Chapter 4

Rockland operators and Sobolev
spaces

In this chapter, we study a special type of operators: the (homogeneous) Rockland
operators. These operators can be viewed as a generalisation of sub-Laplacians to
the non-stratified but still homogeneous (graded) setting. The terminology comes
from a property conjectured by Rockland and eventually proved by Helffer and
Nourrigat in [HN79], see Section 4.1.3.

First, we discuss these operators in general. Subsequently, we concentrate on
positive Rockland operators and study the heat semi-group, the Bessel and Riesz
potentials and the Sobolev spaces naturally associated with a positive Rockland
operator. Most results concerning the heat semi-group are known [FS82, ch.3.B|.
To the authors’ knowledge, however, this chapter is the first systematic presenta-
tion of the fractional powers and the homogeneous and inhomogeneous Sobolev
spaces associated with a positive Rockland operator on a graded Lie group.

In fact, this appears to be the greatest generality for such constructions, since
the existence of a Rockland (differential) operator on a homogeneous Lie group
implies that the group must admit a graded structure, see Proposition 4.1.3. In
the case of stratified Lie groups, Sobolev spaces have been developed by Folland
[Fol75] for 1 < p < oo, for the Rockland operator being a sub-Laplacian (see also
[Sak79]). Since sub-Laplacians are not always available on graded Lie groups, our
constructions are based on general positive Rockland operators. In particular, this
allows one to still cover the case of stratified Lie groups, but permitting taking
Rockland operators other than a canonical sub-Laplacian.

Although we define Sobolev spaces using a fixed Rockland operator, The-
orem 4.4.20 shows that these spaces are actually independent of the choice of a
homogeneous positive Rockland operator.
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172 Chapter 4. Rockland operators and Sobolev spaces

4.1 Rockland operators

We start with the discussion of general Rockland operators, giving definitions,
examples, and then relating them to the hypoellipticity questions.

4.1.1 Definition of Rockland operators

The first definition of a Rockland operator uses the representations of the group.
We use the notation which has become quite conventional nowadays in this part
of the theory of group representations and which is explained in Section 1.7. In
particular, G' denotes the unitary dual of G and HS® the smooth vectors of a
representation m € @, see Definition 1.7.2. For a left-invariant differential operator
T we will denote 7(T') := dn(T'), see Definition 1.7.4.

Definition 4.1.1. Let T" be a left-invariant differential operator on a Lie group G.
Then T satisfies the Rockland condition when

(R) for each representation 7 € 6’, except for the trivial representation,
the operator 7(T") is injective on H°, that is,

Yv e H m(T)v=0 = v=0.

There is a similar definition of the Rockland condition for right-invariant
differential operators, and also for left or right-invariant L?(G)-bounded operators
(for the latter, see Glowacki [Glo89, Glo91]). See also Section 4.4.8.

Definition 4.1.2. Let G be a homogeneous Lie group. A Rockland operator R on
G is a left-invariant differential operator which is homogeneous of positive degree
and satisfies the Rockland condition.

Some other authors may define non-homogeneous Rockland operators as op-
erators of the form R =7, -, caX® with the ‘main’ term }_;,,_ co X satis-
fying the Rockland property given in (R). Here we have chosen to assume that a
Rockland operator is homogeneous to study directly the main term.

We will give examples of Rockland operators in Section 4.1.2. Before this,
we show that their existence on a homogeneous Lie group implies that the group
is graded and that the weights could be chosen in N. This property influences
the examples we can produce, and the subsequent development of the theory of
pseudo-differential operators.

Proposition 4.1.3. Let G be a homogeneous Lie group. If there exists a Rockland
operator on G then the group G is graded.
Furthermore, the dilations’ weights vy, ..., v, satisfy

A1V = ... = ApUp

for some integers ay, ..., ay,.
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This property was shown by Miller in [Mil80], with a small gap in the proof
later corrected by ter Elst and Robinson (see [tER97]).

Proof of Proposition 4.1.3. Let G be a homogeneous Lie group. Its Lie algebra g is
endowed with the dilations D, = Exp(InrA). Let the number n’ and {X;5,..., X, }
be the basis described in Lemma 3.1.14. We assume that there exists a v-homo-
geneous Rockland operator R which we can write as

R = Z CaX®.

[a]=v

We fix an integer 7 < n’. Let ¢ : g — R be the linear functional such that
&(Xk) = 0jk, that is, ¢(X;) = 1 while ¢(X}) = 0 for any k # j. Since X ¢ [g, g],
¢ is identically zero on [g, g]. We set for any X € g:

T(expg X) := exp (i¢(X)) .

This defines a one-dimensional representation 7 of GG. Indeed, if z,y € G, we can
write © = exps X and y = expg Y and we have

xy =expg X expa Y =expa(X +Y + 2)

with Z € [g,g] by the Baker-Campbell-Hausdorff formula (see Theorem 1.3.2).
Thus, ¢(Z) = 0 and we obtain

m(xy) = exp(ip(X +Y + 2)) = exp (ig(X) +i¢(Y))
= exp (i¢(X)) exp (ig(Y)) = ()7 (y).

So 7 is a one-dimensional representation of G and we see that
T(Xg) = Opmom(e!™*) = Oseg exp (i9(t X)) = Or—o exp (itp( X)) = id; .

As 7 is a non-trivial one-dimensional representation of G and R satisfies the
Rockland condition,

m(R) = Z cam(X®)

[a]=v

must be non-zero. We see that 7(X®) is always zero unless « is of the form ae; for
a € N where e; is the multi-index with 1 in the j-th place and zeros elsewhere; in
this case [a] = vja. So v must be of the form v = v;a for some integer a = a; € N
which may depend on j. And this is true for any j =1,...,n/.

Since Xi,..., X, generate the Lie algebra g, the other weights are linear
combinations with coefficients in Ny of the v;’s, j < n’. This shows that the oper-
ators D). = Exp(IHT’"A) are dilations over g with rational weights. By Lemma 3.1.9,
the group G is graded. O
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Remark 4.1.4. Proposition 4.1.3 and Remark 3.1.8 imply that the natural context
for the study of Rockland operators is a graded Lie group endowed with a family
of dilations with integer weights.

One may further assume that the weights have no common divisor other than
1 but we do not assume so unless we specify it.

From the proof of Proposition 4.1.3, we see:

Corollary 4.1.5. Let G be a graded Lie group and let {X1,...,X,} be the basis
described in Lemma 3.1.14. We keep the notation of the lemma.
The homogeneous degree of any Rockland operator is a multiple of v, ..., Uy .
If R is a Rockland operator satisfying Rt = R then its homogeneous degree
is even.

4.1.2 Examples of Rockland operators

On (R™, 4), it is easy to see that Rockland differential operators are exactly the op-
erators P(—id1, ..., —i0,) where P is a polynomial which is homogeneous (for the
standard dilations) and does not vanish except at zero. For instance homogeneous
elliptic operators on R™ with constant coefficients are Rockland operators. More
generally, let us prove that sub-Laplacians on a stratified Lie group are Rockland
operators. First let us recall their definition.

Definition 4.1.6. If G is a stratified Lie group with a given basis Z1,. .., Z, for the
first stratum of its Lie algebra, then the left-invariant differential operator on G
given by

2.+ 7

is called a sub-Laplacian.
For example, the canonical sub-Laplacian of the Heisenberg group H,,, is
XP+YP+. + X2 +Y2,
see Examples 1.6.4, 3.1.2 and 3.1.3 for our notation regarding the Heisenberg

group.

Lemma 4.1.7. Any sub-Laplacian on a stratified Lie group is a Rockland operator
of homogeneous degree 2.

This could be seen as a consequence of famous powerful theorems, namely
from combining Hérmander’s sums of squares and Helffer-Nourrigat (see Theo-
rems A.1.2 and 4.1.12 in the sequel) but we prefer to give a direct and easy proof.

Proof. Let
R=2Z{+...+2;

be a sub-Laplacian on the stratified Lie group G, where 71, ..., Z, is a given basis
for the first stratum V; of the Lie algebra of G.
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Clearly R is a homogeneous left-invariant differential operator of degree 2.
Let m € G\{1} and v € HZ° be such that 7(R)v = 0. Then

0 = (R0, = (1(Z1)%, 0y + -+ (7(Zp) 20,00,
= —(n(Zy)v,m(Z1)0)u, — .. — (7(Zp)v, 7 (Zy)0) 3.,
= —n(@)oli, = = I7(Zp)oli3e,
and hence
m(Z1)v=...=n(Zy,)v=0.

Since {Z1,...,Z,} generates linearly the first stratum V; of g and V; generates
g as a Lie algebra, we see that m(X)v = 0 for any vector X € g. But since 7 is
non-trivial and irreducible, this forces v to be zero. O

Looking at the proof of Lemma 4.1.7, it is not difficult to construct the
‘classical’ Rockland differential operators on graded Lie groups G:

Lemma 4.1.8. Let G be a graded Lie group of dimension n, i.e. G ~ R™. We denote
by {D,}r>0 the natural family of dilations on its Lie algebra g, and by vy, ..., v,
its weights. We fix a basis {X1,...,X,} of g satisfying

Der:T’Uij, j:l,...,n, r > 0.

If v, is any common multiple of vy, ..., v,, the operator
n vo 2re
S (1) X; Y with ;> 0, (4.1)
j=1

is a Rockland operator of homogeneous degree 2v,.

Proof. The operator R given in (4.1) is clearly a homogeneous left-invariant dif-

ferential operator of homogeneous degree 2v,. Let 7 € é\{l} and v € H$° be such
that 7(R)v = 0. Then

n
Vo Vo

0 = (W(R)Uav)m:Z(—l)“jcj(W(Xj) ViU, ),
= S (X)) vl

Jj=1

and hence W(Xj)ﬁv =0forj=1,...,n.
Let us observe the following simple fact regarding any positive integer p and
any Z € 4(g): the hypothesis 7(Z)Pv = 0 implies that

e if p is odd then 7(Z)PT1v = 7(Z)7(Z)Pv = 0,
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e whereas if p is even then
0= (7(Z)Pv,v)u, = (=1 *(7(2) 20, 7(Z) 30}, = (=1)P2||x(Z)20lf3,,
and hence 7(Z)%v = 0.

Applying this argument inductively on Z = X, and p = v,/v;, vo/2v;,...,
we obtain that 7(X;)v = 0 for each j. Hence v = 0. O

Remark 4.1.9. By Proposition 4.1.3 and its proof, if a homogeneous Lie group G
admits a Rockland operator, then, up to rescaling the dilations (cf. Remark 3.1.8),
we may assume that the group G is graded and endowed with its natural family
of dilations {D, },>0. Lemma 4.1.8 gives the converse: on such a group, we can
always find a Rockland operator.

The proof of Lemma 4.1.8 can easily be modified using an adapted basis
constructed in Lemma 3.1.14 to obtain

Corollary 4.1.10. Let G be a graded Lie group endowed with a family of dilations
{D;}rs0. Let {X1,..., X} be a basis of g as in Lemma 3.1.14. In particular, the
vectors Xy, ..., X, generate the Lie algebra g.

If v, is any common multiple of vy, ..., v, , the operator
n' L;o 2
S (42
j=1

is a Rockland operator of homogeneous degree 2v,.

If the group G is stratified, the vectors Xi,..., X, span linearly the first
stratum and we obtain the sub-Laplacian if we choose v, = v;.

From one Rockland operator, we can construct many since powers of a Rock-
land operator or its complex conjugate operator are Rockland:

Lemma 4.1.11. Let R be a Rockland operator on a graded Lie group G endowed
with a family of dilations with integer weights. Then the operators RE for any
k € N and R are also Rockland operators.

The operator R as an element of $i(g) was defined in (1.8).

Proof. Tt is clear that R and RF are left-invariant homogeneous differential oper-
atorson G.
Let m € G\{1}. We have

(R) = 7(R).

This holds in fact for any left-invariant differential operator viewed as an element
of $4(g). Therefore, R is Rockland. For the case of R*, let v € H2 be such
that m(R¥)v = 0. Applying recursively the simple fact explained in the proof of
Lemma 4.1.8, we obtain m(R)v = 0 and this implies v = 0 because R is Rockland.
Therefore, RF is also Rockland. O
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4.1.3 Hypoellipticity and functional calculus

The analysis of left-invariant homogeneous operators on a nilpotent graded Lie
group has played a very important role in the understanding of hypoellipticity.
We refer the interested reader on this subject to the lecture notes by Helffer and
Nier [HNO5]. For the definition of hypoellipticity, see Section A.1.

In [Roc78], Rockland showed that if T is a homogeneous left-invariant dif-
ferential operators on the Heisenberg group H,, , then the hypoellipticity of T
and T" is equivalent to the Rockland condition (see Definition 4.1.1). He also
asked whether this equivalence would be true for more general homogeneous Lie
groups. Just afterwards, Beals showed [Bea77b] that the hypoellipticity of a homo-
geneous left-invariant differential operator on any homogeneous Lie group implies
the Rockland condition. At the same time he also showed that the converse holds
in some step-two cases. Eventually in [HN79], Helffer and Nourrigat settled what
has become Rockland’s conjecture by proving the following equivalence:

Theorem 4.1.12. Let R be a left-invariant and homogeneous differential opera-
tor on a homogeneous Lie group G. The hypoellipticity of R is equivalent to R
satisfying the Rockland condition.

In this case, any operator of the form

R+ > caX?,

[a]<v

where v is the degree of homogeneity of R and c, any complex number, is also
hypoelliptic.

The proof of Theorem 4.1.12 relies on the description of G via Kirillov’s orbit
method.

Remark 4.1.13. 1. The hypotheses of Theorem 4.1.12 with the existence of a
Rockland operator imply that the family of dilations of the group may be
rescaled to have integer weights and consequently that the group may be
viewed as graded, see Proposition 4.1.3. When describing properties of a
Rockland operator R on a homogeneous Lie group G, unless stated otherwise,
we will always assume that the group G is graded in such a way that the
operator R is homogeneous for the natural family of dilations (with integer
weights).

2. Combining the theorems of Hellfer-Nourrigat and of Hérmander (see Theo-
rems 4.1.12 and A.1.2) gives another proof that the sub-Laplacians are Rock-
land operators, see Lemma 4.1.7.

3. If R is a Rockland operator formally self-adjoint, i.e. R* = R as elements of
iU(g), then R* = R must also be Rockland by Lemma 4.1.11. Hence Theorem
4.1.12 implies that any formally self-adjoint Rockland operator satisfies the
hypothesis of Theorem 3.2.40 and thus admits fundamental solutions. It also
satisfies the hypothesis of the Liouville theorem as in Theorem 3.2.45.
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4. Let us also mention an alternative reformulation of the Hellfer-Nourrigat
theorem given by Rothschild [Rot83]: a left-invariant homogeneous operator
R on a graded Lie group G is hypoelliptic if and only if there is no non-
constant bounded function f on G such that Rf = 0 on G. The proof of
this relies on the Liouville theorem from Section 3.2.8. Essentially, in one
direction this is Beals’ result as above, while in the other it will follow from
Corollary 4.3.4.

Along the proof of Theorem 4.1.12 (see [HN79, Estimate (6.1)]), Helffer and
Nourrigat also showed the following property which will be used in the sequel.

Corollary 4.1.14. Let G be a graded Lie group endowed with a family of dilations
with integer weights. Let R be a Rockland operator G of homogeneous degree v.
Then there exists C > 0 such that

V6 eS(G) D IX I3k < C (IR + 1913x(c) ) -

la]=v

After developing the Sobolev spaces on G, we will be actually able to prove
its LP-version, see Lemma 4.4.19.

The following property of Rockland differential operators is technically im-
portant and relies on hypoellipticity.

Proposition 4.1.15. Let R be a Rockland operator on a graded Lie group G. We
assume that R is formally self-adjoint. Let m be a strongly continuous unitary
representation of G.

Then the operators R and m(R) densely defined on D(G) C L*(G) and H® C

Hr, respectively, are essentially self-adjoint.

That R is formally self-adjoint means that R* = R as elements of the uni-
versal enveloping algebra $(g), see (1.9).

Before we prove it, let us point out its consequences:

Corollary 4.1.16 (Functional calculus of Rockland operators and their Fourier
transform). Let R be a Rockland operator on a graded Lie group G. We as-
sume that R is formally self-adjoint as an element of U(g). Then R is essentially
self-adjoint on L?(G) and we denote by Ro its self-adjoint extension on L*(G).
Moreover, for each strongly continuous unitary representation m of G, w(R) is
essentially self-adjoint on H, and we keep the same notation for its self-adjoint
extension. Let E, E. be the spectral measures of Ro and w(R):

Ry — /}R ME(\) and w(R) = /}R MEL(N).

For any Borel subset B C R, the orthogonal projection E(B) is left-invariant
hence E(B) € ZL(L*(G)). The group Fourier transform of its convolution kernel
E(B)d € K(G) is

Fa(E(B)do)(m) = Ex(B).
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If ¢ is a measurable function on R, the spectral multiplier operator ¢(Ra) is
defined by

6(Rs) = / HNAE(N),

and its domain Dom(¢(R2)) is the space of function f € L*(G) such that the
integral [i, |p(N)[2d(E(N)f, f) is finite. It satisfies for all f € Dom(¢(Rz)) and
>0

f(r-) € Dom(¢(r™"Ra)) and ¢(Ra)f =d(r™"Re) (f(r-)) (r™"-).  (4.3)

If ™1 is another strongly continuous representation such that w1 ~p m, that
is, T is a unitary operator satisfying T'mi = ©T, then TE,, = E;T and we have
for any measurable function ¢ the equality

To(m(R)) = ¢(w(R))T. (4.4)

Let ¢ € L*=(R) be any measurable bounded function. Then the spectral mul-
tiplier operator ¢(Ro) is in L1 (L*(Q)), that is, it is bounded on L*(G) and left-
invariant. Its convolution kernel denoted by ¢(R2)d, is the unique tempered dis-
tribution ¢(Rz2)0, € S'(G) such that

Vi eS(G) ¢(Ra)f = f*d(Rz2)do.
In fact p(R2)d, € K(G) and its group Fourier transform is
FLORa),} ) = 0(n(R)) = [ GOV (45)
Consequently, for any f € L*(G),
F{$(Ra) f}(m) = (m(R)) f (). (4.6)
We have for any r >0 and x € G:
H(r"Ra)d,(z) = 1~ (Ra)do(r La). (4.7)
For any ¢ € L (R),
{6(R2)d0}" = ¢(R)do, where {$(R2)do}" () = ¢(R2)do(x). (4.8)

If ¢ is also real-valued, then ¢(Rz2) is a self-adjoint operator and its kernel satisfies
P(R2)do = (H(R2)0,)*, that is, in the sense of distributions,

#(R2)do(x) = ¢(R2)6o(m71)'

If ¢ is real-valued and furthermore if R* = R, then ¢(R2)d, is real-valued
(as a distribution).
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Remark 4.1.17. For any measurable function ¢ : R — C such that for every
71 € Rep G, the domain of ¢(71(R)) contains H:S, the corresponding G-field of
operators {¢(m(R)) : HS® — H,} is well defined in the sense of Definition 1.8.13
because of (4.4). This is the case for instance if ¢ is bounded since in this case
¢(m1(R)) is a bounded and therefore defined on the whole space Hr,.

The rest of this section is devoted to the proof of Proposition 4.1.15 and
Corollary 4.1.16; it may be skipped at first reading. Proposition 4.1.15 follows
from a Theorem by Nelson and Stinespring [NS59, Theorem 2.2] regarding elliptic
operators on Lie groups as well as the adaptation of its proof due to Folland and
Stein [FS82, ch.3.B] to our case. Let us sketch briefly the ideas for the sake of
completeness. Nelson and Stinespring’s Theorem can be reformulated here as the
following:

Proposition 4.1.18. Let R be a Rockland operator on a graded Lie group G. We
assume that R is formally self-adjoint as an element of $4(g).

If 7 is a strongly continuous unitary representation of G, then the closure of
m(R*) is the adjoint of m(R).

Proof of Proposition 4.1.18. Let v € H, be orthogonal to the range of m(R) + I.
Then for all ¢ € D(G),

0= ((m(R) +Dm(@)v,v)y, = / (R+Do(x) (m(x) v, v)y, de.

G

In other words, the continuous function f, defined by

fr(z) = (7‘(‘(1?)*11,11)7_[7( = (U,ﬂ'(x)v)yw , reG,

is a solution in the sense of distributions of the partial differential equation (R +
I)f = 0. By Theorem 4.1.12, the operator R +1 is hypoelliptic. Hence f; is smooth
on G and the equation (R +I)f; = 0 holds in the ordinary pointwise sense. We
observe that for any X € 4(g) identified with a left-invariant vector field we have

X fr(z) = O1=0 {(U, w(wetX)v)Hw} = (v,m(2)T(X)v)y -

™

Thus,
(R+ D) fr(2) = (0,m(2)m(R)v)gy, + (0, 7(2)0)4 -
Therefore, (R + 1) f(0) = 0 implies

(v, 7(R)v)yy, = —(v,0)3, = —lvllF, -

If R can be written as S*S for some non-constant S € $(g), then the left-hand
side is equal to [|7(S)v||? so v = 0. In the general case, we apply the argument
above to R*R = R? which is also a Rockland operator by Lemma 4.1.11, and we
obtain the desired conclusion thanks to the following lemma applied to T' = 7(R),
T =xm(R*) and D = H®. O
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Lemma 4.1.19. Let D be a dense vector subspace of a Hilbert space H. Let T and
T’ be two linear operators on H, whose domains are D and whose ranges are
contained in D such that T' is contained in the adjoint of T. If T'T is essentially
self-adjoint then the closure of T is the adjoint of T.

Proof of Lemma 4.1.19. We denote by T, the adjoint of T'. Let (u,v) be an element
of the graph of T, which is orthogonal to the graph of 7. This means

v=Tw and YweD  (u,w)y + (v,T'w)y =0.
In particular, for w = Tz with « € D, we obtain
0= (u,Ta)y + (v, T'Tx)yy = (v,2)y + (v, T"Tx)y, z€D.

But it is not difficult to see that I + 7'T has a dense range. Consequently v = 0.
So (u,w)y = 0 for all w € D and therefore v = 0. This shows that the graph of
T, contains no non-zero element orthogonal to the graph of T’; hence the closure
of T" is T,. O

Proof of Proposition 4.1.15. We apply Proposition 4.1.18 to the left regular action
on L?(G) and the strongly continuous unitary representation 7 of G. O

Proof of Corollary 4.1.16. Applying the spectral theorem to the self-adjoint op-
erators Ro and 7(R) (see, e.g., Rudin [Rud91, Part III]) we obtain the spectral
measures E and E, together with the definition of the spectral multipliers.

For each z, € G and r > 0 we set for any Borel set B C R and any function

fer*a),
E@(B)f = (E(B) (f(ws")) (25",
E(B)f = (E(r"B))(f(r)(r "),
where the dilation of a subset of R is defined in the usual sense. It is not difficult

to check that this defines new spectral measures E(*°) and E(") and, that for any
function f € S(G),

/ AE®@I () f = / M (EN) (f(20) (2,1 ) = Ra (f(20-)) (2, +)
R R
R(f(zo-) (2" ) =Rf =Raf,
/R (U NA(EWN) (F(r) (1) = rYRa () ()
= UR(f(r) (') = Rf = Raf,

/ MET (N f
R

since R is left-invariant and v-homogeneous. By density of S(G) in L?(G), we have
obtained for any f € L?(G) that

/ ME®)(\)f = Rof and / MET (N f = Raf.
R R
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By uniqueness of the spectral measure of Ro, the spectral measures E®) E()
and E coincide. For E(") this implies (4.3).

For E(*) this means that for each Borel subset B C R, the projection E(B)
is a left-invariant operator on L?(G). By the Plancherel theorem (see Section 1.8.2)
the group Fourier transform of its convolution kernel E(B)dy € K(G) satisfies

VfeL*(G)  w(B(B)f)=m(E(B)do)n(f). (4.9)

It is not difficult, using the uniqueness of the group Fourier transform, to check
that
F: B+ n(E(B)dy) =: F(B),

is a spectral measure on H... Equality (4.9) can be rewritten for any f € L?(G) as

7o ([ oaes ) ) = ([ onary ) fim), (4.10)

with ¢ = 15, that is, the characteristic function of a Borel subset B C R. Hence
Equality (4.10) also holds for a finite linear combination of characteristic functions,
and then, passing through the limit carefully, for any ¢ € L°°(R) with f € L*(Q)
and ¢(A\) = A for f € S(G). The latter yields

(/R AdF(A)) fln) = Fa (/R AdE(A)f) (m)
= Fo(Raf)(n) = m(R) f(n).

Since the space H2° of smooth vectors is linearly spanned by elements of the form

~

f(m)v, f € S(G), v € H, (see Theorem 1.7.8), we have on H°

/ AE(N) = 7w(R).

R

The uniqueness of the spectral measure E, shows that
E.(B) = F(B) = 7n(E(B)do).

Equality (4.5) follows from (4.10) for ¢ € L>=(R).
If 7y ~7 m, then we set ESVT = TEﬁT_l7 where ., denotes the spectral

measure of w1 (R). We check easily that E") is a spectral measure on H, and that

/ MED =T / NE.,T7' =Tm(R)T™' =TmT"YR) = n(R).
R R
The property of the spectral measure E;, that is, its uniqueness and the functional
calculus, shows that E{") = E, and that (4.4) holds.

The rest of the statement follows from the Schwartz kernel theorem (see
Corollary 3.2.1) and basic properties of the convolution. O
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4.2 Positive Rockland operators

In this section we concentrate on positive Rockland operators, i.e. Rockland oper-
ators which are positive in the operator sense. Positive Rockland operators always
exist on a graded Lie group, see Remark 4.2.4 below. Among Rockland operators,
positive ones enjoy a number of additional useful properties. In particular, in this
section, we analyse the heat semi-group associated to a positive Rockland operator
and the corresponding heat kernel.

4.2.1 First properties

We shall be interested in Rockland differential operators which are positive in the
sense of operators:

Definition 4.2.1. An operator 7' on a Hilbert space H is positive when for any
vectors v, v1,vs € H in the domain of T, we have

(Tv1,v2)y = (v1,Tve)y and (Tw,v)y > 0.

In the case of left-invariant differential operator, this is easily equivalent to

Proposition 4.2.2. Let T be a left-invariant differential operator on a Lie group G.
Then T is positive on L*(G) when T is formally self-adjoint, that is, T* =T in
$(g), and satisfies

Vf € D(G) LTf(x)mdx > 0.

For the definition of T, see (1.9).
The following properties of positive operators are easy to prove:

Lemma 4.2.3. 1. A linear combination with non-negative coefficients of positive
operators is a positive operator.

2. If X is a left-invariant vector field and p € 2Ny, then the operator (—1)%X”
18 positive on G.

3. If T is a positive differential operator on G then for any k € N the differential
operator T* is also positive.

Proof. The first property is clear.

The second is true since each invariant vector field is essentially skew-sym-
metric, see Section 1.3.

Let us prove the third property. Let T" be a positive differential operator and
k € N. Clearly T* is also formally self-adjoint and we obtain recursively if k = 2

k ) = ¢ i x)ar = ¢ i 2 X
/G T f (2) F(@)d = /G T ()T f(w)d /G 7 f () d,
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which is necessarily non-negative, whereas if k = 2¢ + 1,

/ T* f () F(@)da = / T(T* f () TP (@),
G

G

which is non-negative since 7T is positive. O

We observe that the signs of the coefficients of a positive differential operator
can not be guessed, as the example —(d; & 92)? on R? shows.

Remark 4.2.4. By Lemma 4.2.3, Parts 1 and 2, we see that the examples in Section
4.1.2 yield positive Rockland operators. For instance, on stratified Lie groups,
the sub-Laplacians give operators —R with R positive and Rockland. Also, the
operators in (4.1) and (4.2) give positive Rockland operators. In particular, this
shows that any graded Lie group admits a positive Rockland operator.

We may obtain other positive Rockland operators as powers of those since a
direct consequence of Lemma 4.1.11 and Lemma 4.2.3, Part 3, is the following

Lemma 4.2.5. Let R be a positive Rockland operator on a graded Lie group G.
Then RF for every k € N and R = R? are also positive Rockland operators.

We fix a positive Rockland operator R. By Proposition 4.2.2, R is essentially
self-adjoint and we may adopt the same notation as in Corollary 4.1.16. Since R
is positive, the spectrum of R4 is included in [0, c0) and we have

Ry = /OOO AE(N).

Proposition 4.2.6. Let R be a positive Rockland operator on a graded Lie group G.
If m € G, then the operator w(R) is positive. Furthermore, if 7 is non-trivial and

(m(R)v,v)n, =0
then v = 0.
Proof. By Proposition 4.1.15, n(E(B)) = Er(B). Since E is supported in [0, c0)
then so is E; and the operator m(R) is positive:

Vo e H®  (nr(R)v,v), = / M(Ex (N, o). > 0.
0

If (m(R)v,v)3, = 0 then the (real non-negative) measure (Er(\)v,v)y, is con-
centrated on {\ = 0} and this means that v = E;(0)v is in the nullspace of 7(R).
Thus v = 0 since R satisfies the Rockland condition and 7 is non-trivial. 0
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4.2.2 The heat semi-group and the heat kernel

In this section, we fix a positive Rockland operator R which is homogeneous of
degree v € N.
By the functional calculus (see Corollary 4.1.16), we define the multipliers

e tR2 ::/ e"ME()), t>0.
0

We then have

le™ 2| ¢ (r2(q)) < ?\1;;8 lem| =1 and e tR2e Rz = o~ (tHs)R2,

since e~ et = e~ (H9X Thus {e*R2},5¢ is a contraction semi-group of oper-

ators on L%(G) (see Section A.2). This semi-group is often called the heat semi-
group. The corresponding convolution kernels h; € S'(G), t > 0, are called heat
kernels. We summarise its main properties in the following theorem:

Theorem 4.2.7. Let R be a positive Rockland operator on a graded Lie group G.
Then the heat kernels hy associated with R satisfy the following properties.
FEach function hy is Schwartz and we have

Vs,t >0 ht * hs = ht+37 (411)
Ve e G, t,r >0 hovi(rz) = r~9hy(x), (4.12)
Ve e G hi(z) = h(z™h), (4.13)
/ hi(x)de = 1. (4.14)
G

The function h : G x R — C defined by

| h(z) ift>0andzxed,
h(x’t)'_{o ift<0andzx e G,

is smooth on (G x R)\{(0,0)} and satisfies
(R -+ &g)h = 5070,

where 8o o is the delta-distribution at (0,0) € G x R.
Having fized a homogeneous norm |-| on G, we have for any N € Ny, a € Nj
and £ € Ny, that

IC=Coane>0 Vte(0,1] sup |0f Xhi(z)| < Cont™. (4.15)
|z|=1

The proof of Theorem 4.2.7 is given in the next section. We finish this section
with some comments and some corollaries of this theorem.
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Remark 4.2.8. 1. If the group is stratified and R = —L where L is a sub-
Laplacian, then R is of order two and the proof relies on Hunt’s theorem
[Hun56], cf. [FS82, chl.G]. In this case, the heat kernel is real-valued and
moreover non-negative. The heat semi-group is then a semi-group of contrac-
tion which preserves positivity.

2. The behaviour of the heat kernel in the general case is quite well understood.
For instance, it can be extended to the complex right-half plane. Then the
heat kernel h, with z € C, Re z > 0 decays exponentially. See [Dzi93, DHZ94,
AtER94].

3. Since R; is a positive operator, only the values of ¢ € L>(R) on [0, 00) are
taken into account for the multipliers ¢(R2). But in fact, the value at 0 can

be neglected too, as a consequence of the property of the heat kernel. Indeed,
from h; € S(G) and (4.12), it is not difficult to show

If * hell 22 =20
first for f € D(G) and then by density for any f € L2. This shows
—tR
le™™2 fllz2(e) =2 0,

and therefore we have
I M@ =0

4. Another consequence of the heat kernel being Schwartz, proved in [HJL85],
is that the spectrum of m(R) is discrete and lies in (0, 00) for any 7 € G\{1}.
Indeed, it is easy to see that w(R) is the infinitesimal generator of the semi-
group {m(e”*®)};>0 in H, and that (e *®) = 7(h;) is a compact operator
since hy € S(G) (for this last property, see [CG90, Theorem 4.2.1]).

Moreover, strong properties of the eigenvalue distributions of 7(R) are
known, see [tER97].

Theorem 4.2.7 shows that the functions h; provide a commutative approx-
imation of the identity, see Remark 3.1.60. We already know that {e=*R2}, is
a strongly continuous contraction semi-group. Moreover, we have the following
properties for any p:

Corollary 4.2.9. The operators
f — f * ht, t> 0,

form a strongly continuous semi-group on LP(G) for any p € [1,00) and on Co(G).
Furthermore, for any f € D(G) and any p € [1,00] (finite or infinite), we have
the convergence

——0 0. (416)
p

3G en=n-rs




4.2. Positive Rockland operators 187

Finally, we formulate a simple but useful corollary of Theorem 4.2.7.

Corollary 4.2.10. Settingr =t"v in (4.12), we get

Ve EG, t>0  h(z)=t Shi(t >x) (4.17)
and
Q+lo]
a Ot~ 7 )ast— o0
€ G\{0 fized, X h(z,t) = : 418
Jor M0} fiwed, X5h(w,t) {O(tN)forallNeNo ast — 0. (4.18)

Inequalities (4.18) are also valid for any x in a fixzed compact subset of G\{0}.

4.2.3 Proof of the heat kernel theorem and its corollaries

This section is entirely devoted to the proofs of Theorem 4.2.7 and Corollaries 4.2.9
and 4.2.10. This may be skipped at first reading. The proofs essentially follow the
arguments of Folland and Stein [FS82, Ch. 4. B].

Since h; is the convolution kernel of the Ro-multiplier operator, Corollary
4.1.16 yield that h; € §’(G) is a distribution which satisfies Properties (4.12) and
(4.13) for each ¢ > 0 fixed. Note that (4.12) easily yields (4.17).

By the Schwartz kernel theorem (see Corollary 3.2.1), since (0,00) 3 t —
e tR2 ¢ Z(L*(@)) is a strongly continuous mapping, the function (0,00) >t
ht € 8'(G) is continuous. Consequently the mapping (¢, x) — hy(z) is a distribu-
tion on (0,00) x G.

By the properties of semi-groups (cf. Proposition A.2.3 (4)), we have

Vo € D(G), t >0,  Oe ¢) = —Ra(e R2¢) = —R(e "*2¢).
Taking this equation at Og shows that (¢,2) — hy(z) is a solution in the sense of
distributions of the equation (9; + R)f = 0 on (0,00) x G.

The next lemma is independent of the rest of the proof and shows that 9, +R
can be turned into a Rockland operator:

Lemma 4.2.11. Let R be a positive Rockland operator on a graded Lie group G.
We equip the group H := G x R (which is the direct product of the groups G and
(R, +)) with the dilations

D, (z,t) := (re,r"t), ze€ G, teR.

The group H has become a homogeneous Lie group and the operators R + 0y
and R — 0y are Rockland operators on H.
Proof of Lemma 4.2.11. The dual of H is easily seen to be isomorphic to G x R:

eifreGand e R, we can construct the representation p = p, » of H on
H, =H, by p(x,t) := er(x);
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e conversely, any representation p € H can be realised into a representation of
the form pr .

Let p=prx € H. We observe that H =HT, p(R) = 7(R), and p(9;) = i\
If v € H° is such that p(R + 0;)v = 0 then

0=(p(R+ 8t)v,v)7_£p = (m(R)v, )y, £iXv,0)3, = (7(R)v,v)y, =+ iM|vll3, -
Since, by Proposition 4.2.6, (7(R)v,v),, > 0, the real part of the previous equal-
ities is (m(R)v,v)y, = 0. Again by Proposition 4.2.6, necessarily v = 0. O

Remark 4.2.12. A similar proof implies that R 4 0F for k € N odd is a Rockland
operator on the group G x R endowed with the dilations D, (xz,t) = (rz,r*/*t).

Corollary 4.2.13. The distribution (t,x) — hi(z) is smooth on (0,00) x G and
satisfies the equation

(O +R)f=0.
Furthermore, for any t > 0, hy € L*(G) and
/ \he(2)2dz :f%/ |hy(2)|2dz < oo. (4.19)
G G

Proof. The operator d; + R is Rockland on G x R by Lemma 4.2.11, therefore
hypoelliptic by the Hellfer-Nourrigat theorem (see Theorem 4.1.12). Since the
distribution (¢, x) + h¢(x) is a solution of the equation (9;+R)f = 0 on (0,00) x G,
it is in fact smooth.

Since R is a positive Rockland operator, R¢ is also a positive Rockland
operator (see Lemma 4.2.5) and we can apply Lemma 4.2.11 to both. Therefore,
R + 0; and its transpose are Rockland and thus hypoelliptic on G x R. By the
Schwartz-Treves theorem (see Theorem A.1.6), the distribution topology on G x
(0,00) and the C'*°-topology agree on the the nullspace of R + 9,

N ={feD/(Gx(0,00) : (R+0)f =0}.

Since (0,00) 2 t — hy € S'(G) is continuous and (t,z) — hi(x) is smooth on
(0,00) X G, the mapping T defined via

Té(a, ) = (c=R2)(z) = /G hy(2)é(2)dz, &€ L2(G), €G, t>0,

is continuous from L?(G) to D'(G x (0,00)). Furthermore, the semi-group prop-
erties imply that the range of T lies in A/. Therefore, the mapping

12(G) 5 6 — To(0,1) = /G o) (2)da,

is a continuous functional. Hence h; must be square integrable.
By homogeneity (see (4.17)), for any ¢t > 0, we see that h; € L*(G) as a
consequence of Corollary 4.2.10 and (4.19) must hold. O
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We now define the function h : G x R — C as in the statement of Theorem
4.2.7 by
_f h(z) ift>0andxz e,
h(f”’t)'{o if£<0andzeG.
By Corollary 4.2.13, the function h is smooth on G x (R\{0}) and satisfies the
equation (R 4+ 9;)h = 0 on G x (R\{0}). However, it is not obvious that it is a
distribution on G x R. Our next goal is to prove that it is indeed a distribution
and that it satisfies the equation (R + d;)h = 0 on G x R.

It is easy to prove that h is a distribution under the assumption v > Q/2
since it is then locally integrable:

Lemma 4.2.14. If v > Q/2, then h is locally integrable on G x R.

Proof of Lemma 4.2.14. We assume v > /2. We see that for any ¢ > 0 and
R > 0, using the homogeneity property given in (4.19),
1
2
/ ldz | dt
|z|<R

/OE /$|<R|h(x,t)|dmdt /0 </|x|<Rht(x)|2dx>
1B(0,1)]} RO/ (/G |h1(x)|2dx) : /Oet‘gfdt

= C’RQ/QGP%,

1
2

IN

IN

since we assumed v > @ /2. This shows that h is locally integrable on G x R and
hence defines a distribution. g

If we know that h is a distribution, being a solution of (R + d;)h = d¢,0 is
almost granted:

Lemma 4.2.15. Let us assume that h € D'(G x R) is a distribution and that
e cither hy € L*(G) and v > Q/2,
e or hy € LY(G) (without restriction on v > Q/2).

Then h satisfies the equation

(R + 0)h = bo.0

as a distribution.

The proof of Lemma 4.2.15 will require the following technical property which
is independent of the rest of the proof:

Lemma 4.2.16. Let R be a positive Rockland operator on a graded Lie group G ~
R™ with homogeneous degree v. If my > [%], the functions in the domain of R™
are continuous on §2, i.e.

Dom(R™) C C(),
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where C(Q) denotes the space of continuous functions on . Furthermore, for any
compact subset Q) of G, there exists a constant C' = Cq r.cm such that

V¢ € Dom(R™) sup [¢(@)] < C(lolle + IR™llL2) -

This is a (very) weak form of Sobolev embeddings. We will later on obtain
stronger results in Theorem 4.4.25. The proof below uses Corollary 4.1.14 showed
by Helffer and Nourrigat during their proof of Theorem 4.1.12.

Proof of Lemma 4.2.16. By the classical Sobolev embedding theorem on R", see
e.g. [Ste70a, p.124], if ¢ € L?(R™) together with 92¢ € L?(R"™) for any multi-index
a satisfying |a| < [§], then ¢ may be modified on a set of zero measure so that
the resulting function, still denoted by ¢, is continuous.

Furthermore, for any compact subset 2 of G, we may choose a closed ball
B(0, R) strictly containing 2, and there exists a constant C' = Cq g independent
of ¢ such that

Sgp|¢| <C Z 10z @l 2 (B0, R))-

lo| <[5

As the abelian derivatives may be expressed as linear combination of left-
invariant ones, see Section 3.1.5, there exists another constant C' = Cg such that

> olosvlmor) <C D I1XYll2s0,r)

le| <[5 lal<[51

for any 1 such that the right-hand side makes sense. By the corollary of the Helffer-
Nourrigat theorem applied to R™ (see Corollary 4.1.14, see also Lemma 4.2.5),
there exists C = Cr ,, > 0 such that

Vi € S(G) > IX Yl < C (IR™ 2o + 18l2 () -

[a]<mw

The last two properties yield easily

> 1029l so.p) < C (IR™Vl26) + 1¥llL26)) -

la|<T%1

for any function ¢ € L?(G) for which the right-hand side makes sense, for some
constant C' = CRrRr,m independent of 1, as long as my > [§]. Together with
the embedding property recalled at the beginning of the proof, this shows Lemma
4.2.16. g

We can now go back to the proof of the heat kernel theorem, and more
precisely, the proof of Lemma 4.2.15.
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Proof of Lemma 4.2.15. If we set for each ¢ > 0 and (z,t) € G x R,

. h(z,t) ift>e,
h()(x,t)::{ o( ) Frze

it is clear that this defines a distribution h(®) € D’(G'xR) and that {h(9)} converges
to h in D'(G x R) as € tends to 0. To prove that

(R + 0¢)h = 60,0,

it suffices to show that (R + 9;)h() converges to dy o in D'(G x R) as € tends to
0; this means:

Vo ED(GXR) (W, (RN = )0) = (R+0)h), 6) 2 6(0).

Using the translation of the group H = G x R which is the direct product of the
groups G and (R, +), this is equivalent to the pointwise convergence in H:

Vo € D(H), (z,t) e H  (R+9,)(¢*h)(z,t) — blat), (4.20)
(R+01)(¢# ) (x,t) = ¢ % (R + 0)h' V) (2,) = (R + 0)h'), 6((x,t)-71)).

The above convolution is in H, given by

(6 h©) (2,1) = /G / oy, 1) hO (3, w) ™ (z, £)) dyd

t—e
/ / oy, u) h(y 'z, —u + t)dydu.
G =—00

(R+0)(¢ % h(9) (1) // ) (R + 00)h(y ™o, —u + t)dydu

We see that

+ /G byt — €) h(y~ 'z, )dy,

and the first term of the right hand side is zero since (R + 9;)h = 0 on G x (0, 00)
and R + 0, is left-invariant on H. Hence

(R+0,)(¢% B ) (2, ) = ¢(-,t — €) % he(x), (4.21)

using the convolution in H and G for the left and right hand sides respectively.
We now fix t and set ¢.(y) := ¢(y,t — €). Then

P(-t —€) x he = de * he,
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and we can write

be * he — o = (P — Po) * he — (@0 * he — o). (4.22)

For the first term in the right-hand side of (4.22), we need to separate the case
hy € L*(G) with v > @Q/2 from the case hy € L'(G). Indeed if h; € L?(G) with
v > Q/2, then by (4.19),

_Q
[hella = €72 [l
and the Cauchy-Schwartz inequality yields
”(d)e - ¢0) * he”oo < ||¢e - ¢0H2||heH2
We easily obtain ||¢p. — ¢oll2 < Ce as ¢ € D(G x R). Thus

_Q
||(¢6 - ¢0) * he”oo < lel v —e 40 0,

since we assumed v > @Q/2. If hy € L*(G), then by (4.19), ||hc|lx = ||h1]|1 and the
Holder inequality yields

1(de = ¢0) * hellso < [|de = @olloclcllr = [|Pall1]|¢e — olloo-
Again ||¢pc — ¢poll2 < Ce as ¢ € D(G x R) thus
||(¢E - d)O) * heHoo § CIE —>e—0 0.

For the second term in the right-hand side of (4.22), the functional calculus
of Ry yields the convergence in L?(G)

G0 * he = e~ 200 — 50 ¢o.

As Ry commutes with the Ro-multiplier e=<*2 and since ¢ € D(G), Rago = Reo,
we know that ¢ * he = e~ R2¢q € Dom(R2) and moreover

L*(G
(Réo) * he = (Raco) * he = e~ R2Rydg = Rae~R2gy S0 Radho.

More generally, for any m € N, ¢ * h, = e~R2¢y € Dom(RY") and

e L*(G m
RIe=Regy "G Lo RE o

By Lemma 4.2.16, this implies that ¢ * he — ¢ is continuous on G. Furthermore,
for any compact subset Q of G ~ R" and any m € N with mv > [ |, we have

S‘ép |po * he — do| < C (|| * he — doll2 + [|R™(Po * he — d0)|l2) —+e—0 0.

Hence we have obtained that both terms on the right-hand side of (4.22)
go to zero for the supremum norm on any compact subset of G. Therefore, the
expression in (4.21) tends to

(R 4+ 0¢)(¢ * h(e))(x, t) —eso O(-,t — €) x he(x),

for t fixed, locally in x. This is even stronger than the pointwise convergence in H
we wanted in (4.20) and concludes the proof of Lemma 4.2.15. O
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Corollary 4.2.17. Under the hypothesis of Lemma 4.2.15, h is smooth on (G X
R)\{(0,0)} and satisfies (4.15) and (4.18). Moreover, each function h; is Schwartz

on G and
/ he(z)dx = 1.
G

Proof of Corollary 4.2.17. By Lemma 4.2.15, the distribution h annihilates the
hypoelliptic operator R+0; on (G xR)\{0}, and thus h is smooth on (G xR)\{0}.
Since h(z,t) = 0 for ¢ < 0, this implies that h(x,t) vanish to infinite order as ¢t — 0:

Vz e G\{0}, NeNy 3e>0, C>0 Vte (0,6 |h(x,t)]<CtV.

We can choose € = 1 since h is smooth on G x (0, c0). In fact this estimate remains
true for any z-derivatives (%)ah(x, t). It is also uniform in x when x runs over a

fixed compact set which does not contain 0. Choosing this compact set to be the
unit sphere of a given quasi-norm | - |, we have

VNeNy, 3C>0 Vvte(0,1] sup

=1

(gx) h(x,t)‘ < CtV.

We may replace the abelian derivatives (a%)o‘ by the left-invariant ones, see Section
3.1.5. This implies (4.15).

Using the homogeneity of h (see Property (4.12) which was already proven
and Proposition 3.1.23), we have

Ve G, r>0 Xh(z,t) = re X0, (re),
and so, in particular, if |z| > 1 then we obtain, because of (4.15), that
| Xha ()| = |2~ X Ry (2] 71 2)| < Cowla] ~FHETN

Since hp is smooth on G, this shows that h; is Schwartz. This is also the case for
ht by homogeneity, see (4.17). Note that the same homogeneity property together
with (4.15) implies (4.18).

Since each function h; satisfies the homogeneity property given in (4.17) and
is integrable, the functions h; form a commutative approximation of the identity,
see Remark 3.1.60. In particular,

G xhy —0cod in LA(G),
with ¢ = [, hi(x)dz. Since we know
dpxhy=e 2 — 00 in L*G),

this constant ¢ must be equal to 1. By homogeneity,

vt >0 /ht(:ﬂ)dfc:/hl(m)dw:c:l.
G G
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Lemmata 4.2.14 and 4.2.15 imply Theorem 4.2.7 and Corollary 4.2.10 under
the assumption v > /2. We now need to remove this assumption. For this, we will

use the following formula which is a consequence of the principle of subordination:
Lemma 4.2.18. For any v > 0, we have

. T g
€ = e 4sds.
0 TS

(4.23)
Sketch of the proof of Lemma 4.2.18. We follow [SteT70a, p.61]. We start from the
well known identity

] ei'yz
e = / —dx, (4.24)
oo 1+ a2
which is an application of the Residue theorem to the function
ei’yz

2241
In (4.24) we replace 1+ 22 using

1

¥ ()
R — — T ud
22 /0 e u,
and we obtain the double integral

o0 . (o) 5
e :/ e”“/ e~ 2 qyy o,
—0o0 0

One can show that it is possible to invert the order of integration:

o0 oo . 2
me :/ 67“/ e e Ydx du.
0 —o00

It is well known that the inner integral in dx is equal to

e 4du
Vru®
And this shows (4.23). O
We can now finish the proofs of Theorem 4.2.7 and Corollary 4.2.10.

End of the proofs of Theorem 4.2.7 and Corollary 4.2.10. Since the case v > @Q/2
is already proven, we may assume v < Q/2.

For any m € Ny, R?" is a positive Rockland operator (see Lemma 4.2.5),
with homogeneous degree 2"'v. We denote by K, the function on G x R giving

its heat kernel in the sense that if t > 0, K,,,(-,t) € S'(G) is the kernel of e~ Rz
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and if ¢t < 0 then K,,(z,t) = 0 for any « € G. This is possible since, by Corollary
4.2.13, K, is smooth on G x (0,00). By homogeneity, it will always satisfy
Ve eG, t>0  Kp(z,t) =t 77 Kt~ 7", 1). (4.25)

. m—1
In (4.23), replacing v by tA?" , one finds that
AT /Oo ¢’ e’Liim ds.
0

Using the functional calculus on R, that is, integrating against the spectral mea-
sure dE(\) of Ry, we obtain formally that for any non-negative integer m € Ny
and t > 0,

m—1 o0 ,—s 2 m

—tR3" € e mRIg 4.26

e e s, )
0 VTS

and for the kernels of these operators,

K1 (2,1) /Oo Ko, (4.27)
m—1\T,1) = —F— N T, ——)as. .
! o /TS 4s

It is not difficult to see that Formulae (4.26) and (4.27) hold as operators and con-
tinuous integrable functions respectively when, for instance, K,, (-, t) is integrable
on G for each t > 0 and

oo e—s t2
K (-, — d .
| S Dl@ds <

Indeed under this hypothesis, K,,_1(-, ) is integrable on G for any fixed ¢t > 0 and
[ K1 ()] </oo - ([ Ko ( 2t2)|| ds < (4.28)
m—1\" >~ — my 7T 1 S 0. .
1—1 Ll(G) 0 \/7% 3 48 L (G)
It is then a standard procedure to make sense of (4.26) by first integrating A over
[0, N] and then letting N tend to infinity.

We first assume that 2™v > Q/2, so that the conclusion of Theorem 4.2.7
holds for K,,. In particular, K, (-, 1) € S(G) and by homogeneity, the L!'-norm of
K (1) is

/|Km(x,t)\dx:/ Ko (,1)|doz,
G G

is finite and independent of ¢. Therefore

© s t2 © o8
Km s T dzds = Km 7]- d 7d7
| = [ 1Kt tdeds = [ 8w [ s
is finite. Consequently Formula (4.27) holds and by (4.28),

oo e—s
Ko 1(t, )| §/ K (x,1 dx/ ——ds < 0.
[EKm—1(t, )L () GI (z,1)] Y
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By homogeneity, [ [Kp—1(z,t)|dz must also be independent of ¢ > 0, while it is
identically zero if ¢ < 0. This implies that K,,_; is locally integrable on G x R
and that K,,_1(-,1) € L}(G). By Lemmata 4.2.14 and 4.2.15, K,,_; satisfy the
properties of the heat kernel described in Theorem 4.2.7 and Corollary 4.2.10.

Now we can repeat the same reasoning with m replaced successively by m —
1,m—2,...,2,1. Since Ky = h, this concludes the proofs of Theorem 4.2.7 and
Corollary 4.2.10. O

We still have to show Corollary 4.2.9.

Proof of Corollary 4.2.9. Since the heat kernels hy, ¢ > 0, form a commutative
approximation of the identity (see Theorem 4.2.7 and Remark 3.1.60 in Section
3.1.10), the operators f +— f * hy, t > 0, form a strongly continuous semi-group
on LP(Q) for any p € [1,00) and on C,(G), see Lemma 3.1.58. It is naturally
equibounded by ||h1]| since

1f * el < [ Fllpllpalls and  [[Aelly = (1ol

Let us prove the convergence in (4.16) for p = co. Let f € D(G). By Lemma
4.2.16, for any compact subset 2 C G,

sup (7 = )~ RS
Q

SOQHU*man

+H1Rmuwh¢f>nm“f

)

2
where m is an integer such that mv > [§]. Since D(G) C Dom(R) and
e Ref = fuhy,

we have for any integer m’ € Ny that
1 m/ m/ 1 m/ _ m/
TR (frhe = f) =R = SRE (7R f = f) =Ry

- % (eing;n,f - Rgﬂf) - R;nurlf = % ((Rm/f) * hy — Rm/f) _RmHLf

—500 in L*(G).

Therefore,
1
Slgllp‘t(f*ht—f)—Rf’ —¢0 0.

We fix a quasi-norm | - |. By Part 2 of Remark 3.2.16 and the existence of a
homogeneous norm (Theorem 3.1.39), without loss of generality, we may assume
|| to be also a norm, that is, the triangular inequality is satisfied with constant 1;
although we could give a proof without this hypothesis, it simplifies the constants
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below. Let Br be a closed ball about 0 of radius R which contains the support of
/. We choose € = Bap the closed ball about 0 and with radius 2R. If z ¢ €2, then
since f is supported in B C €,

(FUsh=n-RE) @ =3ren =7 [ s o

hence

1 00 _ Jo)
]f*htm\ <M [ iy == [ e,
t t Jiy<r t Jatve-1<r

as hy satisfies (4.17). Note that {z : |#tv 21| < R} C {2 : |tv 2| > R/2} since
1 1 1 3
tvz]| < R/2 = |wtvz"t > |o| - [tv2t > iR'

Therefore

/ N |h1(z)|dz§/ L h(z)|d.
|ztv 2= <R |z|>t~ v R/2

Since hi is Schwartz, we must have
AC Vz e G\{0} |hi(2)] < Clz|7¢,

for a = @Q + 2v for instance. This together with the polar change of variable (cf.
Proposition 3.1.42) yield

|hi(2)|dz < C rmem gy = '3
_1 _1
|z|>t" v R/2 r=t~ v R/2

Consequently, denoting by Q¢ the complement of 2 in G, we have

sup
Qc

1
t(f*ht—f)—Rf‘SC/t—H—)oU

This shows the convergence in (4.16) for p = oo.

We proceed in a similar way to prove the convergence in (4.16) for p finite.
As above we fix f € D(G) supported in Br. We decompose

1
17« b= ) =Rl
1 1
< ||¥(f #hy — f) = Rfll Lo (Bor) + ”E(f *he — f) = RfllLr(Bg,,)-
For the first term,

1 _ 1.1
||¥(f*ht — ) =RfllLe(Ban) < |B2R|PH;(f*ht —f) = Rflleo P 0,
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as we have already proved the convergence in (4.16) for p = oco. For the second
term, we obtain for the reasons explained in the case p = oo that

1 1
15 (f % he = f) = Rflw(Bg) = F1F * helloe(sg )

1 PoNE
t(/m>2R dx)

c —L -1, 1 \i—a ' ’

hd oAl dy | d
<3 (/MR (/y<R|f(y)|t ) y> )

1
P

< )| ) / (|2 — R)~%dz |
|z|>2R

/ F() by~ 2)dy
ly|<R

where we have used that the reverse triangle inequality
ly~lel > 2| = Jy| > |2 - R.

Consequently we obtain the convergence in (4.16) for p finite if we choose a large
enough. O

4.3 Fractional powers of positive Rockland operators

In this section we aim at defining fractional powers of positive Rockland operators.
We will carry out the construction on the scale of LP-spaces for 1 < p < oo,
with L>°(G) substituted by the space C,(G) of continuous functions vanishing at
infinity. The extension of a positive Rockland operator R to L?(G) will be denoted
by R, and first we discuss the essential properties of such an extension. Then we
define its complex powers. Before studying the corresponding Riesz and Bessel
potentials, we will show that imaginary powers are continuous operators on LP,
p € (1,00).

4.3.1 Positive Rockland operators on LP
We start by defining the analogue R, of the operator R on L?(G).

Definition 4.3.1. Let R be a positive Rockland operator on a graded Lie group G.
For p € [1,00), we denote by R, the operator such that —R,, is the infinites-
imal generator of the semi-group of operators f +— f x hy, t > 0, on LP(QG).
We also denote by R, the operator such that —R, is the infinitesimal
generator of the semi-group of operators f — fxhy, t > 0, on C,(G).

For the moment it seems that R denotes the self-adjoint extension of R on
L?(G) and minus the generator of f + f x hy, t > 0, on L?(G). In the sequel, in
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fact in Theorem 4.3.3 below, we show that the two operators coincide and there
is no conflict of notation.

The case p = oo is somewhat irrelevant and will be often replaced by p = oo,
especially when using duality. The next lemma aims at clarifying this point.

Lemma 4.3.2. e Ifp e (1,00), any bounded linear functional on LP(G) can be
realised by integration against a function in LP (G), where p’ is the conjugate
ezponent of p, that is, ]% + i = 1. Consequently, the dual LP(G) of LP(G)
may be identified with LPI(G) and the corresponding norms coincide.

o If p = 1, any bounded linear functional on L'(G) can be realised by inte-
gration against a bounded function on G. Consequently, the dual L*(G) of
LY(G) may be identified with L>°(G) and the corresponding norms coincide.
In particular, L*(G)' contains C,o(G).

o If p = o0,, any bounded linear functional on C,(G) can be realised by in-
tegration against a regular complex measure. Consequently, the dual C,(G)’
of Co(@) may be identified with the Banach space M(G) of reqular complex
measures endowed with the total mass | - |[apr(q) as its norm, and the cor-
responding norms coincide. With this identification, Co(G)' contains L*(G)
and the corresponding norms coincide.

Proof. See, e.g., Rudin [Rud87, ch.6]. O
We can now describe the properties of R,,.

Theorem 4.3.3. Let R be a positive Rockland operator on a graded Lie group G.
In this statement, p € [1,00) U {o0,}.

(i) The semi-group {f — f * hi}iso is strongly continuous and equicontinuous

on LP(G) if p € [1,00) or on Co(G) if p = 00,:
vt >0, Vf e LP(G) or Co(G)  [If % Puallp < [halla][ flp-

Consequently, the operator R, is closed. The domain of R, contains D(G),
and for f € D(G) we have Rpf =Rf.

(ii) The operator ﬁp is the infinitesimal generator of the strongly continuous
semi-group {f — f * hi}iso on LP(G).

(i) We use the identifications of Lemma 4.3.2. If p € (1,00) then the dual of R,
is Ry The dual of Reo, restricted to LY(G) is Ry. The dual of Ry restricted
to Co(G) C L™(G) is Reo, -

(iv) If p € [1,00), the operator R, is the mazimal restriction of R to LP(G), that
is, the domain of R, consists of all the functions f € LP(Q) such that the
distributional derivative Rf is in LP(G) and Rpf = Rf.

The operator Reo, is the mazimal restriction of R to Co(G), that is,
the domain of R, consists of all the functions f € C,(G) such that the
distributional derivative Rf is in Co(G) and Ryf = Rf.
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(v) If p € [1,00), the operator R, is the smallest closed extension of R|pqy on
LP(G). For p =2, Ry is the self-adjoint extension of R on L*(G).

Proof. Part (i) is a consequence of Corollary 4.2.9, see also Section A.2.

Part (i) implies, intertwining with the complex conjugate, that {f — f x
h¢}eso is also a strongly continuous semi-group on LP(G). On D(G), its infinites-
imal operator coincide with R = R! which is a positive Rockland operator (see
Lemma 4.2.5) and it is easy to see that

Vo eD(G), t>0 e Rep=etRegg=cxhy=¢xhy.
This shows Part (ii).
For Part (iii), we observe that using (1.14) and (4.13), we have

Vi, fo € D(G)  (fixhe, f2) = (f1, fo x ). (4.29)
Thus we have for any f,g € D(G) and p € [1,00) U {0, }

1
t

(R0 f — £).g) = (T b~ fug) = {fog b —g) = {f.e g — g).

t

Here the brackets refer to the duality in the sense of distributions or, equivalently,
to the duality explained in Lemma 4.3.2. Taking the limit as ¢ — 0 of the first and
last expressions proves Part (iii).

We now prove Part (iv) for any p € [1,00) U {oc,}. Let f € Dom(R,) and
¢ € D(G). Since R is formally self-adjoint, we know that R! = R, and by Part
(1), we have Ry¢ = R¢ for any ¢q € [1,00) U {00, }. Thus by Part (iii) we have

(Rpf,¢) = (f,Rpyo) = (f R'¢) = (Rf,9),
and R,f = Rf in the sense of distributions. Thus
Dom(R,) C {f € LP(G) : Rf € LP(G)}.

We now prove the reverse inclusion. Let f € LP(G) such that Rf € LP(G).
Let also ¢ € D(G). The following computations are justified by the properties of
R and h; (see Theorem 4.2.7), Fubini’s Theorem, and (4.29):

(fxhi—f.6) = <f,¢*ﬁt—¢>:<f,/0 0y( * hu)ds)
- (. /0 “R(¢*ha)ds) = —(f,R /0 (6% hu)ds)
= 7<Rf,/0 ¢*hsds>:—/0<72f,¢*hs>ds

t

- / (RF) * hs, 8)ds = —{ / (Rf) * hods, 6).
0 0
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Therefore,
t
f*ht—f:—/ (Rf) * hgds.
0

Let us recall the following general property: if ¢ — z; is a continuous mapping
from [0, 00) to a Banach space X, then } f(f x4ds converges to xg in the strong
topology of X as t — 0. We apply this property to X = LP(G) and t — (Rf) x hy;
the hypotheses are indeed satisfied because of the properties of the heat kernel,
see Theorem 4.2.7. Hence we have the following convergence in L?(G):

1 1t
=) == [ R shds Ry

This shows f € Dom(R,) and concludes the proof of (iv).

Part (v) follows from (iv). This also shows that the self-adjoint extension
of R coincides with Rs as defined in Definition 4.3.1 and concludes the proof of
Theorem 4.3.3. 0

Theorem 4.3.3 has the following couple of corollaries which will enable us to
define the fractional powers of R,,.

Corollary 4.3.4. We keep the same setting and notation as in Theorem 4.3.3.

(1) The operator Ry, is injective on LP(G) for p € [1,00) and R, is injective
on Co(Q), namely,

forp e [l,00)U{oc0,} : Vf € Dom(R,) Rpf=0= f=0.

(it) If p € (1,00) then the operator Ry, has dense range in LP(G). The operator
Roo, has dense range in Co(G). The closure of the range of Ry is the closed

subspace {¢ € L'(G) : [, ¢ =0} of L'(G).

Proof. Let f € Dom(R,) be such that R,f = 0 for p € [1,00) U {00,}. By
Theorem 4.3.3 (iv), f € §'(G) and Rf = 0. In Remark 4.1.13 (3), we noticed that
any positive Rockland operator satisfies the hypotheses of Liouville’s Theorem for
homogeneous Lie groups, that is, Theorem 3.2.45. Consequently f is a polynomial.
Since f is also in LP(G) for p € [1,00) or in C,(G) for p = 00,, f must be identically
zero. This proves (i).

For (ii), let ¥ be a bounded linear functional on LP(G) if p € [1,00) or on
Co(G) if p = 00, such that ¥ vanishes identically on Range(R,). Then ¥ can be
realised as the integration against a function f € L?’ (G)if p € [1,00) or a measure
also denoted by f € M(G) if p = 00,, see Lemma 4.3.2. Using the distributional
notation, we have

U(g) = (f,0) Vo L’(G) or V¢e Co(G).
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Then for any ¢ € D(G), we know that ¢ € Dom(R,) and R,¢ = R¢ by Theo-
rem 4.3.3 (i) thus

0="T(Ry(¢)) = (f,R(9)) = (RS, ),

since R? = R. This shows that Rf = 0. Applying again Liouville’s Theorem, this
time to the positive Rockland operator R (see Lemma 4.2.5), this shows that f is
a polynomial. For p € (1,00), f being also a function in L?' (G), this implies that
f=0.For p=o0,, f € M(G), this shows that f is an integrable polynomial on G
hence f = 0. For p = 1, f being a measurable bounded function and a polynomial,
f must be constant, i.e. f = ¢ for some ¢ € C. This shows that if p € (1, 00)U{00,}
then ¥ = 0 and Range(R,) is dense in LP(G) or C,(G), whereas if p = 1 then
¥ : L'(G) 3 ¢+ ¢ [, ¢. This shows (ii) for p € (1,00) U {o0,}.

Let us study more precisely the case p = 1. It is easy to see that
/ Xo(z)dz = — / 6(z) (X1)(x)dz = 0
G G

holds for any ¢ € L'(G) such that X¢ € L'(G). Consequently, for any ¢ €
Dom(R1), we know that ¢ and R¢ are in L'(G) thus [, R1¢ = 0. So the range
of R4 is included in

S = {gb € LYG) : /ng = O} D Range(Ry).

Moreover, if ¥; a bounded linear functional on S such that ¥; is identically 0
on Range(R1), by the Hahn-Banach Theorem (see, e.g. [Rud87, Theorem 5.16]),
it can be extended into a bounded linear function ¥ on L'(G). As ¥ vanishes
identically on Range(R1) C S, we have already proven that ¥ must be of the form

lIl:Ll(G)9¢>»—>c/ o)

G

for some constant ¢ € C and its restriction to S is W; = 0. This concludes the
proof of Part (ii). O

Eventually, let us prove that the operator R, is Komatsu-non-negative, see
hypothesis (iii) in Section A.3:

Corollary 4.3.5. For p € [1,00) U{0c0,}, and any p > 0, the operator pul + R, is
invertible on LP(G), p € [1,00), and C,(G) for p = 00,, and the operator norm of
(Wl +R,)~ 1 is

I+ Rp) ™ < [l

Proof. Integrating the formula

(oo}
(n+N)"t = / et Ny,
0
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against the spectral measure dFE(\) of R, we have formally
(il +Ro) ™t = / e HHIHR) gy (4.30)
0

and the convolution kernel of the operator on the right-hand side is (still formally)
given by

k() = /O " ety ()t

From the properties of the heat kernel h; (see Theorem 4.2.7 and Corollary
4.2.10), we see that the function x, defined just above is continuous on G and
that

= * gy = Il
Iul < [ e nlade = ]l [ et = 2 < o
0 0

As k, € L'(G), it is a routine exercise to show that the operator

/00 e—t(,uI—i—'Rz)dt
0

is bounded on L?(G) with convolution kernel «,, (it suffices to consider integration
over [0, N] with N — o). Moreover, Formula (4.30) holds in Z(L?(G)).

For any ¢ € D(G) and p € [1,00) U {00, }, Theorem 4.3.3 (iv) implies
(Wl +Rp)d = (ul + R)¢ = (ul + R2)¢ € D(G),

thus
(I + Rp)@) * iy = (UL + R2)) * ki = ¢

This yields that the operator (ul + R,)~' : ¢ — ¢ * r,, is bounded on LP(G) if
p € [1,00) and on C,(G) if p = 00,. Furthermore, its operator norm is

HUE 4+ Ry) ™M < il <l ™,

completing the proof. O

4.3.2 Fractional powers of operators R,

We now apply the general theory of fractional powers outlined in Section A.3 to
the operators R, and I +R,,.

Theorem 4.3.6. Let R be a positive Rockland operator on a graded Lie group G.
We consider the operators R, defined in Definition 4.3.1. Let p € [1,00) U {00, }.

1. Let A denote either R or I+ R.
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(a) For every a € C, the operator A% is closed and injective with (A%)~" =
A, . We have Ag =1, and for any N € N, A;V coincides with the usual
powers of differential operators on S(G) and Dom(AYN) N Range(AY)
is dense in Range(A,).

(b) For any a,b € C, in the sense of operator graph, we have AZA; C Ag+b.
If Range(A,) is dense then the closure of .AZA;’, is .Ag*b,

(¢) Let a, € Cy.

e If ¢ € Range(Aj°) then ¢ € Dom(AS) for all a € C with 0 <
—Rea < Rea, and the function a — Aj is holomorphic in {a €
C: —Rea, < Rea < 0}.

o If ¢ € Dom(Ag°) then ¢ € Dom(A3) for alla € C with 0 < Rea <
Rea, and the function a — Aj¢ is holomorphic in {aeC:0<
Rea < Rea,}.

(d) For every a € C, the operator Aj, is invariant under left translations.

(e) If p € (1,00) then the dual of A, is Ap. The dual of As, restricted to
LY(G) is Ay. The dual of Ay restricted to Co(G) C L°(Q) is Aso, -

(f) If a,b € C4 with Reb > Rea, then

Rea Rea

3C =Cup >0 Vo€ Dom(Ap) [Apgll < Cl|gl|' ™ Feb || Aol o5
(9) For any a € Cy, Dom(A}) contains S(G).

(h) If f € Dom(A5)NLIY(G) for some q € [1,00)U{00,}, then f € Dom(Aj)
if and only if A} f € LY(G), in which case Ajf = Ajf.

2. For each a € Cy, the operators (1 +R,)* and R; are unbounded and their

domains satisfy for all € > 0,

Dom [(I+ R;,)"] = Dom(R}) = Dom [(R,, + €I)"].
If0 <Rea <1 and ¢ € Range(R,) then

1 o0
R-CH = tafl —tRyp dt,

o=y v
in the sense that imy_, fON converges in the norm of LP(G) or Co(G).
If a € C4, then the operator (I+R,)~* is bounded and for any ¢ € X with
X = LP(G) or Co(Q), we have

(I+Ry) "¢ =

I a /
ta 1 (I Rp) t,
( ) 0

in the sense of absolute convergence:

oo
/ 2 e MR || pdt < oo.
0
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5. For any a,b € C, the two (possibly unbounded) operators Ry, and (I + R,)®
commaute.

6. For any a € C, the operator Ry, is homogeneous of degree va.

Recall (see Definition A.3.2) that the two (possibly unbounded) operators A
and B commute when

x € Dom(AB) N Dom(BA) = ABx = BAx,

and that the domain of the product AB of two (possibly unbounded) operators A
and B on the same Banach space X is formed by the elements x € X such that
2 € Dom(B) and Bz € Dom(A).

Proof. The operator R, is closed and densely defined by Theorem 4.3.3 (i), it is
injective by Corollary 4.3.4 and Komatsu-non-negative in the sense of Section A.3
(iii) by Corollary 4.3.5. Therefore, R, satisfies the hypotheses of Theorem A.3.4.
Moreover, I + R, also satisfies these hypotheses by Remark A.3.3, and —(I+ R,)
generates an exponentially stable semi-group:

le= R < e~Hle™Rr|| < [lhallre".

Most of the statements then follow from the general properties of fractional
powers constructed via the Balakrishnan formulae recalled in Section A.3. More
precisely, from the Balakrishnan formula, for any N € N| Aév coincides with the
usual powers of differential operators on S(G) and Part (1a) follows from Theorem
A.34 (1) and (2) and Remark A.3.1.

The duality properties explained in Part (le) for p € (1,00) hold for the
Balakrishnan operators hence they hold for their maximal closure. The cases of
p = 1,00, are similar and this proves Part (1e). The properties in Parts (1d), (5)
and (6) hold for the Balakrishnan operators hence they hold for their maximal
closure and these parts are proved.

Part (1b) follows from Theorem A.3.4 (4).

Part (1c) follows from Theorem A.3.4 (5).

Part (1f) follows from Theorem A.3.4 (6).

Part (1g) follows from Parts (1a) and (1c).

Part (1h) is certainly true for any f € S(G) and Rea > 0 via the Balakrish-
nan formulae. By analyticity (see Part (1c)) it is true for any a € C. The density
of D(G) in LP(G) (or Cp(G) if p = 00,) together with the maximality of AJ and
the uniqueness of distributional convergence imply the result.

Part (2) follow from Theorem A.3.4 (8).

Parts (3) and (4) follows from Theorem A.3.4 (10).

This concludes the proof of Theorem 4.3.6. O
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4.3.3 Imaginary powers of R, and I + R,

In this section, we show that imaginary powers of a positive Rockland operator
R as well as I+ R are bounded operators on LP(G), p € (1,00). We prove this
as a consequence of the theorem of singular integrals on homogeneous groups, see
Section 3.2.3.

We start by showing that if R is a positive Rockland operator, then the
imaginary powers of I + R, are bounded on LP(G):

Proposition 4.3.7. Let R be a positive Rockland operator on a graded Lie group G.
For any 7 € R and p € (1,00), the operator (1+ R,)"" is bounded on LP(G). For
any p € (1,00), there exists C = Cpr > 0 and 6 > 0 such that

VreR [T+ Rp)iT”f(LP(G)) < cefll,

For any p € (1,00) and a € C, Dom((I+ R,)?) = Dom((I + R,)Re?).

The following technical result will be useful in the proof of Proposition 4.3.7
and in other proofs (see Sections 4.3.4 and 4.4.4).

Lemma 4.3.8. Let R be a positive Rockland operator on a graded Lie group G. Let
h; be its heat kernel as in Section 4.2.2.

1. For any homogeneous quasi-norm |- |, any multi-index o € N}, and any real

number a with 0 < a < Q%M, there exists a constant C > 0 such that

o0
/ 191 Xy (2)[dt < | Q- lol+ve,
0

For any homogeneous quasi-norm | - |, any multi-index o € Nf}, there
exists a constant C > 0 such that

/ | X hy(z)|etdt < Clz|~ @71,
0

2. For any homogeneous quasi-norm |-|, any multi-index o € N}, and any t > 0,
we have

_led o
/>1/2 X hy () dar < ¢~ 5| XD 1.

3. For any homogeneous quasi-norm | - |, any multi-index o € N, any N € N
and any t € (0,1), there exists a constant C' > 0 such that

/ | X hy(z)|dx < CtV.
|2|>1/2
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Proof of Lemma 4.3.8 . Let us prove Part 1. We write

0o |z|” 00
/ t* Xy () |dt = / +/ .
0 0 ||~

For the second integral, we use the property of homogeneity of h; (see (4.12) or

(4.17))
/ = / pa— 1= xop, () |dt
o] |
+ |« _ a vla— Qtlal
< (@) e 2D

As hy € S(G), || X*h1]|s is finite. For the first integral, we use again (4.12) to

obtain
|z|” |z|”
/ _ / ta*1|x|f(Q+[a]) ‘Xahu—vt (x) ‘ dt
0 0 |9C|

< Cra Mo

where C1 = supj,—i o<¢, <1 |[X%he, (y)| is finite by (4.15). Combining the two
estimates above shows the estimates for the first integral in Part 1. We proceed in
the same way for the second one:

0o |z
|1 netar = / /
0 |[*

We have (with Cy as above)

||¥ o |z|” o v
/ < Gyfaflem ”/ et = Cfa T (A - el
0 0
S C |x|V a— Q+[f¥])7
whereas
> a py-oxlel (% a —(Q+[a]) —lzl*
< X%l (l2]) v e dt = || X |ooa] €
||~ ||
<X Ry || oo || (@D,

We conclude in the same way as above and Part 1 is proved.

Let us prove Part 2. The property of homogeneity of h; (see (4.17)) together
with hy € §(G) imply

/ | Xhy(z)|de = / | Xhy(t™ v )|t~
e[ >1/2 o] >1/2
s / \Xahl(x')\dx’gt—¥/ Xy,
tv 2| >1/2 G

[o]+Q

dx
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having used the change of variable 2’ = t~vz. This shows Part 2.
Let us prove Part 3. The properties of the heat kernel, especially (4.12) and
(4.15), imply
X h(2)| = |2 1@ X Ry (|2 )| < Ol 71|27 0)N

if [| > 1/2 and ¢ € (0,1) where C' = sup|,/|=1 9<p<1 N Xy (2')] is finite.
Hence

/ | X“hy(x)|dz < CtN/ || [e1=Q =N gy
12172 j|>1/2

This shows Part 3 and concludes the proof of Lemma 4.3.8. 0

Proof of Proposition 4.3.7. By Theorem 4.3.6 (1), to show that (I + R,)"" is
bounded on LP(G) for some p € (1,00) and 7 € R, it suffices to show that (I+R2)”
can be extended to an LP-bounded operator. To do this, we will show that Corol-
lary 3.2.21 can be applied to (I+ R2)"".

By functional calculus, (I 4+ R2)"" is bounded on L?(G). Part 1 of Lemma
4.3.8 together with the formula

T A 0071_7_ — At
YAS0 A _7r(1—w)/0 e Mt

and the functional calculus of Ro imply that the right convolution kernel of (I +
Rg)” is the tempered distribution s which coincides with the smooth function
away from 0 given via

1 e x)e T
() = >/0 T4 R (2)etdt, @ A0, (4.31)

ra—iar

Using this formula, we have

/ In(a)|dz < [T(1 — i7)| 1/ / (Jhe(2)] + [Rha (2)])e " dadt.
|2]>1/2 0 Jjz>1/2

By Part 2 of Lemma 4.3.8, (and h; being Schwartz), the integrals

/ / |h¢(z)le " 'dxdt and / / |Rhy(z)|e ' dxdt,
t=0J|z|>1/2 t=1J|z|>1/2

are finite. By Part 3 of Lemma 4.3.8, the integral

1 1
/ / |Rhy ()| tdedt < C/ tdt = C,
t=0J|z|>1/2 t=0

is finite. This shows that [, -, , |[(z)|dz is finite.
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Using (4.31), we also obtain easily that
o0
sup \m|Q+[O‘]\Xaf<a(:v)| <|T(1 —ir)| "t sup |£C|Q+[a] / | X “he(z)| + | X “Rhs(x)|dt,
0<|z|<1 0<|z|<1 0

and the right-hand side is finite by Lemma 4.3.8. Note that if we denote by r =
ks the kernel of (I+ R2)"", then we have

—~
&

),

hrr(e™h) =k g
using the formula in (4.31) and

(T4 R)he) (271) = (L= Op)he) (271) = (1= De)he) ()
= (= 0)ht) () = (T+R)hs) (),

where we have used (4.13). Hence we also have that each quantity

sup [ K ()] = sup ]S (o)
0<|z|<1 0<|z|<1
is finite.

The estimates above show that x satisfies the hypotheses of Corollary 3.2.21
and therefore the operator (I+7R2)" is bounded on LP(G), p € (1,00). The prop-
erties of the semi-group (see Theorem A.3.4 (3)) imply the rest of the statement
in Proposition 4.3.7. O

Let us now prove the homogeneous case, that is, that the imaginary powers
of a positive Rockland operator are bounded on LP(G):

Proposition 4.3.9. Let R be a positive Rockland operator on a graded Lie group
G. For any 7 € R and p € (1,00), the operator R’I"f is bounded on LP(G). For any
p € (1,00), there exists C' = Cpr >0 and 6 > 0 such that

vreR ||R§,T||$(Lp(c)) < el

For any p € (1,00) and a € C, Dom(R%) = Dom(R}°*).

Proof of Proposition 4.3.9. Let p € (1,00) and 7 € R. Let us denote by R, ;- the
(possibly unbounded) operator given as the strong limit in LP(G) of (e + R,)"¢
as € = 0, for ¢ € Dom((e + R,)"") for any € € (0,¢€) for some small ¢y > 0 and
such that this strong limit exists. The domain of R, ;- is naturally the space of
all those functions ¢. Note that the homogeneity of R implies

(4 Rp)T6 = (1 € Ry) 7o = € (14 Ry) T {ole™ )} ("),
for any € > 0 and any ¢ € LP(G) such that

¢(e"1/"") € Dom((I+ Ry)").



210 Chapter 4. Rockland operators and Sobolev spaces

By Proposition 4.3.7, Dom((I + R,)'") = LP(G) and the operator (I + R,)'" is
bounded. Therefore for all ¢ € LP(G) and € > 0, ¢ is in Dom((e + R,)*") and we
have

e +Rp) " dlliniey = T+ Ry {d(e™ ")} N poe
N1+ Rp) {o(eV W Loe)

e N1+ Rp) Lo 6™ oo
= 10+ Rp) " 2oyl o).

Consequently, R, ;- extends to a bounded operator on L?(G). By Theorem
A.3.4 (9), this implies that R/ is also a bounded operator on L*(G) as R, has
dense range and domain by Corollary 4.3.4. As in the inhomogeneous case, the
properties of the semi-group (see Theorem A.3.4 (3)) imply the rest of the state-
ment in Proposition 4.3.9. O

IN

Given the proof of Proposition 4.3.7, one would be tempted to study the
convolution kernel of the operator Ry in order to show the LP-boundedness in
the proof of Proposition 4.3.9. Indeed, following the same arguments as in the
proof of Proposition 4.3.7, one shows that the kernel of R% coincides away from
the origin with the smooth function

G\{0} > 2 — ﬁ /OOO t~ T Rhy(z)dt.

However, this function can not be in general a kernel of type i7: already for the
usual Laplacian on (R™,+) it is not the case. Indeed, in the Euclidean case, this
function is radial and non-zero and its average on the sphere can therefore not
vanish.

In the stratified case, Folland proved the LP-boundedness of imaginary powers
of the sub-Laplacian —£ and I+ (—£) using general properties of semigroups pre-
serving positivity together with the Laplace transform see [Fol75, Proposition 3.14
and Lemma 3.13]. More precisely, the boundedness follows from the Littlewood-
Paley theory and the study of square functions associated with the semi-group.
Note that in the case of a sub-Laplacian, the proof in [Fol75] yields a bound of
the operator norm by |T'(1 —i7)|~! up to a constant of p.

In our case, we applied a consequence of the theorem of Singular Integrals via
Corollary 3.2.20 to obtain the LP-boundedness of the imaginary powers of I + R
and we have shown

‘|R;T||$(LP(G)) < ||(I+RP)1T||$(LP(G))7 pe (1700)7

in the proof of Proposition 4.3.9. We can follow the constants in the proof of the
theorem of Singular Integrals (see Remark A.4.5 (2)) as well as in our application
to show that [|[(I+R,)""||.#(Lr(c)) is bounded up to a constant of p, by

(1411 —ir)| )23l
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However, we do not need these precise bounds as the bounds obtained from
the general theory of semigroups as stated in Propositions 4.3.7 and 4.3.9 will
be sufficient for our purpose in the proofs of interpolation properties for Sobolev
spaces in Theorem 4.4.9 and Proposition 4.4.15.

4.3.4 Riesz and Bessel potentials

We mimic the usual terminology in the Euclidean setting, to define the Riesz and
Bessel potentials associated with a positive Rockland operator.

Definition 4.3.10. Let R be a positive Rockland operator of homogeneous degree
v. We call the operators R=%/" for {a € C, 0 < Rea < Q} and (I+ R)~%/" for
a € C, the Riesz potential and the Bessel potential, respectively.

In the sequel we will denote their kernels by Z, and B,, respectively, as
defined in the following:

Corollary 4.3.11. We keep the setting and notation of Theorem 4.3.5.
(i) Let a € C with 0 < Rea < Q. The integral

To(z) = % /Oootﬁ—lht(x)dt

v

converges absolutely for every x # 0. This defines a distribution T, which is
smooth away from the origin and (a — Q)-homogeneous.

For anyp € (1,00), if p € S(Q) or, more generally, if € LI(G)NLP(QG)

where q € [1,00) is given by % - % = Rga, then

¢ €Dom(R,*) and R, ¢ =¢*T, € LP(G).
Consequently,

VoeS(G) RipeIP(G) and ¢ = (Rj¢)*T,.

(ii) Let a € Cy. The integral
1
(%)

converges absolutely for every x # 0 and defines an integrable function B, on
G. The function B, is always smooth away from 0.

Bu(z) :=

/ tv~te thy(x)dt
0

If Rea > Q, B, is also smooth at 0.
If Rea > Q/2, then B, is square integrable: B, € L*(G).
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All the operators (1+R,)~%", p € [1,00) U {00,}, are bounded convo-
lution operators with the same (right convolution) kernel B,,.

If a,b € Cy, then as integrable functions, we have

Ba * Bb = Ba+b-

Remark 4.3.12. In other words for Part (i), Z, is a kernel of type a and
R, "0 = T,.

This shows that if v < @), Z; is a fundamental solution of R, in fact, the unique
homogeneous fundamental solution (cf. Theorem 3.2.40).

Note that we will show in Lemma 4.5.9 that more generally X*B, € L*(G)
whenever Rea > [a] + Q/2, as well as other L!-estimates.

Proof of Corollary 4.53.11. The absolute convergence and the smoothness of Z,
and B, follow from Lemma 4.3.8.

For the homogeneity of Z,, we use (4.12) and the change of variable s = r "¢,
to get

1 © L
To(rx) = W/o tv = hy(rz)dt

1 /°° o g _ -
= — (r"s)v L= Qhg(z)rVds = r*~ L, (z).
L(a/v) Jo
Hence Z, is a kernel of type a with 0 < Rea < @ (see Definition 3.2.9).
By Lemma 3.2.7, the operator S(G) 3 ¢ — ¢ x Z, is homogeneous of degree
—a, and by Proposition 3.2.8, it admits a bounded extension LY(G) — LP(G)

l_l_Re(a)
Whenp s =0

Let ¢ € R?(S(G)). By Theorem 4.3.6, the function a R;%d) is analytic
on the strip {z € C,0 < Rez < Q} and coincides there with

- tv "L % hydt.
F(y)/o !

But since the integral defining Z,(z) is absolutely convergent for all z € G\{0},
we have

at—

VYa € C, Rea € (0,Q),

tv L x hydt = ¢ * T,
F(la,)/o ¢* t ¢* as

and a — ¢ x I, is analytic on the strip {0 < Rea < Q}.
Hence we have obtained that

Ry é= ¢TI,
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holds for Rea € (0,Q) and for any ¢ € R?(S(G)). Note that R?(S(G)) is dense
in any L"(G), r € (1,00) as it suffices to apply Corollary 4.3.4 (ii) to the positive
Rockland operator R?. Then Corollary 3.2.32 concludes the proof of Part (i).

By Theorem 4.2.7,
/ |ht|:/ |hi] < oo
G G
for all ¢t > 0, so

x)|ldr < Rea —let T ( L ?) 1
/G'B“( )|z < 3/ /|ht et = S, (452

and B, is integrable.

By Theorem 4.3.6 Part (4), the integrable function B, is the convolution
kernel of (I+R,)~%/".

Let us show the square integrability of B,. We compute for any R > 0:

T (a/v)? /| B = / DB @B

z/ / t%_le_tht(aj)dt/ st e hy(2)ds d

|lz|<R J0O 0

:/ / s%_lt%_le_(t+s)/ he(x)hs(z)dx dtds.
o Jo lz|<R

From the properties of the heat kernel (see (4.13) and (4.11)) we see that

hi(x)hg(z)dr = he(z)hs(x™ de — hy * he(0),
lz|<R lz|<R R=ro0

and hy * hy(0) = heps(0) = (£ +8)~ 5 by (0).

Therefore,

/ Bol@)ldz = 1 a/u |2/ / PNl (1 4 5)~ P dtds
h1(0) / rg—1 a_q / —u, 2(Ree 1) Q1
= =5 S 1—s")»tds e “utv du, 4.33
TP Jooy® O, (433)

after the change of variables u = s+t and s’ = s/u. The integrals over s’ and u

converge when Rea > Q/2. Thus B, is square integrable under this condition.
The rest of the proof of Corollary 4.3.11 follows easily from the properties of

the fractional powers of I + R. O

The proof of Corollary 4.3.11 implies:

Corollary 4.3.13. We keep the notation of Corollary 4.3.11 and hy denotes the
heat kernel at timet =1 of R.
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1. For any a € C,, the operator norm of (I+R,)™% on LP(G) if p € [1,00) or
on Co(G) if p = 00, is bounded by || Ba||1 and we have

Balleier < 202 o
\F( )|

2. If Rea > Q/2,
T 2Rea—Q 1/2
IBullz2c) = <h1<o>(r(2§ea>)> .
3. Ifpe(1,2) and a > Q(1 — 7) then B, € LP(G).

Proof. The first statement follows from (4.32).
For the second part, Estimate (4.33) yields

1Ball3 = h1(0)Ca,

where
1 a __ a > Rea _Q
C, = |F(a/u)|72/ s (l—s)? 1d5'/ e Uy TV Ty
s'=0 u=0
_ L(5)T(8),, 2Rea — Q
- |F(V)| (% %)F( v )’

thanks to the properties of the Gamma function (see equality (A.4)). We notice

that _ -
r(r() =r(Er) = e

174 v 14 14 14

Thus the constant C, simplifies into
F( 2Rea—Q )
L+

v v

C, =

This shows the second part.

The third part is obtained by complex interpolation between Parts 1 and 2.
More precisely, we fix ¢ > 0 and b > @)/2 and we consider the linear functional
defined on simple functions in L'(G) via

T.¢ = /GBaz-l—b(l—z)(x)(b(x)
for any z € C, Rez € [0, 1]. We have

|TZ¢‘ < ||Baz+b(l—2)H1||¢HOO'
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Before applying Part 1 to ||Bg.ip(1—z)l[1, let us mention that the Stirling
formula (A.3) implies that for any w € Cy.,

P(Rew) _ [ Jul (R

C(w)| ™ VRew |(¥

wfRew|

A
7N
=
)
g

exp ([Tmw|In |w]).

N
7N
=

@

g

N——— ———

g
g

|

|

This together with Part 1 then yield
0 |726] < 1n(1Bus o) 11 19l1oc) S (1 + [T 2[) In(1 + [Em ),

thus {7} is an admissible family of operator (in the sense of Section A.6). The
same arguments also show that

I Tariy@l S (1 [y)) ™2+ exp (clyl (1 + [y]) [[l]oc,

where c is a constant of a, b, v.
The Cauchy-Schwartz estimate and Part 2 yield

Tiyd| < 1Baiy+b1-iy) ll2[l1l2,

and Part 2 implies that the quantity

F( 2b—Q ) 1/2
||Baiy+b(1—iy)||2 = h1(0)?%b) )
is independent of y. Hence we can apply Theorem A.6.1 to {T.}: T} extends to an
L%*-bounded operator where ¢ € (0,1) and q—lt = % Therefore By p1—4) € L%

q—lt + ql—; = 1. This shows Part 3 and
concludes the proof of Corollary 4.3.13. / O

where ¢ is the dual exponent to ¢, i.e.

We finish this section with some technical properties which will be useful in
the sequel. The first one is easy to check.

Lemma 4.3.14. If R is a positive Rockland operator with B, being the kernel of the
Bessel potential as given in Corollary 4.3.11, then R is also a positive Rockland
operator and B, is the kernel of the Bessel potential associated to R.

Lemma 4.3.15. We keep the notation of Corollary 4.3.11. If a € C4, then the
function
z— |z|V B, (z)
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is integrable on G, where | - | denotes any homogeneous quasi-norm on G and N
is any positive integer. Consequently, for any ¢ € S(Q), the function ¢ * B, is
Schwartz and

¢ ¢ By
acts continuously from S(G) to itself.

Note that we will show in Lemma 4.5.9 that, more generally,
lz|°X*B, € L}*(G) for Rea+b > [a],

and that
X“B, € L*(G) for Rea > [a] +Q/2.

Proof of Lemma 4.3.15. Let | - | be a homogeneous quasi-norm on G and N € N.
We see that

1 *° Rea
[l las < s [T e [ e inolas a
G v 0 G

and using the homogeneity of the heat kernel (see (4.17)) and the change of vari-
ables y = t_%a:, we get

/c x| Ve () d = /G 7y N b (y)ldy = ent ¥,

where ¢x = |[y[Vh1(y)|| 11 (ay) is a finite constant since hy € S(G). Thus,

2V |Ba(2)|de < — N [ ¢t et < oo,
G IT(2)[ Jo

and x — |z|VB,(x) is integrable.

Let C, > 1 denote the constant in the triangle inequality for |-| (see Proposi-
tion 3.1.38 and also Inequality (3.43)). Let also ¢ € S(G). We have for any N € N
and a € Nj:

(L+laD)™ | K16+ Bo] (@)] = (1 +[a)™ |26+ Ba(a)

< (L+la)™ |X29] + |Bal (2)
<CN |+ DYR[ ¢ [+ )V Ba@)] @)
<OV ||+ 1-D¥Eog|| (a1 DY Bal -

This shows that that ¢« B, € S(G) and that ¢ — ¢ x B, is continuous as a map
of S(G) to itself (for a description of the Schwartz class, see Section 3.1.9). O
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Corollary 4.3.16. We keep the notation of Corollary 4.53.11.
For anya € C and p € [1,00)U{00,}, Dom(I+R,)* D S(G) and, moreover,

I+ Rp)US(G)) = S(G). (4.34)

Furthermore on S(G), I+ Rp)* does not depend on p € [1,00) U {o0,} and acts
continuously on S(G).
If a € C4, we have

T+ Rp)* (¢ Bav) = (I1+Rp)*¢) x Ba =¢  (p € [1,00) U{o0o}). (4.35)

Proof. Formula (4.35) holds for each p € [1,00) U {o0,} by Theorem 4.3.6 and
Corollary 4.3.11.

Let us show (4.34) in the case of a = N € N. By Theorem 4.3.6 (1a), we have
the equality (I+R,)N¢ = (I+ R)N¢ for any ¢ € S(G) and p € (1,00). Hence
I+ R,)NM(S(G)) = (I+ R)N(S(G)). The inclusion (I + R)N(S(G)) C S(G) is
immediate. The converse follows easily from Lemma 4.3.15 together with (4.35).
This proves (4.34) for a = N € N. This implies that for any N € N, S(G) is
included in

Dom [(I+ R,)™] NRange [(I+R,)"]

and we can apply the analyticity results (Part (1c)) of Theorem 4.3.6: fixing ¢ €
S(G), the function a — (I+ Rp)*¢ is holomorphic in {a € C: —N < Rea < N}.
We observe that by Corollary 4.3.11 (ii), if —N < Rea < 0, all the functions
(I+Rp)*¢ coincide with ¢ * B, for any p € [1,00) U {co,}. This shows that for
each a € C fixed, (I+ R,)*¢ is independent of p. Furthermore, it is Schwartz.
Indeed if Rea < 0 this follow from Lemma 4.3.15. If Rea > 0, we write a = a, +a’
with a, € N and Rea’ < 0 and we have in the sense of operators

I+ R)”I+R)% C (I+R)"

The operator (I+ R)% is a differential operator, hence maps S(G) to itself, and
the operator (I + R)* maps S(G) to itself by Lemma 4.3.15. Thus in any case
(I+7R,)* € S(G) and is independent of p.

We have obtained that (I+R,)*(S(G)) C S(G) for any p € (1,00), a € C. As
{I+R,)*} =1 = (I+R,) ~ by Theorem 4.3.6 (1a), this proves the equality in (4.34)
for any a € C. Lemma 4.3.15 says that this action is continuous if Rea < 0. This
is also the case for Rea > 0 since we can proceed as above and write a = a, + a’
with a, € N and Rea’ < 0, the action of (I4+7R)% being continuous on S(G). This
concludes the proof of Corollary 4.3.16. g

Corollary 4.3.16 implies that the following definition makes sense.

Definition 4.3.17. Let R be a positive Rockland operator of homogeneous degree v
and let s € R. For any tempered distribution f € §'(G), we denote by (I4+R)*/" f
the tempered distribution defined by

(T+ R f,0) = (f,A+R)*"¢), ¢€S(G).
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4.4 Sobolev spaces on graded Lie groups

In this section we define the (homogeneous and inhomogeneous) Sobolev spaces
associated to a positive Rockland operator R and show that they satisfy similar
properties to the Euclidean Sobolev spaces and to the Sobolev spaces defined
and studied by Folland [Fol75] on stratified Lie groups. In Section 4.4.5, we show
that the constructed spaces are actually independent of the choice of a positive
Rockland operator R on a graded Lie group with which we start our construction.
In Section 4.4.7, we list the main properties of our Sobolev spaces.

4.4.1 (Inhomogeneous) Sobolev spaces
We first need the following lemma:

Lemma 4.4.1. We keep the notation of Theorem 4.3.6. For any s € R and p €
[1,00) U {00, }, the domain of the operator (1+R,)v contains S(G), and the map

Fr—= 10+ Ry)* fllzoo
defines a norm on S(G). We denote it by

Ifllzze) = L+ Rp) ¥ fllLo(c)-

Moreover, any sequence in S(G) which is Cauchy for || - |

S'(G).

Lr(q) s convergent in

We have allowed ourselves to write || ||z () = || - o0 (c) for the supremum
norm. We may also write || - ||oc OF || - ||co, -

Proof. By Corollary 4.3.16, the domain of (I + R,)¥ contains S(G). Since the
operator (I+7R,)¥ is linear, it is easy to check that the map f ~ |1+ R,)" fll,
is non-negative and satisfies the triangle inequality. Since (I + Rp)s/ Y is injective
by Theorem 4.3.6, Part (1), we have that ||f||.z(s) = 0 implies f = 0.

Clearly || - [[zz(@) = || - [lp» so in the case of s = 0 a Cauchy sequence of
Schwartz functions converges in LP-norm, thus also in S'(G).

Let us assume s > 0. By Corollary 4.3.11 (ii), the operator (I + R,) 7 is
bounded on LP(G). Hence we have

I lzre) < Cll - ez

on §(G). Consequently a ||| . ()-Cauchy sequence of Schwartz functions converge
in LP-norm thus in §’'(G).

Now let us assume s < 0. Let {f¢}sen be a sequence of Schwartz functions
which is Cauchy for the norm || - ||z(g). By (4.35) we have

fo=(T+Rp)" fe) * Bs.
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Furthermore, if ¢ € S(G) then using (1.14) and (4.13), we have

/ fole)bla)dz = / (T+R)Ef) (@) (6% B) (x) de.  (4.36)
G G

By assumption the sequence {(I+R,)? fe}sen is |- || »(¢)-Cauchy thus convergent
in L?(G). By Lemma 4.3.15, ¢ * B, € S(G). Therefore, the right-hand side of
(4.36) is convergent as ¢ — oco. Hence the scalar sequence (fy, ¢) converges for any
¢ € S(G). This shows that the sequence {f;} converges in S'(G). O

Lemma 4.4.1 allows us to define the (inhomogeneous) Sobolev spaces:

Definition 4.4.2. Let R be a positive Rockland operator on a graded Lie group
G. We consider its LP-analogue R, and the powers of (I + R,)* as defined in
Theorems 4.3.3 and 4.3.6. Let s € R.

If p € [1,00), the Sobolev space LY (@) is the subspace of §'(G) obtained
by completion of S(G) with respect to the Sobolev norm

e ey = 1A+ Rp)? fllzn),  f € S(G).

If p = 00,, the Sobolev space L% (G) is the subspace of §'(G) obtained by
completion of §(G) with respect to the Sobolev norm

1£ll2g @) = 1A+ Rec,)? fllz=c),  f€S(G).

SR
When the Rockland operator R is fixed, we may allow ourselves to drop the
index R in LY 1 (G) = LE(G) to simplify the notation.

We will see later that the Sobolev spaces actually do not depend on the
Rockland operator R, see Theorem 4.4.20.

By construction the Sobolev space L?(G) endowed with the Sobolev norm is
a Banach space which contains S(G) as a dense subspace and is included in §’(G).
The Sobolev spaces share many properties with their Euclidean counterparts.

Theorem 4.4.3. Let R be a positive Rockland operator of homogeneous degree v
on a graded Lie group G. We consider the associated Sobolev spaces LX(G) for
p € [1,00) U{oo,} and s € R.

1. If s =0, then L(G) = LP(G) for p € [1,00) with || - Izz@y =1l - lzr(c), and
L3 (G) = Co(G) with || - [|pgeo (@) = | - | (c)-

2. If s > 0, then for any a € C with Rea = s, we have
L7(G) = Dom [(1+R,)¥] = Dom(R}) C LP(G),

and the following norms are equivalent to || - || r (-

Fre—=fllre) + NA+Rp) ¥ flloays fr— Ifllzea) + RS fllzeo)-
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3. Let s€ R and f € §'(G).
e Given p € (1,00), we have f € L2(G) if and only if the tempered dis-
tribution (I + RP)S/Vf defined in Definition 4.3.17 is in LP(G), in the
sense that the linear mapping

S(G)3 ¢ (T+R)Yf.8) = (f, T+ Rp)*"¢)

extends to a bounded functional on LY (G) where p' is the conjugate
exponent of p.

e f € LYQ) if and only if 1+ R1)*/*f € L' (G) in the sense that the

linear mapping
S(G) 2 ¢ = (I+ RV [,6) = (f.(1+ Rex,)*/"0)

extends to a bounded functional on C,(G) and is realised as a measure
given by an integrable function.

o f € LX(G) if and only if (1+Reo,)*’" f € Co(G) in the sense that the
linear mapping

S(G) 3 ¢ (I+R)*/"f,0) = (f, 1+ R1)*/"¢)

extends to a bounded functional on L*(G) and is realised as integration
against functions in Co(G).

4. If a,b € R with a < b and p € [1,00) U {c0,}, then the following continuous
strict inclusions hold

S(G) € Ly(G) ¢ L(G) & §'(@),

and an equivalent norm for L (G) is
b—a
Ly(G) 3 f — Iflze) + I1R” fllzzce)-

5. For p € [1,00) U {o0,} and any a,b,c € R with a < ¢ < b, there exists a
positive constant C' = Coy . such that for any f € LY, we have f € L N LP,
and

—0
1 £llze < CIFIE 1A,
where 0 := (¢ —a)/(b— a).

In Theorem 4.4.20, we will see that the definition of the Sobolev spaces and
their properties given in Theorem 4.4.3 hold independently of the chosen Rockland
operator R.

From now on, we will often use the notation L} (G) since this allows us not to
distinguish between the cases L} (G) = LP(G) when p € [1,00) and L(G) = C,(G)
when p = oco,.

In the proof of Part (2) of Theorem 4.4.3, we will need the following exercise
in functional analysis:
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Lemma 4.4.4. Let T and Ty be two linear operators between two Banach spaces
X — Y. We assume that Ty and Ty are densely defined and share the same domain.
We also assume that they are both closed injective operators and that T is bijective
with a bounded inverse. Then the graph norms of T1 and Ts are equivalent, that
is,

3C >0 Va € Dom(7Ty) = Dom(T3)
CH Il + 1 T2z ll) < flell + 1 Taz]| < C(ll2l| + 1 To])).

Sketch of the proof of Lemma 4.4.4. One can check easily that T := T1T2_1 de-
fines a closed linear operator T : ) — ) defined on the whole space ). By the
closed graph theorem (see, e.g., [Rud91, Theorem 2.15] or [RS80, Thm III. 12]),
T is bounded. Furthermore, T is injective as the composition of two injective
operators. It may not have a closed range in ) but one checks easily that the
operator

Yy — Ax)Y

T, T) - ,
(1) {y — (T3 'y, Ty)

has a closed range in X x ). Hence the restriction of (7, 7) onto its image is
bounded with a bounded inverse (see e.g. [RS80, Thm III. 11]). Consequently,

175 yll + 1Tyl = [yl
for any element y € Y, in particular of the form y = Tox, © € Dom(T3). g

We can now prove Theorem 4.4.3.

Proof of Theorem 4.4.3. Part (1) is true since (I—l—Rp)% = I. Let us prove Part (2).
So let s > 0. Clearly L2(G) coincides with the domain of the unbounded operator
(I+R,)v (see Theorem 4.3.6 (2)) hence it is a proper subspace of LP(G). As the
operator (I +R,)”¥ is bounded on LP(G), we have || - [|r(cy < C|l - [[12(q) on
LE(G). So || - [[ze(a) + || - [|Le(e) is a norm on LE(G) which is equivalent to the

Sobolev norm. Theorem 4.3.6 implies that Rp% and (I+R,) ¥ satisfy the hypotheses
of Lemma 4.4.4. This shows part (2).

Part (3) follows from Part (2) and the duality properties of the spaces LP(G)
and C,(G) in the case s > 0. We now consider the case s < 0. By Lemma 4.3.15
and Corollary 4.3.11 (and also Lemma 4.3.14), the mapping

Top s+ S(G) 3 ¢ (f,(I+Ry)*/"6) = (f,6+ B_s)

is well defined for any f € S'(G). If T,/ ; admits a bounded extension to a
functional on Lf (G), then we denote this extension T v ¢ and we have

||Ts7p’

’fHZ(LS/,(C) = Hf| LY (G)- (437)
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This is certainly so if f € S(G). Furthermore a sequence { f;}sen of Schwartz func-
tions is convergent for the Sobolev norm || - || 1z (¢ if and only if {75, f,} is con-

vergent in Lg/ (G) (see Lemma 4.3.2). In the case of convergence, by Lemma 4.4.1,
{fe}een converges in the sense of distributions. Denoting this limit by f € S'(G),
we have

=Tsp s

lim T
ngo s,p ,fe:| s©)
It is easy to see, by linearity of fi — T, r, and (4.37), that T, ¢ extends to a

continuous functional on Lg/ (G).

Conversely, let us consider a distribution f € §'(G) such that T p  extends

to a bounded functional Tsyp/’f on Lg,(G). If {fr}een is a sequence of Schwartz
functions converging to f in §’(G), then

zlglolo Tspr £(9) = Tspr 5 (9)

for every ¢ € S(G), and using the density of S(G) in Lg, (G) and the Banach-

Steinhaus Theorem, this shows that {7}, ;,} converges to T,/ ; in the norm of
the dual of L (G). This shows the case s < 0 and concludes the proof of Part (3).

Let us show Part (4). Let @ < b and p € [1,00) U {00, }. By Theorem 4.3.6
(1), we have in the sense of operators

a—b b
v,

I+R,)" D (I+R,) 7 I+7R,)

Since the operator (I + Rp)anb is bounded, we have for any f € S(G)

a—b

a b
Iz = NA+Rp)¥ fllp = [T+ Rp) = (T+Rp) 7 £l
a=b b
[T+ Rp) 7 2@ lT+Rp) v fllp = [T+ Ry)

a—b

M@l fllize-

IN

By density of S(G), this implies the continuous inclusion L C L?. Note that we
also have if a < b

A+ R fllp = 1T+ Rp)¥ fllzr_ (o)

a

b—
gy = I0T+Ry) ™
b—a

1T+ Rp)” fllzoie) + IIRp™ T+ Rp)” fllzr(e,

X

by Part (2) above for any f € S(G). By Theorem 4.3.6 (5), we can commute

b—a a
the operators R,” and (I4+ R,)> in this last expression. Consequently, we have
obtained for any f € S(G),

b—a
1fllzeey = Iz +1IRs” fllzzie)-
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b—a

By density of S(G), this holds for any f € L}(G). Since the operator R,” is
unbounded, this also implies the strict inclusions given in Part (4).

Part (5) follows from Theorem 4.3.6 (1f) for the case of a = 0. For f € LY,
we then apply this to b — a,c — a instead of b and ¢ and ¢ := (I+R,,)v f € LY __
instead of f.

This concludes the proof of this part and of the whole theorem. O

Theorem 4.4.3 has the two following corollaries. The first one is an easy
consequence of Part (3).

Corollary 4.4.5. We keep the setting and notation of Theorem 4.4.3. Let s < 0
and p € [1,00) U{0,}. Let f € S'(G).
The tempered distribution f is in LE(G) if and only if the mapping

S(G)2 ¢ (f,¢%B_y)

extends to a bounded linear functional on L’O’/ (G) with the additional property that

e for p = 1, this functional on Co(G) is realised as a measure given by an
integrable function,

o if p = 00,, this functional on L*(G) is realised by integration against a func-
tion in Co(G).
Corollary 4.4.6. We keep the setting and notation of Theorem 4.4.3. Let s € R
and p € [1,00) U{c0,}. Then D(G) is dense in L2(G).

Proof of Corollary 4.4.6. This is certainly true for s > 0 (see the proof of Parts
(1) and (2) of Theorem 4.4.3). For s < 0, it suffices to proceed as in the last part
of the proof of Part (3) with a sequence of functions f, € D(G). O

Theorem 4.4.3, especially Part (3), implies the following property regarding
duality of Sobolev spaces. This will be improved in Proposition 4.4.22 once we
show in Theorem 4.4.20 that the Sobolev spaces are indeed independent of the
considered Rockland operator.

Lemma 4.4.7. Let R be a positive Rockland operator on a graded Lie group G. We
consider the associated Sobolev spaces LY (G). If s € R and p € (1,00), the dual

space of LY 5 (G) is isomorphic to in/s,'f_{(G) via the distributional duality, where

p’ is the conjugate exponent of p, % + ﬁ =1.

Proof of Lemma 4.4.7. Clearly if f € LZR(G) then for any ¢ € S(G),
<f7 ¢> = <f7 (I + ﬁp’)%(l + ﬁp’)_%@ = <(I + Rp)%ﬂ (I + ﬁp/)_ggb)
by Theorem 4.3.6. Hence by Theorem 4.4.3 Part (3),

[(Fo D) < NA+Rp)” Fllpll(T+ Rpr) ™% &l
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and the linear function S(G) 3 ¢ — (f, ¢) extends to a bounded linear functional

on sz . 5 (G). Conversely, let ¥ be a bounded linear functional on L’:l . 5(G). Then

since - )
(I+Ry)"S(G) =S(G) C L¥  R(G),

see Corollary 4.3.16 and Definition 4.4.2, the linear functional ¥ o (I+ R,/ )%/" is
well defined on S(G) and satisfies for any ¢ € S(G),
[Wo T+ Ry) (@) = ¥ ((A+Ry)"0)|
< ClA+Ry) ¢l L =Clell -

Therefore, ¥o (I+7R,/)*/ extends into a bounded linear functional on L§(G). O

In the next statement, we show how to produce functions and converging
sequences of Sobolev spaces using the convolution:

Proposition 4.4.8. We keep the setting and notation of Theorem 4.4.53. Here a € R
and p € [1,00) U {o0,}.

(i) If f € L{(GQ) and ¢ € S(GQ), then f* ¢ € LP for any a and p.
(i1) If f € LP(G) and ¢ € S(G), then

I+ Rp)* (W xf)=vx (I+Ry)" f), (4.38)
and ¥ x f € LE(G) with
19 * fllzee) < ¢l fllze - (4.39)

Furthermore, if [ =1, writing
V() = e (e L)

for each € > 0, then {1 x f} converges to f in LP(G) as e — 0.

Proof of Proposition 4.4.8. Let us prove Part (i). Here f € L§(G). By density of
S(G) in LE(G), we can find a sequence of Schwartz functions {f¢} converging to
f in L{-norm. Then f; * ¢ € S(G) and for any N € N,

RN(fg*gb):fg*RNqSZjof*RNq& in L§(G),
thus R (f * ¢) = f * RN¢ € LP(G) and

I1f % 8lleze + IRY (f * @)L < oo

By Theorem 4.4.3 (4), this shows that f ¢ is in L?,, for any N € N, hence in
any p-Sobolev spaces. This proves (i).
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Let us prove Part (ii). We observe that both sides of Formula (4.38) always
make sense as convolutions of a Schwartz function with a tempered distribution.

Let us first assume that f € S(G). Formula (4.38) is true if a < 0 by Corollary
4.3.11 (ii) since then the (I+ R,)¥ is a convolution operator with an integrable
convolution kernel. Formula (4.38) is also true if a € vNj as in this case (I+7R,) " is
a left-invariant differential operator by Theorem 4.3.6 (1a). Hence Formula (4.38)
holds for any a > 0 by writing a = ag + a’, ag € vNy, a’ < 0, and

(+Ry)Ef = (I+Ry)F (1+R,) 7 f.

Together with Corollary 4.3.16, this shows that Formulae (4.38) and consequently
(4.39) hold for any a € R and f € S(G).

By density of S(G) in L2(G) and (4.39), this shows that Formulae (4.38) and
(4.39) hold for any f € L2(G).

Hence ¢ + f € L2(G) with Lz-norm < ][I/l 1z (c)-

If [, =1, by Lemma 3.1.58 (i),

e * f = fllzey = 1T+ Rp)¥ (e * £ = F)llp
= [tpe* (I+Rp)* f) — A+ Rp)* fllp —ems0 O,

that is, {1 * f} converges to f in L?(G) as € — 0. This proves (ii). O

4.4.2 Interpolation between inhomogeneous Sobolev spaces

In this section, we prove that interpolation between Sobolev spaces L?(G) works
in the same way as its Euclidean counterpart.

Theorem 4.4.9. Let R and Q be two positive Rockland operators on two graded Lie
groups G and F. We consider their associated Sobolev spaces LE(G) and L{(F).
Let po, p1,q0,q1 € (1,00) and let ag, a1,bg, by be real numbers.

We also consider a linear mapping T from L?°(G) 4 LY (G) to locally in-
tegrable functions on F. We assume that T maps LE(G) and LE(G) boundedly
into Ly’ (F) and L (F), respectively.

Then T extends uniquely to a bounded mapping from L% (G) to Lj (F) for
t € [0,1] where at, by, pr, qr are defined by

1 1 1 1 1 1
(atabh ) ) = (1 _t) (a03b07 ) ) +t <a17b177> .
bt Gt Po qo p1 @1

The idea of the proof is similar to the one of the Euclidean or stratified cases,
see [Fol75, Theorem 4.7]. Some arguments will be modified since our estimates
for [[(I+ R)""|| ¢ (L») are different from the ones obtained by Folland in [Fol75].
For this, compare Corollary 4.3.13 and Proposition 4.3.7 in this monograph with
[Fol75, Proposition 4.3].
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Proof of Theorem 4.4.9. By duality (see Lemma 4.4.7) and up to a change of
notation, it suffices to prove the case

al Z apn and bl S bo. (440)

This fact is left to the reader to check. The idea is to interpolate between the
operators formally given by

bz az
T.=(1+Q)*TI+R) "x, (4.41)

where vz and vg denote the degrees of homogeneity of R and Q, respectively, and
the complex numbers a, and b, are defined by

(as,b,) = z(a1,b1) + (1 — 2) (ag, bo),

for z in the strip
S:={z€C : Rez€|0,1]}.

In (4.41), we have abused the notation regarding the fractional powers of I + R,
and I+ @, and removed p and ¢. This is possible by Corollary 4.3.16 and density
of the Schwartz space in each Sobolev space. Hence (4.41) makes sense. We will
use complex interpolation given by Theorem A.6.1, which requires to start with
the space & of compactly supported simple functions on G (see Remark A.6.2).
To solve this technical problem we proceed as in the proof of [Fol75, Theorem 4.7
we will use the convolution of a function in Z with a bump function y. depending
on € at the end of the proof.
The hypotheses on T give that the operator norms

L5 _ )
1Tl gz posy = A+ Q) T(A+R) = || grs rw),  J=0,1,
EA

are finite.
By Corollary 4.3.16, for any ¢ € S(G) and ¢ € S(F), we have

(Too, ) = (T +R) %% 1+ R)V o, 1+ 0) M7 (14 Q)M )

for any M, N € Z. In particular, for M and N large enough, Theorem 4.3.6 implies
that
53z (T2, 9)

is analytic. With M = N € N large enough, for instance the smallest integer with
N > aq,ag, b1, by, we get

(T, 9) < A(2) B(2) 1Tl 2 zzy om0z 191l gy s

where A(z) and B(z) denote the operator norms

—az+taq by—by

A=) = [0+ R) VTR gy and B() = [T+ Q)R g gm.
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We can write

a1 — ap ap —ap

A(z) = [T+ R) ™) | gpony witha =N — >0, =

VR VR

> 0.

Thus

A(z) 1T+ R)~CHPRED | oo | (L4 R) 2| o)

<
S b pae?PimEl

by Corollary 4.3.13 and Proposition 4.3.7 using the notation of their statements.
We have a similar property for B(z). This implies easily that there exists a constant
C depending on ¢,, a1, ag,b1,by and F,G, R, Q such that we have

Vze S In (T, ¢,v)| < C(1+ |Imz]|).

We now estimate operator norms of 7T, for z on the boundary of the strip,
thatis, 2z =741, 7=0,1,y € R:

Tl (23, L)

bz _az
=1+ Q)"eT(I+R) "= || ¢wri L)

bz—bj by —ay a;i—ay
=10+ Q) " (I+Q)"T(I+R)" (I+R) " |pwr L)
by—b a;—a

< NI+Qq) "2 @) 1Tl grzs ) [T+ Rp,) 7= MLz e

by — ag—

i b0 i @1
=10+ Q4)" "2 Nz 1Tl gz 20| T+ Rp,) "™ 7= || p1ms).
377

Proposition 4.3.7 then implies

a1 —ag
YR

bo—by
or lyl 0o =0% \yl,

| Tjtiyll 2 (rrs Loy < C||T||$(L§§7ngj)e
J

where C, fr and 0o are positive constants obtained from the applications of
Proposition 4.3.7 to R and Q.

The end of the proof is now classical. We fix a non-negative function xy € S(G)
with [, x =1 and write
Q. (. —1

Xe(z) =€ “x(e )

for e > 0. If f € A, then fx*x. € S(G) (see Lemma 3.1.59) and we can set for any
€e>0,z€8,
T.of =T.(f *xe)-

Clearly T, . satisfy the hypotheses of Theorem A.6.1 (see also Remark A.6.2).
Thus for any t € [0, 1], there exists a constant M; > 0 independent of € such that

Vf €EX ||Tt,ef||qt < Mt”f”pt'
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For p € (1,00), we consider the space V, of functions ¢ of the form ¢ = f*x,
with f € Z and € > 0, satisfying || f|l, < 2||f * Xe||p- By Lemma 3.1.59, the space
V, contains S(G) and is dense in LP(G) for p € (1,00). Going back to the proof
of Theorem 4.4.9, we have obtained for any ¢ € [0,1] and ¢ = f * x. € V,,, that

1Ti0llg, = 1 Teefllq < Mellfllpe < 2Mel|¢llp, -
This shows that T} extends to a bounded operator from LP*(G) to L% (G). O

As a consequence of the interpolation properties, we have

Corollary 4.4.10. Let k € S'(G) and let T,; be its associated convolution operator
T.:S(G)2 ¢ ¢pxk.

Let also a € R, p € (1,00) and let {~ye, L € Z} be a sequence of real numbers which
tends to £oo as £ — +oo. Assume that for any £ € 7Z, the operator T,, extends
continuously to a bounded operator L? (G) — Ly, (G). Then the operator Ty
extends continuously to a bounded operator LE(G) — L, (G) for any v € R.
Furthermore, for any ¢ > 0, we have

s [Tl agaz, ) < Comae (WEuleas, oz, WTelzas. )
y|<e

where £ € Ny is the smallest integer such that v¢ > ¢ and —y_y > c.

4.4.3 Homogeneous Sobolev spaces

Here we define the homogeneous version of our Sobolev spaces and obtain their
first properties. Many proofs are obtained by adapting the corresponding inho-
mogeneous cases and we may therefore allow ourselves to present them more
succinctly. For technical reasons explained below, the definition of homogeneous
Sobolev spaces is restricted to the case p € (1, 00).

As in the inhomogeneous case, we first need the following lemma:

Lemma 4.4.11. We keep the notation of Theorem 4.3.6.
1. For any s € R and p € [1,00) U{00,}, the map f ||R§f||Lp(G) defines a
norm on S(G) N Dom(RE) We denote it by

||f||Lg(G) = HRngLP(G)~

2. Foranys <0 andp€[l,00)U{o0,}, S(G)ﬂDom(Rj) contains RII*IV1(S(Q))
which is dense in Range(Ryp) for || - |Lr(q), and any sequence in S(G) N

Dom(RE) which is Cauchy for || - || jr g is convergent in S'(G).
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3. If s >0 and p € (1,00), then S(G) C Dom(RE) and any sequence in S(G)
which is Cauchy for || - || iz g is convergent in S'(G).

Proof of Lemma 4.4.11. The fact that the map f — ||R§f|\Lp(G) defines a norm
on §(G) follows easily from Theorem 4.3.6 Part (1).

In the case s =0, || - ||L-3(G) = || - [[z»(¢) and Part 2 is proved in this case.

Let s < 0 and p € [1,00) U {00,}. By Theorem 4.3.6 (especially Parts
(1a) and (1c)), for any N € N with N > |s|/v, Dom(R+) contains R™(S(G))
and RY(S(G)) is dense in Range(R,). Consequently S(G) N Dom(Rj ) contains
RN (S8(G)) and is dense in Range(R,). Let p’ be the dual exponent of p, i.e.
%—&— ﬁ = 1 with the usual extension. Theorem 4.3.6 (1), and the duality properties

of LP as well as R! = R imply

(O < IRE Fllzr ) IRy @l Lo

s

for any f € S(G) N Dom(Rjy) and ¢ € S(G). Furthermore, as ¢ € S(G) C
Dom(R;,';), Theorem 4.3.6 (1) also yields for any ¢ € S(G)

30 s LG Akl
1Ry bl < max(mp, Bl e IR 8l
s C L X2l )
[al=15 1T

for some constant C = C'y z. We have obtained that

() < CIRE fllze (e max 1 X“Pl 1o ()

[o]=

for any f € S(G)N Dom(RE) and ¢ € S(G). This together with the properties of
the Schwartz space (see Section 3.1.9) easily implies Part 2.

Let s > 0. By Theorem 4.3.6 (1g), S(G) C Dom(R}).
Let p € (1,00). By Corollary 4.3.11 Part (i), if s € (0, %), then there exists
C > 0 such that

VfeS(G) I fllae) < CIRE fllLe(a) = C||f||L'g(G)7

where g € (1, 00) is such that

"=
Q| =
QO »

Note that ¢ is indeed in (1,00) as s < %. Hence if {f;} € S(G) is Cauchy for
[~ llirg. then {fe} C S(G) is Cauchy for || - [|pa(q) thus in S'(G). This shows
Part 3 for any s > 0, p € (1,00) satisfying ps < Q.
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Ifs e [N%, (N+1)%) for some N € Ny, we write s = s1+ " with s’ € (0, %)

and 0 0
N-1)= N—
516[( )pv p)

and by Corollary 4.3.11 Part (i) with Theorem 4.3.6 (1), we have

IC=Cvp VFESG) IR fllea < CIRS fllie e,

where ¢ € (1, 00) is such that
1 1 ¢

¢ p Q
Hence if {f;} C S(G) is Cauchy for || - ||;r(q), then {f;} C S(G) is Cauchy for
I| - ||L-§,1 (G- Note that
N N
s1 < 762 < 762
p q
Recursively, this shows Part 3. O

The use of Corollary 4.3.11 in the proof above requires p € (1, c0). Moreover,
by Corollary 4.3.4 (ii), the range of R, is dense in LP(G) for p € (1,00,]. As we
want to have a unified presentation for all the homogeneous spaces of any exponent
s € R, we restrict the parameter p to be in (1,00) only.

Definition 4.4.12. Let R be a Rockland operator of homogeneous degree v on
a graded Lie group G, and let p € (1,00). We denote by LS,R(G) the space of

tempered distribution obtained by the completion of S(G) N Dom(Rg ) for the
norm

£l e = RS Fllps  f € S(G) N Dom(RY™).

As in the inhomogeneous case, we will write L?(G) or I./ZR but often omit
the reference to the Rockland operator R. We will see in Theorem 4.4.20 that
the homogeneous Sobolev spaces do not depend on a specific R. Adapting the
inhomogeneous case, one obtains easily:

Proposition 4.4.13. Let G be a graded Lie group of homogeneous dimension Q. Let
R be a positive Rockland operator of homogeneous degree v on G. Let p € (1,00)
and s € R.

1. We have
(S(G) N Dom(R;/")) C iP(G) C S'(G).

Equipped with the homogeneous Sobolev norm |-|| i . the space L2(G)
is a Banach space which contains S(G) N Dom(RZ/V) as dense subspace.

2. If s > —Q/p then S(G) C Dom(Rf,/U) C LP(G). If s < 0 then S(G) N
Dom(R} ) contains RI*IV1(S(G)) which is dense in LP(Q).
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3. If s =0, then LE(G) = LP(G) for p € (1,00) with || - HLg(G) = llzr()-

4. Let s€ R, pe (1,00) and f € S'(G). If f € L?(G) then R;/Vf € LP(G) in
the sense that the linear mapping

(S(G)nDom(Ry/")) 5 61 (£, R}/ )
is densely defined on L¥ (G) and extends to a bounded functional on L¥ (G)

where p' is the conjugate exponent of p. The converse is also true.

5. Ifl<p<qg<ooanda,beR with

b_a:Q( )a

SRR
Q|

then we have the continuous inclusion
o
L,cL]

that is, for every f € Lg, we have f € Lg and there exists a constant C' =
Cabp.q,c > 0 independent of f such that

1£llz5 < Cll Az

6. For p € (1,00) and any a,b,c € R with a < ¢ < b, there exists a positive
constant C' = Cyp . such that we have for any f € Lf

Ifllze < CUFIGCIFIG,  where 6 = (c—a)/(b— a).

Proof of Proposition 4.4.13. Parts (1), (2), and (3) follow from Lemma 4.4.11 and
its proof. Part (4) follows easily by duality and Lemma 4.4.11. Parts (5) and (6)
are an easy consequence of the property of the fractional powers of R on the LP-
spaces (cf. Theorem 4.3.6) and the operator R;S/V, s € (0,Q), being of type s and
independent of p (cf. Corollary 4.3.11 (i)). O

Note that Part (2) of Proposition 4.4.13 can not be improved in general as

the inclusions S(G) C Dom(Rg) or S(G) C L;(G) can not hold in general for
any group G as they do not hold in the Euclidean case i.e. G = (R",+) with
the usual dilations. Indeed in the case of R™, p = 2, one can construct Schwartz
functions which can not be in L? with s < —n/2. It suffices to consider a function
¢ € S(G) satistying 5(5) = 1 on a neighbourhood of 0 since then \§|5$(§) is not
square integrable about 0 for s < —n/2.

As in the homogeneous case (see Lemma 4.4.7), Part (4) of Proposition 4.4.13
above implies the following property regarding duality of Sobolev spaces. This
will be improved in Proposition 4.4.22 once we know (see Theorem 4.4.20) that
homogeneous Sobolev spaces are indeed independent of the considered Rockland
operator.
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Lemma 4.4.14. Let R be a positive Rockland operator on a graded Lie group G.
We consider the associated homogeneous Sobolev spaces L?R(G). IfseRandp €

(1,00), the dual space of LZ;R(G) is isomorphic to L{S’Q(G) via the distributional

duality, where p' is the conjugate exponent of p, i.e. % + i =1.

The following interpolation property can be proved after a careful modifica-
tion of the inhomogeneous proof:

Proposition 4.4.15. Let R and Q be two positive Rockland operators on two graded
Lie groups G and F respectively. We consider their associated homogeneous Sobolev
spaces LE(G) and L{(F). Let po,p1,qo,q1 € (1,00) and ag,a1,bp, b1 € R.

We also consider a linear mapping T from ng(G) + Lﬁi (G) to locally in-
tegrable functions on F. We assume that T maps ng(G) and Lg; (G) boundedly
into LZ;’(F) and LZi(F), respectively.

Then T extends uniquely to a bounded mapping from Lgt(G) to Lgt(F) for

€ 0,1], where as, by, pr, ¢ are defined by

1 1 1 1 1 1
(a/tabta ] ) = (1 _t) (a07b0a ) ) +t (alab177> -
Pt G Po qo P Q1

Sketch of the proof of Proposition 4.4.15. By duality (see Lemma 4.4.14) and up
to a change of notation, it suffices to prove the case a1 > ag and b; < by. The idea
is to interpolate between the operators formally given by

b1—b
°1 %0 20“1

T.=Q " QV@ TR "= R z €8, (4.42)
with the same notation for vg, vg, a,, b, and S as in the proof of Theorem 4.4.9.
In (4.42), we have abused the notation regarding the fractional powers of R, and
Q, and removed p and ¢ thanks to by Theorem 4.3.6 (1). Moreover, Theorem 4.3.6
implies that on S(G), each operator T, z € S, coincides with

)al aj—aqg

Tz:Q(l z) VQ QVQT'R ”RRl z

and that for any ¢ € S(G) and ¢ € S(F), z — (T, ¢, ) is analytic on S. We also
have

(L0, ¥ < Tl iz, o) IR~ o o .
Note that —Rea, + a1 > 0 thus we have
IR gl < IR % llum IR ™% llom

glimaz|
S ol HRNd)HLm@ R

by Theorem 4.3.6 (1f) with N the smallest integer strictly greater than —Re a,+aq
and @« = (—Rea, + a1)/N, and by Proposition 4.3.9 using the notation of its
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_bz—b
statement. We have similar bounds for ||Q "2 ||, and all these estimates imply
easily that there exists a constant depending on ¢, ), a1, ag, b1, by such that

Vze S In|(T.¢,¥)| < C(1+ |Imzl).

For the estimate on the boundary of the strip, that is, z = 7+ iy, j = 0,1, y € R,
we see as in the proof of Theorem 4.4.9:

by —bg 10 20 —41

Y= Y=
Il ezra, iy <11Qa; ™2 e Tl gz i Res ™ llzwrs)-
J

Proposition 4.3.9 then implies

— bg—b
Ryl 0o T lul
b

YR

0
I T+ivllzwrs poy < ClT | g2 joaye™
: Fi

where C, fr and 0o are positive constants obtained from the applications of
Proposition 4.3.9 to R and Q. We conclude the proof in the same way as for
Theorem 4.4.9. g

4.4.4 Operators acting on Sobolev spaces

In this section we show that left-invariant differential operators act continuously
on homogeneous and inhomogeneous Sobolev spaces. We will also show a similar
property for operators of type v, Rerv = 0.

In the statements and in the proofs of this section, we keep the same nota-
tion for an operator defined on a dense subset of some LP-space and its possible
bounded extensions to some Sobolev spaces in order to ease the notation.

Theorem 4.4.16. Let G' be a graded Lie group.

1. LetT be a left-invariant differential operator of homogeneous degree vy. Then
for every p € (1,00) and s € R, T maps continuously LY, (G) to LE(G).
Fizing a positive Rockland operator R in order to define the Sobolev norms,

it means that

IC=Cspr>0 Vo € S(G) 1T

e < C||¢||L§+VT(G)-
2. Let'T be a vr-homogeneous left-invariant differential operator. Then for every
p € (1,00) and s € R, T maps continuously L%, (G) to L(G). Fizing a

positive Rockland operator R in order to define the Sobolev norms, it means
that

s+vr

IC =Cspr >0 Voell,, (G) 1T¢lip(cy < C||¢’||L§+VT(G)-

We start the proof of Theorem 4.4.16 with studying the case of T = X;. This
uses the definition and properties of kernel of type 0, see Section 3.2.5.
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Lemma 4.4.17. Let R be a positive Rockland operator on a graded Lie group G
and I, the kernel of its Riesz operator as in Corollary 4.3.11.

1. Forany j=1,...,n, X;Z,, is a kernel of type 0.

2. If K is a kernel of type 0, then, for any j =1,...,n, X; (KJ *IUJ.) s a kernel
of type 0 and, more generally, for any multi-index o € N}, the kernel

X (eI w T

[v1] [vn]
is of type 0.

3. If T is an operator of type 0, then, for any N € N, RNT’RQ_N s an operator
of type 0 hence it is bounded on LP(G), p € (1,00).

. Forany j=1,...,n and for any N € Ng, RVX. R, e is an operator o
2
type 0.

In Part 2, we have used the notation

fO = fa ik f
N—_——

m times

Proof of Lemma 4.4.17. We adopt the notation of the statement. By Corollary
4.3.11 (i), Z,, is a kernel of type v; € (0,Q) hence, by Lemma 3.2.33, X7, is a
kernel of type 0. This shows Part 1.

More generally, if « is a kernel of type 0, then k * Z,, is a kernel of type v;
by Proposition 3.2.35 (ii) hence by Lemma 3.2.33, X(k * Z,,) is a kernel of type
0. Iterating this procedure shows Part 2.

Let T be an operator of type 0. We denote by & its kernel. Let N € N.
The operator RY can be written as a linear combination of X, o € NI with
[a] = vN. Using the spectral calculus of R to define and decompose R; ", this
shows that the operator RNTR; Y can be written as a linear combination over
[a] = VN of the operators XO‘TR;%O‘1 . R;Tna whose kernel can be written
as X« (m * I[(;)]al * ...k I[(;T)jn). Part 2 implies that the operator RNTRQN is of
type 0. By Theorem 3.2.30, it is a bounded operator on L?(G), p € (1,00). This
shows Part 3.

Part 4 follows from combining Parts 1 and 3. O

We can now finish the proof of Theorem 4.4.16.

Proof of Theorem /4.4.16. By Lemma 4.4.17, Part 4, RNXjR;ijN is an operator
of type 0, hence bounded on LP(G), p € (1,00). The transpose of this operator is

v

N - _J1_N —
) =-Ry, " T X;RY,

(RYXRy ™
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since X! = —X; and R = R. By duality, this operator is L”' -bounded where
1, + l = 1. As R is also a positive Rockland operator, see Lemma 4.1.11, we
can exchange the role of R and R. Hence we have obtained that the operators

vy

RNX; Ry ™ ~ and R, v X RY are bounded on LP(G) for any p € (1,00)
and N € N. This shows that X; maps LU LNy tO LR, and L to Lgv,_NU
continuously. The properties of mterpolatmn cf. Proposition 4.4.15, unply that
X, maps LU 4 to LP continuously for any s € R, p € (1,00) and j = 1,.

Interpretlng any X as a composition of operators X; shows Part ( ) for any
T = X“ a € Np, with vp = [a]. As any vr-homogeneous left—invariant differential
operator is a linear combination of X, a € Njj, with vy = [o], this shows Part
(2).

Let us show Part (1). Let o € N§. If s > 0, then by Theorem 4.4.3 (4) and
Part (2), we have for any ¢ € S(G)

Xl e IX“llr + X0l 1r

gllze +lellze,
Iellee, +19llze,
lollee,

S
S
S
S

This shows that X* maps LSHQ} to LP continuously for any s > 0, p € (1,00) and

any o € N7 The transpose (X®)! of X is a linear combination of X?, [3] = [a],
and will also have the same properties. By duality, this shows that X maps L?
to L Y (s+la]) continuously for any s > 0, p € (1,00) and any o € Nj. Together
with the properties of interpolation (cf. Theorem 4.4.9), this shows that X% maps
L€+[a] to L? continuously for any s € R, p € (1,00) and any a € Nj.

As any left invariant differential operator can be written as a linear combina-
tion of monomials X%, this implies Part (1) and concludes the proof of Theorem
4.4.16. O

The ideas of the proofs above can be adapted to the proof of the following
properties for the operators of type 0:

Theorem 4.4.18. Let T be an operator of type v € C on a graded Lie group G
with Rev = 0. Then for every p € (1,00) and s € R, T maps continuously L?(G)
to LP(G) and LP(G) to LP(QG). Fizing a positive Rockland operator R in order to
define the Sobolev norms, it means that there exists C' = Cs , 7 > 0 satisfying

Vo e S(G) TPl < Cliollre(e

and

V¢ € LP

L2(G) = L2(G)
Proof. Let T be a operator of type vy € C with Revy = 0. Proceeding as in the

proof of Lemma 4.4.17 Part 3 yields that for any NV € N, the operator ’RNTRQN
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is of type vr. We can apply this to the transpose T of T as well as the operator
T? is also of type v. By Theorem 3.2.30, the operators RNTRQN and RNTthN
are bounded on L?(G). This shows that T maps Lg to L’S’ continuously for s = N
and s = —N, N € Ny. By interpolation, this holds for any s € R and this shows
the statement for the homogeneous Sobolev spaces. If s > 0, then by Theorem
4.4.3 (4), using the continuity on homogeneous Sobolev spaces which has just
been proven, we have for any ¢ € S(G)

IT¢llze S NTollze + 1Tl 2 S I6llr + 222 < M4

e

This shows that 7" maps L to L? continuously for any s > 0, p € (1, 00). Applying
this to T, by duality, we also obtain this property for s < 0. The case s = 0 follows
from Theorem 3.2.30. This concludes the proof of Theorem 4.4.18. 0

Theorem 4.4.18 extends the result of Theorem 3.2.30, that is, the bounded-
ness on LP(G) of an operator of type v, Revy = 0, from LP-spaces to Sobolev
spaces. Let us comment on similar results in related contexts:

e In the case of R™ (and similarly for compact Lie groups), the continuity on
Sobolev spaces would be easy since T, would commute with the Laplace
operator but the homogeneous setting requires a more substantial argument.

e Theorem 4.4.18 was shown by Folland in [Fol75, Theorem 4.9] on any strat-
ified Lie group and for v = 0. However, the proof in that context uses the
existence of a positive Rockland operator with a unique homogeneous fun-
damental solution, namely ‘the’ (any) sublaplacian. If we wanted to follow
closely the same line of arguments, we would have to assume that the group is
equipped with a Rockland operator with homogeneous degree v with v < @,
see Remark 4.3.12. This is not always the case for a graded Lie group as
the example of the three dimensional Heisenberg group with gradation (3.1)
shows.

e The proof above is valid under no restriction in the graded case. Somehow
the use of the homogeneous fundamental solution in the stratified case is
replaced by the kernel of the Riesz potentials together with the properties of
the Sobolev spaces proved so far.

4.4.5 Independence in Rockland operators and integer orders

In this Section, we show that the homogeneous and inhomogeneous Sobolev spaces
do not depend on a particular choice of a Rockland operator. Consequently The-
orems 4.4.3, 4.4.9, 4.4.16, and 4.4.18, Corollaries 4.4.6 and 4.4.10, Propositions
4.4.8 and 4.4.13 and 4.4.15, hold independently of any chosen Rockland operator
R.

We will need the following property:
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Lemma 4.4.19. Let R be a Rockland operator on G of homogeneous degree v and let
¢ € Ny, p € (1,00). Then the space L ,(G) is the collection of functions f € LP(G)
such that X*f € LP(G) for any o € Ny with [o] = vl. Moreover, the map

¢ Z X,

la]=ve

15 a norm on LﬁZ(G) which is equivalent to the homogeneous Sobolev norm and
the map

¢ gl + D 11X,

[a]=ve
is a norm on LY ,(G) which is equivalent to the Sobolev norm.

Proof of Lemma 4.4.19. Writing

RKZ Z CmgXa
la]=tv

we have on one hand,

Vo €S(G)  [Rll, < max|earl D X0 (4.43)
[a]=tv

On the other hand, by Theorem 4.4.16 (2), for any a € Nf, the operator X* maps
continuously Lf’a] (G) to LP(G), hence
>0 ¥eS@) D IX Bl < Clolly -
la]=0v

This shows the property of Lemma 4.4.19 for homogeneous Sobolev spaces.
Adding ||¢||z» on both sides of (4.43) implies by Theorem 4.4.3, Part (2):

IC>0 YeS@G) gl <C Il + > X0,
[a]=0v

On the other hand, by Theorem 4.4.16 (1), for any o € Nf, the operator X* maps
continuously Lf’a] (G) to LP(G), hence

IC>0 VoeS@) Y X%l < Ol -
[a]=0v

This shows the property of Lemma 4.4.19 for inhomogeneous Sobolev spaces and
concludes the proof of Lemma 4.4.19. O
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One may wonder whether Lemma 4.4.19 would be true not only for integer
exponents of the form s = ¢ but for any integer s. In fact other inhomogeneous
Sobolev spaces on a graded Lie group were defined by Goodman in [Goo76, Section
III. 5.4] following this idea. More precisely the LP Goodman-Sobolev space of order
s € Ny is given via the norm

¢ D 11Xl (4.44)

[]<s

Goodman’s definition does not use Rockland operators but makes sense only for
integer exponents.

The L? Goodman-Sobolev space of integer order s certainly contains L?(G).
Indeed, proceeding almost as in the proof of Lemma 4.4.19, using Theorem 4.4.16
and Theorem 4.4.3, we have

VseNy 3C=C,>0 Y6eSG) Y X%, <ClolLs-

[a]<s

In fact, adapting the rest of the proof of Lemma 4.4.19, one could show easily
that the LP Goodman-Sobolev space of order s € Ny with s proportional to the
homogeneous degree v of a positive Rockland operator coincides with our Sobolev
spaces L?(G). Moreover, on any stratified Lie group, for any non-negative integer
s without further restriction, they would coincide as well, see [Fol75, Theorem
4.10].

However, this equality between Goodman-Sobolev spaces and our Sobolev
spaces is not true on any general graded Lie group. For instance this does not hold
on a graded Lie groups whose weights are all strictly greater than 1. Indeed the
LP Goodman-Sobolev space of order s = 1 is L?(G) which contains L (G) strictly
(see Theorem 4.4.3 (4)). An example of such a graded Lie group was given by the
gradation of the three dimensional Heisenberg group via (3.1).

We can now show the main result of this section, that is, that the Sobolev
spaces on graded Lie groups are independent of the chosen positive Rockland
operators.

Theorem 4.4.20. Let G be a graded Lie group and p € (1,00). The homogeneous
LP-Sobolev spaces on G associated with any positive Rockland operators coincide.
The inhomogeneous LP-Sobolev spaces on G associated with any positive Rockland
operators coincide. Moreover, in the homogeneous and inhomogeneous cases, the
Sobolev norms associated to two positive Rockland operators are equivalent.

Proof of Theorem 4.4.20. Positive Rockland operators always exist, see Remark
4.2.4 Let Ry and Ry be two positive Rockland operators on G of homogeneous
degrees vy and vs, respectively. By Lemma 4.2.5, R7? and R5' are two positive
Rockland operators with the same homogeneous degree v = v, v5. Their associated
homogeneous (respectively inhomogeneous) Sobolev spaces of exponent vl = 1115/
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for any ¢ € Ny coincide and have equivalent norms by Lemma 4.4.19. By inter-
polation (see Proposition 4.4.15, respectively Theorem 4.4.9), this is true for any
Sobolev spaces of exponent s > 0, and by duality (see Lemma 4.4.14, respectively
Lemma 4.4.7) for any exponent s € R. O

Corollary 4.4.21. Let RV and R® be two positive Rockland operators on a graded
Lie group G with degrees of homogeneity v and vo, respectively. Then for any s €
C and p € (1,00), the operators (1+RMW)o1 (I+RP) ™72 and (RW)# (R®)) ™72
extend boundedly on LP(G).

Proof of Corollary 4.4.21. Let us prove the inhomogeneous case first. For any a €
R, we view the operator (I—&—RI(,Q))*% as a bounded operator from LP(G) to L2 (G)
and use the norm f — ||(T+ Rz(jl))%fﬂp on LP(G). This shows that the operator
I+ RM)7 (I+R@) "% is bounded on LP(G), p € (1,00) for s = a € R. The
case of s € C follows from Proposition 4.3.7.

Let us prove the homogeneous case. For any a € R, we view the opera-
tor (R,(f))*% as a bounded operator from LP(G) to LP(G) and use the norm
fe ||(R§,1))%f||p on LP(G). This shows that the operator (R™M)7r (R(2)™ %z is
bounded on LP(G), p € (1,00) for s = a € R. The case of s € C follows from
Proposition 4.3.9. g

Thanks to Theorem 4.4.20, we can now improve our duality result given in
Lemmata 4.4.7 and 4.4.14:

Proposition 4.4.22. Let L?(G) and L?(G), p € (1,00) and s € R, be the inhomo-
geneous and homogeneous Sobolev spaces on a graded Lie group G, respectively.

For any s € R and p € (1,00), the dual space of LP(G) is isomorphic to
Lji/s(G) via the distributional duality, and the dual space of Lf’(G) is isomorphic
to I.fils (@) via the distributional duality. Here p' is the conjugate exponent of p if
p € (1,00), i.e. %—i— i = 1. Consequently the Banach spaces L?(G) and LP?(G) are
reflezive.

4.4.6 Sobolev embeddings

In this section, we show local embeddings between the (inhomogeneous) Sobolev
spaces and their Euclidean counterparts, and global embeddings in the form of an
analogue of the classical fractional integration theorems of Hardy-Littlewood and
Sobolev.

Local results

Recalling that G has a local topological structure of R™, one can wonder what
is the relation between our Sobolev spaces L2(G) and their Euclidean counter-
parts LE(R™). The latter can also be seen as Sobolev spaces associated by the



240 Chapter 4. Rockland operators and Sobolev spaces

described construction to the abelian group (R™, +), with Rockland operator be-
ing the Laplacian on R™.

By Proposition 3.1.28 the coefficients of vector fields X; with respect to
the abelian derivatives 0., are polynomials in the coordinate functions z,, and
conversely the coefficients of 0,,’s with respect to derivatives X}, are polynomials
in the coordinate functions x,’s. Hence, we can not expect any global embeddings
between L2(G) and L?(R™).

It is convenient to define the local Sobolev spaces for s € R and p € (1,00)

as
2, (G) = {f € D'(G) : ¢f € LA(G) for all ¢ € D(G)}. (4.45)
The following proposition shows that L7 .(G) contains LE(G).

Proposition 4.4.23. For any ¢ € D(G), p € (1,00) and s € R, the operator f — f¢
defined for f € S(G) extends continuously into a bounded map from LE(G) to itself.
Consequently, we have

Lr(G) c It

5,loc(G)'
Proof. The Leibniz’ rule for the X;’s and the continuous inclusions in Theorem
4.4.3 (4) imply easily that for any fixed o € N} there exist a constant C' = Cy_ 4 > 0

and a constant C’ = C&«b > 0 such that

VFEeDG) XUl <C Y IX Sl < ClIf Ny, (-
(B1<[e]

Lemma 4.4.19 yields the existence of a constant C" = CY] ; > 0 such that

Vi eD(G) |féllee e < CH”fHLfU(G)

for any integer ¢ € Ny and any degree of homogeneity v of a Rockland operator.
This shows the statement for the case s = v{. The case s > 0 follows by

interpolation (see Theorem 4.4.9), and the case s < 0 by duality (see Proposition

4.4.22). O

We can now compare locally the Sobolev spaces on graded Lie groups and
on their abelian counterpart:

Theorem 4.4.24 (Local Sobolev embeddings). For any p € (1,00) and s € R,

I’ . (R")C L (R™).

s/v1,loc s,loc

(G)cL”

s/vn,loc

Above, L, (R™) denotes the usual local Sobolev spaces, or equivalently the
spaces defined by (4.45) in the case of the abelian (graded) Lie group (R™,+).
Recall that v; and v,, are respectively the smallest and the largest weights of the
dilations. In particular, in the stratified case, v; = 1 and v,, coincides with the
number of steps in the stratification, and with the step of the nilpotent Lie group

G. Hence in the stratified case we recover Theorem 4.16 in [Fol75].



4.4. Sobolev spaces on graded Lie groups 241

Proof of Theorem 4.4.24. It suffices to show that the mapping f +— f¢ defined
on D(G) extends boundedly from Lﬁ/vl (R™) to L2(G) and from LP2(G) to
L? /U”L’lOC(R”). By duality and interpolation (see Theorem 4.4.9 and Proposition
4.4.22), it suffices to show this for a sequence of increasing positive integers s.

For the L? /i (R") — LE(G) case, we assume that s is divisible by the ho-
mogeneous degree of a positive Rockland operator. Then we use Lemma 4.4.19,
the fact that the X® may be written as a combination of the 92 with polynomial
coefficients in the x,’s and that maxg <, || = s/v1.

For the case of L2(G) — L’S’/vmloc(R”), we use the fact that the abelian
derivative 02, |a| < s, may be written as a combination over the X?, |3| < s, with
polynomial coefficients in the z;’s, that X? maps LP — LI[?B] boundedly together
with max|g<s[8] = svp. O

Proceeding as in [Fol75, p.192], one can convince oneself that Theorem 4.4.24
can not be improved.
Global results

In this section, we show the analogue of the classical fractional integration theo-
rems of Hardy-Littlewood and Sobolev. The stratified case was proved by Folland
in [Fol75] (mainly Theorem 4.17 therein).

Theorem 4.4.25 (Sobolev embeddings). Let G be a graded Lie group with homo-
geneous dimension Q.

(i) If 1 <p<q<oo and a,b € R with

then we have the continuous inclusion
P q
Lb - La7

that is, for every f € LY, we have f € L1 and there exists a constant C' =
Cabp.q,c > 0 independent of f such that

1fllz < Cllfllze-

(ii) If p € (1,00) and
s> Q/p

then we have the inclusion
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in the sense that any function f € LP(G) admits a bounded continuous rep-
resentative on G (still denoted by f). Furthermore, there exists a constant
C = Cs p,g > 0 independent of f such that

[ flleo < CllfllLze)

Proof. Let us first prove Part (i). We fix a positive Rockland operator R of homoge-
neous degree v and we assume that b > a and p, g € (1, 00) satisfy b—a = Q(L —1).

P q
By Proposition 4.4.13 (5),

a b
IRq ¢llLe < CIIRE @||1e-

We can apply this to (a,b) and to (0,b — a). Adding the two corresponding esti-
mates, we obtain

a b—a b
l6llr + IRF $lle < C (IRy™ Bl + 1R bl ) -

Since b, a, and b— a are positive, by Theorem 4.4.3 (4), the left-hand side is equiv-
alent to ||¢[[rs and both terms in the right-hand side are < C|[¢||». Therefore,
we have obtained that

3C =Cappar VOES(G) |9l < ClollLr.

By density of S(G) in the Sobolev spaces, this shows Part (i).
Let us prove Part (ii). Let p € (1,00) and s > @Q/p. By Corollary 4.3.13, we
know that
B, € LNG)N LY (G),

where p’ is the conjugate exponent of p. For any f € L2(G), we have
fsi=(I+R,) " feLr

and
[= (I + Rp)_;fs = fs * Bs.
Therefore, by Holder’s inequality,

[ lleo < M1 Ssllpl1Bsllpr = 11Bs [l | Fll e

Moreover, for almost every x, we have

/fs ylar:dy—/fs VBs(z)dz.

Thus for almost every x,z’, we have

@) — f@) = ] [ (=) = =) By
1Ballr L ) — Fula’

IN
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As the left regular representation is continuous (see Example 1.1.2) we have

1fs(@-) = fo(@" lLr(e) —arma O,

thus almost surely
|f(x) = f(@")] —wr—a 0.

Hence we can modify f so that it becomes a continuous function. This concludes
the proof. 0

From the Sobolev embeddings (Theorem 4.4.25 (ii)) and the description of
Sobolev spaces with integer exponent (Lemma 4.4.19) the following property fol-
lows easily:

Corollary 4.4.26. Let G be a graded Lie group, p € (1,00) and s € N. We assume
that s is proportional to the homogeneous degree v of a positive Rockland operator,
that is, = € N, and that s > Q/p.

Then if f is a distribution on G such that f € LP(G) and X*f € LP(G) when
a € N satisfies [a] = s, then f admits a bounded continuous representative (still
denoted by f). Furthermore, there exists a constant C = Csp, ¢ > 0 independent
of f such that

1l < C [ IFllp+ D 1X*

[a]=s

The Sobolev embeddings, especially Corollary 4.4.26, enables us to define
Schwartz seminorms not only in terms of the supremum norm, but also in terms
of any LP-norms:

Proposition 4.4.27. Let |- | be a homogeneous norm on a graded Lie group G. For
any p € [1,00], a > 0 and k € Ny, the mapping

S(G) 2 ¢ [bllsarp =D 11+ DX,

[a] <k

is a continuous seminorm on the Fréchet space S(G).

Moreover, let us fix p € [1,00] and two sequences {k;};en, {a;};en, of non-
negative integers and positive numbers, respectively, which go to infinity. Then the
family of seminorms || - ||s,a;.k;.p, J € N, yields the usual topology on S(G).

Proof of Proposition 4.4.27. One can check easily that the property

Vi<pg<oo, a>0 keNyg, da’' >0, k¥ eNy C>0,
|- lssakp < - lls,07k705 (4.46)

is a consequence of the following observations (applied to X ¢ instead of ¢):
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If p and ¢ are finite, by Holder’s inequality, we have

I+ 1Dl < CIA+ - D) ¢l

where C' is a finite constant of the group G, p and g. In fact C' is explicitly
given by

T

_ 9+l & _ _
C=l] )% ||r<|B<o,1>| / (14 )@ D,Q 1dp> ,

with 7 € (1, 00) such that % = % + 1

If p is finite and ¢ = oo, we also have

I+ 1Dl < O+ DT llo

where C' = ||(1 +|-|)~971||, is a finite constant.

In the case ¢ is finite and p = 0o, let us prove that

I+ 1-D*llo < Cop D L+ D" XSl (4.47)

[a]<s

Indeed first we notice that, by equivalence of the homogeneous quasi-norms
(see Proposition 3.1.35), we may assume that the quasi-norm is smooth away
from 0. We fix a function ¢ € D(G) such that

1 it e <1,
(@) _{ 0 if 2| > 2.
We have easily

1A+ D*lloc < Cy ([l0¢lloo + &1 = )] - *[|o0) - (4.48)

By Corollary 4.4.26, there exist an integer s € N such that

600 < Csp Y, 1X* (@) lp-

[a]<s

By the Leibniz rule (which is valid for any vector field) and Holder’s inequal-
ity, we have

IX* @), < Co D> X% X2,

la1]+[a2]<[q]

Cap D, IXV Gl IX Y]

la1]+[a2]<[q]

IN
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Hence

168 lloe < Copp D 1X G- (4.49)

[a]<s

Following the same line of arguments, we have

6L =) - 1°llos < Cop D IX* (S =) - ")l

[al<s

<Csp Y IIX*e X {A =)}l

[a1]+[az]<s
<Cop o NA+-D X+ )X {1 = )] - |*}Hloo-

[a1]+[ez]<s

All the || - ||o-norms above are finite since X*2{(1 —v)|-|*}(z) =01if |z| <1
and for |z| > 1,

X1 =)} @)] < Caw D X1 ¢)(@)] |X] | (2)
[as]+[aa] =[]
< Cay Yo X =) laofalo o,

[as]+[oa]=[ez]

since X 4| - |% is a homogeneous function of degree a — [a4]. Hence we have
obtained

(L =) "lloe < Cops D NA+ ]+ Xl

[a]<s

Together with (4.48) and (4.49), this shows (4.47).
4. If p = q is finite or infinite, (4.46) is trivial.

Hence Property (4.46) holds. We also have directly for p = ¢ € [1,00] and
any 0 <a<ada, k<K,
I llsarp <N+ lls.arpp-
Consequently we can assume a’ to be an integer in (4.46). This clearly implies that
any family of seminorms ||-||s,q; &;.p, J € N, yields the same topology as the family

of seminorms | - ||ls,§,N,00s N € N. The latter is easily equivalent to the topology
given by the family of seminorms || - || (@), defined in Section 3.1.9. This is the
usual topology on S(G). O

4.4.7 List of properties for the Sobolev spaces

In this section, we list the important properties of Sobolev spaces we have already
obtained and also give some easy consequences regarding the special case of p = 2.
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Theorem 4.4.28. Let G be a graded Lie group with homogeneous dimension Q.

1. Let p € (1,00) and s € R. The inhomogeneous Sobolev space LP(G) is a
Banach space satisfying

S(G) € L(G) C §'(G).
The homogeneous Sobolev space L’S’(G) 1s a Banach space satisfying
(S(G) NDom(Ry/")) € LE(G) € S'(G).
Norms on the Banach spaces L2 (G) and L’S’(G) are given respectively by
o= l0+ R 6ln)  and ¢ RS lluns

for any positive Rockland operator R (whose homogeneous degree is denoted
by v). All these homogeneous norms are equivalent, all these inhomogeneous
norms are equivalent.

The continuous inclusions LE(G) C LY(G) holds for any a > b and

p € (1,00).
2. If s =0 and p € (1,00), then LE(G) = LE(G) = LP(G) with || - iz =
I lez) =+ lzee)-

3. If s>0 and p € (1,00), then we have
LE(G) = LE(G) N LP(G),

and the inhomogeneous Sobolev norm (associated with a positive Rockland
operator) is equivalent to

2@ =< lleee) + 11 lie-

4. If T is a left-invariant differential operator of homogeneous degree vy, then
T maps continuously LY, (G) to L2(G) for every s € R, p € (1,00).

If T is a vp-homogeneous left-invariant differential operator, then T
maps continuously LY, (G) to LE(G) for every s € R, p € (1,00).

s+vr

5 If1 <p<q<ooanda,be R withb—a = Q(%—%), then we have the
continuous inclusions

P c e and Ly C LZ.

Ifp € (1,00) and s > Q/p then we have the following inclusion:

Ly C (C(G)NL2(G)),
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in the sense that any function f € LP(G) admits a bounded continuous rep-
resentative on G (still denoted by f). Furthermore, there exists a constant
C = Cs p,g > 0 independent of f such that

1fllse < CIf

LE(G)

For p € (1,00) and any a,b,c € R with a < ¢ < b, there exists a positive
constant C = Cy . such that we have for any f € LY

—0 0
122 < CUAIE, 117

and for any f € LY
1z < CUAIE 1117
where 0 := (¢ —a)/(b— a).

(Gagliardo-Nirenberg inequality) If q,r € (1,00) and 0 < o < s then there
exists C' > 0 such that we have

VFELUG)NLYG)  Ifllig < CIFILISIE,",

where 0 :=1— % and p € (1,00) is given via % = g + 1;9.

Let s be an integer which is proportional to the homogeneous degree of a
positive Rockland operator. Let p € (1,00). Let f € S'(G).

The membership of f in LE(QG) is equivalent to f € LP(G) and X*f €
L?(G), a € Ny, [a] = s. Furthermore

¢ Ll + D 11X,

la]=ve

is a norm on the Banach space L?(G).
The membership of f in LP(G) is equivalent to X f € LP(G), a € NI,
[a] = s. Furthermore

o 31X,

[a]=ve
is a norm on the Banach space LP(G).
(Interpolation) The inhomogeneous and homogeneous Sobolev spaces satisfy
the properties of interpolation in the sense of Theorem 4.4.9 and Proposition
4.4.15 respectively.
(Duality) Let s € R. Let p € (1,00) and p’ its conjugate exponent. The dual
space of LP(G) is isomorphic to LP (G via the distributional duality, and the
dual space of LE(G) is isomorphic to L’ZS(G) via the distributional duality,
Consequently, the Banach spaces L2(G) and L?(G) are reflexive.
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Proof. Parts (1), (2), (3), and (6) follow from Theorem 4.4.3, Proposition 4.4.13
and Theorem 4.4.20.

Part (4) follows from Theorem 4.4.16 and Proposition 4.4.13.

Part (5) follows from Theorem 4.4.25 and Proposition 4.4.13 (5).

Part (7) follows from Parts (5) and (6).

Part (8) follows from Theorem 4.4.20.

For Part (9), see Theorem 4.4.9 and Proposition 4.4.15.

Part (10) follows from Lemmata 4.4.7 and 4.4.14 together with Theorem
4.4.20. 0

Properties of L%(G)

Here we discuss some special feature of the case LP(G), p = 2. Indeed L?(G) is
a Hilbert space where one can use the spectral analysis of a positive Rockland
operator.

Many of the proofs in Chapter 4 could be simplified if we had restricted
the study to the case LP with p = 2. For instance, let us consider a positive
Rockland operator R and its self-adjoint extension Ry on L?(G). One can define
the fractional powers of R, and I + Ro by functional analysis. Then one can
obtain the properties of the kernels of the Riesz and Bessel potentials with similar
methods as in Corollary 4.3.11.

In this case, one would not need to use the general theory of fractional powers
of an operator recalled in Section A.3. Even if it is not useful, let us mention that
the proof that R, satisfies the hypotheses of Theorem A.3.4 is easy in this case:
it follows directly from the Lumer-Phillips Theorem (see Theorem A.2.5) together
with the heat semi-group {e~*®2};-( being an L?(G)-contraction semi-group by
functional analysis.

The proof of the properties of the associated Sobolev spaces L2(G) would
be the same in this particular case, maybe slightly helped occasionally by the
Holder inequality being replaced by the Cauchy-Schwartz inequality. A noticeable
exception is that Lemma 4.4.19 can be obtained directly in the case LP, p = 2,
from the estimates due to Helffer and Nourrigat (see Corollary 4.1.14).

The main difference between L? and LP Sobolev spaces is the structure of
Hilbert spaces of L2(G) whereas the other Sobolev spaces LE(G) are ‘only’ Banach
spaces:

Proposition 4.4.29 (Hilbert space L?). Let G be a graded Lie group.
For any s € R, L?(G) is a Hilbert space with the inner product given by

(F9)ez@ = [ (1+R2)? 1) [T+ Ra)Pala)d
and LE(G) is a Hilbert space with the inner product given by

(f, g)Lg(G) = /GRgf(x) Rzﬁg(iﬂ)dﬂﬁ
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where R is a positive Rockland operator of homogeneous degree v.
If s > 0, an equivalent inner product on L%(Q) is

(Fo)eze = [ S g + [ R f(@) R g(o)ie
If s = vl with { € Ny, an equivalent inner product on L?(G) is

(fag) = (f7g)L2(G) + Z (Xafaxag)Lz(G)a
[a]=ve

and an equivalent inner product on L?(G) is
(fv g) = Z (Xafv Xag)Lz(G)'
[a]=ve

Proposition 4.4.29 is easily checked, using the structure of Hilbert space of
L?(G) and, for the last property, simplifying the proof of Lemma 4.4.19.

4.4.8 Right invariant Rockland operators and Sobolev spaces

We could have started with right-invariant (homogeneous) Rockland operators R
instead of R. We discuss here some links between the two operators and their
Sobolev spaces.

Since both left and right invariant Rockland operators are differential op-
erators, we can relate them by Formulae (1.11) for the derivatives X and X°.
Then, given our analysis of R, we can give some immediate properties of the
right-invariant operator R:

Proposition 4.4.30. Let R be a positive Rockland operator. For any ¢ € S(G),
Ro(z) = (R{o(-" (™) = (R{e(-"H) (=),
because Rt = R. Therefore, the spectral measure E of R is given by
E(¢)(z) = (E{¢(-" DY), ¢€L*@), z€q.
Consequently, the multipliers of R and R are linked by
m(R)()(x) = (m(R){¢(-~ (™). (4.50)

The operators R and R commute strongly, that is, their spectral measures E
and E commute. Moreover, for functions f,g € §'(G) and a € C, we have

RY(fxg) = fxR%,
RYf+g) = (R'f)*y,
(R*f)xg = [f=*R%.
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We can give a right-invariant version of Definition 4.3.17:

Definition 4.4.31. Let R be a positive Rockland operator of homogeneous degree v
and let s € R. For any tempered distribution f € §'(G), we denote by (I4+R)%/" f
the tempered distribution defined by

(T+ R f,¢) o= (f,(1+ R ¢), e SQ).

The Sobolev spaces that we have introduced are based on the Sobolev spaces
corresponding to left-invariant vector fields and left-invariant positive Rockland
operators. We could have considered the right Sobolev spaces L?(G) defined via
the Sobolev norms }

F e I+ R f o

The relations between left and right vector fields in (1.11) easily implies that
if f € LP(G) is such that X*f € LP(G) then f : z — f(z~') is in LP(G) and
satisfies X f € L?(G). By Lemma 4.4.19, we see that the map f — f must map
continuously L? — f/s’ for any p € (1,00) and s a multiple of the homogeneous
degrees of positive Rockland operators.

More generally, the spectral calculus, see (4.50), implies

([+Ro)" f(2) = 1+ R2) /" fl@™),  [eS@),
where, again, f(z) = f(z~'), and thus for any p € (1,00,),
1T+ Ry fllewiey = 10+ Rp)* Flirey, | €S(G).
This easily implies that f — f maps continuously L? - LP for any p € (1,00)
and any real exponent s € R. This is also an involution: f = f. Hence the map

{ LE(G) (@)

H
f —

e

is an isomorphism of vector spaces.

Even if the left and right Sobolev spaces are isomorphic, they are not equal in
general. Note that in the commutative case of G = R™, both left and right Sobolev
spaces coincide. It is also the case on compact Lie groups, where the Sobolev spaces
are associated with the Laplace-Beltrami operator (which is central) and coincide
with localisation of the Euclidean Sobolev spaces [RT10a]. This is no longer the
case in the nilpotent setting. Indeed, below we give an example of functions f
(necessarily not symmetric, that is, f # f), in some L?(G) but not in L?(G).
Ezxample 4.4.32. Let us consider the three dimensional Heisenberg group H; and
the canonical basis X,Y,T of its Lie algebra (see Example 1.6.4). Then X =
0y — 40, whereas X =0, + 20, thus X — X = yd,.

The Sobolev spaces are then associated with the natural sub-Laplacian X2 +
Y2, see Example 6.1.1. Hence it is covered by the work of Folland [Fol75] on Sobolev
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spaces associated with sub-Laplacian on stratified Lie groups and consequently,
L3(G) is the space of functions f € L?(H;) such that X f and Y f are both in
L?(H,) [Fol75, Corollary 4.13].

One can find a smooth function ¢ € C*(R) such that ¢,¢’ € L?(R) but
Jz |21?|¢' (2)|?dz = oc. For instance, we consider ¢ = ¢ 1) where ¢ is a suitable
smoothing function (i.e. ¢ € D(G) is valued in [0, 1] with a ‘small’ support around
0), and the graph of the function ¢, is given by isosceles triangles parametrised
by ¢ € N, with vertex at points (¢, ¢%), and base on the horizontal axis and with
length 2/¢%. We then choose «, 8 € R with 28 € (—3,—1) and 2a > 25 + 1. We
also fix a smooth function x : R — [0, 1] supported on [1/2,2] with x(1) = 1. We
define f € C*(R?) via

Fy.t) =6 (% +1) x@)x(®).

One checks easily that f, Xf and Y f are square integrable hence f € L3(Hy).
However yd; f is not square integrable. As X — X = y0, f, this shows that (—X +
X)f ¢ L*(H;) and X f can not be in L? thus f is not in L?(H;).

4.5 Hulanicki’s theorem

We now turn our attention to Hulanicki’s theorem which will be useful in the next
chapter when we deal with pseudo-differential operators on graded Lie groups.
An important consequence of Hulanicki’s theorem is the fact that a Schwartz
multiplier in (the L?-self-adjoint extension of) a positive Rockland operator has
a Schwartz kernel. This section is devoted to the statement and the proof of
Hulanicki’s theorem and its consequence regarding Schwartz multiplier.

From now on, we will allow ourselves to keep the same notation R for a
positive Rockland operator and its self-adjoint extension Ry on L?(G) when no
confusion is possible. In particular, when we define functions of Ro (see Corollary
4.1.16), that is, a multiplier m(R3) defined using the spectral measure of Ry where
m € L*(R,) is a function, we may often write

m(Ra) = m(R),

in order to ease the notation. Furthermore, we denote the corresponding right-
convolution kernel of this operator by

m(R)d,-

4.5.1 Statement

Hulanicki proved in [Hul84] that if multipliers m satisfy Marcinkiewicz properties,
then the kernels of m(R) satisfy certain estimates:
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Theorem 4.5.1 (Hulanicki). Let R be a positive Rockland operator on a graded Lie
group G. Let |-| be a fixed homogeneous quasi-norm on G. For any My € N, My > 0
there exist C = Cagym, > 0 and k = kay v, € No, K = kﬁthz € Ny such that
for any m € C*[0,00), we have

> /G XOm(R)S,(2)] (1+]a)2de < € sup (14N [95m(N)],

[a]<M,y 0=0,....k

in the sense that if the right-hand side is finite then the left-hand side is also finite
and the inequality holds.

The main consequence of Theorem 4.5.1 is the following:

Corollary 4.5.2. Let R be a positive Rockland operator on a graded Lie group G.
If ¢ € S(R) then the kernel $(R)d, of ¢(R) is Schwartz. Furthermore, the map

associating a multiplier function with its kernel
S(R) 3 ¢ — d(R)J, € S(GQ), (4.51)

is continuous between the Schwartz spaces.

The continuity of (4.51) means that for any continuous seminorm || - || on
S(G) there exist C' > 0 and N € N such that for any m € S(R) we have

Im(R)&| < C sup  |(1+ |z))N O m(z)].
zeR KN

Examples of such Schwartz seminorms are || - [|s(@),n, IV € N, defined in Section
3.1.9, and || - ||s,a.k.p> @ > 0, k € Ng, p € [1, 00|, defined in Proposition 4.4.27.

For completeness’ sake, we include the proofs of Theorem 4.5.1 and Corollary
4.5.2 below. Before this, let us notice that Corollary 4.5.2 implies that the heat
kernel of any Rockland operator is Schwartz. However, we will see that the proofs
of Theorem 4.5.1 and Corollary 4.5.2 rely on the properties of the Bessel potentials
which have been shown, in turn, using the properties of the heat kernel. Beside
the properties of the Bessel potentials, the proof uses the functional calculus of R
and the structure of G.

4.5.2 Proof of Hulanicki’s theorem

This section is devoted to the proof of Theorem 4.5.1 and can be skipped at first
reading.

We follow the essence of [Hul84], but we modify the original proof to take
into account our presentation of the properties of Rockland operators as well as to
bring some (small) simplifications. We also do not present some results obtained
in [Hul84] on groups of polynomial growth. One of these simplifications is the fact
that we fix a quasi-norm | - | which we assume to be a norm. Indeed, it is clear
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from the equivalence of quasi-norms (see Proposition 3.1.35) that it suffices to
prove Hulanicki’s theorem for one quasi-norm for it to hold for any quasi-norm.
As a homogeneous norm exists by Theorem 3.1.39, we may assume that | - | is
a norm without loss of generality. We could do without this but it simplifies the
constants in the next pages.

First step

The first step in the proof can be summarised with the following lemma:

Lemma 4.5.3. Let m : [0,+00) — C be a function and let £, € N. We define the
function F : (—o0,1) = C by

_a )
rie = | m(€F 1) io<est,
0 if £ <0,
and we have
YA€ [0,00)  m(N) =F((1+A) ).
Furthermore, the following holds.
1. The function F extends to a continuous function on R if and only if m is
continuous on [0,00) and limy_, 4o m(A) = 0.
2. The function F extends to a C' function on R if and only if m is C* on
[0, 00) with limy 1 oo m(A) = 0 and limy_, oo (1 + X)) Tfom/(\) = 0.
Let k € N. If m € C*[0, +00) and

lim (14 A+ @O\ =0 forj=1,...,F,

A—+oo

then the function F extends to a function in C*(R)
3. Let k € N and m € C*[0,00). We assume that the suprema

sup(1 + )2+ R M) ()], j=0,...,k

A>0
are finite. Then we can construct an extension to R, still denoted by F', such
that the function F € C*(R) is supported in [0,2] and satisfies F(0) = 0 and
for every ¢ € Z,

[F@O| <c+1e)™ sup (1404 m0) (),
A>0
§=0,....k

where C' = Cl g, is a positive constant independent of m. Here ﬁ(ﬁ), leZ,
denotes the Fourier coefficients of F' in the sense of

s

0= [ Feees.

o 27

)
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Proof. Part (1) is easy to prove. Part (2) in the case of k = 1 follows easily from
the following observations.

o If £ =(1+X) "%, A >0 then

e We can compute formally for £ € (0,1):

1

() = —Lem’ (678 — 1),

Tt

and in particular if £ = (1 4+ X)~%, A > 0, then

(€)= —5 (L A oml (),

o

The general case of Part (2) follows from the following observation: F(*)(¢) is a
linear combination over j = 1,...,k" of

gt~ =) =i ) 1 () (5—%0 - 1) 0 (5—%0 - 1) _

The details are left to the reader.

Let us prove Part (3). Let m € C*[0,00). Let Pj, be the Taylor expansion
of m at 0, that is, Py is the polynomial of degree k such that we have for A > 0
small,

m(A) = Pi(A) + o(|A[%).
We fix an arbitrary smooth function x supported in [0, 2] and satisfying y =1 on
[0,1]. We construct an extension of F, still denoted F, by setting
0 if £ <0,
F(¢) = m(f‘i—l) ifo<€ <,
P&t —1)x(©) ife=1,

We assume that the suprema given in the statement of Part 3 are finite. Clearly
F € C*(R) is supported in [0,2]. The proof of Part 2 implies easily
k/
1F* oo < €Y sup(L + A HE mD (V) (4.52)
A>

j=172

where the constant C = Cjs ¢, > 0 is independent on m.
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The Fourier coefficient of F' at 0 is
F(e) ==
JRGE
_ /1 (et 1)d€+/2p (57% 1) (g)ﬁ
o 0 m 27T 1 k X 27T
o0 —1, d\ 2 1 d¢
= - P70 -1 —,
/0 m(A) 21 (14 A)fetl +/1 k (5 ’ )X(E) or

We can always assume that the function y was chosen so that

/jpk (ch 1) x5 /Ooom@)fj;m%eon

Indeed, it suffices to replace x by x + c¢x1 where x; € D(R) is supported in (1, 2)
and c a well chosen constant.

It is a simple exercise using integration by parts to show that the Fourier
coefficients may be estimated by

F(0)

VK =0,....k 30=Cw>0 YeZ |FO]<CO+|) " IF™)w

This together with (4.52) concludes the proof of Part (3). O

Second step

The second step consists in noticing that, with the notation of Lemma 4.5.3,
studying the multiplier m(R) and using the Fourier series of F' leads to consider the

il(I+R) "t

operator e and, more precisely, the properties of its convolution kernel.

Lemma 4.5.4. Let R be a positive Rockland operator on a graded Lie group G. Let
b, € N and F,(§) := e — 1, £ € R. Then, for any { € Z, the convolution kernel
of F,(¢(1+R)~*) is an integrable function:

F,(((I+R)"%)d, € LY(@).

Proof of Lemma 4.5.4. Since F,(££) =572 (M,g)j, we have at least formally

j=1 3!
Ky = {FO }5
o0 ) o0 . J
Z M R)edo =" ﬂBV‘ifov

g!

I
—

J Jj=1

where B, is the convolution kernel of the Bessel potentials, see Section 4.3.4, and
v is the degree of homogeneity of R. In fact, by Corollary 4.3.11, we know that

VaeCy By,eLNG) and By, =By, *...% By, =B .



