤k≤n
υj<υk

(pj,kfj)

and we see that gj ∈ So(G). �

We can now prove Lemma 3.2.46.

Proof of Lemma 3.2.46. Let κ be a distribution as in the statement. We can always
decompose κ as the sum of κ0 + κ∞, where κ0 has compact support and κ∞ is
smooth. Indeed, let χ ∈ D(G) be identically 1 on a neighbourhood of the origin
and define κ0 by

〈κ0, φ〉 := 〈κ, χφ〉.

Then

κ∞ := κ− κ0

coincides with (1 − χ)κo, where κo is a smooth function on G\{0} either homo-
geneous or of the form p(x) ln |x|; we denote by ν the homogeneous degree of the
function κo or of the polynomial p.

Let φ ∈ So(G). Since the distribution κ0 is compactly supported, we get, by
Lemma 3.1.55, that φ ∗ κ0 ∈ S(G). Since, by Corollary 3.2.48, we can write φ as
a (finite) linear combination of Xαf with f ∈ So(G) and [α] as large as we want.
We observe that

(Xαf) ∗ κ∞ = f ∗ X̃ακ∞
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and that for [α] larger that |ν|+N + 1 for N ∈ N0 fixed, we have

|X̃ακ∞(x)| ≤ CN (1 + |x|)−N .

Thus

|(Xαf) ∗ κ∞(x)| = |f ∗ X̃ακ∞(x)| =
∣∣∣∣∫

G

f(y)X̃ακ∞(y−1x)dy

∣∣∣∣
≤

∫
G

|f(y)|CN (1 + |y−1x|)−Ndy

≤ CNCN
o (1 + |x|)−N

∫
G

|f(y)|(1 + |y|)Ndy,

by (3.43). This shows that φ ∗ κ∞ ∈ S(G). �
Hence Lemma 3.2.46 and Theorem 3.2.45 are proved.
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