
Chapter 5

Quantization on graded Lie
groups

In this chapter we develop the theory of pseudo-differential operators on graded Lie
groups. Our approach relies on using positive Rockland operators, their fractional
powers and their associated Sobolev spaces studied in Chapter 4. As we have
pointed out in the introduction, the graded Lie groups then become the natural
setting for such analysis in the context of general nilpotent Lie groups.

The introduced symbol classes Sm
ρ,δ and the corresponding operator classes

Ψm
ρ,δ = OpSm

ρ,δ,

for (ρ, δ) with 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1, have an operator calculus, in the sense that
the set

⋃
m∈R

Ψm
ρ,δ forms an algebra of operators, stable under taking the adjoint,

and acting on the Sobolev spaces in such a way that the loss of derivatives is
controlled by the order of the operator. Moreover, the operators that are elliptic
or hypoelliptic within these classes allow for a parametrix construction whose
symbol can be obtained from the symbol of the original operator.

During the construction of the pseudo-differential calculus ∪m∈RΨ
m
ρ,δ on

graded Lie groups in this chapter, there are several difficulties one has to over-
come and which do not appear in the case of compact Lie groups as described in
Chapter 2. The immediate one is the need to find a natural framework for dis-
cussing the symbols to which we will be associating the operators (quantization)
and we will do so in Section 5.1. In Section 5.2 we define symbol classes leading
to algebras of symbols and operators and discuss their properties. The symbol
classes that we introduce are based on a positive Rockland operator on the group
and contain all the left-invariant differential operators. As with Sobolev spaces,
the symbol classes can be shown to be actually independent of the choice of a
positive Rockland operator used in their definition. In Section 5.3 we show that
the multipliers of Rockland operators are in the introduced symbol classes. We
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272 Chapter 5. Quantization on graded Lie groups

investigate the behaviour of the kernels of operators corresponding to these sym-
bols in Section 5.4, both at 0 and at infinity and show, in particular, that they
are Calderón-Zygmund (in the sense of Coifman and Weiss, see Sections 3.2.3 and
A.4). The symbolic calculus is established in Section 5.5. In Section 5.7 we show
that the operators satisfy an analogue of the Calderón-Vaillancourt theorem. The
construction of parametrices for elliptic and hypoelliptic operators in the calculus
is carried out in Section 5.8.

Conventions

Throughout Chapter 5, G is always a graded Lie group, endowed with a family
of dilations with integer weights. Its homogeneous dimension is denoted by Q.
Also throughout, R will be a homogeneous positive Rockland operator of homo-
geneous degree ν. If G is a stratified Lie group, we can choose R = −L with L
a sub-Laplacian, or another homogeneous positive Rockland operator. Since it is
a left-invariant differential operator, we denote by π(R) the operator described
in Definition 1.7.4. Both R and π(R) and their properties have been extensively
discussed in Chapter 4, especially Section 4.1.

Finally, when we write
sup
π∈Ĝ

we always understand it as the essential supremum with respect to the Plancherel
measure on Ĝ.

5.1 Symbols and quantization

The global quantization naturally occurs on any unimodular Lie (or locally com-
pact) group of type 1 thanks to the Plancherel formula, see Subsection 1.8.2 for
the Plancherel formula. The quantization was first noticed by Michael Taylor in
[Tay86, Section I.3]. The case of locally compact type 1 groups was studied re-
cently in [MR15]. The case of the compact Lie groups was described in Section
2.2.1. Here we describe the particular case of graded nilpotent Lie groups, with an
emphasis on the technical meaning of the objects involved. A very brief outline of
the constructions of this chapter appeared in [FR14a].

Formally, for a family of operators σ(x, π) on Hπ parametrised by x ∈ G and

π ∈ Ĝ, we associate the operator T = Op(σ) given by

Tφ(x) :=

∫
Ĝ

Tr
(
π(x)σ(x, π)φ̂(π)

)
dμ(π). (5.1)

Again formally, the Fourier inversion formula implies that if σ(x, π) does not de-
pend on x and is the group Fourier transform of some function κ, i.e. if σ(x, π) =
κ̂(π), then Op(σ) is the convolution operator with right-convolution kernel κ, i.e.
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Op(σ)φ = φ∗κ. We would like this to be true not only for (say) integrable functions
κ but also for quite a large class of distributions, in order

to quantize Xα = Op(σ) by σ(x, π) = π(X)α,

with π(X) as in Definition 1.7.4.

The first problem is to make sense of the objects above. The dependence of
σ on x is not problematic for the interpretation in the formula (5.1), but we have
identified a unitary irreducible representation π with its equivalence class and the
families of operators may be measurable in π ∈ RepG but not defined for all
π ∈ Ĝ. More worryingly, we would like to consider collections of operators which
are unbounded, for instance such as π(X)α, π ∈ Ĝ. For these reasons, it may be
difficult to give a meaning to the formula (5.1) in general.

Thus, our first task is to define a large class of collections of operators σ(x, π),

x ∈ G, π ∈ Ĝ, for which we can make sense of the quantization procedure. We
will use the realisations

K(G), L∞(Ĝ), and LL(L
2(G))

of the von Neumann algebra of the group G described in Section 1.8.2. We will
also use their generalisations

Ka,b(G), L∞
a,b(Ĝ), and LL(L

2
a(G), L2

b(G))

which we define in Section 5.1.2. In order to do so we use a special feature of our
setting, namely the existence of positive Rockland operators and the corresponding
L2-Sobolev spaces.

5.1.1 Fourier transform on Sobolev spaces

In Section 4.3, we have discussed in detail the fractional powers of a positive
Rockland operator R and of the operator I+R. In the sequel, we will also need to
understand powers of the operators π1(I +R), π1 ∈ RepG. We now address this,
and use it to extend the group Fourier transform to the Sobolev spaces L2

a(G).

From now on we will keep the same notation for the operators R and π1(R)
(where π1 ∈ Rep (G)) and their respective self-adjoint extensions, see Proposition
4.1.15. We note that by Proposition 4.2.6 the operator π1(R) is also positive. We
can consider the powers of I + R and π1(I + R) = I + π1(R) as defined by the
functional calculus

(I +R) a
ν =

∫ ∞

0

(1 + λ)
a
ν dE(λ), π1(I +R)

a
ν =

∫ ∞

0

(1 + λ)
a
ν dEπ1

(λ),

where E and Eπ1
are the spectral measures of R and π1(R), respectively, and ν

is the homogeneous degree of R, see Corollary 4.1.16.
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Remark 5.1.1. If a/ν is a positive integer, there is no conflict of notation between

• the powers of π1(I+R) as the infinitesimal representation of π1 (see Definition
1.7.4) at I +R ∈ U(g)

• and the operator π1(I +R)
a
ν defined by functional calculus.

Indeed, if a = ν, the two coincide. If a = �ν, � ∈ N, then the operator π1(I +R)
a
ν

defined by functional calculus coincides with the �-th power of π1(I+R). The case
a = 0 is trivial.

We can describe more concretely the operators π1(I +R)
a
ν , π1 ∈ RepG.

Lemma 5.1.2. Let R be a positive Rockland operator of homogeneous degree ν. As
in Corollary 4.3.11, we denote by Ba the right-convolution kernels of its Bessel
potentials (I +R)− a

ν , Re a > 0.

If a ∈ C with Re a < 0, then B−a is an integrable function and

∀π1 ∈ RepG π1(I +R)
a
ν = B̂−a(π1).

For any a ∈ C and any π1 ∈ RepG, the operator π1(I + R)
a
ν maps H∞

π1

onto H∞
π1

bijectively. Furthermore, the inverse of π1(I + R)
a
ν is π1(I + R)−

a
ν as

operators acting on H∞
π1
.

Proof. Let a ∈ C, Re a < 0. Then the Bessel potential (I + R) a
ν coincides with

the bounded operator with right-convolution kernel B−a ∈ L1(G), see Corollary
4.3.11. Therefore, (I +R) a

ν ∈ LL(L
2(G)) and

FG{(I +R)
a
ν f} = FG{f ∗ B−a} = B̂−af̂ , f ∈ L2(G).

Now we apply Corollary 4.1.16 with the bounded multiplier given by φ(λ) =
(1 + λ)

a
ν , λ ≥ 0. By Equality (4.5) in Corollary 4.1.16, we obtain

FG{(I +R)
a
ν f} = π(I +R) a

ν f̂ , f ∈ L2(G).

The injectivity of the group Fourier transform on K(G) yields that B̂−a(π) =

π(I +R) a
ν for any π ∈ Ĝ, and the first part of the statement is proved.

Let a ∈ C. We apply Corollary 4.1.16 with the multiplier given by φ(λ) =
(1+λ)

a
ν , λ ≥ 0. Although this multiplier is unbounded, simple modifications of the

proof show that Equality (4.5) in Corollary 4.1.16 still holds for f in the domain
of the operator. Recall that the domain of (I +R) a

ν contains S(G) by Corollary
4.3.16 and moreover (I +R) a

ν S(G) = S(G). Consequently, if π1 ∈ RepG, we have

π1{(I +R)
a
ν f}v = π1(I +R)

a
ν π1(f)v, f ∈ S(G), v ∈ Hπ1

,

with π1(I +R)
a
ν defined spectrally. Recall that π1(f)v ∈ H∞

π1
when f ∈ S(G) by

Proposition 1.7.6 (iv), hence here π1{(I+R)
a
ν f}v ∈ H∞

π as well. By Lemma 1.8.19,
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π1(I+R)
a
ν mapsH∞

π1
toH∞

π1
. The spectral calculus implies that as operators acting

on H∞
π1
, we have

π1(I +R)
a
ν π1(I +R)−

a
ν = IH∞

π1
and π1(I +R)−

a
ν π1(I +R)

a
ν = IH∞

π1
.

Consequently, the inverse of π1(I + R)
a
ν is π1(I + R)−

a
ν as operators defined on

H∞
π1

and π1(I +R)
a
νH∞

π1
= H∞

π1
. �

Lemma 5.1.2 and Remark 4.1.17 now imply easily

Corollary 5.1.3. Let R be a positive Rockland operator of homogeneous degree ν.
For any a ∈ C, {π(I + R) a

ν : H∞
π → H∞

π , π ∈ Ĝ} is a measurable Ĝ-field of
operators acting on smooth vectors (in the sense of Definition 1.8.14).

Lemma 5.1.2 together with the Plancherel formula (see Section 1.8.2) and
Corollary 4.3.11 also imply

Corollary 5.1.4. Let R be a positive Rockland operator of homogeneous degree ν.
For any a ∈ R, we have

a > Q/2 =⇒ {π(I +R)− a
ν , π ∈ Ĝ} ∈ L2(Ĝ),

and also, for a > Q/2,

‖π(I +R)− a
ν ‖L2(Ĝ) = ‖B̂a(π)‖L2(Ĝ) = ‖Ba‖L2(G) <∞.

Note that an analogue of Corollary 5.1.4 for compact Lie groups may be
obtained by noticing that (2.15) yields

m > n/2 =⇒
∑
π∈Ĝ

dπ‖π(I− LG)
−m

2 ‖2HS =
∑
π∈Ĝ

d2π〈π〉
−2m

<∞.

The following statement describes an important property of the field {π(I +
R) a

ν , π ∈ Ĝ}, in relation with the right Sobolev spaces (see Section 4.4.8 for right
Sobolev spaces):

Proposition 5.1.5. Let R be a positive Rockland operator on G of homogeneous
degree ν. Let also a ∈ R.

If f ∈ L̃2
a(G), then (I + R̃) a

ν f ∈ L2(G) and there exists a field of operators

{σπ : H∞
π → Hπ , π ∈ Ĝ} such that

{σππ(I +R)
a
ν : H∞

π → Hπ , π ∈ Ĝ} ∈ L2(Ĝ), (5.2)

and for almost all π ∈ Ĝ,

FG{(I + R̃)
a
ν f}(π) = σππ(I +R)

a
ν . (5.3)

Conversely, if {σπ : H∞
π → Hπ , π ∈ Ĝ} satisfies (5.2) then there exists a

unique function f ∈ L̃2
a(G) satisfying (5.3).
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In Proposition 5.1.5, σππ(I + R)
a
ν is not obtained as the composition of

(possibly) unbounded operators as in Definition A.3.2. Instead, for σππ(I +R)
a
ν ,

it is viewed as the composition of a field of operators defined on smooth vectors
with a field of operators acting on smooth vectors, see Section 1.8.3.

In Proposition 5.1.5, we use the right Sobolev spaces associated with the
positive Rockland operator R. These spaces are in fact independent of the choice
of a positive Rockland operator used in their definition, see Sections 4.4.5 and 4.4.8.
Consequently, if (5.2) holds for one positive Rockland operator then (5.2) and (5.3)
hold for any positive Rockland operator and the Sobolev norm of f ∈ L2(G), using

one particular positive Rockland operator R, is equal to the L2(Ĝ)-norm of (5.2).

Proof of Proposition 5.1.5. If f ∈ L̃2
a(G), then by Theorem 4.4.3 (3) (see also

Section 4.4.8), we have that fa := (I+ R̃) a
ν f is in L2(G) and its Fourier transform

is a field of bounded operators (in fact in the Hilbert-Schmidt class). By Lemma
5.1.2, π(I +R)− a

ν maps H∞
π onto itself. Hence we can define

σπ := π(fa)π(I +R)−
a
ν ,

as an operator defined on H∞
π . One readily checks that the operators σπ, π ∈ Ĝ,

satisfy (5.2) and (5.3).

For the converse, if {σπ : H∞
π → Hπ : π ∈ Ĝ} satisfies (5.2) then we define

the function

L2(G) � fa := F−1
G {σππ(I +R)

a
ν },

which is square integrable by the Plancherel theorem (see Theorem 1.8.11), and
the function

f := (I + R̃)− a
ν fa,

which will be in L̃2
a(G) by Theorem 4.4.3 (3). One readily checks that the function

f satisfies the properties described in the statement. �

We now aim at stating and proving a property similar to Proposition 5.1.5 for
the left Sobolev spaces. It will use the composition of a field with π(I+R) a

ν on the
left and this is problematic when we consider any general field σ = {σπ : H∞

π →
Hπ} without utilising the composition of unbounded operators as in Definition
A.3.2. To overcome this problem, we introduce the following notion:

Definition 5.1.6. Let π1 ∈ RepG and a ∈ R. We denote by Ha
π1

the Hilbert space
obtained by completion of H∞

π1
for the norm

‖ · ‖Ha
π1

: v �−→ ‖π1(I +R)
a
ν v‖Hπ1

:= ‖v‖Ha
π1
,

where R is a positive Rockland operator on G of homogeneous degree ν.
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We may call them the Hπ1
-Sobolev spaces. Note that in the case of the

Schrödinger representation for the Heisenberg group, they coincide with Shubin-
Sobolev spaces, see Section 6.4.3. More generally, if we realise an element π ∈ Ĝ
as a representation π1 acting on some L2(Rm) via the orbit methods, see Section
1.8.1, then we view the corresponding Sobolev spaces as tempered distributions:
Ha

π1
⊂ S ′(Rm).

The following lemma is a routine exercise.

Lemma 5.1.7. Let π1 ∈ RepG and a ∈ R.

1. If a = 0, then Ha
π1

= Hπ1 . If a > 0, we realise Ha
π1

as a subspace of Hπ1 and
it is the domain of the operator π1(I + R)

a
ν . If a < 0, we realise Ha

π1
as a

Hilbert space containing Hπ1
and the operator π1(I +R)

a
ν extends uniquely

to a bounded operator Ha
π1
→ Hπ1

.

2. For any a ∈ R, realising Ha
π1

as in Part 1, this space is independent of
the positive Rockland operator R and two positive Rockland operators yield
equivalent norms.

3. We have the continuous inclusions

a < b =⇒ Hb
π1
⊂ Ha

π1
.

For any a, b ∈ R, the operator π1(I +R)
a
ν maps Hb

π1
to Hb−a

π1
injectively and

continuously. In this way, Ha
π1

and H−a
π1

are in duality via

〈u, v〉Ha
π1

×H−a
π1

:= (π1(I +R)
a
ν u, π1(I + R̄)−

a
ν v̄)Hπ1

.

This duality extends the Hπ1
duality in the sense that

∀u ∈ Ha
π1
∩Hπ1

, v ∈ H−a
π1
∩Hπ1

〈u, v〉Ha
π1

×H−a
π1

= (u, v̄)Hπ1
.

4. If π2 is another strongly continuous representation such that π1 ∼T π2, that
is, T is a unitary operator satisfying Tπ1 = πT2, then T maps H∞

π1
to H∞

π2

bijectively by Lemma 1.8.12 and extends uniquely to an isometric operator
Ha

π1
→ Ha

π2
.

Lemma 5.1.7, especially Part 4, shows that Ĝ-fields with domain or range on
these Sobolev spaces make sense:

Definition 5.1.8. Let a ∈ R. A Ĝ-field of operators σ = {σπ : H∞
π → Hπ, π ∈ Ĝ}

defined on smooth vectors is defined on the Sobolev spaces Ha
π when for each

π1 ∈ RepG, the operator σπ1 is bounded on Ha
π1

in the sense that

∃C ∀v ∈ H∞
π1
‖σπ1

v‖Hπ1
≤ C‖v‖Ha

π1
.
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Thus, by density of H∞
π1

in Ha
π1
, σπ1

extends uniquely to a bounded operator
defined on Ha

π1
for which we keep the same notation σπ1

: Ha
π1
→ Hπ1

.

Example 5.1.9. For any positive Rockland operator of degree ν, the field {π(I +
R) a

ν , π ∈ Ĝ}, is defined on the Sobolev spaces Ha
π. This is an easy consequence of

Lemma 5.1.7, especially Part 3.

We will allow ourselves the shorthand notation

σ = {σπ : Ha
π → Hπ, π ∈ Ĝ},

to indicate that the Ĝ-field of operators is defined on the Sobolev spaces Ha
π.

Instead of Definition 5.1.8, we could also have defined Ĝ-fields of operators
defined on Ha

π-Sobolev spaces in a way similar to Definition 1.8.13 (where Ĝ-
fields of operators defined on smooth vectors were defined). Naturally, these two
viewpoints are equivalent since H∞

π1
is dense in Ha

π1
.

However, in order to define Ĝ-fields of operators with range in theHa
π-Sobolev

spaces, we have to adopt the latter viewpoint in the sense that we modify Defini-
tions 1.8.13 and 1.8.14 (in this way, we make no further assumptions on the fields
or on the Sobolev spaces):

Definition 5.1.10. Let a ∈ R.

• A Ĝ-field of operators defined on smooth vectors with range in the Sobolev
spaces Ha

π is a family of classes of operators {σπ, π ∈ Ĝ} where

σπ := {σπ1
: H∞

π1
→ Ha

π1
, π1 ∈ π}

for each π ∈ Ĝ viewed as a subset of RepG, satisfying for any two elements
σπ1 and σπ2 in σπ:

π1 ∼T π2 =⇒ σπ2T = Tσπ1 on H∞
π .

(Here we have kept the same notation for the intertwining operator T and
its unique extension between Sobolev spaces Ha

π1
→ Ha

π2
, see Lemma 5.1.7

Part 4.)

• It is measurable when for one (and then any) choice of realisation π1 ∈ π and

any vector vπ1
∈ Ha

π1
, as π runs over Ĝ, the resulting field {σπvπ, π ∈ Ĝ} is

μ-measurable whenever
∫
Ĝ
‖vπ‖2Ha

π
dμ(π) <∞. (Here we assume that all the

Ha
π-norms are realised via a fixed positive Rockland operator.)

Unless otherwise stated, a Ĝ-field of operators defined on smooth vectors
with range in the Sobolev spaces Ha

π is always assumed measurable. We will allow
ourselves the shorthand notation

σ = {σπ : H∞
π → Ha

π, π ∈ Ĝ}
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to indicate that the Ĝ-field of operators has range in the Sobolev space Ha
π.

Naturally, if a Ĝ-field of operators is defined on smooth vectors σ = {σπ :

H∞
π → Hπ, π ∈ Ĝ} with the usual range Hπ = H0

π, then it has range in the Sobolev
spaces Ha

π when for each π1 ∈ RepG and any v ∈ H∞
π1
, we have σπ1

v ∈ Ha
π1
.

Moreover, the following property of composition is easy to check: if σ1 has
range in Ha

π and σ2 is defined on Ha
π,

i.e. σ1 = {σ1,π : H∞
π → Ha

π, π ∈ Ĝ} and σ2 = {σ2,π : Ha
π → Hπ, π ∈ Ĝ},

then the following field

σ2σ1 := {σ2,πσ1,π : H∞
π → Hπ, π ∈ Ĝ}

makes sense as a Ĝ-field of operators defined on smooth vectors. This coincides
or extends the definition of composition of fields (the first one acting on smooth
vectors) given in Section 1.8.3.

We can apply this property of composition to σ = {σπ : H∞
π → Ha

π, π ∈ Ĝ}
and {π(I + R) a

ν , π ∈ Ĝ}, see Example 5.1.9 for the latter, to obtain the Ĝ-field
defined on smooth vectors by

π(I +R) a
ν σ = {π(I +R) a

ν σπ : H∞
π → Hπ, π ∈ Ĝ}. (5.4)

We can now state the proposition which will enable us to define the group
Fourier transform of a function in a left or right Sobolev space.

Proposition 5.1.11. Let a ∈ R.

(L) If f ∈ L2
a(G), then (I +R) a

ν f ∈ L2(G) and there exists a field of operators

{σπ : H∞
π → Ha

π , π ∈ Ĝ} such that

{π(I +R) a
ν σπ : H∞

π → Hπ , π ∈ Ĝ} ∈ L2(Ĝ), (5.5)

FG{(I +R)
a
ν f}(π) = π(I +R) a

ν σπ, for almost all π ∈ Ĝ, (5.6)

where R is a positive Rockland operator on G of homogeneous degree ν.

Conversely, if {σπ : H∞
π → Ha

π , π ∈ Ĝ} satisfies (5.5) for one positive
Rockland operator R, then there exists a unique function f ∈ L2

a(G) satisfying
(5.6).

(R) If f ∈ L̃2
a(G), then the (unique) field σ obtained in Proposition 5.1.5 can be

extended uniquely into a field {σπ : Ha
π → Hπ , π ∈ Ĝ} defined on Ha

π.

Properties (L) and (R) are independent of the choice of R.

In Proposition 5.1.11, π(I + R) a
ν σπ is not obtained as the composition of

(possibly) unbounded operators as in Definition A.3.2 but is understood via (5.4).
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In Proposition 5.1.11, we use the left and right Sobolev spaces associated
with the positive Rockland operator R. These spaces are in fact independent of
the choice of a positive Rockland operator used in their definition, see Sections
4.4.5 and 4.4.8. Consequently, if (5.5) hold for one positive Rockland operator then
(5.5) and (5.6) hold for any positive Rockland operator and the Sobolev norm of
f ∈ L2(G), using one particular positive Rockland operator R, is equal to the

L2(Ĝ)-norm of (5.5).

Proof of Proposition 5.1.11. Property (L). If f ∈ L2
a(G), then by Theorem 4.4.3

(3), we have that fa := (I +R) a
ν f is in L2(G) and its Fourier transform is a field

of bounded operators (in fact in the Hilbert-Schmidt class). By (5.4) we can define
σ = {σπ : H∞

π → Ha
π} via σπ := π(I + R)− a

ν π(fa). One readily checks that the
field σ satisfies (5.2) and (5.3).

For the converse, if {σπ : H∞
π → Ha

π : π ∈ Ĝ} satisfies (5.2) then we define
the function

L2(G) � fa := F−1
G {π(I +R)

a
ν σπ},

which is square integrable by the Plancherel theorem (see Theorem 1.8.11), and
the function

f := (I +R)− a
ν fa,

which will be in L2
a(G) by Theorem 4.4.3 (3). One readily checks that the function

f satisfies the properties described in the statement. This shows the property (L).
Property (R) follows easily from (5.2). �

From the proof above, one can check easily that if f ∈ L2
a(G) or L̃2

a(G) is also
in any of the spaces where the group Fourier transform has already been defined,
namely, L2(G) or K(G), then σ = {σπ : H∞

π → Hπ, π ∈ Ĝ} will coincide with
the group Fourier transform of f . Hence we can extend the definition of the group
Fourier transform to Sobolev spaces:

Definition 5.1.12. Let a ∈ R. The group Fourier transform of f ∈ L2
a(G) or f ∈

L̃2
a(G) is the field σ of operators defined on smooth vectors given in Proposition

5.1.11.

This leads us to define the following spaces of fields of operators:

Definition 5.1.13. (L) Let L2
a(Ĝ) denote the space of fields of operators σ with

range in Ha
π and satisfying (5.5), that is,

σ = {σπ : H∞
π → Ha

π , π ∈ Ĝ},
{π(I +R) a

ν σπ : H∞
π → Hπ , π ∈ Ĝ} ∈ L2(Ĝ),

for one (and then any) positive Rockland operator of homogeneous degree ν.
We also set

‖σ‖L2
a(Ĝ) := ‖π(I +R)

a
ν σπ‖L2(Ĝ). (5.7)
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(R) Let L̃2
a(Ĝ) denote the space of fields of operators σ defined on Ha

π and satis-
fying (5.2), that is,

σ = {σπ : Ha
π → Hπ , π ∈ Ĝ},

{σππ(I +R)
a
ν : H∞

π → Hπ , π ∈ Ĝ} ∈ L2(Ĝ),

for one (and then any) positive Rockland operator of homogeneous degree ν.
We also set

‖σ‖L̃2
a(Ĝ) := ‖σππ(I +R)

a
ν ‖L2(Ĝ).

It is a routine exercise, using Proposition 5.1.11 and the properties of the
Sobolev spaces (see Section 4.4), to show that

Proposition 5.1.14. Let a ∈ R. If R is a positive Rockland operator of homogeneous
degree ν, the map ‖ · ‖L2

a(Ĝ) given by (5.7) is a norm on the vector space L2
a(Ĝ).

Endowed with this norm, L2
a(Ĝ) is a Banach space which is independent of R.

Two norms corresponding to any two choices of Rockland operators via (5.7) are
equivalent.

The Fourier transform FG is an isomorphism between Banach spaces acting
from L2

a(G) onto L2
a(Ĝ). It coincides with the usual Fourier transform on L2(G)

for a = 0.

Let σ = {σπ, π ∈ Ĝ} be in L2
a(Ĝ). Then

{π(X)ασπ, π ∈ Ĝ}

is in L2
a−[α](Ĝ) for any α ∈ Nn

0 , and

{π(I +R)s/νσπ, π ∈ Ĝ}

is in L2
a−s(Ĝ) for any s ∈ R. Furthermore, if f = F−1

G σ ∈ L2
a(G) then

FG(X
αf)(π) = π(X)αf̂(π) and FG((I +R)s/νf)(π) = π(I +R)s/ν f̂(π).

We have similar results for the right Sobolev spaces. Furthermore the adjoint
map σ �→ σ∗ maps L2

a(Ĝ)→ L̃2
a(Ĝ) and L̃2

a(Ĝ)→ L2
a(Ĝ) isomorphically as Banach

spaces.

Recall that the tempered distributions Xαf and (I + R)s/νf used in the
statement just above are respectively defined via

〈Xαf, φ〉 = 〈f, {Xα}tφ〉, φ ∈ S(G), (5.8)

and
〈(I +R)s/νf, φ〉 = 〈f, (I + R̄)s/νφ〉, φ ∈ S(G). (5.9)
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For (5.9), see Definition 4.3.17. For (5.8), this is the composition of the formula
obtained for one vector field (with polynomial coefficients) by integration by parts.
See also (1.10) for the definition of {Xα}t.

In Corollary 1.8.3, we stated the inversion formula valid for any Schwartz
function on any connected simply connected Lie group. Here we weaken the hy-
pothesis using the Sobolev spaces in the context of a graded Lie group G:

Proposition 5.1.15 (Fourier inversion formula). Let f be in the left Sobolev space
L2
s(G) or in the right Sobolev space L̃2

s(G) with s > Q/2. Then for almost every

π ∈ RepG, the operator f̂(π) is trace class with∫
Ĝ

Tr|f̂(π)|dμ(π) <∞. (5.10)

Furthermore, f is continuous on G, and for every x ∈ G we have

f(x) =

∫
Ĝ

Tr
(
π(x)f̂(π)

)
dμ(π) =

∫
Ĝ

Tr
(
f̂(π)π(x)

)
dμ(π). (5.11)

In the statement above, as s > Q/2 > 0, the field f̂ is in L2(Ĝ), it is
then a field of bounded operators (even in Hilbert-Schmidt classes) and so can be
composed on the left and the right with π(x). The (possibly infinite) traces

Tr
∣∣∣π1(x)f̂(π1)

∣∣∣ , Tr
∣∣∣f̂(π1)π1(x)

∣∣∣ and Tr
∣∣∣f̂(π1)

∣∣∣
are equal for π1 ∈ RepG as π1 is unitary. They are constant on the class of
π1 ∈ RepG in Ĝ and are, therefore, treated as depending on π ∈ Ĝ. They are
finite for μ-almost all π ∈ Ĝ in view of (5.10).

Note that (5.10) implies not only that the two expressions∫
Ĝ

Tr
(
π(x)f̂(π)

)
dμ(π) and

∫
Ĝ

Tr
(
f̂(π)π(x)

)
dμ(π)

make sense but that they are also equal by the properties of the trace since π(x)
is bounded.

Proof of Proposition 5.1.15. Let R be a positive Rockland operator of homoge-
neous degree ν. Let f ∈ L2

s(G) with s > Q/2. We set

fs := (I +R) s
ν f ∈ L2(G).

The properties of the trace imply

Tr|f̂(π)| = Tr
∣∣∣π(I +R)− s

ν f̂s(π)
∣∣∣ ≤ ‖π(I +R)− s

ν ‖HS‖f̂s(π)‖HS.
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Integrating against the Plancherel measure, we obtain by the Cauchy-Schwartz
inequality ∫

Ĝ

Tr|f̂(π)|dμ(π) ≤ ‖π(I +R)− s
ν ‖L2(Ĝ)‖f̂s‖L2(Ĝ).

By Corollary 5.1.4, Cs := ‖π(I + R)− s
ν ‖L2(Ĝ) is a positive finite constant. Since

‖f̂s(π)‖L2(Ĝ) is equal to ‖f‖L2
s(G) which is finite, we have obtained (5.10).

Let φ ∈ S(G). By the Plancherel formula, especially (1.30), we have

(f, φ)L2(G) = (fs, (I +R)−
s
ν φ)L2(G)

=

∫
Ĝ

Tr
(
FG{fs}(π)

(
FG{(I +R)−

s
ν φ}(π)

)∗)
dμ(π)

=

∫
Ĝ

Tr
(
π(I +R) s

ν f̂(π) φ̂(π)∗π(I +R)− s
ν

)
dμ(π)

=

∫
Ĝ

Tr
(
f̂(π) φ̂(π)∗

)
dμ(π).

Note that the two functions fs and (I + R) s
ν φ are both square integrable so all

the traces above are finite.

We now fix a non-negative function χ ∈ D(G) with compact support con-
taining 0 and satisfying

∫
G
χ = 1. We apply what precedes to φ := χε given

by
χε(y) := ε−Qχ(ε−1y), ε > 0, y ∈ G,

and obtain

(f, χε)L2(G) =

∫
Ĝ

Tr
(
f̂(π) χ̂ε(π)

∗
)
dμ(π). (5.12)

Let us show that the right hand-side of (5.12) converges to∫
Ĝ

Tr
(
f̂(π) χ̂ε(π)

∗
)
dμ(π) −→ε→0

∫
Ĝ

Tr
(
f̂(π)

)
dμ(π). (5.13)

Note that the right hand-side of (5.13) is finite by (5.10).
The integrand on the left-hand side is bounded by∣∣∣Tr(f̂(π) χ̂ε(π)

∗
)∣∣∣ ≤ ‖χ̂ε(π)‖L (Hπ)Tr|f̂(π)|,

and
‖χ̂ε(π)‖L (Hπ) ≤ ‖χε‖L1(G) = ‖χ‖L1(G).

Hence ∣∣∣Tr(f̂(π) χ̂ε(π)
∗
)∣∣∣ ≤ ‖χ‖L1(G)Tr|f̂(π)|,

and the right-hand side is μ-integrable by (5.10).
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Let us show the convergence for every π ∈ Ĝ

Tr
(
f̂(π) χ̂ε(π)

∗
)
−→ε→0 Tr

(
f̂(π)

)
. (5.14)

In order to do this, we want to estimate the difference∣∣∣Tr(f̂(π) χ̂ε(π)
∗
)
− Tr

(
f̂(π)

)∣∣∣ =
∣∣∣Tr(f̂(π) (χ̂ε(π)

∗ − I)
)∣∣∣

≤ ‖χ̂ε(π)
∗ − I‖L∞(Ĝ)Tr

∣∣∣f̂(π)∣∣∣ .
Since

χ̂ε(π)
∗ =

∫
G

χε(y)π(y)dy =

∫
G

ε−Qχ(ε−1y)π(y)dy =

∫
G

χ(z)π(εz)dz,

and as
∫
G
χ = 1, we have

‖χ̂ε(π)
∗ − I‖L (Hπ) = ‖

∫
G

χ(z) (π(εz)− I) dz‖L (Hπ)

≤
∫
G

|χ(z)| ‖π(εz)− I‖L (Hπ)dz

≤ sup
z∈suppχ

‖π(εz)− I‖L (Hπ)

∫
G

|χ(z)|dz.

As π is strongly continuous and suppχ compact, we know that

sup
z∈suppχ

‖π(εz)− I‖L (Hπ) −→ε→0 0.

This implies the convergence in (5.14) for each π ∈ Ĝ.
We can now apply Lebesgue’s dominated convergence theorem to obtain the

convergence in (5.13).

By the Sobolev embeddings (see Theorem 4.4.25), f is continuous on G and
it is a simple exercise to show that the left hand-side of (5.12) converges to

(f, χε)L2(G) −→ε→0 f(0).

Hence we have obtained the inversion formula given in (5.11) at x = 0. Replacing
f by its left translation f(x ·) which is still in L2

s(G) with the same Sobolev norm,
it is then easy to obtain (5.11) for every x ∈ G.

For the case of f ∈ L̃2
s(G) with s > Q/2, we set fs := (I + R̃) s

ν f ∈ L2(G)
and we obtain similar properties as above, ending by using right translations to
obtain (5.11). �
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5.1.2 The spaces Ka,b(G), LL(L
2
a(G), L2

b(G)), and L∞
a,b(Ĝ)

In this section we describe the spaces Ka,b(G), LL(L
2
a(G), L2

b(G)) and L∞
a,b(Ĝ),

extending the notion of the group von Neumann algebras discussed in Section
1.8.2, to the setting of Sobolev spaces.

Definition 5.1.16 (Spaces LL(L
2
a(G), L2

b(G)) and Ka,b(G)). Let a, b ∈ R. We de-
note by

LL(L
2
a(G), L2

b(G))

the subspace of operators T ∈ L (L2
a(G), L2

b(G)) which are left-invariant.

We denote by

Ka,b(G)

the subspace of tempered distributions f ∈ S ′(G) such that the operator S(G) �
φ �→ φ ∗ f extends to a bounded operator from L2

a(G) to L2
b(G).

If a positive Rockland operator R of homogeneous degree ν is fixed, then the
Ka,b(G)-norm is defined for any f ∈ Ka,b(G), as the operator norm of φ �→ φ ∗ f
viewed as an operator from L2

a(G) to L2
b(G), i.e.

‖f‖Ka,b
:= ‖φ �→ φ ∗ f‖L (L2

a(G),L2
b(G)). (5.15)

Here we have considered the Sobolev norms φ �→ ‖(I + R) c
ν φ‖2 for c = a, b for

L2
a(G) and L2

b(G), respectively.

The vector space LL(L
2
a, L

2
b) is a Banach subspace of L (L2

a, L
2
b). Since the

Sobolev spaces L2
a(G) are independent of the choice of a positive Rockland operator

R (see Section 4.4.5), so are LL(L
2
a(G), L2

b(G)) and also Ka,b(G). However, the
norms on these spaces do depend on a choice of a positive Rockland operator R.

We may often write Ka,b instead of Ka,b(G) to ease the notation when no
confusion is possible.

We have the immediate properties:

Proposition 5.1.17. 1. If a = b = 0 then

K0,0 = K and LL(L
2
a, L

2
b) = LL(L

2).

The norms ‖ · ‖K0,0
and ‖ · ‖K (defined in (5.15) and in (1.37) respectively)

coincide. For any f ∈ K we have

‖f∗‖K = ‖f‖K where f∗(x) = f̄(x−1),

and

∀r > 0 ‖f ◦Dr‖K = r−Q‖f‖K.
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2. Fixing a positive Rockland operator R, the mapping f �→ ‖f‖Ka,b
defines

a norm on the vector space Ka,b which becomes a Banach space. Any two
positive Rockland operators produce equivalent norms on Ka,b.

3. Let a, b ∈ R. We have the continuous inclusion

Ka,b(G) ⊂ S ′(G).

Moreover if Tf denotes the convolution operator φ �→ φ ∗ f for f ∈ S ′(G),
then the following are equivalent:

f ∈ Ka,b ⇐⇒ Tf ∈ LL(L
2
a(G), L2

b(G))

⇐⇒ (I +R) b
ν Tf (I +R)−

a
ν ∈ LL(L

2(G))

⇐⇒ (I +R) b
ν (I + R̃)− a

ν f ∈ K(G),

where R is any positive Rockland operator of homogeneous degree ν.

4. For any c1, c2 ≥ 0 we have the inclusions

LL(L
2
a, L

2
b) ⊂ LL(L

2
a+c1 , L

2
b−c2)

and
Ka,b ⊂ Ka+c1,b−c2 .

5. If f ∈ Ka,b then Xαf ∈ Ka,b−[α] for any α ∈ Nn
0 and (I +R)s/νf ∈ Ka,b−s

for any s ∈ R. Furthermore, Xα and (I +R)s/ν are bounded on Ka,b:

‖Xαf‖Ka,b−[α]
≤ Ca,b,[α]‖f‖Ka,b

and
‖(I +R)s/νf‖Ka,b−s

≤ C ′
a,b,s‖f‖Ka,b

for some positive finite constants Ca,b,[α] and C ′
a,b,s independent of f .

If −a and b are in νN0, a norm equivalent to the Ka,b-norm is

f �−→
∑

[α]≤−a, [β]≤b

‖X̃αXβf‖K,

and if a′ ∈ [a, 0] and b′ ∈ [0, b] then

‖f‖Ka′,b′ ≤ Ca,b,a′,b,R
∑

[α]≤−a, [β]≤b

‖X̃αXβf‖K.

The definitions of the tempered distributions Xαf and (I + R)s/νf were
recalled in (5.8) and (5.9) respectively. For the proper definition of the operators

(I +R) b
ν , (I + R̃)− a

ν , see Definitions 4.3.17 and 4.4.31.
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Proof of Proposition 5.1.17. Part (1) follows from the properties of the von Neu-
mann-algebras K(G) and LL(L

2(G)) as well as from the following two easy ob-
servations:

∀ψ ∈ L2(G) ‖ψ ◦Dr‖2 = r−
Q
2 ‖ψ‖2,

and for any f ∈ K, φ ∈ S(G) and r > 0,

φ ∗ (f ◦Dr) (x) = r−Q
((

φ ◦D 1
r

)
∗ f

)
(rx).

Part (2) is easy to check. Part (3) follows from the Schwartz kernel theorem, see
Corollary 3.2.1. Parts (4) and (5), follow easily from the properties of the Sobolev
spaces and Part (3). �

We now show that we can make sense of convolution of distributions in some
Ka,b(G)-spaces. The following lemma is almost immediate to check.

Lemma 5.1.18. Let f ∈ Ka,b(G) and g ∈ Kb,c(G) for a, b, c ∈ R, and let Tf : φ �→
φ ∗ f and Tg : φ �→ φ ∗ g be the associated operators. Then the operator TgTf is
continuous from L2

a(G) to L2
c(G) and its right-convolution kernel (as a continuous

linear operator from S(G) to S ′(G)) is denoted by h ∈ Ka,c(G).

If (fn) and (gn) are sequences of Schwartz functions converging to f in
Ka,b(G) and g in Kb,c(G), respectively, then h is the limit of fn ∗ gn in Ka,c(G).

Consequently, with the notation of the lemma above, h coincides with the
convolution of f with g whenever the convolution of f with g makes any techni-
cal sense, for instance, if the tempered distributions f and g (which are already
assumed to be in Ka,b(G) and Kb,c(G) respectively) satisfy

• f and g are locally integrable functions with |f | ∗ |g| ∈ L1(G),

• or at least one of the distributions f or g has compact support,

• or at least one of the distributions f or g is Schwartz.

Hence we may extend the notation and define:

Definition 5.1.19. If f ∈ Ka,b(G) and g ∈ Kb,c(G) for a, b, c ∈ R, and Tf : φ �→ φ∗f ,
Tg : φ �→ φ ∗ g are the associated operators, we denote by f ∗ g the distribution in
Ka,c(G) which is the right convolution kernel of TgTf .

We obtain easily the following properties:

Corollary 5.1.20. Let f ∈ Ka,b(G) and g ∈ Kb,c(G) for a, b, c ∈ R. Then we have
the following property of associativity for any φ ∈ S(G)

φ ∗ (f ∗ g) = (φ ∗ f) ∗ g,

and more generally for any h ∈ Kc,d(G) (where d ∈ R)

f ∗ (g ∗ h) = (f ∗ g) ∗ h,
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as convolutions of an element of Ka,b(G) with an element of Kb,d(G) for the left-
hand side, and of an element of Ka,c(G) with an element of Kc,d(G) for the right-
hand side.

The rest of this section is devoted to the definition of the group Fourier
transform of a distribution in Ka,b(G). We start by defining what will turn out to

be the image of the group Fourier transform on Ka,b(G). We recall that L∞(Ĝ)

is the space of measurable fields of operators on Ĝ which are uniformly bounded,
see Definition 1.8.8.

Definition 5.1.21. Let a, b ∈ R. We denote by L∞
a,b(Ĝ) the space of fields of opera-

tors σ = {σπ : H∞
π → Hb

π , π ∈ Ĝ} satisfying

∃C > 0 ∀φ ∈ S(G) ‖σφ̂‖L2
b(Ĝ) ≤ C‖φ‖L2

a(G). (5.16)

Here we assume that a positive Rockland operator has been fixed to define the
norms on L2

b(Ĝ) and L2
a(G).

For such a field σ, ‖σ‖L∞
a,b(Ĝ) denotes the infimum of the constant C > 0

satisfying (5.16).

We may sometimes abuse the notation and write ‖σπ‖L∞
a,b(Ĝ) when no con-

fusion is possible.
Note that as φ ∈ S(G), its group Fourier transform acts on smooth vectors,

see Example 1.8.18. Hence the composition σφ̂ above makes sense, see Section
1.8.3.

Naturally, the space L∞
a,b(Ĝ) introduced in Definition 5.1.21 is independent of

the choice of a Rockland operator used to define the norms on L2
b(Ĝ) and L2

a(G):

Lemma 5.1.22. If {σπ : H∞
π → Hb

π, π ∈ Ĝ} satisfies the condition in Definition
5.1.21 for one positive Rockland operator, then it satisfies the same property for
any positive Rockland operator. Moreover, if R1 and R2 are two positive Rockland
operators, and if ‖σ‖L∞

a,b,R1
(Ĝ) and ‖σ‖L∞

a,b,R2
(Ĝ) denote the corresponding infima,

then there exists C > 0 independent of σ such that

C−1‖σ‖L∞
a,b,R2

(Ĝ) ≤ ‖σ‖L∞
a,b,R1

(Ĝ) ≤ C‖σ‖L∞
a,b,R2

(Ĝ).

Proof. This follows easily from the independence of the Sobolev spaces on G and
Ĝ of the positive Rockland operators, see Section 4.4.5 and Proposition 5.1.14. �

If the field acts on smooth vectors, we can simplify Definition 5.1.21:

Lemma 5.1.23. Let σ = {σπ : H∞
π → H∞

π , π ∈ Ĝ} be a field acting on smooth

vectors. Then σ ∈ L∞
a,b(Ĝ) if and only if

{π(I +R) b
ν σπ π(I +R)−

a
ν : H∞

π → H∞
π , π ∈ Ĝ} ∈ L∞(Ĝ), (5.17)
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where R is a positive Rockland operator of degree ν, and in this case,

‖σ‖L∞
a,b(Ĝ) = ‖π(I +R)

b
ν σπ π(I +R)−

a
ν ‖L∞(Ĝ).

Proof. This follows easily from the density of S(G) in L2
b(G). �

Note that the composition in (5.17) makes sense as all the fields involved act
on smooth vectors. In Corollary 5.1.30, we will see a sufficient condition (which
will be useful later) for a field to be acting on smooth vectors.

We can now characterise the elements of Ka,b(G) in terms of L∞
a,b(Ĝ):

Proposition 5.1.24. Let a, b ∈ R.

(i) If σ ∈ L∞
a,b(Ĝ), then the operator Tσ : S(G)→ S ′(G) defined via

T̂σφ(π) := σπφ̂(π), φ ∈ S(G), π ∈ Ĝ, (5.18)

extends uniquely to an operator in L (L2
a, L

2
b). Moreover,

‖Tσ‖L (L2
a,L

2
b)

= ‖σ‖L∞
a,b(Ĝ), (5.19)

where the Sobolev norms are defined using a chosen positive Rockland oper-
ator R with homogeneous degree ν. The right convolution kernel f ∈ S ′(G)
of Tσ is in Ka,b(G).

(ii) Conversely, if f ∈ Ka,b(G) then there exists a unique σ ∈ L∞
a,b(Ĝ) such that

φ̂ ∗ f(π) = σπφ̂(π), φ ∈ S(G), π ∈ Ĝ. (5.20)

Furthermore, if f is also in any of the spaces where the group Fourier trans-
form has already been defined, namely any Sobolev space L2

a(G) or K(G),

then σ = {σπ, π ∈ Ĝ} will coincide with the group Fourier transform of f .

Proof. The properties of Tσ in Part (i) follow from the Plancherel theorem (The-
orem 1.8.11) and the density of S(G) in L2(G). The right convolution kernel
f ∈ S ′(G) of Tσ is in Ka,b(G) by Proposition 5.1.17.

Conversely, let f ∈ Ka,b(G). By assumption the operator Tf : S(G) � φ �→
φ ∗ f admits a bounded extension from L2

a(G) to L2
b(G). Thus the operator (I +

R) b
ν Tf (I + R)−

a
ν is bounded on L2(G) and we denote by fa,b ∈ K(G) its right

convolution kernel. For any φ ∈ S(G), we have φa := (I + R) a
ν φ ∈ S(G) by

Corollary 4.3.16 thus φa ∗ fa,b ∈ L2(G) and we have

Tfφ ∈ L2
b(G) with Tfφ = (I +R)− b

ν (φa ∗ fa,b).

Consequently FG(Tfφ) ∈ L2
b(Ĝ) and

FG(Tfφ) = π(I +R)− b
ν f̂a,bφ̂a = π(I +R)− b

ν f̂a,bπ(I +R)
a
ν φ̂.
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One checks easily that {σπ : H∞
π → Hb

π, π ∈ Ĝ} defined via

σπ := π(I +R)− b
ν f̂a,b(π)π(I +R)

a
ν

is in L∞
a,b(Ĝ) and satisfies (5.20). The rest of the proof of Part (ii) follows easily

from the computations above and the uniqueness of the group Fourier transforms
already defined. �

Thanks to Proposition 5.1.24, we can extend the definition of the group
Fourier transform to Ka,b(G):

Definition 5.1.25 (The group Fourier transform on Ka,b(G)). The group Fourier

transform of f ∈ Ka,b(G) is the field of operators {σπ : H∞
π → Hb

π, π ∈ Ĝ} in

L∞
a,b(Ĝ) associated to f by Proposition 5.1.24, and we write

f̂(π) := π(f) := σπ, π ∈ Ĝ.

As the next example implies, any left-invariant vector field is in some Ka,b(G)
and their Fourier transform can be defined via Definition 5.1.25. As is shown in
the proof below, this coincides with the infinitesimal representation of the corre-
sponding element of U(g) defined in Section 1.7.

Example 5.1.26. Let α ∈ Nn
0 . The operator Xα is in L (L2

[α](G), L2(G)) and more

generally in L (L2
[α]+s(G), L2

s(G)) for any s ∈ R. Its right convolution kernel is the

distribution Xαδ0 defined via (see (5.8))

〈Xαδ0, φ〉 = 〈δ0, {Xα}tφ〉 = {Xα}tφ(0),

which is in K[α],0, and more generally in Ks+[α],s for any s ∈ R. Its group Fourier
transform is

FG(X
αδ0)(π) = π(Xα) = π(X)α

and coincides with the infinitesimal representation on U(g). It is in L∞
s+[α],s(Ĝ) for

any s ∈ R.

Proof. By Theorem 4.4.16, Xα maps L2
[α](G) continuously to L2(G) and, more

generally, L2
s+[α](G) continuously to L2

s(G).

By Proposition 1.7.6, we have for any φ ∈ S(G)

FG(X
αφ)(π) = π(Xα)φ̂(π) = π(X)αφ̂(π).

This shows that FG(X
αδ0) coincides with {π(Xα), π ∈ Ĝ}. �

As our next example shows, when multipliers in a positive Rockland operator
are in LL(L

2
s(G), L2

s−b(G)), the group Fourier transform of their right convolution
kernels can also be given via the functional calculus of the Rockland operators:
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Example 5.1.27. Let R be a positive Rockland operator of homogeneous degree
ν. Let m be a measurable function on [0,∞) satisfying

∃C > 0 ∀λ ≥ 0 |m(λ)| ≤ C(1 + λ)
b
ν .

Then the operator m(R) defined by the functional calculus of R extends uniquely
to an operator in LL(L

2
s+b(G), L2

s(G)) for any s ∈ R. Its right convolution kernel
m(R)δ0 is in Ks+b,s for any s ∈ R. Its group Fourier transform is

FG(m(R)δ0)(π) = m(π(R))

defined by the functional calculus of π(R). It is in L∞
s+b,s(Ĝ) for any s ∈ R. For a

fixed s ∈ R, we have

‖m(R)‖LL(L2
s+b(G),L2

s(G)) = ‖m(R)δ0‖Ks+b,s
= ‖m(π(R))‖L∞

s+b,s(Ĝ)

≤ sup
λ>0

(1 + λ)−
b
ν |m(λ)|,

if we realise the Sobolev norms with R.
We refer to Section 4.1.3 and Corollary 4.1.16 for the properties of the func-

tional calculus of R2 and π(R).

Proof. The function m1 given by

m1(λ) := m(λ)(1 + λ)−
b
ν , λ ≥ 0,

is measurable and bounded on [0,∞). The operator m1(R) defined by the func-
tional calculus of R is therefore bounded on L2(G) with

‖m1(R)‖L (L2(G)) ≤ sup
λ≥0
|m1(λ)|.

Again from the properties of the functional calculus of R, we also have

m(R) ⊃ m1(R)(I +R)
b
ν ,

in the sense of operators. Since Dom(I+R)b/ν ⊃ S(G) (see Corollary 4.3.16), this
shows that the domain of m(R) contains S(G) and that

m1(R) = m(R)(I +R)− b
ν on S(G).

The properties of the functional calculus of R yield for any s ∈ R,

‖m1(R)‖L (L2(G)) = ‖m1(R)‖L (L2
s(G))

= ‖m(R)(I +R)− b
ν ‖L (L2

s(G))

= ‖m(R)‖L (L2
s+b(G),L2

s(G)).
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By Corollary 4.1.16, the kernel ofm1(R) is the tempered distributionm1(R)δ0
with Fourier transform {m1(π(R)), π ∈ Ĝ}. Adapting the proof of Corollary 4.1.16,
we see that

m1(π(R)) = m(π(R))(I + π(R))− b
ν on H∞

π , π ∈ Ĝ.

It is now straightforward to check that the kernel of the operator m(R) is in Ks+b,s

and its Fourier transform is {m(π(R)), π ∈ Ĝ}. �

Naturally, any Schwartz function is in any Ka,b and one can readily estimate
the associated norm:

Example 5.1.28. If φ ∈ S(G), then for any a, b ∈ R, the operator Tφ : ψ �→ ψ ∗φ is

in L (L2
a(G), L2

b(G)), φ ∈ Ka,b and φ̂ ∈ L∞
a,b. If we fix a positive Rockland operator

R of homogeneous degree ν, then we have

‖Tφ‖L (L2
a(G),L2

b(G)) = ‖φ‖Ka,b
= ‖φ̂‖L∞

a,b
≤ ‖(I +R) b

ν (I + R̃)− a
ν φ‖L1(G) <∞,

where the norms on L (L2
a(G), L2

b(G)), Ka,b and L∞
a,b are defined with R.

With Definition 5.1.25, we can reformulate Proposition 5.1.24 and parts of
Proposition 5.1.17 and Corollary 5.1.20 as the following proposition.

Proposition 5.1.29. 1. Let a, b ∈ R. The Fourier transform FG maps Ka,b(G)

onto L∞
a,b(Ĝ). Furthermore, FG : Ka,b(G) → L∞

a,b(Ĝ) is an isomorphism
between Banach spaces. In particular, for f ∈ Ka,b(G),

‖f‖Ka,b
= ‖f̂‖L∞

a,b(Ĝ).

It coincides with the Fourier transform on K(G) for a = b = 0.

2. If σ1 ∈ L∞
a1,b1

(Ĝ) and σ2 ∈ L∞
a2,b2

(Ĝ) with b2 = a1, then their product σ1σ2

makes sense as the element of L∞
a2,b1

(Ĝ) given by the Fourier transform of

(F−1
G σ2) ∗ (F−1

G σ1).

In other words, if f1 ∈ Ka1,b1(Ĝ) and f2 ∈ Ka2,b2(Ĝ) with b2 = a1, then

the Fourier transform of f2 ∗ f1 ∈ Ka2,b1(Ĝ) is

FG(f2 ∗ f1) = FG(f1)FG(f2).

3. Let σ = {σπ : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ). Then we have for any α ∈ Nn
0 ,

{π(X)ασπ : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b−[α](Ĝ), (5.21)

and for any s ∈ R,

{π(I +R)s/νσπ : H∞
π → Hπ, π ∈ Ĝ} ∈ L2

a,b−s(Ĝ). (5.22)
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Furthermore, if f = F−1
G σ ∈ Ka,b(G) then

FG(X
αf)(π) = π(X)αf̂(π) and FG((I +R)s/νf)(π) = π(I +R)s/ν f̂(π).

The fields of operators in (5.21) and (5.22) are understood as compositions
of fields of operators in L∞

a2,b2
and L∞

a1,b1
with b2 = a1, see Part 2 and Examples

5.1.26 and 5.1.27.

With the help of Proposition 5.1.29, we can now give a usefull sufficient
condition for a field to act on smooth vectors and reformulate Corollary 4.4.10
into

Corollary 5.1.30. Let a, b ∈ R and let {γ�, � ∈ Z} be a sequence of real numbers

which tends to ±∞ as � → ±∞. Let σ ∈ L∞
a+γ�,b+γ�

(Ĝ) for every � ∈ Z. Then σ
is a field of operators acting on smooth vectors:

σ = {σπ : H∞
π → H∞

π , π ∈ Ĝ}.

Furthermore σ ∈ L∞
a+γ,b+γ(Ĝ) for every γ ∈ R and for any c ≥ 0, we have

sup
|γ|≤c

‖σ‖L∞
a+γ,b+γ(Ĝ) ≤ Cc max

(
‖σ‖L∞

a+γ�,b+γ�
(Ĝ), ‖σ‖L∞

a+γ−�,b+γ−�
(Ĝ)

)
,

where � ∈ N0 is the smallest integer such that γ� ≥ c and −γ−� ≥ c.

Proof. By Proposition 5.1.29, π(X)ασ ∈ L∞
a+γ�,b+γ�−[α] for every α ∈ Nn

0 and

every � ∈ Z. Thus choosing γ� ≥ [α] − b, we have π(X)ασφ̂ ∈ L2(Ĝ) for every

φ ∈ S(G). Realising π ∈ Ĝ as a representation of G and fixing v ∈ H∞
π , this

implies that the mapping x �→ π(x)σπφ̂(π)v is smooth. Hence σπφ̂(π)v is smooth

and σφ̂ acts on smooth vectors. As this holds for every φ ∈ D(G), so does σ by
Lemma 1.8.19. We conclude with Corollary 4.4.10. �

We end this section with one more technical property:

Lemma 5.1.31. Let σ ∈ L∞
a,b(Ĝ) where a, b ∈ R. Let φ ∈ S(G). Then we have

σφ̂ ∈ L̃2
s(Ĝ) for any s ∈ R and∫

Ĝ

Tr
∣∣∣σπφ̂(π)

∣∣∣ dμ(π) <∞. (5.23)

Setting f := F−1
G σ ∈ Ka,b, the function φ∗f is smooth and we have for any x ∈ G

the equality

φ ∗ f(x) =
∫
Ĝ

Tr
(
π(x)σπφ̂(π)

)
dμ(π).
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Remark 5.1.32. The composition σφ̂ makes sense since σ is defined on smooth
vectors and φ̂ acts on smooth vectors. The composition π(x)σππ(φ) makes sense

since π(x) is bounded and σφ̂ is bounded (even in Hilbert Schmidt classes) since

it is stated first that σφ̂ ∈ L̃2
s(Ĝ) for any s, hence in particular in L2(Ĝ).

Proof. Let Tσ be the operator with right convolution kernel f := F−1
G σ. Then

Tσ ∈ L (L2
a(G), L2

b(G)) and T ∗
σTσ extends to an operator in L (L2

a(G)). For any
φ ∈ S(G), the definition of the adjoint and the duality between Sobolev spaces
yield

‖Tσφ‖2L2(G) =
〈
T ∗
σTσφ, φ̄

〉
L2

a(G)×L2
−a(G)

≤ ‖T ∗
σTσ‖L (L2

a(G))‖φ‖L2
a(G)‖φ‖L2

−a(G).

This last expression is finite since T ∗
σTσ ∈ L (L2

a(G)) and S(G) ⊂ L2
s′(G) for any

s′ ∈ R. Thus Tσφ ∈ L2(G) and its Fourier transform is σφ̂ ∈ L2(Ĝ). For any

s ∈ R, we may replace φ with φs = (I +R)s/νφ ∈ S(G) and σφ̂s ∈ L2(Ĝ) yields

σφ̂ ∈ L2
s(Ĝ).

Applying Proposition 5.1.15 to σφ̂ ∈ L̃2
s(Ĝ) for some s > Q/2, we obtain

(5.23). Note that f := F−1
G σ is a tempered distribution so φ ∗ f is smooth (see

Lemma 3.1.55). The group Fourier transform of φ ∗ f is σφ̂ by Proposition 5.1.29
Part 2 and Example 5.1.28. We now conclude with the inversion formula given in
Proposition 5.1.15. �

5.1.3 Symbols and associated kernels

In this section we aim at establishing a one-to-one correspondence between a
collection σ of operators parametrised by G × Ĝ and a function κ; this function
will turn out to be the kernel of the operator naturally associated to σ. For the
abstract setting behind measurable fields of operators and some of their properties
we refer to Section B.1.6, especially to Proposition B.1.17, as well as Section 1.8.3.

Definition 5.1.33 (Symbols). A symbol is a field of operators {σ(x, π) : H∞
π →

Hπ, π ∈ Ĝ} depending on x ∈ G, satisfying for each x ∈ G

∃a, b ∈ R σ(x, ·) := {σ(x, π) : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ).

Here we use the usual identifications of a strongly continuous irreducible
unitary representation from RepG with its equivalence class in Ĝ, and of a field
of operators acting on the smooth vectors parametrised by Ĝ with its equivalence
class with respect to the Plancherel measure μ.

We will usually assume that the symbols are uniformly regular in x:
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Definition 5.1.34 (Continuous and smooth symbols).

• A symbol {σ(x, π) : H∞
π → Hπ, π ∈ Ĝ} is said to be continuous in x ∈ G

whenever there exists a, b ∈ R such that

∀x ∈ G σ(x, ·) := {σ(x, π) : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ),

and the map x �→ σ(x, ·) is continuous from G ∼ Rn to the Banach space

L∞
a,b(Ĝ).

• A symbol σ = {σ(x, π) : H∞
π → Hπ, π ∈ Ĝ} is said to be smooth in x ∈ G

whenever it is a field of operators depending smoothly in x ∈ G (see Remark

1.8.16) and, for every β ∈ Nn
0 , the field {∂β

xσ(x, π) : H∞
π → Hπ, π ∈ Ĝ} is

continuous.

Important note: In the sequel, whenever we talk about symbols (on graded Lie
groups), we always mean the symbols which are smooth in x ∈ G in the sense of
Definition 5.1.34 unless stated otherwise.

For a symbol as in Definition 5.1.34, we will usually write

σ = {σ(x, π), (x, π) ∈ G× Ĝ},

but we may sometimes abuse the notation and refer to the symbol simply as
σ(x, π).

Lemma 5.1.35. If σ = {σ(x, π), (x, π) ∈ G× Ĝ} is a symbol, then

κx := F−1
G {σ(x, ·)}

is a tempered distribution and the map

G � x �−→ κx ∈ S ′(G)

is smooth.

In other words,
κ ∈ C∞(G,S ′(G)).

Here C∞(G,S ′(G)) denotes the set of smooth functions from G to S ′(G).

Proof. As σ is a smooth symbol, for every β ∈ Nn
0 , there exists aβ , bβ ∈ R such that

G � x �→ ∂β
xσ(x, ·) ∈ L∞

aβ ,bβ
(Ĝ) is continuous. By Proposition 5.1.29, composing

this with F−1
G implies that G � x �→ ∂β

xκx ∈ Kaβ ,bβ is continuous. Since the
inclusion Kaβ ,bβ ⊂ S ′(G) is continuous, this implies that each map G � x �→
∂β
xκx ∈ S ′(G) is continuous. Hence G � x �→ κx ∈ S ′(G) is smooth. �



296 Chapter 5. Quantization on graded Lie groups

Definition 5.1.36 (Associated kernels). If σ is a symbol, then the tempered distri-
bution

κx := F−1
G {σ(x, ·)} ∈ S ′(G)

is called its associated kernel, sometimes its right convolution kernel, or just a
kernel. We may also call the smooth map G � x �→ κx ∈ S ′(G) or the map
(x, y) �→ κx(y) = κ(x, y) the kernel associated with σ.

The smoothness of the map x �→ σ(x, ·) implies easily:

Lemma 5.1.37. If σ = {σ(x, π)} is a symbol with kernel κx then for any β ∈ Nn
0 ,

Xβσ := {Xβ
xσ(x, π)}, X̃βσ := {X̃β

xσ(x, π)}, and ∂β
xσ := {∂β

xσ(x, π)},

are symbols with respective kernels

Xβ
xκx, X̃β

xκx, and ∂β
xκx.

Examples of symbols are the symbols in the classes Sm
ρ,δ(G) defined later on.

Here are more specific examples of symbols which do not depend on x ∈ G.

Example 5.1.38. If f ∈ Ka,b(G), then f̂ = {f̂(π) : H∞
π → Hπ, π ∈ Ĝ} is a symbol

with kernel f .

The following are particular instances of this case:

• δ̂0 = I = {I : H∞
π → H∞

π , π ∈ Ĝ} is a symbol and its kernel is the Dirac
measure δ0.

• For any α ∈ Nn
0 , {π(X)α : H∞

π → H∞
π , π ∈ Ĝ} is a symbol with kernel

Xαδ0, see Example 5.1.26. It acts on smooth vectors, see Example 1.8.17, or
alternatively Example 5.1.26 together with Corollary 5.1.30.

• If R is a positive Rockland operator of homogeneous degree ν and if m is a
measurable function on [0,∞) satisfying

∃C > 0 ∀λ ≥ 0 |m(λ)| ≤ C(1 + λ)b/ν ,

then {m(π(R)) : H∞
π → Hπ, π ∈ Ĝ} is a symbol with kernel m(R)δ0, see

Example 5.1.27. By Corollary 5.1.30, this symbol also acts on smooth vectors

{m(π(R)) : H∞
π → H∞

π , π ∈ Ĝ}.

5.1.4 Quantization formula

With the notion of symbol explained in Section 5.1.3, our quantization makes
sense:
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Theorem 5.1.39 (Quantization). The quantization defined by formula (5.1) makes
sense for any symbol σ = {σ(x, π)}. More precisely, for any φ ∈ S(G) and x ∈ G,
we have

Op(σ)φ(x) =

∫
Ĝ

Tr
(
π(x)σ(x, π)φ̂(π)

)
dμ(π) = φ ∗ κx(x), (5.24)

where κx denotes the kernel of σ. The integral over Ĝ in (5.24) is well-defined
and absolutely convergent. We also have Op(σ)φ ∈ C∞(G). Furthermore, the
quantization mapping σ �→ Op(σ) is one-to-one and linear.

Proof. Lemma 5.1.31 (see also Remark 5.1.32) implies that the integral in (5.24)
is well defined, absolutely convergent and is equal to φ ∗ κx(x).

By Lemma 3.1.55, for each x ∈ G, the function φ ∗ κx is smooth. By Lemma
5.1.35, x �→ κx ∈ S ′(G) is smooth. Hence by composition, x �→ φ∗κx(x) is smooth.

The quantization is clearly linear. Since the kernel is in one-to-one linear
correspondence with the operator, and by Lemma 5.1.35 also with the symbol,
the quantization σ �→ Op(σ) is one-to-one. �
Definition 5.1.40 (Notation). If an operator T is given by the formula (5.24) with
symbol σ(x, π), so that T = Op(σ), we will also write

σ = σT or σ(x, π) = σT (x, π) or even σ = Op−1(T ).

This notation is justified since the quantization given by (5.24) is one-to-one by
Theorem 5.1.39.

The operators associated with the symbols given in Example 5.1.38 are the
ones alluded to in the introduction of this Section:

Continued Example 5.1.38: If f ∈ Ka,b(G), then Op(f̂) is the convolution operator
φ �→ φ ∗ f with the right convolution kernel f .

The following are particular instances of this case:

• Op(I) = I and, more generally, for any α ∈ Nn
0 , Op(π(X)α) = Xα.

These relations can also be expressed as

σI(x, π) = IHπ
and σXα(x, π) = π(X)α.

• If R is a positive Rockland operator of homogeneous degree ν and if m is a
measurable function on [0,∞) satisfying

∃C > 0 ∀λ ≥ 0 |m(λ)| ≤ C(1 + λ)b/ν ,

then Op(m(π(R))) = m(R).
In these examples, the symbols are independent of x. However it is easy to

produce x-dependent symbols out of them using the following two observations.
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• If σ = {σ(x, π), (x, π) ∈ G × Ĝ} is a symbol and c : G → C is a smooth

function, then cσ := {c(x)σ(x, π), (x, π) ∈ G× Ĝ} is a symbol.

• If σ = {σ(x, π), (x, π) ∈ G × Ĝ} and τ = {τ(x, π), (x, π) ∈ G × Ĝ} are two

symbols, then so is their sum σ + τ = {σ(x, π) + τ(x, π), (x, π) ∈ G× Ĝ}.

Remark 5.1.41. 1. The observations just above together with Example 5.1.38
and its continuation above imply that any differential operator of the form∑

[α]≤M

cα(x)X
α with smooth coefficients cα (5.25)

may be quantized, in the sense that
∑

[α]≤M cα(x)π(X)α is a (smooth) sym-
bol and we have

∑
[α]≤M

cα(x)X
α = Op

⎛⎝ ∑
[α]≤M

cα(x)π(X)α

⎞⎠ .

The differential calculus is, by definition, the space of differential oper-
ators of the form∑

|α|≤d

bα(x)∂
α
x with smooth coefficients bα,

or, equivalently, of the form (5.25), see (3.1.5). Hence, we have obtained
that the differential calculus may be quantized. This could be viewed as ‘the
minimum requirement’ for a notion of symbol and quantization on a manifold.

2. In order to achieve this, we had to consider and use fields of operators de-
fined on smooth vectors in our definition of symbol. Indeed, for instance, the
symbol associated to a left-invariant vector field X is {π(X)} while π(X) are
defined on H∞

π but is not bounded on Hπ.

This technicality has also the following advantage when we apply our
theory in the setting of the Heisenberg group Hno

in Chapter 6. Realising

(almost all of) its dual group Ĥno
via Schrödinger representations, the spaces

of smooth vectors will coincide with the Schwartz space S(Rno). In this con-
text, the symbols will be operators acting on S(Rno) (which are smoothly
parametrised by points in Hno).

3. With our notion of symbols and quantization, we also obtain part of the
functional calculus of any Rockland operators. More precisely, if R is a pos-
itive Rockland operator, we obtain all the operators of the form m(R) with
m : [0,∞) → C a measurable function of (at most) polynomial growth at
infinity.
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4. The symbol classes that we have introduced are based on the quantization
relying on writing the operators as operators with right-convolution ker-
nels. There is an obvious parallel theory of quantization and of the corre-
sponding symbols and their classes suited for problems based on the right-
invariant operators. With natural modifications we could have considered
at the same time right-invariant vector fields in Part (1) above and a quan-
tization involving left-convolution kernels of operators, i.e. writing the same
operators but now in the form φ �→ κx ∗φ. As an outcome, with natural mod-
ifications we would obtain a parallel theory with the same parallel collection
of results to those presented here.

Op(σ) as a limit of nice operators

The operators we have obtained as Op(σ) for symbols σ are limits of ‘nice opera-
tors’ in the following sense:

Lemma 5.1.42. If σ = {σ(x, π)} is a symbol, we can construct explicitly a family
of symbols σε = {σε(x, π)}, ε > 0, in such a way that

1. the kernel κε(x, y) of σε is smooth in both x and y, and compactly supported
in x,

2. if φ ∈ S(G) then Op(σε)φ ∈ D(G), and

3. Op(σε)φ −→
ε→0

Op(σ)φ uniformly on any compact subset of G.

Proof of Lemma 5.1.42. We fix a number p such that p/2 is a positive integer
divisible by all the weights υ1, . . . , υn. Therefore, if | · |p is the quasi-norm given
by (3.21), then the mapping x �→ |x|pp is a p-homogeneous polynomial. We also fix
χo ∈ C∞

c (R) with χo ≥ 0, χo = 1 on [1/2, 2] and χo = 0 outside of [1/4, 4]. For
any ε > 0, we write

χε(x) := χo(ε|x|pp).
Clearly χε ∈ D(G).

If π ∈ Ĝ, we denote by |π| the distance between the co-adjoint orbits corre-
sponding to π and 1.

Applying the orbit method, one can construct explicitly for each π ∈ Ĝ a basis
(v�,π)

∞
�=1 formed by smooth vectors and such that the field of vectors Ĝ � π �→ v�,π

is measurable. We denote by projε,π the orthogonal projection on the subspaces
spanned by v1,π, . . . , v�,π where � is the smallest integer such that � > ε−1.

We consider for any ε ∈ (0, 1) the mapping

σε(x, π) := χε(x)1|π|≤ε−1σ(x, π) ◦ projε,π.

By Definition 5.1.36, the symbol and the kernel are related by

FG(κε,x)(π) = σε(x, π).
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By the Fourier inversion formula (1.26), the corresponding kernel is

κε,x(y) = κε(x, y) = χε(x)

∫
|π|≤ε−1

Tr
(
σ(x, π) projε,ππ(y)

)
dμ(π),

which is smooth in x and y and compactly supported in x.

The corresponding operator is Op(σε), given for any φ ∈ S(G) and x ∈ G by

Op(σε)φ(x) =

∫
Ĝ

Tr
(
π(x)σε(x, π)φ̂(π)

)
dμ(π)

= χε(x)

∫
|π|≤ε−1

Tr
(
π(x)σ(x, π) projε,πφ̂(π)

)
dμ(π).

It is also given by

Op(σε)φ(x) = φ ∗ κε,x(x).

Clearly Op(σε)φ is smooth and compactly supported.

Since

Ĝ � π �→ Tr
∣∣∣σ(x, π)φ̂(π)∣∣∣

is integrable against μ, using the dominated convergence theorem, we obtain easily
the uniform convergence of Op(σε)φ to Op(σ)φ on any compact set. �

5.2 Symbol classes Sm
ρ,δ and operator classes Ψm

ρ,δ

In Section 5.2, we will define and study classes of symbols Sm
ρ,δ = Sm

ρ,δ(G). By
applying the quantization procedure described in Section 5.1, we will then obtain
the corresponding classes of operators

Ψm
ρ,δ = Op(Sm

ρ,δ).

In Section 5.5, we will show that this collection of operators ∪m∈RΨ
m
ρ,δ forms an

algebra and satisfies the usual properties expected from a symbolic calculus.

Before defining symbol classes, we need to define difference operators.

5.2.1 Difference operators

On compact Lie groups the difference operators were defined as acting on Fourier
coefficients, see Definition 2.2.6. Its adaptation to our setting leads us to (densely)
defined difference operators on Ka,b(G) viewed as fields.
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Definition 5.2.1. For any q ∈ C∞(G), we set

Δq f̂(π) := q̂f(π) ≡ π(qf),

for any distribution f ∈ D′(G) such that f ∈ Ka,b and qf ∈ Ka′,b′ for some
a, b, a′, b′ ∈ R.

Recall that if f ∈ D′(G) and q ∈ C∞(G), then the distribution qf ∈ D′(G)
is defined via

〈qf, φ〉 := 〈f, qφ〉, φ ∈ D(G), (5.26)

which makes sense since qφ ∈ D(G). In Definition 5.2.1, we assume that the two
distributions f and qf are in ∪a′′,b′′∈RKa′′,b′′ . Note that, as all the definitions of
group Fourier transform coincide, different values for the parameters a, b, a′, b′ in
Definition 5.2.1 yield the same fields of operators {f̂(π) : H∞

π → Hπ, π ∈ Ĝ} and
{q̂f(π) : H∞

π → Hπ, π ∈ Ĝ}. This justifies our use of the notation Δq without
reference to the parameters a, b, a′, b′.

Remark 5.2.2. In general, it is not possible to define an operator Δq on a single

π, and it has to be viewed as acting on the ‘whole’ fields parametrised by Ĝ.
For example, already on the commutative group (Rn,+), the difference operators
corresponding to coordinate functions will satisfy

Δαφ̂(ξ) =

(
1

i

∂

∂ξ

)α

φ̂(ξ), ξ ∈ Rn,

with appropriately chosen functions q, thus involving derivatives in the dual vari-
able, see Example 5.2.6. Furthermore if q is not a coordinate function but for
instance a (non-zero) smooth function with compact support, the corresponding
difference operator is not local.

Also, on the Heisenberg group Hno
(see Example 1.6.4), taking q = t the

central variable, and πλ the Schrödinger representations (see Section 6.3.2), then
Δt is expressed using derivatives in λ, see Lemma 6.3.6 and Remark 6.3.7.

Let us fix a basis of g. For the notation of the following proposition we refer
to Section 3.1.3 where the spaces of polynomials on homogeneous Lie groups have
been discussed, with the set W defined in (3.60). We will define the difference
operators associated with the polynomials appearing in the Taylor expansions:

Proposition 5.2.3. 1. For each α ∈ Nn
0 , there exists a unique homogeneous poly-

nomial qα of degree [α] satisfying

∀β ∈ Nn
0 Xβqα(0) = δα,β =

{
1 if β = α,
0 otherwise.

2. The polynomials qα, α ∈ Nn
0 , form a basis of P. Furthermore, for each M ∈

W, the polynomials qα, [α] = M , form a basis of P[α]=M .
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3. The Taylor polynomial of a suitable function f at a point x ∈ G of homoge-
neous degree M ∈ W is

P
(f)
x,M (y) =

∑
[α]≤M

qα(y)X
αf(x). (5.27)

4. For any α ∈ Nn
0 , we have for any x, y ∈ G,

qα(xy) =
∑

[α1]+[α2]=[α]

cα1,α2
qα1

(x)qα2
(y)

for some coefficients cα1,α2
∈ R independent of x and y. Moreover, we have

cα1,0 =

{
1 if α1 = α
0 otherwise

, c0,α2 =

{
1 if α2 = α
0 otherwise

.

Proof. For each M ∈ W , by Corollary 3.1.31, there exists a unique polynomial
qα ∈ P=M satisfying Xβqα(0) = δα,β for every β ∈ Nn

0 with [β] = M , therefore for
every β ∈ Nn

0 . This shows parts (1) and (2). Part (3) follows from the definition
of a Taylor polynomial.

It remains to prove Part (4). For this it suffices to consider qα(xy) as a
polynomial in x and in y, using the bases (qα1(x)) and (qα2(y)). Therefore, qα(xy)
can be written as a finite linear combination of qα1

(x)qα2
(y). Since

qα((rx)(ry)) = r[α]qα(xy),

this forces this linear combination to be over α1, α2 ∈ Nn
0 satisfying [α1] + [α2] =

[α]. The conclusions about the coefficients follow by setting y = 0 and then x = 0,
see also (3.14). �

In the case of (Rn,+) the polynomials qα are the usual normalised monomials
(α1! . . . αn!)

−1xα. But it is not usually the case on other groups:

Example 5.2.4. On the three dimensional Heisenberg group H1 where a point is
described as (x, y, t) ∈ R3 (see Example 1.6.4), we compute directly that for degree
1 we have

q(1,0,0) = x, q(0,1,0) = y,

and for degree 2,

q(2,0,0) = x2, q(0,2,0) = y2, q(1,1,0) = xy, q(0,0,1) = t− 1

2
xy.

Definition 5.2.5. For each α ∈ Nn
0 , the difference operators are

Δα := Δq̃α , α ∈ Nn
0 ,

where
q̃α(x) := qα(x

−1)

and qα ∈ P=[α] is defined in Proposition 5.2.3.
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The difference operators generalise the Euclidean derivatives with respect to
the Fourier variable on (Rn,+) in the following sense:

Example 5.2.6. Let us consider the abelian group G = (Rn,+). We identify R̂n

with Rn. If the Fourier transform of a function φ ∈ S(Rn) is given by

FGφ(ξ) = (2π)−
n
2

∫
Rn

e−ix·ξφ(x)dx, ξ ∈ Rn,

then

ΔαFGφ(ξ) =

∫
Rn

e−ix·ξ(−x)αφ(x)dx =

(
1

i

∂

∂ξ

)α

FGφ(ξ).

Thus, Δα coincide with the operators Dα =
(

1
i

∂
∂ξ

)α

usually appearing in the

Fourier analysis on Rn.

Example 5.2.7. Δ0 is the identity operator on each Ka,b(G).

Example 5.2.8. For I = δ̂o = {I : H∞
π → H∞

π , π ∈ Ĝ} and any α ∈ Nn
0\{0}, we

have ΔαI = 0.

Proof. We know that I = δ̂0 (see Example 5.1.38). The distribution q̃αδ0 is defined
by

〈q̃αδ0, φ〉 = 〈δ0, q̃αφ〉, φ ∈ D(G),

see (5.26). Since
〈δ0, q̃αφ〉 = (q̃αφ)(0) = q̃α(0) φ(0) = 0

we must have qδ0 = 0. Therefore, ΔαI = q̂δ0 = 0. �
More generally, we have

Lemma 5.2.9. Let α, β ∈ Nn
0 . Then the symbol {π(X)β : H∞

π → H∞
π , π ∈ Ĝ} (see

Example 5.1.38) satisfies

Δαπ(X)β = 0 if [α] > [β].

If [α] ≤ [β], then Δαπ(X)β is a linear combination depending only on α, β, of the
terms π(X)β2 with [β2] = [β]− [α], that is,

Δαπ(X)β =
∑

[α]+[β2]=[β]

π(X)β2 .

Proof of Lemma 5.2.9. We see that Δαπ(X)β is the group Fourier transform of
the distribution q̃αX

βδ0 defined via

〈q̃αXβδ0, φ〉 = 〈Xβδ0, q̃αφ〉 = {Xβ}t{q̃αφ}(0)

for any φ ∈ D(G), see Example 5.1.38. This is so as long as we prove that q̃αX
βδ0

is in some Ka,b. Let us find another expression for this distribution. As {Xβ}t is
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a [β]-homogeneous left-invariant differential operators, by the Leibniz formula for
vector fields, we have

{Xβ}t{q̃αφ} =
∑

[β1]+[β2]=[β]

Xβ1 q̃α Xβ2φ.

We easily see that Xβ1 q̃α ∈ P=[α]−[β1] and, therefore, by Part (2) of Proposition
5.2.3 we have

Xβ1 q̃α =
∑

[α′]=[α]−[β1]

q̃α′ .

Hence we have obtained

{Xβ}t{q̃αφ} =
∑

[β1]+[β2]=[β]
[α′]=[α]−[β1]

q̃α′ Xβ2φ,

and

〈q̃αXβδ0, φ〉 =
∑

[β1]+[β2]=[β]
[α′]=[α]−[β1]

(q̃α′Xβ2φ)(0) =
∑

[β1]+[β2]=[β]
0=[α]−[β1]

Xβ2φ(0),

with the convention that the sum is zero if there are no such β1, β2. Thus

q̃αX
βδ0 =

∑
[β1]+[β2]=[β]

[α]=[β1]

Xβ2δ0.

Since Xβ2δ0 ∈ K[β2],0 (see Example 5.1.26), we see that q̃αX
βδ0 ∈ K[β],0. Further-

more, taking the group Fourier transform we obtain

Δαπ(X)β =
∑

[β1]+[β2]=[β]
[α]=[β1]

π(X)β2 .

This sum is zero if there are no such β1, β2, for instance if [β] < [α]. �
Let us collect some properties of the difference operators.

Proposition 5.2.10. (i) For any α ∈ Nn
0 , the operator Δα is linear, its domain

of definition contains FG(S(G)) and ΔαFG(S(G)) ⊂ FG(S(G)).

(ii) For any α1, α2 ∈ Nn
0 , there exist constants cα1,α2,α ∈ R, with α ∈ Nn

0 such
that [α] = [α1] + [α2], so that for any φ ∈ S(G), we have

Δα1

(
Δα2 φ̂

)
= Δα2

(
Δα1 φ̂

)
=

∑
[α]=[α1]+[α2]

cα1,α2,αΔ
αφ̂,

where the sum is taken over all α ∈ Nn
0 satisfying [α] = [α1] + [α2].
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(iii) For any α ∈ Nn
0 , there exist constants cα,α1,α2

∈ R, α1, α2 ∈ Nn
0 , with [α1] +

[α2] = [α], such that for any φ1, φ2 ∈ S(G), we have

Δα
(
φ̂1 φ̂2

)
=

∑
[α1]+[α2]=[α]

cα,α1,α2
Δα1 φ̂1 Δα2 φ̂2, (5.28)

where the sum is taken over all α1, α2 ∈ Nn
0 satisfying [α1] + [α2] = [α].

Moreover,

cα,α1,0 =

{
1 if α1 = α
0 otherwise

, cα,0,α2
=

{
1 if α2 = α
0 otherwise

.

The coefficients cα1,α2,α in (ii) and cα,α1,α2
in (iii) are different in general.

We interpret Formula (5.28) as the Leibniz formula.

Proof. Since the Schwartz space is stable under multiplication by polynomials,
q̃αφ is Schwartz for any φ ∈ S(G), and Δαφ̂(π) = π(q̃αφ). This shows (i).

For Part (ii), we see that the polynomial qα1
qα2

is homogeneous of degree
[α1]+ [α2]. Since {qα, [α] = M} is a basis of P=M by Proposition 5.2.3, there exist
constants cα1,α2,α ∈ R, α1, α2 ∈ Nn

0 with [α1] + [α2] = [α], satisfying

qα1
qα2

=
∑

[α1]+[α2]=[α]

cα1,α2,α qα.

Therefore

Δα1

(
Δα2 φ̂(π)

)
= π(q̃α1

q̃α2
φ) =

∑
[α1]+[α2]=[α]

cα1,α2,απ(q̃αφ)

=
∑

[α1]+[α2]=[α]

cα1,α2,αΔ
αφ̂(π).

This and the equality q̃α1
q̃α2

= q̃α2
q̃α1

show (ii).

Let us prove (iii). By Proposition 5.2.3 (4),

q̃α(x) (φ2 ∗ φ1)(x) =

∫
G

qα(x
−1y y−1) φ2(y) φ1(y

−1x) dy

=
∑

[α1]+[α2]=[α]

cα1,α2

∫
G

qα2
(y−1)φ2(y) qα1

(x−1y)φ1(y
−1x) dy

=
∑

[α1]+[α2]=[α]

cα1,α2
(q̃α2

φ2) ∗ (q̃α1
φ1),

with constants depending on α, α1, α2. Taking the Fourier transform implies the
formula (5.28), with conclusions on coefficients following from Proposition 5.2.3.

�
We will see that the difference operators Δα defined in Definition 5.2.5 appear

in the general asymptotic formulae for adjoint and product of pseudo-differential
operators in our context, see Sections 5.5.3 and 5.5.2.
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5.2.2 Symbol classes Sm
ρ,δ

In this section we define the symbol classes Sm
ρ,δ = Sm

ρ,δ(G) of symbols on a graded
Lie group G and discuss their properties. We use the notation for the symbol
classes similar to the familiar ones on the Euclidean space and also on compact
Lie groups.

Let us give the formal definition of our symbol classes.

Definition 5.2.11. Let m, ρ, δ ∈ R with 0 ≤ ρ ≤ δ ≤ 1. Let R be a positive
Rockland operator of homogeneous degree ν. A symbol

σ = {σ(x, π) : H∞
π → Hπ, (x, π) ∈ G× Ĝ}

is called a symbol of order m and of type (ρ, δ) whenever, for each α, β ∈ Nn
0 and

γ ∈ R, we have

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

γ,ρ[α]−m−δ[β]+γ
(Ĝ) <∞. (5.29)

The symbol class Sm
ρ,δ = Sm

ρ,δ(G) is the set of symbols of order m and of type (ρ, δ).

By Corollary 5.1.30, the symbols Xβ
xΔ

ασ are fields acting on smooth vectors.
By Lemma 5.1.23, we can reformulate (5.29) as

sup
x∈G,π∈Ĝ

‖π(I +R)
ρ[α]−m−δ[β]+γ

ν Xβ
xΔ

ασ(x, π)π(I +R)−
γ
ν ‖L (Hπ) <∞. (5.30)

Recall that, as usual, the supremum in π in (5.30) has to be understood as the
essential supremum with respect to the Plancherel measure.

Clearly, the converse holds: if σ is a symbol such that Xβ
xΔ

ασ are fields
acting on smooth vectors for which (5.30) holds, then σ is in Sm

ρ,δ.

We note that condition (5.30) requires one to fix a positive Rockland operator

R in order to fix the norms of L∞
a′,b′(Ĝ). However, the resulting class Sm

ρ,δ does not
depend on the choice of R, see Lemma 5.1.22.

If a positive Rockland operator R of homogeneous degree ν is fixed, then we
set for σ ∈ Sm

ρ,δ and a, b, c ∈ N0,

‖σ‖Sm
ρ,δ,a,b,c

:= sup
|γ|≤c

[α]≤a, [β]≤b

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

γ,ρ[α]−m−δ[β]+γ
(Ĝ).

This quantity is also equal to

‖σ‖Sm
ρ,δ,a,b,c

= sup
x∈G, π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

,

where we define for any symbol σ, a, b, c ∈ N0, and (x, π) ∈ G× Ĝ (fixed)

‖σ(x, π)‖Sm
ρ,δ,a,b,c

:= sup
|γ|≤c

[α]≤a, [β]≤b

‖π(I +R)
ρ[α]−m−δ[β]+γ

ν Xβ
xΔ

ασ(x, π)π(I +R)−
γ
ν ‖L (Hπ).
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Here, as always, the supremum has to be understood as the essential supremum
with respect to the Plancherel measure.

Before making some comments, let us say that the classes of symbols we have
just defined have the usual structures of symbol classes.

Proposition 5.2.12. The symbol class Sm
ρ,δ is a vector space independent of any

Rockland operator R used in (5.29) to consider the L∞
γ,ρ[α]−m−δ[β]+γ(Ĝ)-norms.

We have the continuous inclusions

m1 ≤ m2, δ1 ≤ δ2, ρ1 ≥ ρ2 =⇒ Sm1

ρ1,δ1
⊂ Sm2

ρ2,δ2
. (5.31)

We fix a positive Rockland operator R. For any m ∈ R, ρ, δ ≥ 0, the resulting
maps ‖ · ‖Sm

ρ,δ,a,b,c
, a, b, c ∈ N0, are seminorms over the vector space Sm

ρ,δ which
endow Sm

ρ,δ with the structure of a Fréchet space.

We may replace the family of seminorms ‖ · ‖Sm
ρ,δ,a,b,c

, a, b, c ∈ N0, by

σ �−→ sup
[α]≤a,
[β]≤b

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

γ�,ρ[α]−m−δ[β]+γ�
(Ĝ), a, b ∈ N0, � ∈ Z,

where the sequence {γ�, � ∈ Z} of real numbers satisfies γ� −→
�→±∞

±∞.

Two different positive Rockland operators give equivalent families of semi-
norms. The topology on Sm

ρ,δ is independent of the choice of the Rockland operator
R.
Proof. Using Corollary 5.1.30 and Lemma 5.1.22, this is a routine exercise. �

Remark 5.2.13. Let us make some comments about Definition 5.2.11:

1. In the abelian case, that is, Rn endowed with the addition law, and R = −L
with L being the Laplace operator, Sm

ρ,δ boils down to the usual Hörmander
class, in view of the difference operators corresponding to the derivatives, see
Example 5.2.6.

2. In the case of compact Lie groups with R being the (positive) Laplacian,
a similar definition leads to the one considered in (2.26) since the operator
π(I+R) is scalar. However, here, in the case of non-abelian graded Lie groups,
the operator R can not have a scalar Fourier transform.

3. The presence of the parameter γ is included to facilitate proving that the
space of symbols ∪m∈RS

m
ρ,δ, with suitable restrictions on ρ, δ, forms an algebra

of operators later on. It already has enabled us to see that the symbols are
fields of operators acting on smooth vectors and therefore can be composed
without using the composition of unbounded operators (in Definition A.3.2).

We will see in Theorem 5.5.20 that in fact we can remove this γ. By
this we mean that a symbol σ is in Sm

ρ,δ if and only if the condition in (5.29)



308 Chapter 5. Quantization on graded Lie groups

holds for any α, β ∈ Nn
0 and γ = 0. Furthermore, the seminorms ‖ · ‖Sm

ρ,δ,a,b,0
,

a, b ∈ N0, yield the topology of Sm
ρ,δ.

4. We could have used other families of difference operators instead of the Δα’s
to define the symbol classes Sm

ρ,δ. For instance, we could have used any family
of difference operators associated with a family {pα}α∈Nn

0
of homogeneous

polynomials on G which satisfy

• for each α ∈ Nn
0 , pα is of homogeneous degree [α],

• and {pα}α∈Nn
0
is a basis of P(G).

Indeed, in this case, the following properties hold.

- Any q̃α is a linear combination of pβ , [β] = [α].

- Conversely, any pα is a linear combination of q̃β , [β] = [α].

Thus,

- any Δα is a linear combination of Δpβ
, [β] = [α].

- Conversely, any Δpα
is a linear combination of Δβ , [β] = [α].

It is then easy to see that a symbol σ is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 and γ ∈ R,

sup
x∈G
‖Xβ

xΔpασ(x, ·)‖L∞
γ,ρ[α]−m−δ[β]+γ

(Ĝ) <∞.

Note that this implies that the symbol class Sm
ρ,δ does not depend on

a particular choice of realisation of G through a basis of g (of eigenvectors
for the dilations) but only on the graded Lie group G and its homogeneous
structure.

For such a family Δpα
, the same proof as for Proposition 5.2.10 shows

a Leibniz formula in the sense of (5.28).

Although we could use ‘easier’ difference operators to define our symbol
classes, for instance Δxα , α ∈ Nn

0 , we choose to present our analysis with the
difference operators Δα given in Definition 5.2.5. Note that the asymptotic
formulae for composition and adjoint in (5.57) and (5.60) will be expressed
in terms of the difference operators Δα and derivatives Xα

x .

Note that the change of difference operators explained just above is lin-
ear, whereas in the compact case, one can use many more difference operators
to define the symbol classes Sm

ρ,δ, see Section 2.2.2.

The type (1, 0) can be thought of as the basic class of symbols and the
types (ρ, δ) as its generalisations. There are certain limitations on the parame-
ters (ρ, δ) coming from reasons similar to the ones in the Euclidean settings. For
type (1, 0), we set

Sm := Sm
1,0,
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and

‖σ(x, π)‖Sm
1,0,a,b,c

= ‖σ(x, π)‖a,b,c, ‖σ‖Sm
1,0,a,b,c

= ‖σ‖a,b,c, etc. . . .

We also define the class of smoothing symbols

Definition 5.2.14. We set

S−∞ :=
⋂
m∈R

Sm.

One checks easily that

S−∞ =
⋂
m∈R

Sm
ρ,δ,

independently of ρ and δ as long as 0 ≤ δ ≤ ρ ≤ 1 and ρ �= 0. Moreover, S−∞

is equipped with the topology of projective limit induced by ∩m∈RS
m
ρ,δ, again

independently of ρ and δ.

We will see in Corollary 5.4.10 that the symbols in S−∞ really deserve to be
called smoothing.

5.2.3 Operator classes Ψm
ρ,δ

The pseudo-differential operators of order m ∈ R ∪ {−∞} and type (ρ, δ) are
obtained by the quantization

Op(σ)φ(x) =

∫
Ĝ

Tr
(
π(x)σ(x, π)φ̂(π)

)
dμ(π),

justified in Theorem 5.1.39, from the symbols of the same order and type, that is,

Ψm
ρ,δ := Op(Sm

ρ,δ).

They inherit a structure of topological vector spaces from the classes of symbols,

‖Op(σ)‖Ψm
ρ,δ,a,b,c

:= ‖σ‖Sm
ρ,δ,a,b,c

.

For type (1, 0), we set as for the corresponding symbol classes:

Ψm := Ψm
1,0.
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Continuity on S(G)

By Theorem 5.1.39, any operator in the operator classes defined above maps
Schwartz functions to smooth functions. Let us show that in fact it acts con-
tinuously on the Schwartz space:

Theorem 5.2.15. Let T ∈ Ψm
ρ,δ where m ∈ R, 1 ≥ ρ ≥ δ ≥ 0. Then for any

φ ∈ S(G), Tφ ∈ S(G). Moreover the operator T act continuously on S(G): for
any seminorm ‖ ·‖S(G),N there exist a constant C > 0 and a seminorm ‖ ·‖S(G),N ′

such that for every φ ∈ S(G),

‖Tφ‖S(G),N ≤ C‖φ‖S(G),N ′ .

The constant C can be chosen as C1‖T‖Ψm
ρ,δ,a,b,c

where C1 is a constant of and the

seminorm ‖ · ‖Ψm
ρ,δ,a,b,c

depend on G, m, ρ, δ, and on the seminorm ‖ · ‖S(G),N .

In other words, the mapping T �→ T from Ψm
ρ,δ to the space L (S(G)) of

continuous operators on S(G) is continuous (it is clearly linear).

Our proof of Theorem 5.2.15 will require the following preliminary result on
the right convolution kernels:

Proposition 5.2.16. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx

denote its associated kernel. If m < −Q/2 then for any x ∈ G, the distribution κx

is square integrable and

‖κx‖L2(G) ≤ C sup
π∈Ĝ

‖π(I +R)
−m
ν σ(x, π)‖L (Hπ),

‖κx‖L2(G) ≤ C sup
π∈Ĝ

‖σ(x, π)π(I +R)
−m
ν ‖L (Hπ),

with C = Cm > 0 a finite constant independent of σ and x.

The proof below will show that we can choose Cm = ‖B−m‖L2(G) the L
2-norm

of the right-convolution kernel of the Bessel potential of the positive Rockland
operator R.

Proof of Proposition 5.2.16. We write

‖σ(x, π)‖HS = ‖π(I +R)m
ν π(I +R)

−m
ν σ(x, π)‖HS

≤ ‖π(I +R)m
ν ‖HS‖π(I +R)

−m
ν σ(x, π)‖L (Hπ),

which shows

‖σ(x, π)‖HS ≤ sup
π1∈Ĝ

‖π1(I +R)
−m
ν σ(x, π1)‖L (Hπ1

)‖π(I +R)
m
ν ‖HS.

Squaring and integrating against the Plancherel measure, we obtain∫
Ĝ

‖σ(x, π)‖2HSdμ(π) ≤ sup
π1∈Ĝ

‖π1(I+R)
−m
ν σ(x, π1)‖2L (Hπ1 )

∫
Ĝ

‖π(I+R)m
ν ‖2HSdμ(π).
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By the Plancherel formula and Corollary 5.1.4, if m < −Q/2, we have

C2
m :=

∫
Ĝ

‖π(I +R)m
ν ‖2HSdμ(π) = ‖B−m‖2L2(G) <∞.

This gives the first estimate in the statement. For the second estimate, we write

σ(x, π) = σ(x, π)π(I +R)
−m
ν π(I +R)m

ν ,

and adapt the ideas above. �
We can now prove Theorem 5.2.15.

Proof of Theorem 5.2.15. Let T ∈ Ψm
ρ,δ where m ∈ R, 1 ≥ ρ ≥ δ ≥ 0. Then for

any φ ∈ S(G), Tφ is smooth by Theorem 5.1.39.
Let κ : (x, y) �→ κx(y) be the kernel associated with T . Let R be a positive

Rockland operator of homogeneous degree ν. The properties of R (see Sections
4.3 and 4.4.8) yield for any φ ∈ S(G) and x ∈ G that

Tφ(x) =

∫
G

φ(y)κx(y
−1x)dy

=

∫
G

[
(I +R)−N{(I +R)Nφ}(y)

]
κx(y

−1x)dy

=

∫
G

{(I +R)Nφ}(y) {(I + R̃)−Nκx}(y−1x)dy,

thus, by the Cauchy-Schwartz inequality,

|Tφ(x)| ≤ ‖(I +R)Nφ‖L2(G)‖(I + R̃)−Nκx‖L2(G).

Since FG{(I + R̃)−Nκx}(π) = σ(x, π)π(I +R)−N yields a symbol in Sm−Nν
ρ,δ , by

Proposition 5.2.16, we have

‖(I + R̃)−Nκx‖L2(G) ≤ C sup
π∈Ĝ

‖σ(x, π)π(I +R)−N‖L (Hπ),

whenever m−Nν < −Q/2. Note that in this case,

sup
π∈Ĝ

‖σ(x, π)π(I +R)−N‖L (Hπ) ≤ ‖σ‖Sm
ρ,δ,0,0,|m|‖π(I +R)−N+m

ν ‖L (Hπ),

and by functional calculus

‖π(I +R)−N+m
ν ‖L (Hπ) ≤ sup

λ≥0
(1 + λ)−N+m

ν ≤ 1.

Thus if we choose N ∈ N0 such that N > (m+ Q
2 )/ν, then

|Tφ(x)| ≤ C‖σ‖Sm
ρ,δ,0,0,|m|‖(I +R)Nφ‖L2(G).
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This shows that Tφ is bounded.
Let β ∈ Nn

0 . Using the Leibniz property of vector fields, we easily obtain

XβTφ(x) =
∑

[β1]+[β2]=[β]

cβ1,β2,β

∫
G

φ(y)Xβ1
x1=xX

β2

x2=y−1xκx1(x2)dy.

As above, we can insert powers of I +R. Noticing that the symbol

FG{(I + R̃)−N
x1

Xβ1
x1=xX

β2κx1
} = π(X)β2Xβ1

x σ(x, π)π(I +R)−N

is in S
m+δ[β1]+[β2]−Nν
ρ,δ , we proceed as above to obtain∣∣XβTφ(x)

∣∣ ≤ C1

∑
[β1]+[β2]=[β]

‖(I +R)Nφ‖L2(G)‖π(X)β2Xβ1
x σ(x, π)π(I+R)−N‖L2(Ĝ)

≤ C2‖σ‖Sm
ρ,δ,0,[β],|m|+[β]‖(I +R)Nφ‖L2(G).

as long as N > (m+ [β] + Q
2 )/ν.

Let α ∈ Nn
0 . Proceeding as in the proof of Proposition 5.2.3 (4), we can write

(xy)α =
∑

[α1]+[α2]=[α]

c′α,α1,α2
qα1

(x) qα2
(y).

Using this, we easily obtain

xαTφ(x) =

∫
G

(y y−1x)αφ(y)κx(y
−1x)dy

=
∑

[α1]+[α2]=[α]

c′α,α1,α2

∫
G

qα1(y)φ(y)qα2(y
−1x)κx(y

−1x)dy.

Noticing that

FG{(I + R̃)−N{qα2κx} = {Δα2σ(x, ·)} π(I +R)−N ∈ S
m−Nν−ρ[α2]
ρ,δ ,

we can now proceed as in the first paragraph above to obtain

|xαTφ(x)| ≤ C1

∑
[α1]+[α2]=[α]

‖(I +R)Ny {qα1φ}‖2‖(I + R̃)−N{qα2κx}‖2

≤ C2‖σ(x, π)‖Sm
ρ,δ,[α],0,|m|+ρ[α]

∑
[α1]≤[α]

‖(I +R)Ny {qα1φ}‖2

as long as N > (m+Q/2)/ν.
We can combine the two paragraphs above to show that for any α, β ∈ Nn

0 ,
we have∣∣xαXβTφ(x)

∣∣ ≤ C‖σ(x, π)‖Sm
ρ,δ,[α],[β],|m|+[β]+ρ[α]

∑
[α1]≤[α]

‖(I +R)Ny {qα1φ}‖2,
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as long as N > (m+ [β] +Q/2)/ν. By Lemma 3.1.56, we have∑
[α1]≤[α]

‖(I +R)Ny {qα1
φ}‖2 ≤ C ′‖φ‖S(G),N ′

for some N ′ ∈ N depending on N and α, and Tφ is a Schwartz function. Further-
more, these estimates also imply the rest of Theorem 5.2.15. �

Theorem 5.2.15 shows that composing two operators in (possibly different)
Ψm

ρ,δ makes sense as the composition of operators acting on the Schwartz space.
We will see that in fact, the composition of T1 ∈ Ψm1

ρ,δ with T2 ∈ Ψm2

ρ,δ is T1T2 in

Ψm1+m2

ρ,δ , see Theorem 5.5.3.
We will see that our classes of pseudo-differential operators are stable under

taking the formal L2-adjoint, see Theorem 5.5.12. This together with Theorem
5.2.15 will imply the continuity of our operators on the space S ′(G) of tempered
distributions, see Corollary 5.5.13.

Returning to our exposition, before proving that the introduced classes of
symbols ∪m∈RS

m
ρ,δ and of the corresponding operators ∪m∈RΨ

m
ρ,δ are stable under

composition and taking the adjoint, let us give some examples.

5.2.4 First examples

As it should be, ∪m∈RΨ
m contains the left-invariant differential operators. More

precisely, the following lemma implies that
∑

[β]≤m cβX
β ∈ Ψm. The coefficients

cα here are constant and it is easy to relax this condition with each function cα
being smooth and bounded together with all of its left derivatives.

Lemma 5.2.17. For any βo ∈ Nn
0 , the operator Xβo = Op(π(X)β0) is in Ψ[βo].

Proof. By Lemma 5.2.9, we have

Δαπ(X)βo =

⎧⎨⎩ 0 if [α] > [βo],∑
[α]+[β2]=[βo]

π(X)β2 if [α] ≤ [βo].

Recall that, by Example 5.1.26, {π(X)β , π ∈ Ĝ} ∈ L∞
γ+[β],γ(Ĝ) for any

γ ∈ R, β ∈ Nn
0 . So {Δαπ(X)βo , π ∈ Ĝ} is zero if [α] > [βo] whereas it is in

L∞
γ+[βo]−[α],γ(Ĝ) for any γ ∈ R if [α] ≤ [βo]. �

Remark 5.2.18. Lemma 5.2.17 implies that ∪m∈RΨ
m contains the left-invariant

differential calculus, that is, the space of left-invariant differential operators.

One could wonder whether it also contains the right-invariant differential
calculus, since we can quantize any differential operator, see Remark 5.1.41 (1).
This is false in general, see Example 5.2.19 below. Thus, if one is interested in
dealing with problems based on the setting of right-invariant operators one can
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use the corresponding version of the theory based on the right-invariant Rockland
operator, see Remark 5.1.41 (4).

Example 5.2.19. Let us consider the three dimensional Heisenberg group H1 and
the canonical basis X,Y, T of its Lie algebra (see Example 1.6.4). Then the right
invariant vector field X̃ can not be in ∪m∈RΨ

m.

Proof of the statement in Example 5.2.19 . We have already seen that any opera-
tor A ∈ Ψm acts continuously on the Schwartz space, cf. Theorem 5.2.15. We will
see later (see Corollary 5.7.2) that it also acts on Sobolev spaces with a loss of
derivative controlled by its order m. By this, we mean that, if an operator A in
Ψm is homogeneous of degree νA, then we must have

∀s ∈ R ∃C > 0 ∀f ∈ S(G) ‖Af‖L2
s−m
≤ C‖f‖L2

s
,

and when s+m and s are non-negative, we realise the Sobolev norm as ‖f‖L2
s
=

‖f‖L2 + ‖R s
ν f‖L2 for some positive Rockland operator of degree ν, cf. Theorem

4.4.3 Part (2). Applying the inequality to dilated functions f ◦ Dr and letting
r →∞ yield that m ≥ νA.

Applying this to the case of X̃ shows that if X̃ were in some Ψm then m ≥ 1
and X̃ would map L2

1 to L2
1−m hence to L2 continuously. We have already shown

in the proof of Example 4.4.32 that this is not possible. �
An example of a smoothing operator is given via convolution with a Schwartz

function:

Lemma 5.2.20. Let κ ∈ S(G). We denote by Tκ : φ �→ φ ∗ κ the corresponding
convolution operator. Its symbol σTκ is independent of x and is given by

σTκ
(π) = κ̂(π).

Furthermore, the mapping

S(G) � κ �→ Tκ ∈ Ψ−∞

is continuous.

Proof. For the first part, see Example 5.1.38 and its continuation.

For any κ ∈ S(G), we have q̃ακ ∈ S(G) for any α ∈ Nn
0 , and

(I +R)a(I + R̃)bκ ∈ S(G)

for any a, b ∈ N (see also (4.34) and Proposition 4.4.30). For any m ∈ R, γ ∈ R
and α ∈ Nn

0 , we have by (1.38)

‖Δακ̂‖L∞
γ,[α]−m+γ

(Ĝ) = ‖π(I +R)
[α]−m+γ

ν Δαπ(κ)π(I +R)−
γ
ν ‖L∞(Ĝ)

≤ ‖(I +R)
[α]−m+γ

ν (I + R̃)−
γ
ν {q̃ακ}‖L1(G).
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As κ ∈ S(G), this L1-norm is finite and this shows that σTκ
∈ Ψ−∞. More precisely,

this L1-norm is less or equal to{
‖Bγ‖1‖(I +R)a{q̃ακ}‖1 if γ and [α]−m+γ

ν > 0 and a = � [α]−m+γ
ν 	,

‖B− [α]−m+γ
ν
‖1‖(I + R̃)b{q̃ακ}‖1 if γ and [α]−m+γ

ν < 0 and b = �−γ
ν 	,

where �x	 denotes the smallest integer > x and Bγ is the right-convolution kernel
of the Bessel potential of R, see Corollary 4.3.11. By Proposition 4.4.27, these
quantities can be estimated by Schwartz seminorms. �

More generally, the operators and symbols with kernels ‘depending on x’ but
satisfying the following property are smoothing:

Lemma 5.2.21. Let κ : (x, y) �→ κx(y) be a smooth function on G × G such that,
for each multi-index β ∈ Nn

0 and each Schwartz seminorm ‖·‖S(G),N , the following
quantity

sup
x∈G
‖Xβ

xκx‖S(G),N <∞,

is finite.
Then the symbol σ given via σ(x, π) = κ̂x(π) is smoothing. Furthermore for

any seminorm ‖ · ‖Sm,a,b,c, there exists C > 0 and β ∈ Nn
0 , N ∈ N0 such that

‖σ‖Sm,a,b,c ≤ C sup
x∈G
‖Xβ

xκx‖S(G),N .

Proof of Lemma 5.2.21. By (1.38), we have

sup
π∈Ĝ

‖σ(x, π)‖L (Hπ) = sup
π∈Ĝ

‖κ̂x(π)‖L (Hπ) ≤ ‖κx‖L1(G).

More generally, for any γ1, γ2 ∈ R, denoting by N1, N2 ∈ N0 integers such that
γ1 ≤ N1 γ2 ≤ N2, we have

sup
π∈Ĝ

‖π(I +R)γ1Xβ
xΔ

ασ(x, π) π(I +R)γ2‖L (Hπ)

≤ sup
π∈Ĝ

‖π(I +R)N1Xβ
xΔ

ασ(x, π) π(I +R)N2‖L (Hπ)

= sup
π∈Ĝ

‖FG{(I +R)N1(I + R̃)N2Xβ
x qακx}(π)‖L (Hπ)

≤ ‖(I +R)N1(I + R̃)N2qαX
β
xκx‖L1(G).

This last L1-norm is, up to a constant, less or equal than a Schwartz seminorm of
Xβ

xκx, see Section 3.1.9. This implies the statement. �

In Theorem 5.4.9, we will see that the converse holds, that is, that any
smoothing operator has an associated kernel as in Lemma 5.2.21.
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5.2.5 First properties of symbol classes

We summarise in the next theorem some properties of the symbol classes which
follow from their definition.

Theorem 5.2.22. Let 1 ≥ ρ ≥ δ ≥ 0.

(i) Let σ ∈ Sm
ρ,δ have kernel κx and order m ∈ R.

1. For every x ∈ G and γ ∈ R,

q̃αX
βκx ∈ Kγ,ρ[α]−m−δ[β]+γ .

2. If βo ∈ Nn
0 then the symbol {Xβo

x σ(x, π), (x, π) ∈ G× Ĝ} is in S
m+δ[βo]
ρ,δ

with kernel Xβo
x κx, and

‖Xβo
x σ(x, π)‖

S
m+δ[βo]
ρ,δ ,a,b,c

≤ Cb,βo
‖σ(x, π)‖Sm

ρ,δ,a,b+[βo],c.

3. If αo ∈ Nn
0 then the symbol {Δαoσ(x, π), (x, π) ∈ G× Ĝ} is in S

m−ρ[αo]
ρ,δ

with kernel q̃αoκx, and

‖Δαoσ(x, π)‖
S

m−ρ[αo]
ρ,δ ,a,b,c

≤ Ca,αo
‖σ(x, π)‖Sm

ρ,δ,a+[αo],b,c.

4. The symbol
σ∗ := {σ(x, π)∗, (x, π) ∈ G× Ĝ}

is in Sm
ρ,δ with kernel κ∗

x given by

κ∗
x(y) = κ̄x(y

−1),

and

‖σ(x, π)∗‖Sm
ρ,δ,a,b,c

=

sup
|γ|≤c

[α]≤a, [β]≤b

‖π(I +R)−
γ
ν Xβ

xΔ
ασ(x, π)π(I +R)

ρ[α]−m−δ[β]+γ
ν ‖L (Hπ).

(ii) Let σ1 ∈ Sm1

ρ,δ and σ2 ∈ Sm2

ρ,δ have kernels κ1x and κ2x, respectively. Then

σ(x, π) := σ1(x, π)σ2(x, π)

defines the symbol σ in Sm
ρ,δ, m = m1 + m2, with kernel κ2x ∗ κ1x with the

convolution in the sense of Definition 5.1.19. Furthermore,

‖σ(x, π)‖Sm
ρ,δ,a,b,c

≤ C‖σ1(x, π)‖Sm1
ρ,δ ,a,b,c+ρa+|m2|+δb‖σ2(x, π)‖Sm2

ρ,δ ,a,b,c,

where the constant C = Ca,b,c,m1,m2
> 0 does not depend on σ1, σ2.
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Note that, in Part (ii), the composition σ(x, π) := σ1(x, π)σ2(x, π) may be
understood as the composition of two fields of operators acting on smooth vectors
as well as the composition of σ1(x, ·) ∈ L∞

γ1,γ1−m1
(Ĝ) with σ2(x, ·) ∈ L∞

γ2,γ2−m2
(Ĝ)

for any choice of γ1, γ2 ∈ R such that γ1 −m1 = γ2.

Proof. Properties (1), (2), (3), and (4) of (i) are straightforward to check.

Let us prove Part (ii). By Property (1) of (i), or by the definition of symbol
classes,

κjx ∈ Kγj ,−mj+γj for any γj ∈ R, j = 1, 2,

thus choosing γ = γ2 and γ1 = −m2 + γ2, we have by Corollary 5.1.20

κ2x ∗ κ1x ∈ Kγ,−m+γ for any γ ∈ R.

Its group Fourier transform is

π(κ1x)π(κ2x) = σ1(x, π)σ2(x, π) = σ(x, π).

Therefore, σ is a symbol with kernel κ2x ∗ κ1x.

Let α, β ∈ Nn
0 and γ ∈ R. From the Leibniz rules for Δα (see Proposition

5.2.10) and Xβ , the operator

π(I +R)
ρ[α]−m−δ[β]+γ

ν Xβ
xΔ

ασ(x, π)π(I +R)−
γ
ν ,

is a linear combination over β1, β2, α1, α2 ∈ Nn satisfying [β1] + [β2] = [β], [α1] +
[α2] = [α], of terms

π(I +R)
ρ[α]−m−δ[β]+γ

ν Xβ1
x Δα1σ1(x, π)X

β2
x Δα2σ2(x, π)π(I +R)−

γ
ν ,

whose operator norm is bounded by

‖π(I +R)
ρ[α]−m−δ[β]+γ

ν Xβ1
x Δα1σ1(x, π)π(I +R)−

ρ[α2]−m2−δ[β2]+γ
ν ‖L (Hπ)

‖π(I +R)
ρ[α2]−m2−δ[β2]+γ

ν Xβ2
x Δα2σ2(x, π)π(I +R)−

γ
ν ‖L (Hπ).

This shows that the inequality between the seminorms of σ, σ1 and σ2 given in
(ii) holds. Consequently σ is a symbol of order m = m1 +m2 and of type (ρ, δ),
and (ii) is proved. �

A direct consequence of Part (ii) of Theorem 5.2.22 is that the symbols in
the introduced symbol classes form an algebra:

Corollary 5.2.23. Let 1 ≥ ρ ≥ δ ≥ 0. The collection of symbols
⋃

m∈R
Sm
ρ,δ forms

an algebra.
Furthermore, if σ0 ∈ S−∞ and σ ∈ Sm

ρ,δ is of order m ∈ R, then σ0σ and

σσ0 are also in S−∞.
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The fact that the symbol classes
⋃

m∈R
Sm
ρ,δ form an algebra does not imply

directly the same property for the operator classes
⋃

m∈R
Ψm

ρ,δ since our quanti-
zation is not an algebra morphism, that is, Op(σ1σ2) is not equal in general to
Op(σ1)Op(σ2). However, we will show that indeed

⋃
m∈R

Ψm
ρ,δ is an algebra of

operators, cf. Theorem 5.5.3, and we will often use the following property:

Lemma 5.2.24. Let σ1 and σ2 be as in Theorem 5.2.22, (ii). We assume that σ2

does not depend on x: σ2 = {σ2(π) : π ∈ Ĝ}. Then

σ(x, π) := σ1(x, π)σ2(π)

defines the symbol σ in Sm
ρ,δ, m = m1 +m2 and

Op(σ) = Op(σ1)Op(σ2)

Proof. We keep the notation of the statement. Let κ1x and κ2 be the convolution
kernels of σ1 and σ2 respectively. Hence κ2 is a function on G independent of x.
By Theorem 5.2.22(ii), κ2 ∗ κ1x is the convolution kernel of σ, thus

∀φ ∈ S(G) Op(σ)(φ)(x) = φ ∗ (κ2 ∗ κ1x).

As φ ∗ κ2 = Op(σ2)φ, this implies easily that Op(σ) is the composition of Op(σ1)
with Op(σ2). �

The following will also be useful, for instance in the estimates for the kernels
in Section 5.4.1.

Corollary 5.2.25. Let 1 ≥ ρ ≥ δ ≥ 0. Let σ ∈ Sm
ρ,δ have kernel κx. If β1 and β2 are

in Nn
0 , then

{π(X)β1σ(x, π)π(X)β2 , (x, π) ∈ G× Ĝ} ∈ S
m+[β1]+[β2]
ρ,δ

with kernel Xβ1
y X̃β2

y κx(y). Furthermore, for any a, b, c there exists C = Ca,b,c,β1,β2

independent of σ such that

‖π(X)β1σ(x, π)π(X)β2‖Sm
ρ,δ,a,b,c

≤ C‖σ‖Sm
ρ,δ,a,b,c+ρa+[β1]+[β2]+δb.

If β2 = 0, for any a, b, c there exists C = Ca,b,c,β1 independent of σ such that

‖π(X)β1σ‖Sm
ρ,δ,a,b,c

≤ C‖σ‖Sm
ρ,δ,a,b,c

.

Proof. The first part follows directly from Theorem 5.2.22 Part (ii) together with
Lemma 5.2.17.

We need to show a better estimate for β2 = 0. Let α, βo ∈ Nn
0 . By the Leibniz

formula (see (5.28)), we have

Xβo
x Δα{π(X)β1σ(x, π)}

=
∑

[α1]+[α2]=[α]

cα,α1,α2{Δα1π(X)β1} {Xβo
x Δα2σ(x, π)}.
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Hence, denoting mo := m+ δ[βo], we have

‖π(I +R)
ρ[α]−mo−[β1]+γ

ν Xβo
x Δα{π(X)β1σ(x, π)}π(I +R)−

γ
ν ‖L (Hπ)

≤ C
∑

[α1]+[α2]=[α]

‖π(I +R)
ρ[α]−mo−[β1]+γ

ν Δα1π(X)β1π(I +R)−
ρ[α2]−mo+γ

ν ‖L (Hπ)

‖π(I +R)
ρ[α2]−mo+γ

ν Xβo
x Δα2σ(x, π)π(I +R)−

γ
ν ‖L (Hπ).

As {π(X)β1} ∈ S
[β1]
1,0 by Lemma 5.2.17, each quantity

sup
|γ|≤c,π∈Ĝ

‖π(I +R)
ρ[α]−mo−[β1]+γ

ν Δα1π(X)β1π(I +R)−
ρ[α2]−mo+γ

ν ‖L (Hπ) <∞

is finite for any c > 0 and α1, α2 ∈ Nn
0 such that [α1] + [α2] = [α]. This implies

sup
|γ|≤c,π∈Ĝ

‖π(I +R)
ρ[α]−mo−[β1]+γ

ν Xβo
x Δα{π(X)β1σ(x, π)}π(I +R)−

γ
ν ‖L (Hπ)

≤ C ′ ∑
[α2]≤[α]

sup
|γ|≤c

π∈Ĝ

‖π(I +R)
ρ[α2]−mo+γ

ν Xβo
x Δα2σ(x, π)π(I +R)−

γ
ν ‖L (Hπ).

Taking the supremum over [α] ≤ a and [β] ≤ b yields the stated estimate. �

5.3 Spectral multipliers in positive Rockland operators

In this section we show that multipliers in positive Rockland operators belong to
the introduced symbol classes Ψm.

The main result is stated in Proposition 5.3.4. This will allow us to use the
Littlewood-Paley decompositions associated with a positive Rockland operator,
and therefore will enter most of the subsequent proofs.

5.3.1 Multipliers in one positive Rockland operator

The precise class of multiplier functions that we consider is the following:

Definition 5.3.1. Let Mm be the space of functions f ∈ C∞(R+) such that the
following quantities for all � ∈ N0 are finite:

‖f‖Mm,�
:= sup

λ>0, �′=0,...,�
(1 + λ)−m+�′ |∂�′

λ f(λ)|.

In other words, the class of functions f that appears in the definition above
are the functions which are smooth on R+ = (0,∞) and have the symbolic be-
haviour at infinity of the Hörmander class Sm

1,0(R) on the real line. However, we
rather prefer the notationMm in order not to create any confusion between these
classes and the classes Sm

ρ,δ(G) defined on the group G.
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Example 5.3.2. For any m ∈ R, the function λ �→ (1 + λ)m is inMm.

It is a routine exercise to check thatMm endowed with the family of maps
‖·‖Mm,�

, � ∈ N0, is a Fréchet space. Furthermore, it satisfies the following property.

Lemma 5.3.3. If f1 ∈Mm1
and f2 ∈Mm2

then f1f2 ∈Mm1+m2
with

‖f1f2‖Mm1+m2,�
≤ C�‖f1‖Mm1,�

‖f2‖Mm2,�
.

Proof. This follows from the Leibniz formula for |∂�′(f1f2)| and from the following
inequality which holds for λ > 0 and �′1, �

′
2 ≤ �:

(1 + λ)−m1−m2+�′1+�′2 |∂�′1
λ f1(λ)| |∂�′2

λ f2(λ)| ≤ ‖f1‖Mm1,�
‖f2‖Mm2,�

,

which implies the claim. �
The main property of this section is

Proposition 5.3.4. Let m ∈ R and let R be a positive Rockland operator of homoge-
neous degree ν. If f ∈Mm

ν
, then f(R) is in Ψm and its symbol {f(π(R)), π ∈ Ĝ}

satisfies

∀a, b, c ∈ N0 ∃� ∈ N, C > 0 : ‖f(π(R))‖a,b,c ≤ C‖f‖Mm
ν
,�,

with � and C independent of f .

Proof. First let us show that it suffices to show Proposition 5.3.4 for m < −ν. If
f ∈Mm

ν
with m ≥ −ν, then we define

• m2 ≥ ν such that m2

ν is the smallest integer strictly larger than m
ν ,

• f1(λ) := (1 + λ)−
m2
ν f(λ) and f2(λ) := (1 + λ)

m2
ν .

By Example 5.3.2 and Lemma 5.3.3, we see that f1 ∈ Mm1
ν

with m1 = m −m2.

By Lemma 5.2.17, we see that f2(π(R)) ∈ Sm2 . If Proposition 5.3.4 holds for
m1 < −ν, then we can apply it to f1 and hence f1(π(R)) ∈ Sm1 . Thus the
product

f(π(R)) = f1(π(R))f2(π(R))
is in Sm1+m2 = Sm.

Therefore, as claimed above, it suffices to show Proposition 5.3.4 for m < −ν.
Now we show that we may assume that f is supported away from 0. Indeed,

if f ∈Mm
ν
, we extend it smoothly to R and we write

f = fχo + f(1− χo),

where χo ∈ D(R) is identically 1 on [−1, 1]. Since fχo ∈ D(R), by Hulanicki’s
theorem (cf. Corollary 4.5.2), the kernel of (fχo)(R) is Schwartz and by Lemma
5.2.20, we have (fχo)(R) ∈ Ψ−∞ with suitable inequalities for the seminorms.
Thus we just have to prove the result for f(1 − χo) which is supported in [1,∞)
where λ 
 1 + λ. The statement then follows from the following lemma. �
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Showing Proposition 5.3.4 boils then down to

Lemma 5.3.5. Let m < −ν. If f ∈ C∞(R) is supported in [1,∞) and satisfies

∀� ∈ N0 ∃C� ∀λ ≥ 1 |∂�
λf(λ)| ≤ C�|λ|

m
ν −�,

then f(R) ∈ Ψm, and for any a, b, c ∈ N0 we have

‖f(R)‖Ψm,a,b,c ≤ C sup
λ≥1,�′=0,...,�

|λ|−m
ν +�′ |∂�′

λ f(λ)|,

with � = �m,a,b,c ∈ N and C = Cm,a,b,c > 0 independent of f .

The proof of Lemma 5.3.5 relies on the following consequence of Hulanicki’s
theorem (see Theorem 4.5.1).

Lemma 5.3.6. Let R be a positive Rockland operator on a graded Lie group G.
Let m ∈ D(R) and αo ∈ Nn

0 . We denote by m(R)δ0 the kernel of the multiplier
m(R) and we set

κ(x) := xαom(R)δ0(x).

The function κ is Schwartz.
For any p ∈ (1,∞), N ∈ N and a ∈ R with 0 ≤ a ≤ Nν, there exist C > 0

and k ∈ N such that for any φ ∈ S(G),

‖RN (φ ∗ κ)‖p ≤ C sup
λ>0

�=0,...,k

(1 + λ)k|∂�
λm(λ)| ‖R

a
ν
p φ‖Lp(G).

Proof of Lemma 5.3.6. By Hulanicki’s Theorem 4.5.1 or Corollary 4.5.2, κ ∈ S(G).

It suffices to prove the result withXα, [α] = Nν, instead ofRN . By Corollary
3.1.30, we can write Xα as a finite sum of X̃βpα,β with pα,β a homogeneous
polynomial of homogeneous degree [β]− [α] ≥ 0. We then have

Xα(φ ∗ κ) = φ ∗Xακ =
∑

φ ∗ (X̃βpα,βκ) =
∑

(Xβφ) ∗ (pα,βκ).

Therefore, by Proposition 4.4.30,

‖Xα(φ ∗ κ)‖p ≤
∑
‖(R

−[β]+a
ν Xβφ) ∗ (R̃

[β]−a
ν pα,βκ)‖p

≤
∑
‖R

−[β]+a
ν Xβφ‖p‖R̃

[β]−a
ν pα,βκ‖1.

By Theorem 4.4.16, Part 2,

‖R
−[β]+a

ν Xβφ‖p ≤ C‖R a
ν φ‖p.

And we have
‖R̃

[β]−a
ν pα,βκ‖1 = ‖R

[β]−a
ν p̃α,β κ̃‖1,
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see Section 4.4.8. By Theorem 4.3.6, since [β] ≥ [α] = Nν ≥ a, we obtain

‖R
[β]−a

ν p̃α,β κ̃‖1 ≤ C‖p̃α,β κ̃‖
1− [β]−a

νN
1 ‖RN p̃α,β κ̃‖

[β]−a
νN

1 .

Note that because of (4.8), we have

κ̃(x) := (−1)|αo|xαom̄(R)δ0(x).

By Hulanicki’s theorem (see Theorem 4.5.1), ‖p̃α,β κ̃‖1 and ‖R b
ν p̃α,β κ̃‖1 are

� sup
λ>0

�=0,...,k

(1 + λ)k|∂�
λm(λ)|,

for a suitable k, therefore this is also the case for ‖R̃ [β]−a
ν pα,βκ‖1.

Combining all these inequalities shows the desired result. �

Proof of Lemma 5.3.5. Let f be as in the statement. We need to show for any
α ∈ Nn

0 that the convolution operator with right convolution kernel q̃αf(R)δ0
maps L2

γ(G) boundedly to L2
[α]−m+γ(G) for any γ ∈ R. It is sufficient to prove this

for γ in a sequence going to +∞ and −∞ (see Proposition 5.2.12) and, in fact,
only for a sequence of positive γ since

(q̃αf(R)δ0)∗ = (−1)|α|q̃αf̄(R)δ0.

At the end of the proof, we will see that, because of the equivalence between the
Sobolev norms, it actually suffices to prove that for a fixed γ in this sequence, the
operators given by

φ �−→ φ ∗ (q̃αf(R)δ0) and φ �−→ R
[α]−m+γ

ν

({
R− γ

ν φ
}
∗ (q̃αf(R)δ0)

)
, (5.32)

are bounded on L2(G). So, we first prove this by decomposing f and applying the
Cotlar-Stein lemma.

We fix a dyadic decomposition: there exists a non-negative function η ∈ D(R)
supported in [1/2, 2] and satisfying

∀λ ≥ 1 1 =
∑
j∈N0

ηj(λ) where ηj(λ) := η(2−jλ).

We set for j ∈ N0 and λ ≥ 1,

fj(λ) := λ−m
ν f(λ)ηj(λ),

f (j)(λ) := fj(2
jλ),

gj(λ) := λ
m
ν f (j)(λ).
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One obtains easily that for any j ∈ N0 and � ∈ N0, we have

∂�fj(λ) =
∑

�1+�2+�3=�

λ−m
ν −�1 (∂�2f)(λ) 2−j�3(∂�3η)(2−jλ),

|∂�fj(λ)| ≤ C� sup
λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|
∑

�1+�2+�3=�

λ−�1λ−�22−j�3 |(∂�3η)(2−jλ)|,

where
∑

stands for a linear combination of its terms with some constants. As η

is supported in [1/2, 2] and since λ 
 2j , we have

λ−�1λ−�22−j�3 
 2−j�1+�2+�3 ,

so that ∑
�1+�2+�3=�

λ−�1λ−�22−j�3 |(∂�3η)(2−jλ)| ≤ C�,η2
−j�.

Therefore, we have obtained

|∂�fj(λ)| ≤ C� sup
λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)| 2−j�.

Hence, for each j ∈ N0, f
(j) is smooth and supported in [1/2, 2], and satisfies for

any � ∈ N0 the estimate

|∂�f (j)(λ)| = |2j�∂�fj(λ)| ≤ C� sup
λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|.

Consequently, each gj is smooth and supported in [1/2, 2], and satisfies

∀� ∈ N0 sup
λ∈[ 12 ,2]

�′=0,...,�

|∂�′gj(λ)| ≤ C� sup
λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|. (5.33)

Clearly f(λ) is the sum of the terms

2j
m
ν gj(2

−jλ) = f(λ)ηj(λ)

over j ∈ N0 and this sum is uniformly locally finite with respect to λ. Furthermore,
since the functions f and gj are continuous and bounded, the operators f(R) and
gj(2

−jR) defined by the functional calculus are bounded on L2(G) by Corollary
4.1.16. Therefore, we have in the strong operator topology of L (L2(G)) that

f(R) =
∞∑
j=0

2j
m
ν gj(2

−jR),
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and in K(G) or S ′(G) that

f(R)δo =

∞∑
j=0

2j
m
ν gj(2

−jR)δo.

We fix α ∈ Nn
0 . For each j ∈ N0, by Hulanicki’s theorem (see Corollary 4.5.2),

gj(2
−jR)δo is Schwartz, thus so is

Kj := 2j
m
ν q̃αgj(2

−jR)δo

and also (see (4.8))

K∗
j =: K∗

j (x) = K̄j(x
−1) = (−1)|α|2j m

ν q̃αḡj(2
−jR)δo(x−1).

We claim that for any a, b ∈ R satisfying

• either b ∈ νN0 and a ∈ [0, b)

• or b ≥ 0 and a < 
b/ν�
there exist � ∈ N and C > 0 such that for all j ∈ N0, we have

‖R̃− a
νR b

ν Kj‖K ≤ C(2
j
ν )m−[α]−a+b sup

λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|, (5.34)

and the same is true for R− a
ν R̃ b

ν K∗
j .

Let us prove this claim. By homogeneity (see (4.3)), we see that

gj(2
−jR)δo(x) = (2−

j
ν )−Qgj(R)δo(2

j
ν x),

thus

Kj(x) = 2j
m
ν (2

j
ν )−[α]q̃α(2

j
ν x) (2−

j
ν )−Qgj(R)δo(2

j
ν x)

= (2
j
ν )m−[α]+Q (q̃αgj(R)δo) (2

j
ν x).

More generally, by Part (7) of Theorem 4.3.6 for R and consequently for R̃ (see
(4.50)) we have

R̃− a
νR b

ν Kj = (2
j
ν )m−[α]+Q−a+b

(
R̃− a

νR b
ν {q̃αgj(R)δo}

)
◦D

2
j
ν
,

whenever it makes sense (that is, Kj is in the L2-domain of R b
ν such that R b

ν Kj

is in the L2-domain of R̃− a
ν ). Consequently, by Proposition 5.1.17 (1), with norms

possibly infinite, we have

‖R̃− a
νR b

ν Kj‖K = (2
j
ν )m−[α]−a+b

∥∥∥R̃− a
νR b

ν {q̃αgj(R)δo}
∥∥∥
K
.
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Since (R̃− a
νR b

ν Kj)
∗ = R̃ b

νR− a
ν K∗

j for any a, b whenever it makes sense, or by the
same argument as above, we also have

‖R̃− a
νR b

ν K∗
j ‖K = (2

j
ν )m−[α]−a+b

∥∥∥R̃− a
νR b

ν {q̃αḡj(R)δo}
∥∥∥
K
.

Therefore, if b ∈ νN0 and a ∈ [0, b), by Lemma 5.3.6, there exist � = �a,b ∈ N such
that ∥∥∥R̃− a

νR b
ν {q̃αgj(R)δo}

∥∥∥
K
≤ Ca,b sup

λ>0
�′=0,...,�

(1 + λ)�|∂�′
λ gj(λ)|

≤ Ca,b sup
λ>0

�′=0,...,�

|∂�′
λ gj(λ)|,

since each gj is supported in [1/2, 2]. As gj satisfies (5.33), we have shown Claim
(5.34) in the case b ∈ νN0 and a ∈ [0, b).

If a < 
b/ν� then we can apply the result we have just obtained to ν(
b/ν�)
and ν�b/ν	. Using Theorem 4.3.6 we then have for any φ ∈ S(G), with θ :=

 bν ��

b
ν 	−1, that

‖R b
ν φ‖2 ≤ C‖R� b

ν �φ‖1−θ
2 ‖R� b

ν �φ‖θ2

≤ C

⎛⎜⎝ sup
λ>0

�′=0,...,�

|∂�′
λ gj(λ)| ‖R

a
ν φ‖2

⎞⎟⎠
1−θ+θ

,

for some �. This shows Claim (5.34) in the case a < 
b/ν�.
We set Tj : S(G) � φ �→ φ ∗Kj . We want to apply the Cotlar-Stein lemma

(Theorem A.5.2) to two families of L2(G)-bounded operators: first to Tj , j ∈ N0,
and then to

Tj,β,γ : φ �−→ φ ∗ R
β
ν R̃− γ

ν Kj , j ∈ N0.

where γ ∈ νN is such that β := [α]−m+ γ > 0.

Let us check the hypothesis of the Cotlar-Stein lemma for Tj . By Claim (5.34)
for a = b = 0, there exists � ∈ N0 such that for any j, k ∈ N0,

max
(
‖T ∗

j Tk‖L (L2(G)), ‖TjT
∗
k ‖L (L2(G))

)
≤ Cmax

(
‖T ∗

j ‖L (L2(G))‖Tk‖L (L2(G)), ‖Tj‖L (L2(G))‖T ∗
k ‖L (L2(G))

)
≤ C2

j+k
ν (m−[α])(sup

λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|)2

≤ C2
|j−k|

ν (m−[α])(sup
λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|)2,
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since m− [α] < 0.

Let us check the hypothesis of the Cotlar-Stein lemma for Tj,β,γ . By Propo-
sition 4.4.30 the right convolution kernel of the operator T ∗

j,β,γTk,β,γ is given by

(R
β
ν R̃− γ

ν Kk) ∗ (R̃
β
νR− γ

ν K∗
j ) = (R̃− γ

νR
γ
ν Kk) ∗ (R̃

2β−γ
ν R− γ

ν K∗
j ).

Therefore, its operator norm is

‖T ∗
j,β,γTk,β,γ‖L (L2(G)) ≤ ‖R̃− γ

νR
γ
ν Kk‖K‖R̃

2β−γ
ν R− γ

ν K∗
j ‖K.

≤ 2
k
ν (m−[α]−γ+γ)2

j
ν (m−[α]−γ+2β−γ)

⎛⎜⎝sup
λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|

⎞⎟⎠
2

,

for some �, thanks to Claim (5.34) with a = b = γ ∈ νN and with b = 2β − γ =
2[α]− 2m+ γ and a = γ. So we have obtained

‖T ∗
j,β,γTk,β,γ‖L (L2(G)) ≤ 2

k−j
ν (m−[α])

⎛⎜⎝sup
λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|

⎞⎟⎠
2

.

Since the adjoint of T ∗
j,β,γTk,β,γ is T ∗

k,β,γTj,β,γ , we may replace k − j above by
|k − j|.

We proceed in a similar way for the operator norm of Tj,β,γT
∗
k,β,γ whose right

convolution kernel is

(R
β
ν R̃− γ

ν K∗
k) ∗ (R̃

β
νR− γ

ν Kj) = (R
2β−γ

ν R̃− γ
ν K∗

k) ∗ (R̃
γ
νR

−γ
ν Kj).

Therefore, we obtain

max
(
‖T ∗

j,β,γTk,β,γ‖L (L2(G)), ‖Tj,β,γT
∗
k,β,γ‖L (L2(G))

)
≤ C2

|k−j|
ν (m−[α])(sup

λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|)2.

By the Cotlar-Stein lemma (see Theorem A.5.2),
∑

Tj and
∑

j Tj,β,γ con-

verge in the strong operator topology of L (L2(G)) and the resulting operators
have operator norms, up to a constant, less or equal than

sup
λ≥1,�≤k

λ−m
ν +� |∂�

λf(λ)|.

Clearly
∑

Tj and
∑

j Tj,β,γ coincide on S(G) with the operators in (5.32), respec-
tively. Using the equivalence between the two Sobolev norms (Theorem 4.4.3, Part
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4), this implies

‖φ ∗ (q̃αf(R)δ0)‖L2
β(G) ≤ C

(
‖φ ∗ (q̃αf(R)δ0)‖2 + ‖R

β
ν (φ ∗ (q̃αf(R)δ0) ‖2

)
≤ C sup

λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|
(
‖φ‖2 + ‖R

γ
ν φ‖2

)
≤ C sup

λ≥1
�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|‖φ‖L2
γ(G).

We have obtained that the convolution operator with the right convolution
kernel q̃αf(R)δ0 maps L2

γ(G) boundedly to L2
m−[α]+γ(G) for any γ ∈ νN such that

m− [α] + γ > 0, with operator norm less or equal than

sup
λ≥1,�′≤�

λ−m
ν +�′ |∂�′

λ f(λ)|,

up to a constant, with � depending on γ. This concludes the proof of Lemma
5.3.5. �

Hence the proof of Proposition 5.3.4 is now complete.
Looking back at the proof of Proposition 5.3.4, we see that we can assume

that f depends on x ∈ G in the following way:

Corollary 5.3.7. Let R be a positive Rockland operator of homogeneous degree ν.
Let m ∈ R and 0 ≤ δ ≤ 1. Let

f : G× R+ � (x, λ) �→ fx(λ) ∈ C

be a smooth function. We assume that for every β ∈ Nn
0 , X

β
x fx ∈ Mm+δ[β]

ν
. Then

σ(x, π) = fx(π(R)) defines a symbol σ in Sm
1,δ which satisfies

∀a, b, c ∈ N0 ∃� ∈ N, C > 0 : ‖σ‖Sm
1,δ,a,b,c

≤ C sup
[β]≤b

‖Xβ
x fx‖Mm+δ[β]

ν

,�,

with � and C independent of f .

5.3.2 Joint multipliers

To a certain extent, we can tensorise the property in Proposition 5.3.4. But we need
to define the tensorisation of the spaceMm and the multipliers of two Rockland
operators.

First, we define the spaceMm1 ⊗Mm2 of functions f ∈ C∞(R+×R+) such
that

‖f‖Mm1⊗Mm2 ,�
:= sup

λ1,λ2>0
�′1,�

′
2=0,...,�

(1 + λ1)
−m1+�′1(1 + λ2)

−m2+�′2 |∂�′1
λ1
∂
�′2
λ2
f(λ1, λ2)|,
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is finite for every � ∈ N0. It is a routine exercise to check thatMm1
⊗Mm2

is a
Fréchet space.

Secondly, we observe that if L and R are two Rockland operators on G which
commute strongly, meaning that their spectral measures EL and ER commute,
then we can define their common spectral measure EL,R via

EL,R(B1 ×B2) := EL(B1)ER(B2), for B1, B2 Borel subsets of R,

and we can also define the multipliers in L and R by

f(L,R) :=
∫
R+×R+

f(λ1, λ2)dEL,R(λ1, λ2),

for any f ∈ L∞(R+ × R+).

Corollary 5.3.8. Let L and R be two positive Rockland operators on G of respective
degrees νL and νR. We assume that L and R commute strongly, that is, their
spectral measures EL and ER commute. If f ∈ Mm1

νL
⊗Mm2

νR
then f(L,R) is in

Ψm1+m2 . Furthermore, we have for any a, b, c ∈ N0,

‖f(L,R)‖Ψm1+m2 ,a,b,c ≤ C‖f‖Mm1
νL

⊗Mm2
νR

,�,

where � and C > 0 are independent of f .

Proof. By uniqueness, the spectral measure EL,R is invariant under left transla-

tions. Denoting by π(EL,R) for π ∈ Ĝ its group Fourier transform, we see that the
group Fourier transform of a multiplier f(L,R) for f ∈ L∞(R+ × R+) is

π(f(L,R)) =
∫
R+×R+

f(λ1, λ2)dπ(EL,R)(λ1, λ2),

since it is true for a function f of the form f(λ1, λ2) = f1(λ1)f2(λ2) with f1, f2 ∈
L∞(R+), by Corollary 5.3.7.

We fix η ∈ C∞(R) supported in [− 1
2 ,

1
2 ] such that

∀λ′ ∈ R
∑
j′∈Z

η(λ′ + j′) = 1.

We also fix another function η̃ ∈ C∞(R) supported in [−1, 1] such that η̃ = 1 on
[− 1

2 ,
1
2 ]. For any j′, k′ ∈ Z, we define ψj′,k′ ∈ C∞(R) by

ψj′,k′(λ′) := e−ik′(λ′−j′)η̃(λ′ − j′).

It is easy to show that for any �′ ∈ N0 there exists C = C�′ > 0 such that

∀j′, k′ ∈ Z ‖ψj′,k′‖Mm,�′ ≤ C(1 + |k′|)�′(1 + |j′|)−m+�′ .
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Since the symbols form an algebra (see Section 5.2.5), and by Proposition 5.3.4,
writing m = m1 +m2, we have for any j1, j2, k1, k2 ∈ Z:

‖ψj1,k1
(π(L))ψj2,k2

(π(R))‖Sm,a,b,c

≤ C‖ψj1,k1
(π(L))‖Sm1 ,a1,b1,c1‖ψj2,k2

(π(R))‖Sm2 ,a2,b2,c2

≤ C(1 + |k1|)�1(1 + |j1|)−
m1
νL +�1(1 + |k2|)�2(1 + |j2|)−

m2
νR +�2 (5.35)

for some �1, �2 ∈ N0.

Let f be as in the statement. We extend f to a smooth function supported
in (−1,∞)2 and decompose it as a locally finite sum:

f =
∑
j∈Z2

fj where fj(λ) = f(λ)η(λ1 − j′1)η(λ2 − j′2), λ = (λ1, λ2).

For each j ∈ Z, we view fj(·+j) as a smooth function supported in [−1, 1]×[−1, 1]
and we expand it in the Fourier series

fj(λ+ j) =
∑
k∈Z2

cj,ke
−ik·λ.

The hypothesis on f implies that for any �1, �2 ∈ N0, we have

|cj,k| ≤ C�1,�2‖f‖Mm1
νL

⊗Mm2
νR

,�1+�2(1 + |k1|)−�1(1 + |k2|)−�2 × (5.36)

×(1 + |j1|)
m1
νL −�1(1 + |j2|)

m2
νR −�2 .

We have obtained that (taking different �’s)∑
j,k∈Z2

|cj,k|‖ψj1,k1
‖Mm1

νL
,�1‖ψj2,k2

‖Mm2
νR

,�2 <∞.

We have therefore obtained the following decomposition of f in the Fréchet
spaceMm1

νL
⊗Mm2

νR
,

f(λ1, λ2) =
∑

j,k∈Z2

cj,kψj1,k1
(λ1)ψj2,k2

(λ2).

And so for any a, b, c with �1, �2 as in (5.35),

‖f(π(L), π(R))‖Sm,a,b,c ≤
∑

j,k∈Z2

|cj,k|‖ψj1,k1
(π(L))ψj2,k2

(π(R))‖Sm,a,b,c

≤
∑

j,k∈Z2

|cj,k|C(1 + |k1|)�1(1 + |j1|)−
m1
νL +�1(1 + |k2|)�2(1 + |j2|)−

m2
νR +�2

≤ C‖f‖Mm1
νL

⊗Mm2
νR

,�1+�2+4,

by (5.37) with �1 + 2 and �2 + 2. This shows that f(π(L), π(R)) ∈ Sm and the
desired inequalities for the seminorms. �
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Corollary 5.3.8 could be generalised by considering a finite family of positive
Rockland operators which commute strongly between themselves (i.e. with com-
muting spectral measures), with symbols possibly depending on x in a similar way
to Corollary 5.3.7.

5.4 Kernels of pseudo-differential operators

In this section we obtain estimates for the kernels of operators in the classes Ψm
ρ,δ

(cf. Section 5.4.1) and some consequences for smoothing operators (cf. Section
5.4.2) and for operators of Calderón-Zygmund type in the calculus (cf. Section
5.4.4). We will also show the Lp boundedness of Ψ0 in Section 5.4.4.

For technical reasons which will become apparent in Section 5.5.2, we will
also consider the seminorms:

‖σ‖Sm,R
ρ,δ ,a,b := sup

(x,π)∈G×Ĝ
[α]≤a,[β]≤b

‖ΔαXβ
xσ(x, π)π(I +R)−

m−ρ[α]+δ[β]
ν ‖L (Hπ), (5.37)

whereR is a positive Rockland operator of homogeneous degree ν. The superscript
R indicates that the powers of I+R are ‘on the right’. As for the Sm

ρ,δ-seminorms,
this is a seminorm which is equivalent to a similar seminorm for another positive
Rockland operator.

5.4.1 Estimates of the kernels

This section is devoted to describing the behaviour of the kernel of an operator
with symbol in the class Sm

ρ,δ. As usual in this chapter, G is a graded Lie group of
homogeneous dimension Q. Our results in this section may be summarised in the
following theorem.

Theorem 5.4.1. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0, ρ �= 0. Then

its associated kernel κ : (x, y) �→ κx(y) is smooth on G × (G\{0}). We also fix a
homogeneous quasi-norm | · | on G.

(i) Away from 0, κx has a Schwartz decay:

∀M ∈ N ∃C > 0, a, b, c ∈ N : ∀(x, y) ∈ G×G

|y| > 1 =⇒ |κx(y)| ≤ C supπ∈Ĝ ‖σ(x, π)‖Sm
ρ,δ,a,b,c

|y|−M .

(ii) Near 0, we have

– if Q+m > 0, κx behaves like |y|−
Q+m

ρ : there exists C > 0 and a, b, c ∈ N
such that

∀(x, y) ∈ G× (G\{0}) |κx(y)| ≤ C sup
π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

|y|−
Q+m

ρ ;
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– if Q +m = 0, κx behaves like ln |y|: there exists C > 0 and a, b, c ∈ N
such that

∀(x, y) ∈ G× (G\{0}) |κx(y)| ≤ C sup
π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

ln |y|;

– if Q+m < 0, κx is continuous on G and bounded:

sup
z∈G
|κx(z)| ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,0,0,0

.

Moreover, it is possible to replace the seminorm ‖ · ‖Sm
ρ,δ,a,b,c

in (i) and (ii)

with a seminorm ‖ · ‖Sm,R
ρ,δ ,a,b given in (5.37).

Remark 5.4.2. Using Theorem 5.2.22 (i) Parts (3) and (2), and Corollary 5.2.25,
we obtain similar properties for Xβ1

y X̃β2
y (Xβo

x q̃α(y)κx(y)).

We start the proof of Theorem 5.4.1 with consequences of Proposition 5.2.16
as preliminary results on the right convolution kernels and then proceed to analy-
sing the behaviour of these kernels both at zero and at infinity.

Proposition 5.2.16 has the following consequences:

Corollary 5.4.3. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx denote

its associated kernel.

1. If α, β1, β2, βo ∈ Nn
0 are such that

m− ρ[α] + [β1] + [β2] + δ[βo] < −Q/2,

then the distribution Xβ1
z X̃β2

z (Xβo
x q̃α(z)κx(z)) is square integrable and for

every x ∈ G we have∫
G

∣∣∣Xβ1
z X̃β2

z (Xβo
x q̃α(z)κx(z))

∣∣∣2 dz ≤ C sup
π∈Ĝ

‖σ(x, π)‖2Sm
ρ,δ,a,b,c

where a = [α], b = [βo], c = ρ[α]+[β1]+[β2]+δ[βo] and C = Cm,α,β1,β2,βo > 0
is a constant independent of σ and x. If β1 = 0 then we may replace the
seminorm ‖ · ‖Sm

ρ,δ,a,b,c
with a seminorm ‖ · ‖Sm,R

ρ,δ ,a,b given in (5.37).

2. For any α, β1, β2, βo ∈ Nn
0 satisfying

m− ρ[α] + [β1] + [β2] + δ[βo] < −Q,

the distribution z �→ Xβ1
z X̃β2

z Xβo
x q̃α(z)κx(z) is continuous on G for every

x ∈ G and we have

sup
z∈G

∣∣∣Xβ1
z X̃β2

z

{
Xβo

x q̃α(z)κx(z)
}∣∣∣ ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,[α],[βo],[β2],
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where C = Cm,α,β1,β2,βo
> 0 is a constant independent of σ and x. If β1 =

0 then we may replace the seminorm ‖ · ‖Sm
ρ,δ,[α],[βo],[β2] with the seminorm

‖ · ‖Sm,R
ρ,δ ,[α],[βo]

, see (5.37).

Consequently, if ρ > 0 then the map κ : (x, y) �→ κx(y) is smooth on
G× (G \{0}).

Proof. Part (1) follows from Proposition 5.2.16 together with Theorem 5.2.22 (i)
Parts (3) and (2), and Corollary 5.2.25 . Now by the Sobolev inequality in Theorem
4.4.25 (ii), if the right-hand side of the following inequality is finite:

sup
z∈G

∣∣∣Xβ1
z X̃β2

z

{
Xβo

x q̃α(z)κx(z)
}∣∣∣ ≤ C

∥∥∥(I+Rz)
s
ν Xβ1

z X̃β2
z

{
Xβo

x q̃α(z)κx(z)
}∥∥∥

L2(dz)
,

for s > Q/2, then the distribution

z �→ Xβ1
z X̃β2

z

{
Xβo

x q̃α(z)κx(z)
}

is continuous and the inequality of Part (2) holds. By Theorem 4.4.16,∥∥∥(I +Rz)
s
ν Xβ1

z X̃β2
z

{
Xβo

x q̃α(z)κx(z)
}∥∥∥

L2(dz)

≤ C
∥∥∥(I +R) s+[β1]

ν (I + R̃)
[β2]
ν

{
Xβo

x q̃α(z)κx(z)
}∥∥∥

L2(dz)

≤ C
∥∥∥π(I +R) s+[β1]

ν Xβo
x Δασ(x, π)π(I +R)

[β2]
ν

∥∥∥
L2(Ĝ)

,

by the Plancherel formula (1.28). By Proposition 5.2.16 (together with Theorem
5.2.22 (ii)) as long as

m+ s+ [β1]− ρ[α] + δ[βo] + [β2] < −Q/2,

since

(I +R)
s+[β1]

ν (I + R̃)
[β2]
ν

{
Xβo

x q̃α(z)κx(z)
}

is the kernel of the symbol

π(I +R)
s+[β1]

ν Xβo
x Δασ(x, π)π(I +R)

[β2]
ν ,

we have∥∥∥π(I +R) s+[β1]
ν Xβo

x Δασ(x, π)π(I +R)
[β2]
ν

∥∥∥
L2(Ĝ)

≤ C‖σ(x, π)‖Sm
ρ,δ,[α],[βo],[β2],

if s+ [β1] ≤ ρ[α]−m− δ[βo]− [β2]. This shows Part (2). �
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Estimates at infinity

We will now prove better estimates for the kernel than the ones stated in Corollary
5.4.3. First let us show that the kernel has a Schwartz decay away from the origin.

Proposition 5.4.4. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx denote

its associated kernel.

We assume that ρ > 0 and we fix a homogeneous quasi-norm | · | on G. Then
for any M ∈ R and any α, β1, β2, βo ∈ Nn

0 there exist C > 0 and a, b, c ∈ N
independent of σ such that for all x ∈ G and z ∈ G satisfying |z| ≥ 1, we have∣∣∣Xβ1

z X̃β2
z (Xβo

x q̃α(z)κx(z))
∣∣∣ ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

|z|−M .

Furthermore, if β1 = 0 then we may replace the seminorm ‖ · ‖Sm
ρ,δ,a,b,c

with a

seminorm ‖ · ‖Sm,R
ρ,δ ,a,b given in (5.37).

Proof. We start by proving the stated result for α = β1 = β2 = βo = 0 and for
the homogeneous quasi-norm | · |p given by (3.21). Here p > 0 is a positive number
to be chosen suitably. We also fix a number bo > 0 and a function ηo ∈ C∞(R)
valued in [0, 1] with ηo ≡ 0 on (−∞, 1

2 ] and ηo ≡ 1 on [1,∞). We set

η(x) := ηo(b
−p
o |x|pp).

Therefore, η is a smooth function on G such that η(z) = 1 if |z|p ≥ bo. Conse-
quently,

sup
|z|p≥bo

∣∣|z|Mp κx(z)
∣∣ ≤ sup

z∈G

∣∣|z|Mp κx(z)η(z)
∣∣

≤ C
∑

[β′]≤�Q/2�

∥∥∥Xβ′
z

{
|z|Mp κx(z)η(z)

}∥∥∥
L2(G,dz)

(5.38)

by the Sobolev inequality in Theorem 4.4.25.

We study each term separately. We assume that p/2 is a positive integer
divisible by all the weights υ1, . . . , υn and we introduce the polynomial

|z|pp =

n∑
j=1

|zj |
p
υj

and its inverse, so that

Xβ′
z

{
|z|Mp κx(z)η(z)

}
= Xβ′

z

{
|z|Mp |z|−p

p |z|ppκx(z) η(z)
}

=
∑

[β′
1]+[β′

2]=[β′]

X
β′
1

z

{
|z|Mp |z|−p

p η(z)
}
X

β′
2

z

{
|z|ppκx(z)

}
,
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where
∑

means taking a linear combination, that is, a sum involving some con-
stants. We observe that, using a polar change of coordinates,

‖Xβ′
1

z

{
|z|Mp |z|−p

p η(z)
}
‖L2(G,dz) <∞

as long as 2(M−p− [β′
1])+Q−1 < −1. We assume that p has been chosen so that

2(M − p) +Q < 0. Therefore, all these L2-norms can be viewed as constants. By
the Cauchy-Schwartz inequality and the properties of Sobolev spaces, we obtain

‖Xβ′
z

{
|z|Mp κx(z)η(z)

}
‖L2(G,dz) ≤ C

∑
[β′

2]≤[β′]

‖Xβ′
2

z

{
|z|ppκx(z)

}
‖L2(G,dz)

≤ C
∑

[β′
2]≤[β′]

∑
[α]≤p

‖Xβ′
2

z {q̃ακx} ‖2,

since |z|pp =
∑n

j=1 z
p
υj

j is a polynomial of homogeneous degree p. Therefore, by
Corollary 5.4.3 Part (1), we get

‖Xβ′
z

{
|z|Mp κx(z)η(z)

}
‖L2(G,dz) ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,p,0,ρp+[β′]

if ρp−m > Q/2+[β′]. We choose p accordingly. Combining this with (5.38) yields

sup
|z|p≥bo

∣∣|z|Mp κx(z)
∣∣ ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,p,0,ρp+�Q/2�.

Therefore, we have obtained the result for the homogeneous norm | · |p and α =
β1 = β2 = βo = 0.

The full result follows for any homogeneous norm and indices α, β1, β2, βo

from the equivalence of any two homogeneous norms and by Theorem 5.2.22 (i)
Parts (3) and (2), and Corollary 5.2.25. �
Remark 5.4.5. 1. During the proof of Proposition 5.4.4, we have obtained the

following statement which is quantitatively more precise. We keep the setting
of Proposition 5.4.4. Then for any M ∈ R and bo > 0, there exists C =
CM,bo,m > 0 such that

sup
|z|p≥bo

∣∣|z|Mp κx(z)
∣∣ ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,p,0,ρp+�Q/2�,

where p ∈ N is the smallest positive integer such that p/2 is divisible by all
the weights υ1, . . . , υn and p > max(Q/2 +M, 1

ρ (m+Q+ 1)).

2. Combining Part (1) above, Theorem 5.2.22 (i) Parts (3) and (2), and Corol-
lary 5.2.25, it is possible (but not necessarily useful) to obtain a concrete
expression for the numbers a, b, c appearing in Proposition 5.4.4, in terms of
m, ρ, δ, α, β1, β2, βo and of Q.

Furthermore, the same statement is true for |z| ≥ bo for an arbitrary
lower bound bo > 0. However, the constant C may depend on bo.
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Estimates at the origin

We now prove a singular estimate for the kernel near the origin which is (therefore)
not covered by Corollary 5.4.3 (2).

Proposition 5.4.6. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx denote

its associated kernel.
We assume that ρ > 0 and we fix a homogeneous quasi-norm | · | on G. Then

for any α, β1, β2, βo ∈ Nn
0 with Q +m + δ[βo] − ρ[α] + [β1] + [β2] ≥ 0 there exist

a constant C > 0 and computable integers a, b, c ∈ N0 independent of σ such that
for all x ∈ G and z ∈ G\{0}, we have that if

Q+m+ δ[βo]− ρ[α] + [β1] + [β2] > 0,

then∣∣∣Xβ1
z X̃β2

z (Xβo
x q̃α(z)κx(z))

∣∣∣ ≤ C sup
π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

|z|−
Q+m+δ[βo]−ρ[α]+[β1]+[β2]

ρ ,

and if
Q+m+ δ[βo]− ρ[α] + [β1] + [β2] = 0,

then ∣∣∣Xβ1
z X̃β2

z (Xβo
x q̃α(z)κx(z))

∣∣∣ ≤ C sup
π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

ln |z|.

In both estimates, if β1 = 0 then we may replace the seminorm ‖ · ‖Sm
ρ,δ,a,b,c

with

a seminorm ‖ · ‖Sm,R
ρ,δ ,a,b given in (5.37).

During the proof of Proposition 5.4.6, we will need the following technical
lemma which is of interest on its own.

Lemma 5.4.7. Let σ = {σ(x, π)} be in Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let η ∈ D(R) and

co > 0. We also fix a positive Rockland operator R of homogeneous degree ν with
corresponding seminorms for the symbol classes Sm

ρ,δ.

Then for any � ∈ N0, the symbols given by

σL,�(x, π) := η(2−�coπ(R))σ(x, π) and σR,�(x, π) := σ(x, π)η(2−�coπ(R)),

are in S−∞. Moreover, for any m1 ∈ R and a, b, c ∈ N0, there exists a constant
C = Cm,m1,ρ,δ,a,b,c,η,co > 0 such that for any � ∈ N0 we have

‖σL,�(x, π)‖Sm1
ρ,δ ,a,b,c ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

2�
co
ν (m−m1).

The same holds for σR,�(x, π), but with a possibly different seminorm on the right
hand side.

Only for σR,�(x, π), we also have for the seminorm ‖·‖Sm,R
ρ,δ ,a,b given in (5.37),

the estimate

‖σR,�(x, π)‖Sm1,R

ρ,δ ,a,b
≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm,R
ρ,δ ,a,b2

� co
ν (m−m1).
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Proof of Lemma 5.4.7. For each � ∈ N0, the symbol η(2−�coπ(R)) is in S−∞ by
Proposition 5.3.4. Therefore, by Theorem 5.2.22 (ii) and the inclusions (5.31), σL,�

and σR,� are in S−∞.

Let us fix αo, βo ∈ Nn
0 and γ ∈ R. By the Leibniz formula (see (5.28)),

π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Xβo
x ΔαoσL,�π(I +R)−

γ
ν

= π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Xβo
x Δαo

{
η(2−�coπ(R))σ(x, π)

}
π(I +R)−

γ
ν

=
∑

[α1]+[α2]=[αo]

cα1,α2
π(I +R)

ρ[αo]−m1−δ[βo]+γ
ν Δα1η(2−�coπ(R))

Xβo
x Δα2σ(x, π)π(I +R)−

γ
ν .

Therefore, taking the operator norm, we obtain

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Xβo
x ΔαoσL,�π(I +R)−

γ
ν ‖

≤ C
∑

[α1]+[α2]=[αo]

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Δα1η(2−�coπ(R))π(I +R)−
ρ[α2]−m−δ[βo]+γ

ν ‖

‖π(I +R)
ρ[α2]−m−δ[βo]+γ

ν Xβo
x Δα2σ(x, π)π(I +R)−

γ
ν ‖

≤ C‖σ(x, π)‖Sm
ρ,δ,[αo],[βo],|γ|∑

[α1]+[α2]=[αo]

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Δα1η(2−�coπ(R))π(I +R)−
ρ[α2]−m−δ[βo]+γ

ν ‖.

By Proposition 5.3.4,

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Δα1η(2−�coπ(R))π(I +R)−
ρ[α2]−m−δ[βo]+γ

ν ‖
≤ C‖η(2−�co ·)‖Mm2

ν
,k,

for some k, where m2 is such that

[α1]−m2 = ρ[αo]−m1 − δ[βo] + γ − (ρ[α2]−m− δ[βo] + γ),

that is,

m2 = m1 −m+ [α1](1− ρ).

Now, we can estimate

‖η(2−�co ·)‖Mm2
ν

,k = sup
λ>0, k′=0,...,k

(1 + λ)k
′−m2

ν ∂k′
λ (η(2−�coλ))

= sup
λ>0, k′=0,...,k

(1 + λ)k
′−m2

ν 2−�cok
′
(∂k′

η)(2−�coλ)

≤ C2−�co
m2
ν .
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Therefore,∑
[α1]+[α2]=[αo]

‖π(I +R)
ρ[α]−m1+γ

ν Δα1η(2−�coπ(L))π(I +R)−
ρ[α2]−m−δ[βo]+γ

ν ‖

≤ C
∑

[α1]+[α2]=[αo]

2−�co
m1−m+[α1](1−ρ)

ν ≤ C2−�co
m1−m

ν ,

and we have shown that

‖π(I +R)
ρ[αo]−m1−δ[βo]+γ

ν Xβo
x ΔαoσL,�π(I +R)−

γ
ν ‖

≤ Cαo
‖σ(x, π)‖Sm

ρ,δ,[αo],[βo],|γ|2
−�co

m1−m
ν .

The desired property for σL,� follows easily. The property for σR,� may be obtained
by similar methods and its proof is left to the reader. �
Proof of Proposition 5.4.6. By Theorem 5.2.22 (i) Parts (3) and (2), and Corollary
5.2.25, it suffices to show the statement for α = β1 = β2 = βo = 0. By equivalence
of homogeneous quasi-norms (Proposition 3.1.35), we may assume that the homo-
geneous quasi-norm is | · |p given by (3.21) where p > 0 is such that p/2 is the
smallest positive integer divisible by all the weights υ1, . . . , υn. Since κx decays
faster than any polynomial away from the origin (more precisely see Proposition
5.4.4), it suffices to prove the result for |z|p < 1.

So let σ ∈ Sm
ρ,δ with Q +m ≥ 0. By Lemma 5.4.11 (to be shown in Section

5.4.2) we may assume that the kernel κ : (x, y) �→ κx(y) of σ is smooth on G×G
and compactly supported in x. By Proposition 5.4.4 it is also Schwartz in y.

We fix a positive Rockland operator R of homogeneous degree ν and a dyadic
decomposition of its spectrum: we choose two functions η0, η1 ∈ D(R) supported
in [−1, 1] and [1/2, 2], respectively, both valued in [0, 1] and satisfying

∀λ > 0

∞∑
�=0

η�(λ) = 1,

where for � ∈ N we set
η�(λ) := η1(2

−(�−1)νλ).

For each � ∈ N0, the symbol η�(π(R)) is in S−∞ by Proposition 5.3.4 and its kernel
η�(R)δ0 is Schwartz by Corollary 4.5.2. Furthermore, by the functional calculus,∑N

�=0 η�(R) converges in the strong operator topology of L (L2(G)) to the identity

operator I as N →∞, and thus
∑N

�=0 η�(R)δ0 converges in K(G) and in S ′(G) to
the Dirac measure δ0 at the origin as N →∞.

By Theorem 5.2.22 (ii), the symbol σ� given by

σ�(x, π) := σ(x, π)η�(π(R)), (x, π) ∈ G× Ĝ,
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is in S−∞. The kernel associated with σ� is κ� given by

κ�(x, y) = κ�,x(y) = (η�(R)δ0) ∗ κx(y).

For each x, we have κ�,x ∈ S(G). The sum
∑N

�=0 κ�,x converges in S ′(G) to κx as
N →∞ since

N∑
�=0

Op(σ�(x, ·)) = Op(σ(x, ·))
N∑
�=0

η�(R)

converges to Op(σ(x, ·)) in the strong operator topology of L (L2(G), L2
−m(G)).

This convergence is in fact stronger. Indeed, by Lemma 5.4.7,

‖σ�‖Sm1
ρ,δ ,a,b,c ≤ C sup

π∈Ĝ

‖σ‖Sm
ρ,δ,a

′,b′,c′2
�(m−m1),

thus ∑
�∈N

‖σ�‖Sm1
ρ,δ ,a,b,c <∞

if m1 > m. Consequently, the sum
∑

� σ� is convergent in Sm1

ρ,δ and, fixing x ∈ G,
the sum

∑
� supz∈S |κ�,x(z)| is convergent where S is any compact subset of G\{0}

by Proposition 5.4.4 or more precisely the first part in Remark 5.4.5. Necessarily,
the limit of

∑
� σ� is σ and the limit of

∑
� κ�,x for the uniform convergence on

any compact subset of G\{0} is κx with

|κx(z)| ≤
∞∑
�=0

|κ�,x(z)|, z ∈ G\{0}.

By Corollary 5.4.3 (2), for any m1 < −Q and r ∈ N0, we have

sup
z∈G
|z|prp |κ�,x(z)| ≤ C

∑
[α]=pr

sup
π∈Ĝ

‖Δασ�(x, π)‖Sm1
ρ,δ ,0,0,0

≤ Ccσ,r2
�(m−m1−ρpr) (5.39)

by Lemma 5.4.7 and its proof, with cσ,r := supπ∈Ĝ ‖σ(x, π)‖Sm
ρ,δ,pr,0,0

.

We write |z|p ∼ 2−�o in the sense that �o ∈ N0 is the only integer satisfying
|z|p ∈ (2−(�o+1), 2−�o ].

Let us assume that Q+m > 0. We use (5.39) with r = 0 and m1 such that
m−m1 = (Q+m)/ρ. In particular,

m1 = m(1− 1

ρ
)− Q

ρ
< −Q.

The sum over � = 0, . . . , �o − 1, can be estimated as

�o−1∑
�=0

|κ�,x(z)| ≤
�o−1∑
�=0

Ccσ,02
�(m−m1) ≤ cσ,02

�o(m−m1)

≤ Ccσ,0|z|
−Q+m

ρ
p .
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We now choose r ∈ N and m1 < −Q such that

m−m1 − ρpr < 0 and pr(1− ρ) +m−m1 =
Q+m

ρ
.

More precisely, we set r := �(m+Q)/(ρp)	, that is, r is the largest integer strictly
greater than (m + Q)/(ρp), while m1 is defined by the equality just above; in
particular,

m−m1 >
Q+m

ρ
− (1− ρ)

Q+m

ρ
thus m1 < −Q.

We may use (5.39) and sum over � = �o, �o + 1 . . . , to get

∞∑
�=�o

|z|prp |κ�,x(z)| ≤ Ccσ,r

∞∑
�=�o

2�(m−m1−ρpr) ≤ Ccσ,r2
�o(m−m1−ρpr).

Therefore, we obtain

∞∑
�=�o

|κ�,x(z)| ≤ Ccσ,r2
�o(m−m1−ρpr)|z|−pr

p

≤ Ccσ,r|z|−pr−(m−m1−ρpr)
p = Ccσ,r|z|

−Q+m
ρ

p .

This yields the desired estimate for κx when Q+m < 0.
Let us assume that Q +m = 0. Using (5.39) with r = 0 and m1 = −m, we

obtain

�o−1∑
�=0

|κ�,x(z)| ≤
�o−1∑
�=0

Ccσ,02
�(m−m1) ≤ cσ,0�o

≤ Ccσ,0 ln |z|p.

Proceeding as above for the sum over � ≥ �o, we obtain that
∑∞

�=�o
|κ�,x(z)| is

bounded. This yields the desired estimate for κx in the case Q+m = 0. �

Remark 5.4.8. It is possible to obtain a concrete expression for the numbers a, b, c
appearing in Proposition 5.4.6, in terms of m, ρ, δ, α, β1, β2, βo and of Q.

5.4.2 Smoothing operators and symbols

The kernel estimates obtained in Section 5.4.1 allow us to characterise smoothing
operators in terms of their kernels. Moreover they also imply that the operators
in Ψ−∞ map the tempered distribution to smooth functions and enable the con-
struction of sequences of smoothing operators converging in Ψm

ρ,δ
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Theorem 5.4.9. 1. If T ∈ Ψ−∞, then its associated kernel κ : (x, y) �→ κx(y) is a
smooth function on G×G such that for each x ∈ G, y �→ κx(y) is Schwartz.
Moreover, for each multi-index β ∈ Nn

0 and each Schwartz seminorm ‖ ·
‖S(G),N , there exist a constant C > 0 and a seminorm ‖ · ‖Sm,a,b,c (both
independent of T ) such that

sup
x∈G
‖Xβ

xκx‖S(G),N ≤ C‖σ‖Sm,a,b,c.

The converse is true, see Lemma 5.2.21.

2. If T ∈ Ψ−∞, then T extends to a continuous mapping from S ′(G) to C∞(G)
via

Tf(x) = f ∗ κx(x)

where f ∈ S ′(G), x ∈ G, and κx is the kernel associated with T .

Furthermore, for any compact subset K ⊂ G and any multi-index β ∈
Nn

0 , there exists a constant C > 0 and a seminorm ‖ · ‖S′(G),N such that

sup
x∈K
|∂βTf(x)| ≤ C‖f‖S′(G),N .

Moreover C can be chosen as C1‖σ‖Sm,a,b,c, and C1 > 0 and N can be chosen
independently of f and T .

Part 1 may be rephrased as stating that the map between the smoothing
operators and their associated kernels is a Fréchet isomorphism between Ψ−∞

and the space C∞
b (G,S(G)) of functions κ ∈ C∞(G×G) satisfying

sup
x∈G
‖Xβ

xκx‖S(G),N <∞.

Here C∞
b (G,S(G)) is endowed with the Fréchet structure given via the seminorms

κ �−→ max
[β]≤N

sup
x∈G
‖Xβ

xκx‖S(G),N <∞, N ∈ N0.

Part 2 may be rephrased as stating that the mapping T �→ T from Ψ−∞ to
the space L (S ′(G), C∞(G)) of linear continuous mappings from S ′(G) to C∞(G)
is continuous (it is clearly linear).

Proof. Part 1 follows easily from Theorem 5.4.1 and Remark 5.4.2. By Lemma
3.1.55, for any tempered distribution f ∈ S ′(G), the function f ∗ κx is smooth on
G and the function x �→ f ∗ κx(x) is smooth on G. Hence T extends to S ′(G) and
Tf ∈ C∞ if f ∈ S ′(G).

Note that Lemma 3.1.55 also implies the existence of a positive constant C
and N ∈ N0 such that

|f ∗ κx(z)| ≤ C(1 + |z|)N‖f‖S′(G),N‖κx‖S(G),N .
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Using the Leibniz property for vector fields, one checks easily that for any
multi-index β ∈ Nn

0 , we have

Xβ(Tf)(x) =
∑

[β1]+[β2]=[β]

cβ,β1,β2X
β1
x1=x(f ∗Xβ2

x2=xκx2
)(x1).

Thus, proceeding as above, passing from left derivatives to the right, and using
Lemma 3.1.55, we get

|Xβ(Tf)(x)| ≤ C
∑

[β1]+[β2]=[β]

(1 + |x|)[β1]|(X̃β1
x1=x(f ∗ (Xβ2

x2=xκx2))(x1)|

≤ C
∑

[β1]+[β2]=[β]

(1 + |x|)[β1]|(X̃β1
x1=xf) ∗ (Xβ2

x2=xκx2)(x1)|

≤ C
∑

[β1]+[β2]=[β]

(1 + |x|)[β1]+N‖X̃β1f‖S′(G),N‖Xβ2
x2=xκx2‖S(G),N

≤ C(1 + |x|)N2‖f‖S′(G),N1
‖Xβ2

x2=xκx2
‖S(G),N

with a new constant C > 0 and integers N2, N1, N ∈ N0. This shows that f �→ Tf
is continuous from S ′(G) to C∞(G).

Using Part 1, the inequality above also shows the continuity of T �→ T from
Ψ−∞ to the space of continuous mappings from S ′(G) to C∞(G). This concludes
the proof of Theorem 5.4.9. �

Using the stability of taking the adjoint, reasoning by duality from Part 2
of Theorem 5.4.9, will yield the fact that smoothing operators map distributions
with compact support to Schwartz functions, see Corollary 5.5.13.

Note that the proof of Part 2 of Theorem 5.4.9 yields the more precise result:

Corollary 5.4.10. If T ∈ Ψ−∞ and f ∈ S ′(G), then Tf is smooth and all its
left-derivatives XβTf , β ∈ Nn

0 , have polynomial growth. More precisely, for any
multi-index β ∈ Nn

0 , there exist a constant C > 0, and integer M ∈ N0 and a
seminorm ‖ · ‖S′(G),N such that

|XβTf(x)| ≤ C(1 + |x|)M‖f‖S′(G),N .

Moreover C can be chosen as C1‖σ‖Sm,a,b,c, and C1 > 0 and N,M can be chosen
independently of f and T .

5.4.3 Pseudo-differential operators as limits of smoothing opera-
tors

In the proof of Lemma 5.1.42, for a given symbol σ, we constructed a sequence of
symbols σε such that Op(σε) is a sequence of ‘nice operators’ converging towards
Op(σ) in a certain sense. If we assume that σ ∈ Sm

ρ,δ, then we can construct
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a sequence of smoothing operators with a convergence in Ψm
ρ,δ described in the

next lemma and its corollary. These operators are therefore ‘nice’ since they have
Schwartz associated kernels in the sense of Theorem 5.4.9.

Lemma 5.4.11. Let 1 ≥ ρ ≥ δ ≥ 0. If σ = {σ(x, π)} is in Sm
ρ,δ, then we can con-

struct a family σε = {σε(x, π)}, ε > 0, in S−∞, satisfying the following properties:

1. For each ε > 0, the x-support of each σε is compact, or in other words,
the function x �→ supπ∈Ĝ ‖σ(x, π)‖L (Hπ) is zero outside a compact set in
G. Hence the kernel κε : (x, y) �→ κε,x(y) associated with each symbol σε is
Schwartz on G×G and compactly supported in x.

2. For any seminorm ‖ · ‖Sm1
ρ,δ ,a,b,c, there exist a constant C = Ca,b,c,m,m1ρ,δ > 0

such that

∀ε ∈ (0, 1) ‖σε‖Sm1
ρ,δ ,a,b,c ≤ C‖σ‖Sm

ρ,δ,a,b,c
ε

m1−m
ν ,

and when m ≤ m1,

∀ε ∈ (0, 1) ‖σε − σ‖Sm1
ρ,δ ,a,b,c ≤ C‖σ‖Sm

ρ,δ,a,b,c+ρaε
m1−m

ν .

Here ν is the degree of homogeneity of the positive Rockland operator used to
define the seminorms.

Consequently, when m < m1, the convergence σε → σ as ε → 0 holds
in Sm1

ρ,δ .

3. If φ ∈ S(G) then Op(σε)φ ∈ D(G) and the convergence

Op(σε)φ −→
ε→0

Op(σ)φ

holds uniformly on any compact subset of G and also in S(G).

Remark 5.4.12. As the construction will show, the symbols σε are constructed
independently of the order m ∈ R.

Proof of Lemma 5.4.11. We consider the function χε on G constructed in Lemma
5.1.42. Let η ∈ D(R) be such that η ≡ 1 on [0, 1]. Let R be a positive Rockland
operator. Let σ ∈ Sm

ρ,δ. We set

σε(x, π) = χε(x)σ(x, π)η(ε π(R)).

Arguing as in Lemma 5.4.7 and its proof yields that

{σ(x, π)η(ε π(R)), (x, π) ∈ G× Ĝ}

is in S−∞. Moreover, for any m1 ∈ R and a, b, c ∈ N0, there exists a constant
C = Cm,m1,ρ,δ,a,b,c,η > 0 such that for any � ∈ N0 we have

‖σ(x, π)η(ε π(R))‖Sm1
ρ,δ ,a,b,c ≤ C sup

π∈Ĝ

‖σ(x, π)‖Sm
ρ,δ,a,b,c

ε
m1−m

ν .
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From this, it is clear that Property (1) and the first estimate in Property (2) hold.
Let us prove the second estimate in Property (2). We notice that

‖π(I +R)−
m1
ν (σ(x, π)η(ε π(R))− σ(x, π)) ‖L (Hπ)

= ‖π(I +R)−
m1
ν σ(x, π) (η(ε π(R))− I) ‖L (Hπ)

≤ ‖π(I +R)−
m1
ν σ(x, π)π(I +R)

m1−m
ν ‖L (Hπ)

‖π(I +R)
m−m1

ν (η(ε π(R))− I) |L (Hπ),

and the spectral calculus properties (cf. Corollary 4.1.16) imply

sup
π∈Ĝ

‖π(I +R)
m−m1

ν (η(ε π(R))− I) ‖L (Hπ)

= ‖(I +R)
m−m1

ν (η(εR)− I) ‖L (L2(G)) ≤ sup
λ>0

(1 + λ)
m−m1

ν |η(ελ)− 1|.

One checks easily that

sup
λ>0

(1 + λ)
m−m1

ν |η(ελ)− 1| ≤ ‖η − 1‖∞ sup
λ>ε−1

(1 + λ)
m−m1

ν

≤ t(1 + ε−1)
m−m1

ν ≤ Cε
m1−m

ν ,

provided that m−m1 ≤ 0. Hence

sup
(x,π)∈G×Ĝ

‖π(I +R)−
m1
ν (σ(x, π)η(ε π(R))− σ(x, π)) ‖L (Hπ)

≤ C‖σ‖Sm
ρ,δ,0,0,|m1−m|ε

m1−m
ν .

More generally, we can introduce derivatives in x and difference operators and use
the Leibniz properties (cf. Proposition 5.2.10):

Xβ
xΔ

α (σ(x, π)η(ε π(R))− σ(x, π))

=
∑

[α1]+[α2]=[α]

cα,α1,α2
Xβ

xΔ
α1σ(x, π) Δα2(η(ε π(R))− I),

so that the quantity

‖π(I +R)
−m1+ρ[α]−δ[β]−γ

ν Xβ
xΔ

α (σ(x, π)η(ε π(R))− σ(x, π))π(I +R)
γ
ν ‖L (Hπ)

is, up to a constant, less or equal to the sum over [α1] + [α2] = [α] of

‖π(I +R)
−m1+ρ[α]−δ[β]−γ

ν Xβ
xΔ

α1σ(x, π)π(I +R)
m1−m−ρ[α2]+γ

ν ‖L (Hπ)

×‖π(I +R)−
m1−m−ρ[α2]+γ

ν Δα2(η(ε π(R))− I)π(I +R)
γ
ν ‖L (Hπ).
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Applying Proposition 5.3.4, we obtain

‖π(I +R)−
m1−m−ρ[α2]+γ

ν Δα2(η(ε π(R))− I)π(I +R)
γ
ν ‖L (Hπ) ≤ Cε

m−m1
ν .

Collecting the estimates and taking the supremum over [α] ≤ a, [β] ≤ b, |γ| ≤
c yield the second estimate in Property (2).

Property (3) follows from Property (2) and the continuity of σ �→ Op(σ)
from Sm1

ρ,δ to L (S(G)), see Theorem 5.2.15. �
Keeping the notation of Lemma 5.4.11, we can also show that the kernels κε

converge in some sense towards the kernel of σ. In order to make this more precise,
let us define the space C∞

b (G,S ′(G)) as the space of functions x �→ κx ∈ S ′(G)
such that for each x ∈ G, y �→ κx(y) is a tempered distribution and, for any
β ∈ Nn

0 , the map x �→ Xβ
xκx is continuous and bounded on G. This definition is

motivated by the following property:

Lemma 5.4.13. If σ ∈ Sm
ρ,δ then its associated kernel κ = κ(σ) is in C∞

b (G,S ′(G))
defined above. Furthermore, the map

σ �→ κ(σ)

from Sm
ρ,δ to C∞

b (G,S ′(G)) is continuous.

Naturally, we have endowed C∞
b (G,S ′(G)) with the structure of Fréchet

space given by the seminorms

κ �−→ max
[β]≤N

sup
x∈G
‖Xβ

xκx‖S′(G),N , N ∈ N0.

Proof of Lemma 5.4.13. By Lemma 5.1.35, if σ is a symbol then its kernel is in
C∞(G,S ′(G)). Adapting slightly its proof yields

sup
x∈G
‖Xβ

xκx‖S′(G) ≤ C sup
x∈G
‖Xβ

xσ(x, ·)‖L∞
0,−m−δ[β]

(Ĝ).

As the inverse Fourier transform is one-to-one and continuous from L∞
0,−m−δ[β](Ĝ)

to S ′(G), this shows the continuity of the map σ �→ κ(σ) from Sm
ρ,δ to C

∞
b (G,S ′(G)).

�
We can now express the convergence in distribution of the sequence of kernels

κε constructed in the proof of Lemma 5.4.11:

Corollary 5.4.14. We keep the notation of Lemma 5.4.11. The sequence of kernels
κε converges towards the kernel κ associated with σ in C∞

b (G,S ′(G)). If ρ > 0,
the convergence is also uniform on any compact subset of G× (G\{0}).
Proof. The statement follows from the convergence of σε to σ in Sm1

ρ,δ for m1 < m
by Part 2 of Lemma 5.4.11, together with Lemma 5.4.13 for the first part and
Corollary 5.4.3 for the second part. �
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5.4.4 Operators in Ψ0 as singular integral operators

From the kernel estimates obtained in Section 5.4.1, one can show easily that the
operators in Ψ0 are Calderón-Zygmund, and generalise this to some classes Ψm

ρ,δ,

see Theorem 5.4.16. We are then led to study the L2-boundedness.
First let us notice that thanks to the kernel estimates, our operators admit

a representation as singular integrals in the following sense:

Lemma 5.4.15. Let κx be the kernel associated with T ∈ Ψm
ρ,δ with m ∈ R and

1 ≥ ρ ≥ δ ≥ 0 with ρ �= 0. For any f ∈ S ′(G) and any x0 ∈ G such that f ≡ 0 on
a neighbourhood of x0, the integral∫

G

f(y)κx0
(y−1x0)dy

makes distributional sense and defines a smooth function at x0.
This coincides with Tf if f ∈ S(G).

Proof. Let T and κx be as in the statement. Let f ∈ S ′(G) and x0 ∈ G. We
assume that there exists a bounded open set Ω2 containing x0 and where f ≡ 0.
Let Ω � Ω1 � Ω2 be open subsets of Ω2 such that x0 ∈ Ω, Ω̄ ⊂ Ω1, and Ω̄1 ⊂ Ω2.
We can find χ1, χ ∈ D(G) such that χ1 ≡ 1 on Ω1 but χ1 ≡ 0 outside Ω2, χ ≡ 1
on Ω but χ ≡ 0 outside Ω1. At least formally, we have

χ(x)

∫
G

f(y)κx(y
−1x)dy =

∫
G

f(y) χ(x)(1− χ1)(y)κx(y
−1x)dy,

since f ≡ 0 on {χ1 = 1}. Clearly the function (x, y) �→ χ(x)(1− χ1)(y) is smooth
on G × G and supported away from the diagonal {(x, y) ∈ G × G : x = y}. By
Theorem 5.4.1, the function

y �−→ χ(x)(1− χ1)(y)κx(y
−1x),

is Schwartz and this yields a smooth mapping G→ S(G) (which is also compactly
supported). The rest of the statement follows easily. �

In Corollary 5.5.13, we will see that an operator in Ψm
ρ,δ extends naturally

to S ′(G). Lemma 5.4.15 and its proof above will then imply that the operator
admits a singular representation for any tempered distribution in the sense that
the following formula makes sense and holds

Tf(x) =

∫
G

f(y)κx(y
−1x)dy,

for any f ∈ S ′(G) and any x ∈ G such that f ≡ 0 on a neighbourhood of x. We
will not use this.

We can now give sufficient condition for operator in some Ψm
ρ,δ to be Calderón-

Zygmund.
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Theorem 5.4.16. 1. If T ∈ Ψ0 then the operator T is Calderón-Zygmund in the
sense of Definition 3.2.15.

2. If T ∈ Ψm
ρ,δ with

m ≤ (ρ− 1)Q,

1 ≥ ρ ≥ δ ≥ 0 and ρ �= 0, then the operator T is Calderón-Zygmund in the
sense of Definition 3.2.15.
In Parts 1 and 2, the constants appearing in the Definition 3.2.15 are γ = 1

and, up to constants of the group, given by seminorms of T ∈ Ψm
ρ,δ.

Proof. We fix a homogeneous quasi-norm | · | on G.
Let T ∈ Ψ0. We denote by κ its associated kernel. Then its integral kernel κo

is formally given via κo(x, y) = κx(y
−1x). By Theorem 5.4.1, for any two distinct

points y, x ∈ G, we have

|κo(x, y)| = |κx(y
−1x)| ≤ C|y−1x|−Q.

Using Remark 5.4.2 as well and the Leibniz property for vector fields, we obtain

|(Xj)xκo(x, y)| ≤ |(Xj)x1=xκx1(y
−1x)|+ |(Xj)x2=xκx(y

−1x2)| ≤ C|y−1x|−(Q+υj),

and
|(Xj)yκo(x, y)| ≤ |(X̃j)z=y−1xκx(z)| ≤ C|y−1x|−(Q+υj).

Hence κo satisfies the hypotheses of Lemma 3.2.19. This shows Part 1.

Let us now assume that T ∈ Ψm
ρ,δ. Again, let κ be its associated kernel. Let

χ ∈ C∞(G) be supported in the unit ball {x ∈ G : |x| ≤ 1} and such that χ ≡ 1
on {x ∈ G : |x| ≤ 1/2}. By Theorem 5.4.1 and Remark 5.4.2 together with Lemma
5.2.21, the operator given by φ �→ φ∗{(1−χ)κ} is smoothing (as ρ �= 0) hence it is
a Calderón-Zygmund operator by Part 1. Thus we just have to study the operator
φ �→ φ ∗ {χκ}. Its integral kernel is κo given via

κo(x, y) = χ(y−1x)κx(y
−1x).

Proceeding as above, in particular by Theorem 5.4.1, we have

|κo(x, y)| = |(χκx)(y
−1x)| � |y−1x|−

Q+m
ρ ,

|(Xj)yκo(x, y)| = |(X̃j)z=y−1xκx(z)| � |y−1x|−
Q+m+υj

ρ ,

and κo is supported on {(x, y) ∈ G : |y−1x| ≤ 1} where we have

|(Xj)xκo(x, y)| ≤ |(Xj)x1=xκx1
(y−1x)|+ |(Xj)x2=xκx(y

−1x2)|

� |y−1x|−
Q+m+δυj

ρ + |y−1x|−
Q+m+υj

ρ � |y−1x|−
Q+m

ρ − δ
ρυj

� |y−1x|−
Q+m+υj

ρ ,

since |y−1x| ≤ 1. Hence if (Q+m)/ρ ≤ Q, we can apply Lemma 3.2.19. �
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In order to apply the singular integrals theorem (Theorem A.4.4), we still
need to show that the operators are L2-bounded. In the case (ρ, δ) = (1, 0), it is
not very difficult to adapt the Euclidean case to show that the operators in Ψ0

are L2-bounded.

Theorem 5.4.17. If T ∈ Ψ0 then T extends to a bounded operator on L2(G).
Furthermore, there exist constants C > 0 and a, b, c ∈ N0 of the group such that

∀f ∈ S(G) ‖Tf‖L2(G) ≤ C‖T‖Ψm,a,b,c‖f‖L2(G).

During the proof of Theorem 5.4.17, we will need the following observation:

Lemma 5.4.18. The collection of operators Ψ0 is invariant under left translations
in the sense that

T ∈ Ψ0 =⇒ ∀xo ∈ G τxo
Tτ−1

xo
∈ Ψ0, where τxo

: f �→ f(xo ·).

Furthermore, if κx is the kernel of T and σ = Op−1(T ) is its symbol, then the
operator τxoTτ

−1
xo

has κxox as kernel and σ(xox, π) as symbol, and

‖T‖Ψ0,a,b,c = ‖τxo
Tτ−1

xo
‖Ψ0,a,b,c.

Proof of Lemma 5.4.18. Let T ∈ Ψ0 and let κx be its kernel. Then

τxoTτ
−1
xo

f(x) = T (τ−1
xo

f)(xox) = (τ−1
xo

f) ∗ κxox(xox)

=

∫
G

f(x−1
o y)κxox(y

−1xox)dy

=

∫
G

f(z)κxox(z
−1x)dz

after the change of variable z = x−1
o y. Therefore

τxo
Tτ−1

xo
f(x) = f ∗ κxox(x).

Since FG(κxox)(π) = σ(xox, π) if σ denotes the symbol of T , we see that κxox is the

kernel associated to the symbol {σ(xox, π), (x, π) ∈ G× Ĝ} and the corresponding
operator is τxo

Tτ−1
xo

. The rest of the statement follows easily. �
Proof of Theorem 5.4.17. The proof follows the Euclidean case as given in [Ste93,
ch. VI §2]. Let T ∈ Ψ0 and let σ = Op−1(T ) be its symbol. We claim that it
suffices to show Theorem 5.4.17 under the additional assumption that the kernel
κ associated with σ is smooth in x and Schwartz in y, and such that G � x �→
κx ∈ S(G) is smooth. Indeed, this would imply that Theorem 5.4.17 is proved
for each operator Tε = Op(σε) where σε is as in Lemma 5.4.11. The properties
(2) and (3) in Lemma 5.4.11 allow to pass through the limit as ε → 0 and imply
then the theorem. This shows our earlier claim and hence we may assume that
G � x �→ κx ∈ S(G) is smooth.
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We fix | · | to be the homogeneous quasi-norm | · |p given by (3.21), where
p > 0 is such that p/2 is the smallest positive integer divisible by all the weights
υ1, . . . , υn. The balls are defined by B(xo, r) := {x ∈ G : |x−1xo| < r}. We denote
by Co ≥ 1 a constant such that for all x, y ∈ G, we have

|xy| ≤ Co(|x|+ |y|) and |y| ≤ |x|
2

=⇒ ||xy| − |x|| ≤ Co|y|,

see the triangle inequality in Proposition 3.1.38 and its converse (3.26).

Let f ∈ S(G) and let us write it as

f = f1 + f2,

where f1 and f2 are two smooth functions supported in B(0, 4Co) and outside of
B(0, 2Co), respectively, and satisfying |f1|, |f2| ≤ |f |.

First, we claim that there exists a constant C > 0 of the group such that∫
B(0,1)

|Tf1(x)|2dx ≤ C‖σ‖2S0,0,�Q/2�,0 ‖f1‖2L2(G). (5.40)

Let us prove this. We fix a function χ ∈ D(G) which is identically 1 on B(0, 1).
Then ∫

B(0,1)

|Tf1(x)|2dx ≤
∫
B(0,1)

|χ(x) f1 ∗ κx(x)|2dx

≤
∫
B(0,1)

sup
z∈G
|χ(z) f1 ∗ κz(x)|2dx.

We now use the Sobolev inequality in Theorem 4.4.25 to get

sup
z∈G
|χ(z) f1 ∗ κz(x)|2 ≤ C

∑
[α]≤�Q/2�

∫
G

|Xα
z {χ(z) f1 ∗ κz(x)}|2 dz.

Since
Xα

z {χ(z) f1 ∗ κz(x)} = f1 ∗Xα
z {χ(z)κz}(x),

we have obtained∫
B(0,1)

|Tf1(x)|2dx ≤
∫
B(0,1)

C
∑

[α]≤�Q/2�

∫
G

|f1 ∗Xα
z {χ(z)κz}(x)|2 dzdx

= C
∑

[α]≤�Q/2�

∫
G

∫
B(0,1)

|f1 ∗Xα
z {χ(z)κz}(x)|2 dxdz,

by Fubini’s property. But the integral over B(0, 1) can be estimated using Planche-
rel’s Theorem (see Theorem 1.8.11) by∫

B(0,1)

|f1 ∗Xα
z {χ(z)κz}(x)|2 dx ≤ ‖f1 ∗Xα

z {χ(z)κz}‖22

≤ ‖π(Xα
z {χ(z)κz})‖2L∞(Ĝ)

‖f1‖22.
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Now the Leibniz formula for Xα
z gives

‖π(Xα
z {χ(z)κz})‖L (L2(G)) ≤

∑
[α1]+[α2]=[α]

cα1,α2
‖π (Xα1χ(z)Xα2

z κz}) ‖L (L2(G))

≤ Cα max
[β]≤[α]

‖π
(
Xβ

z κz}
)
‖L (L2(G))

∑
[α1]≤[α]

|Xα1χ(z)|.

Since π
(
Xβ

z κz

)
= Xβ

z σ(z, π), we have obtained∫
B(0,1)

|f1 ∗Xα
z {χ(z)κz}(x)|2 dx

≤ C max
[β]≤[α]

‖Xβ
z σ(z, π)‖2L∞(Ĝ)

‖f1‖22
∑

[α1]≤[α]

|Xα1χ(z)|2.

Therefore,∫
B(0,1)

|Tf1(x)|2dx ≤ C
∑

[α]≤�Q/2�

∫
G

∫
B(0,1)

|f1 ∗Xα
z {χ(z)κz}(x)|2 dxdz

≤ C max
[β]≤�Q/2�

sup
z∈G
‖Xβ

z σ(z, π)‖2L∞(Ĝ)
‖f1‖22.

This concludes the proof of Claim (5.40).

Secondly, we claim that for any r ∈ N, there exists a constant C = Cr > 0
such that∫

B(0,1)

|Tf2(x)|2dx ≤ C‖σ‖2S0,pr,0,pr ‖(1 + | · |)−prf2‖2L2(G). (5.41)

Let us prove this. We write

Tf2(x) =

∫
y/∈B(0,2Co)

f2(y)|y−1x|−pr(| · |prκx)(y
−1x)dy.

If x ∈ B(0, 1) and y /∈ B(0, 2Co), then

|y−1| − |y−1x| ≤ Co|x| ≤ Co thus |y−1x| ≥ |y| − Co ≥
1

2
|y| ≥ 1

4
(1 + |y|),

and

|Tf2(x)| ≤
∫
y/∈B(0,2Co)

|f2(y)|
(
1

4
(1 + |y|)

)−pr ∣∣(| · |prκx)(y
−1x)

∣∣ dy
≤ 4pr‖(1 + | · |)−prf2‖L2(G) ‖(| · |prκx)‖L2(G) ,
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after having used the Cauchy-Schwartz inequality. Integrating the square of the
left-hand side over x ∈ B(0, 1), and taking the supremum over x ∈ B(0, 1) of the
right-hand side, we obtain∫

B(0,1)

|Tf2(x)|2dx ≤ 42pr sup
x∈B(0,1)

‖| · |prκx‖2L2(G) ‖(1 + | · |)−prf2‖2L2(G). (5.42)

Now writing |z|prp =
∑

[α]=pr cαq̃α(z), we have

‖| · |prκx‖2L2(G) ≤ Cr

∑
[α]=pr

‖q̃ακx‖2L2(G)

and since by Corollary 5.4.3 (1), if [α] > Q/2,

‖q̃ακx‖2L2(G) ≤ Cα sup
π∈Ĝ

‖σ(x, π)‖2Sm
ρ,δ,[α],0,[α]

,

we have obtained that if pr > Q/2, then

sup
x∈B(0,1)

‖| · |prκx‖2L2(G) ≤ Cr‖σ‖2S0,pr,0,pr.

This and (5.42) show Claim (5.41).

Now, combining together Claims (5.40) and (5.41), we obtain∫
B(0,1)

|Tf(x)|2dx ≤ Cr‖T‖2Ψ0,pr,�Q/2�,pr ‖(1 + | · |)−prf‖2L2(G),

and this is so for any f ∈ S(G). Therefore, by Lemma 5.4.18 (and its notation),
we have for any xo ∈ G, that∫
B(xo,1)

|Tf(x)|2dx =

∫
|x−1

o x|<1

|Tf(x)|2dx =

∫
B(0,1)

|Tf(xox
′)|2dx′

=

∫
B(0,1)

|τxo
(Tf)(x′)|2dx′ =

∫
B(0,1)

|(τxo
Tτ−1

xo
)(τxo

f)(x′)|2dx′

≤ Cr‖τxo
Tτ−1

xo
‖2Ψ0,pr,�Q/2�,pr ‖(1 + | · |)−prτxo

f‖2L2(G)

= Cr‖T‖2Ψ0,pr,�Q/2�,pr ‖(1 + | · |)−prτxof‖2L2(G).

Integrating over xo ∈ G, we obtain for the left hand side,∫
G

∫
B(xo,1)

|Tf(x)|2dxdxo =

∫
G

∫
G

1|x−1
o x|<1|Tf(x)|

2dxdxo

=

∫
G

∫
G

1|y|<1|Tf(x)|2dxdy = |B(0, 1)|‖Tf‖22,
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and for the last term in the right hand side,∫
G

‖(1 + | · |)−prτxof‖2L2(G)dxo =

∫
G

∫
G

∣∣(1 + |x|)−prf(xox)
∣∣2 dxdxo

= ‖f‖22
∫
G

(1 + |x|)−2prdx.

Assuming −2pr +Q < 0, this last integral is finite.
We have obtained that if r > Q/2p (for instance r = �Q/2p	) then pr > Q/2

and
|B(0, 1)|‖Tf‖22 ≤ C‖T‖2Ψ0,pr,�Q/2�,pr‖f‖22.

This concludes the proof of Theorem 5.4.17. �
Remark 5.4.19. More precisely we have obtained that if T ∈ Ψ0, then

‖Tf‖2 ≤ C‖T‖Ψ0,pr,�Q/2�,pr‖f‖2,

where r := � Q2p	, and p ∈ R is such that p/2 is the smallest positive integer divisible
by all the weights υ1, . . . , υn.

Theorem 5.4.16 and Theorem 5.4.17 show that any operator of order 0 and of
type (1,0) satisfies the hypotheses of the singular integrals theorem, see Sections
3.2.3 and A.4. Therefore, we have the following corollary:

Corollary 5.4.20. If T ∈ Ψ0 then T extends to a bounded operator on Lp(G) for
any p ∈ (1,∞). Furthermore, there exist constants a, b, c ∈ N0 such that

∀p ∈ (1,∞) ∃C > 0 ∀f ∈ S(G) ‖Tf‖Lp(G) ≤ C‖T‖Ψ0,a,b,c‖f‖Lp(G).

5.5 Symbolic calculus

In this section we present elements of the symbolic calculus of operators with
symbols in the classes Sm

ρ,δ. In particular, we will discuss asymptotic sums of
symbols, adjoints, and compositions.

5.5.1 Asymptotic sums of symbols

We now establish a nilpotent analogue of the asymptotic sum of symbols of de-
creasing orders going to −∞.

Theorem 5.5.1. We assume 1 ≥ ρ ≥ δ ≥ 0. Let {σj}j∈N0 be a sequence of symbols
such that σj ∈ S

mj

ρ,δ with mj strictly decreasing to −∞. Then there exists σ ∈ Sm0

ρ,δ ,

unique modulo S−∞, such that

∀M ∈ N σ −
M∑
j=0

σj ∈ S
mM+1

ρ,δ . (5.43)
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Definition 5.5.2. Under the hypotheses and conclusions of Theorem 5.5.1, we write

σ ∼
∑
j

σj .

Proof. We keep the notation of the statement. We also fix a positive Rockland
operator R of homogeneous degree ν on G. Let χ ∈ C∞(R) with χ|(−∞,1/2) = 0
and χ|[1,∞) = 1. We fix t ∈ (0, 1).

Let us check that for any seminorm ‖ · ‖Sm0
ρ,δ ,a,b,c, there exists a constant

C = Ca,b,c > 0 such that for any t ∈ (0, 1) and any j ∈ N, we have

‖σj(x, π)χ(tπ(R))‖Sm0
ρ,δ ,a,b,c ≤ C‖σj(x, π)‖Sm0

ρ,δ ,a,b,c+ρa+m0−mj
t
m0−mj

ν . (5.44)

Indeed, from the Leibniz formula (see Formula (5.28)), we obtain easily

‖π(I +R)
ρ[αo]−m0−δ[βo]+γ

ν Xβo
x Δαo (σj(x, π)χ(tπ(R)))π(I +R)−

γ
ν ‖L (Hπ)

�
∑

[α1]+[α2]=[αo]

‖π(I +R)
ρ[αo]−m0−δ[βo]+γ

ν Xβo
x Δα1σj(x, π)

Δα2χ(tπ(R)) π(I +R)−
γ
ν ‖L (Hπ)

�
∑

[α1]+[α2]=[αo]

‖σj(x, π)‖Sm0
ρ,δ ,[α1],[βo],ρ([αo]−[α1])+m0−mj+|γ|

‖π(I +R)
ρ[α2]−m0+mj+γ

ν Δα2χ(tπ(R))π(I +R)−
γ
ν ‖L (Hπ).

By the functional calculus, we have

‖π(I +R)
ρ[α2]−m0+mj+γ

ν Δα2χ(tπ(R))π(I +R)−
γ
ν ‖L (Hπ)

≤ ‖π(I +R)
[α2]−m0+mj+γ

ν Δα2χ(tπ(R))π(I +R)−
γ
ν ‖L (Hπ)

� sup
k′≤k
λ>0

(1 + λ)
−m0+mj

ν +k′ |∂k′
λ {χ(tλ)}| � t

m0−mj
ν ,

by Proposition 5.3.4 for some k ∈ N0. This shows (5.44).

Let us choose strictly increasing sequences {a�}, {b�} and {c�} of positive
integers. For each � there exists C� > 0 such that for any j ∈ N and t ∈ (0, 1), we
have

‖σj(x, π)χ(tπ(R))‖Sm0
ρ,δ ,a�,b�,c�

≤ C�‖σj(x, π)‖Sm0
ρ,δ ,a�,b�,c�+ρa�+m0−mj

t
m0−mj

ν .

We may assume that the constants C� are increasing with �.

We now choose a decreasing sequence of numbers {tj} such that for any
j ∈ N,

tj ∈ (0, 2−j) and Cj sup
x∈G
π∈Ĝ

‖σj(x, π)‖Sm0
ρ,δ ,aj ,bj ,cj+ρaj+m0−mj

t
m0−mj

ν
j ≤ 2−j .
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For any j ∈ N, we define the symbols

σ̃j(x, π) := σj(x, π)χ(tjπ(R)).

For any � ∈ N, the sum

∞∑
j=0

‖σ̃j‖Sm0
ρ,δ ,a�,b�,c�

≤
�∑

j=0

‖σ̃j‖Sm0
ρ,δ ,a�,b�,c�

+

∞∑
j=�+1

2−j ,

is finite. Since Sm0

ρ,δ is a Fréchet space, we obtain that

σ :=
∞∑
j=0

σ̃j ,

is a symbol in Sm0

ρ,δ .

Starting the sequence at mM+1, the same proof gives

∞∑
j=M+1

σ̃j ∈ S
mM+1

ρ,δ .

By Proposition 5.3.4, each symbol given by (1 − χ)(tjπ(R)) is in S−∞. Thus by
Theorem 5.2.22 (ii) and the inclusions (5.31), each symbol given by σj(x, π)(1 −
χ)(tjπ(R)) is in S−∞. Therefore, the symbol given by

σ(x, π)−
M∑
j=0

σj(x, π) =

M∑
j=0

σj(x, π)(1− χ)(tjπ(R)) +
∞∑

j=M+1

σ̃j(x, π),

is in S
mM+1

ρ,δ . This shows (5.43) for σ.
If τ is another symbol as in the statement of the theorem, then for any

M ∈ N,

σ − τ =

⎛⎝σ −
M∑
j=0

σj

⎞⎠−
⎛⎝τ −

M∑
j=0

σj

⎞⎠
is in SmM+1 . Thus σ − τ ∈ S−∞. �

We note that the proof above does not produce a symbol σ depending con-
tinuously on {σj}, the same as in the abelian case.

5.5.2 Composition of pseudo-differential operators

In this section, we show that the class of operators ∪m∈RΨ
m
ρ,δ is an algebra:
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Theorem 5.5.3. Let 1 ≥ ρ ≥ δ ≥ 0 with δ �= 1 and m1,m2 ∈ R. If T1 ∈ Ψm1

ρ,δ and
T2 ∈ Ψm2

ρ,δ are two pseudo-differential operators of type (ρ, δ), then their composi-

tion T1T2 is in Ψm1+m2

ρ,δ . Moreover, the mapping

(T1, T2) �→ T1T2

is continuous from Ψm1

ρ,δ ×Ψm2

ρ,δ to Ψm1+m2

ρ,δ .

Since any operator in Ψm
ρ,δ maps S(G) to itself continuously (see Theorem

5.2.15), the composition of any two operators in Ψm1

ρ,δ and Ψm2

ρ,δ defines an operator
in L (S(G)).

Let us start the proof of Theorem 5.5.3 with observing that the symbol
of T1T2 is necessarily known and unique at least formally or under favourable
conditions such as between smoothing operators:

Lemma 5.5.4. Let σ1 and σ2 be two symbols in S−∞ and let κ1 and κ2 be their
associated kernels. We set

κx(y) :=

∫
G

κ2,xz−1(yz−1)κ1,x(z)dz, x, y ∈ G.

Then σ(x, π) = π(κx) defines a smooth symbol σ in the sense of Definition 5.1.34.
Furthermore, it satisfies

Op(σ1)Op(σ2) = Op(σ).

and

σ(x, π) =

∫
G

κ1,x(z)π(z)
∗σ2(xz

−1, π) dz, (5.45)

In particular, if σ2(x, π) is independent of x then σ1 ◦ σ2 = σ1σ2.

We will often write
σ := σ1 ◦ σ2.

Proof of Lemma 5.5.4. We keep the notation of the statement. Clearly κ : (x, y) �→
κx(y) is smooth on G×G, compactly supported in x. Furthermore, κx is integrable
in y since ∫

G

|κx(y)|dy ≤
∫
G

∫
G

|κ2(xz
−1, yz−1)κ1(x, z)|dzdy

≤
∫
G

∫
G

|κ2,xz−1(w)|dw |κ1(x, z)|dz

≤ max
x′∈G

∫
G

|κ2,x′(w)|dw
∫
G

|κ1,x(z)|dz.

Therefore, σ(x, π) = π(κx) defines a symbol σ in the sense of Definition 5.1.33.
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Using the Leibniz formula iteratively, one obtains easily that for any βo ∈ Nn
0 ,

X̃βo
x κx(y) is a linear combination of∫

G

X̃β2

x2=xz−1κ2,x2
(yz−1)X̃β1

x1=xκ1,x1
(z)dz, [β1] + [β2] = [βo].

Hence proceeding as above∫
G

|X̃βo
x κx(y)|dy �

∑
[β1]+[β2]=[βo]

max
x2∈G

∫
G

|X̃β2
x2
κ2,x2(w)|dw

∫
G

|X̃β1
x κ1,x(z)|dz.

This together with the link between abelian and right-invariant derivatives (see
Section 3.1.5, especially 3.17) implies easily that σ is a smooth symbol in the sense
of Definition 5.1.34.

The properties of κ1 and κ2 (see Theorem 5.4.9) justify the equalities

Op(σ1)Op(σ2)φ(x) =

∫
G

T2φ(y)κ1,x(y
−1x)dy

=

∫
G

∫
G

φ(z)κ2,y(z
−1y)κ1,x(y

−1x)dzdy

=

∫
G

∫
G

φ(z)κ2,xw−1(z−1xw−1)κ1,x(w)dzdw

=

∫
G

φ(z)κx(z
−1x)dz = φ ∗ κx(x),

with the change of variables y−1x = w. This yields T1T2 = Op(σ). We have then
finally

σ(x, π) = κ̂x(π) =

∫
G

κx(y)π(y)
∗dy

=

∫
G

∫
G

κ2,xz−1(yz−1)κ1,x(z)π(z)
∗π(yz−1)∗dydz

=

∫
G

κ1,x(z)π(z)
∗σ2(xz

−1, π) dz,

after an easy change of variable. �

From Lemma 5.5.4 and its proof, we see that if T = Op(σ1)Op(σ2) then
the symbol σ of T is not σ1σ2 in general, unless the symbol {σ2(x, π)} does not
depend on x ∈ G for instance. However, we can link formally σ with σ1 and σ2

in the following way: using the vector-valued Taylor expansion (see (5.27)) for
σ2(x, π) in the variable x, we have

σ2(xz
−1, π) ≈

∑
α

qα(z
−1)Xα

x σ2(x, π),
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Thus, implementing this in the expression (5.45), we obtain informally

σ(x, π) ≈
∫
G

κ1,x(z)π(z)
∗ ∑

α

qα(z
−1)Xα

x σ2(x, π) dz

=
∑
α

∫
G

qα(z
−1)κ1,x(z)π(z)

∗dz Xα
x σ2(x, π)

=
∑
α

Δασ1(x, π) X
α
x σ2(x, π).

We will show that in fact these formal manipulations effectively give the asym-
potitcs, see Corollary 5.5.8. From Theorem 5.2.22, we know that if σ1 ∈ Sm1

ρ,δ ,
σ2 ∈ Sm2

ρ,δ then

Δασ1 Xα
x σ2 ∈ S

m1+m2−(ρ−δ)[α]
ρ,δ . (5.46)

The main problem with the informal approach above is that one needs to estimate
the remainder

σ1 ◦ σ2 −
∑

[α]≤M

Δασ1 Xα
x σ2.

We will first show how to estimate this remainder in the case of ρ > δ using the
following property.

Lemma 5.5.5. We fix a positive Rockland operator of homogeneous degree ν. Let
m1,m2 ∈ R, 1 ≥ ρ ≥ δ ≤ 0 with ρ �= 0 and δ �= 1, β0 ∈ Nn

0 , and M,M1 ∈ N0. We
assume that{

m2+δ(cβ0
+υn)

1−δ ≤ νM1 < M −Q−m1 − δ[β0] + ρ(Q+ υ1),

m2 + δ(cβ0
+ υn +M) ≤ νM1 < −Q−m1 − δ[β0] + ρ(Q+M),

(5.47)

where

cβ0
:= max

[β02]≤[β0]
[β′]≥[β02], |β′|≥|β02|

[β′].

If M ≥ νM1, only the second condition may be assumed.
Then there exist a constant C > 0, and two pseudo-norms ‖ · ‖

S
m1,R

ρ,δ ,a1,b1
,

‖ · ‖Sm2
ρ,δ ,0,b2,0

, such that for any σ1, σ2 ∈ S−∞ and any (x, π) ∈ G× Ĝ we have

‖Xβ0
x

(
σ1 ◦ σ2(x, π)−

∑
[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

)
‖L (Hπ)

≤ C‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,0,b2,0
.

In the proof of Lemma 5.5.5, we will use the following easy consequence of
the estimates of the kernels given in Theorem 5.2.22.
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Lemma 5.5.6. Let σ ∈ Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0 with ρ �= 0. We denote by κx

its associated kernel. For any γ ∈ R, if γ + Q > max(m+Q
ρ , 0) then there exist a

constant C > 0 and a seminorm ‖ · ‖Sm
ρ,δ,a,b,c

such that∫
G

|z|γ |κx(z)|dz ≤ C‖σ‖Sm
ρ,δ,a,b,c

.

We may replace ‖ · ‖Sm
ρ,δ,a,b,c

with ‖ · ‖Sm,R
ρ,δ ,a,b.

Proof of Lemma 5.5.6. We keep the notation and the statement and write∫
G

|z|γ |κx(z)|dz =

∫
|z|≥1

+

∫
|z|<1

.

The estimate for large |z| given in Theorem 5.4.1 easily implies that the integral∫
|z|≥1

is bounded up to a constant of γ, m, ρ, δ, by a seminorm of σ. The estimate

for small |z| yield

∫
|z|≤1

|z|γ |κx(z)|dz �

⎧⎪⎨⎪⎩
∫
|z|≤1

|z|γ−
m+Q

ρ dz if m+Q > 0,∫
|z|≤1

|z|γ | ln |z||dz if m+Q = 0,∫
|z|≤1

|z|γdz if m+Q < 0.

Using the polar change of coordinates yields the result. �
Proof of Lemma 5.5.5, case β0 = 0. By Lemma 5.5.4 and the observations that
follow, we have

σ(x, π)−
∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

=

∫
G

κ1,x(z)π(z)
∗

⎛⎝σ2(xz
−1, π)−

∑
[α]≤M

qα(z
−1)Xα

x σ2(x, π)

⎞⎠ dz

=

∫
G

κ1,x(z)π(z)
∗Rσ2(·,π)

x,M (z−1)dz,

where R
σ2(·,π)
x,M denotes the remainder of the (vector-valued) Taylor expansion of

v �→ σ2(xv, π) of order M at 0. We now introduce powers of π(I +R) near π(z)∗

π(z)∗ = π(z)∗π(I +R)M1π(I +R)−M1 =
∑

[β]≤νM1

π(z)∗π(X)βπ(I +R)−M1

and we notice that

π(z)∗π(X)β = (−1)|β|
(
π(X)βπ(z)

)∗
= (−1)|β|

(
X̃β

z π(z)
)∗

. (5.48)
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We integrate by parts and obtain

σ(x, π)−
∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

=
∑

[β1]+[β2]≤νM1

∫
G

X̃β1
z1=zκ1,x(z1)π(z)

∗X̃β2
z2=zR

π(I+R)−M1σ2(·,π)
x,M (z−1

2 )dz

=
∑

[β1]+[β2]≤νM1

∫
G

X̃β1
z1=zκ1,x(z1)π(z)

∗Rπ(I+R)−M1Xβ2σ2(·,π)
x,M−[β2]

(z−1)dz

by Lemma 3.1.50. Taking the operator norm, we have

‖σ(x, π)−
∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)‖L (Hπ)

�
∑

[β1]+[β2]≤νM1

∫
G

|X̃β1
z1=zκ1,x(z1)| ‖Rπ(I+R)−M1Xβ2σ2(·,π)

x,M−[β2]
(z−1)‖L (Hπ)dz.

The adapted statement of Taylor’s estimates remains valid for vector-valued func-
tion, see Theorem 3.1.51 and Remark 3.1.52 (3), so we have

‖Rπ(I+R)−M1Xβ2σ2(·,π)
x,M−[β2]

(z−1)‖L (Hπ)

�
∑

|γ|≤�(M−[β2])+�+1
[γ]>(M−[β2])+

|z|[γ] sup
x1∈G

‖π(I +R)−M1Xγ
x1
Xβ2

x1
σ2(x1, π)‖L (Hπ).

We have obtained that

‖σ(x, π)−
∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)‖L (Hπ)

�
∑

[γ]>(M−[β2])+
|γ|≤�(M−[β2])+�+1

∫
G

|z|[γ]|X̃β1
z1=zκ1,x(z1)|dz

sup
x1∈G

‖π(I +R)−M1Xγ
x1
Xβ2

x1
σ2(x1, π)‖L (Hπ).

If M − [β2] ≤ 0, the integrals above are finite by Lemma 5.5.6 and the suprema
are bounded by a Sm2

ρ,δ -seminorm in σ2 when{
m1 + [β1] +Q < ρ(Q+ υ1)
−νM1 +m2 + δ(υn + [β2]) ≤ 0

,

and it suffices {
m1 + νM1 −M +Q < ρ(Q+ υ1)
−νM1 +m2 + δ(υn + νM1) ≤ 0

.
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If M − [β2] > 0, the integrals above are finite by Lemma 5.5.6 and the suprema
are bounded by a Sm2

ρ,δ -seminorm in σ2 when{
m1 + [β1] +Q < ρ(Q+ [γ])
−νM1 +m2 + δ([γ] + [β2]) ≤ 0

,

and it suffices {
m1 + νM1 +Q < ρ(Q+M)
−νM1 +m2 + δ(υn +M) ≤ 0

.

Our conditions on M and M1 ensure that the sufficient conditions above are
satisfied. Collecting the various estimates yields the statement in the case ρ �= 0
and β0 = 0. �
Proof of Lemma 5.5.5, general case. Using Formula (5.45), the Leibniz property
for left invariant vector fields easily implies that

Xβ0
x σ1 ◦ σ2(x, π) =

∑
[β01]+[β02]=[β0]

∫
G

Xβ01
x κ1,x(z)π(z)

∗Xβ02
x2=xσ2(x2z

−1, π) dz.

Proceeding as in the case β0 = 0, we have

Xβ0
x

⎛⎝σ1 ◦ σ2(x, π)−
∑

[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

⎞⎠
=

∑
[β01]+[β02]=[β0]

∫
G

Xβ01
x κ1,x(z)π(z)

∗R
Xβ02

x2=xσ2(x2 ·,π)
0,M (z−1) dz.

Introducing the powers of π(I +R), each integral on the right-hand side above is
equal to ∑

[β1]+[β2]≤νM1

∫
G

X̃β1
z1=zX

β01
x κ1,x(z1)π(z)

∗

R
π(I+R)−M1Xβ02

x2=xX
β2σ2(x2 ·,π)

0,M−[β2]
(z−1) dz, (5.49)

by Corollary 3.1.53. We use a more precise version for the Taylor remainder than
in the proof of the case β0 = 0:

‖Rπ(I+R)−M1Xβ02
x2=xX

β2σ2(x2 ·,π)
0,M−[β2]

(z−1)‖L (Hπ)

≤ CM

∑
[γ]>(M−[β2])+

|γ|≤�(M−[β2])+�+1

|z|[γ]S(z,M1, γ, β02, β2),

where S(z,M1, γ, β02, β2) denotes the supremum

S(z,M1, γ, β02, β2) := sup
|y|≤η�M�+1|z|

‖π(I +R)−M1Xβ
y X

β02
x2=xX

β2
y σ2(x2y, π)‖L (Hπ).
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For any reasonable function f : G→ C, the definitions of left and right-invariant
vector fields imply

Xβ
x f(xy) = X̃β

y f(xy) (5.50)

and the properties of left or right-invariant vector fields (see Section 3.1.5) then
yield

Xβ
x f(xy) = X̃β

y f(xy) =
∑

|β′|≤|β|
[β′]≥[β]

Qβ,β′(y)Xβ′
y f(xy), (5.51)

where Qβ,β′ are ([β′]− [β])-homogeneous polynomials. Therefore

S(z,M1, γ, β02, β2) �
∑

[β′
02]≥[β02]

|β′
02|≤|β02|

|z|[β′
02]−[β02]S̃(M1, [γ] + [β′

02] + [β2]),

where S̃(M1, [β0]) denotes the supremum

S̃(M1, [β0]) := sup
[γ′]=[β0]

sup
x1∈G

‖π(I +R)−M1Xγ′
x1
σ2(x1, π)‖L (Hπ).

We then obtain that (5.49) is bounded up to a constant by∑
[β1]+[β2]≤νM1

∫
G

|X̃β1
z1=zX

β01
x κ1,x(z1)|

∑
[γ]>(M−[β2])+

|γ|≤�(M−[β2])+�+1

|z|[γ]

∑
[β′

02]≥[β02]

|β′
02|≤|β02|

|z|[β′
02]−[β02]S̃(M1, [γ] + [β′

02] + [β2]) dz.

We conclude in the same way as in the case β0 = 0. �
To take into account the difference operator, we will use the following obser-

vation.

Lemma 5.5.7. Let σ1, σ2 ∈ S−∞. For any α ∈ Nn
0 , Δ

α(σ1 ◦ σ2) is a linear com-
bination independent of σ1, σ2 of (Δα1σ1) ◦ (Δα2σ2), over α1, α2 ∈ Nn

0 satisfying
[α1] + [α2] = [α]. It is the same linear combination as in the Leibniz rule (5.28).

Proof of Lemma 5.5.7. We keep the notation of Lemma 5.5.4 and adapt the proof
of the Leibniz rule for Δα given in Proposition 5.2.10. By Proposition 5.2.3 (4),
we have

q̃α(y)κx(y) =

∫
G

q̃α(yz
−1z)κ2,xz−1(yz−1)κ1,x(z)dz

=
∑

[α1]+[α2]=[α]

∫
G

q̃α2(yz
−1)κ2,xz−1(yz−1) q̃α1(z)κ1,x(z)dz,

where
∑

denotes a linear combination. Lemma 5.5.4 implies easily the statement.
�
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Proof of Theorem 5.5.3 with ρ > δ. We assume ρ > δ. We fix a positive Rockland
operator R of homogeneous degree ν. Let us show that for any α0, β0 ∈ Nn

0 , and
M0 ∈ N, there exists M ≥ M0, a constant C > 0 and seminorms ‖ · ‖

S
m1,R

ρ,δ ,a1,b1
,

‖ · ‖Sm2
ρ,δ ,a2,b2,c2

such that for any σ1, σ2 ∈ S−∞ we have

∥∥Xβ0
x Δα0τM (x, π) π(I +R)−

m−(ρ−δ)M0−ρ[α0]+δ[β0]
ν

∥∥
L (Hπ)

≤ C‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,a2,b2,c2
, (5.52)

where we have denoted m = m1 +m2 and

τM := σ1 ◦ σ2 −
∑

[α]≤M

Δασ1X
α
x σ2.

By Lemma 5.5.7, it suffices to show (5.52) only for α0 = 0.
Let β0 ∈ N0 and M0 ∈ N. We fix m′

2 := −m1 + (ρ− δ)M0 − δ[β0]. As ρ > δ,
we can find M ≥ max(M0, υ1) such that

(−Q−m1 − δ[β0] + ρ(Q+M))− (m′
2 + δ(cβ0 + υn +M)) ≥ ν.

This shows that we can findM1 satisfying the second condition in (5.47) form1,m
′
2

and therefore also the first. Hence we can apply Lemma 5.5.5 to M,M1 and the

symbols σ1 and σ2π(I+R)−
m−(ρ−δ)M0+δ[β0]

ν , with orders m1 and m′
2. The left-hand

side of (5.52) is then bounded up to a constant by

‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2π(I +R)−

m−(ρ−δ)M0+δ[β0]
ν ‖

S
m′

2
ρ,δ ,0,b2,0

� ‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,0,b2,c2
.

Hence (5.52) is proved.
Using (5.46), classical considerations imply that (5.52) yield that for any

M0 ∈ N0, and any seminorm ‖ · ‖
S

m−M0(ρ−δ),R

ρ,δ ,a,b
, there exist a constant C > 0 and

two seminorms ‖ · ‖
S

m1,R

ρ,δ ,a1,b1
, ‖ · ‖Sm2

ρ,δ ,a2,b2,c2
such that for any σ1, σ2 ∈ S−∞ we

have

‖τM0‖Sm−M0(ρ−δ),R

ρ,δ ,a,b
≤ C‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,a2,b2,c2
. (5.53)

In Section 5.5.4, we will see that for any seminorm ‖ · ‖Sm̃
ρ,δ,ã,b̃,c̃

there exist a

constant C > 0 and a seminorm ‖ · ‖Sm,R
ρ,δ ,a,b such that

∀σ ∈ S−∞ ‖σ‖Sm̃
ρ,δ,ã,b̃,c̃

≤ C‖σ‖Sm̃,R
ρ,δ ,a,b. (5.54)

Inequalities (5.54) together with (5.53) and Lemma 5.4.11 (to pass from S−∞ to
Sm1

ρ,δ , S
m2

ρ,δ ) conclude the proof of Theorem 5.5.3 in the case ρ > δ. �
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Note that the proof of the case ρ > δ above also shows:

Corollary 5.5.8. We assume 1 ≥ ρ > δ ≥ 0. If σ1 ∈ Sm1

ρ,δ and σ2 ∈ Sm2

ρ,δ , then there
exists a unique symbol σ in Sm

ρ,δ, m = m1 +m2, such that

Op(σ) = Op(σ1)Op(σ2). (5.55)

Moreover, for any M ∈ N0, we have

{σ −
∑

[α]≤M

Δασ1 Xα
x σ2} ∈ S

m−(ρ−δ)M
ρ,δ . (5.56)

Furthermore, the mapping{
Sm
ρ,δ −→ S

m−(ρ−δ)M
ρ,δ

σ �−→ {σ −
∑

[α]≤M Δασ1 Xα
x σ2}

,

is continuous.

Consequently, we can also write

σ ∼
∞∑
j=0

⎛⎝ ∑
[α]=j

Δασ1 Xα
x σ2

⎞⎠ , (5.57)

in the sense of an asymptotic expansion as in Definition 5.5.2.

The case ρ = δ is more delicate to prove but relies on the same kind of
arguments as above. If ρ = δ, the asymptotic formula (5.56) does not bring any
improvement and, in this sense, is not interesting.

We will need the following variation of the properties given in Lemma 5.5.6
obtained using Corollary 5.4.3 instead of Theorem 5.4.1.

Lemma 5.5.9. Let σ ∈ Sm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. We denote by κx its associated

kernel. Let γ ≥ 0 and m < −Q. Then there exist a constant C > 0 and a seminorm
‖ · ‖Sm

ρ,δ,a,b,c
such that ∫

G

|z|γ |κx(z)|dz ≤ C‖σ‖Sm
ρ,δ,a,b,c

.

We may replace ‖ · ‖Sm
ρ,δ,a,b,c

with ‖ · ‖Sm,R
ρ,δ ,a,b

Proof of Lemma 5.5.9. By Part 2 of Corollary 5.4.3, z �→ |κx(z)| is a continuous
bounded function if m− ργ < −Q hence the integral

∫
|z|<1

|z|γ |κx(z)|dz is finite.

By the Cauchy-Schwartz inequality, we have∫
|z|>1

|z|γ |κx(z)|dz ≤
√∫

|z|>1

|z|−Q− 1
2

√∫
|z|>1

|z|2γ+Q+ 1
2 |κx(z)|2dz

�
∑

[α]=M

‖q̃ακx‖L2(G),



5.5. Symbolic calculus 363

where M/2 ∈ N is the smallest integer divisible by υ1, . . . , υn satisfying M ≥
2γ+Q+ 1

2 , having chosen (3.21) with p = M for quasi-norm. By Part 1 of Corollary
5.4.3, the sum above is finite when m− ρM < −Q/2, which holds true. �

Using Lemma 5.5.9 instead of Lemma 5.5.6 in the proof of Lemma 5.5.10
produces the following result.

Lemma 5.5.10. We fix a positive Rockland operator of homogeneous degree ν. Let
m1 ∈ R, 1 ≥ ρ ≥ δ ≤ 0 with δ �= 1, β0 ∈ Nn

0 , and M,M1 ∈ N0. We assume that{
m1 + νM1 < −Q
−νM1 +m2 + δ(cβ0 + υn +max(νM1,M)) ≤ 0

,

where
cβ0 := max

[β02]≤[β0]
[β′]≥[β02], |β′|≥|β02|

[β′].

Then there exist a constant C > 0, and two seminorms ‖ · ‖
S

m1,R

ρ,δ ,a1,b1
, ‖ ·

‖Sm2
ρ,δ ,0,b2,0

, such that for any σ1, σ2 ∈ S−∞ and any (x, π) ∈ G× Ĝ we have

‖Xβ0
x

(
σ1 ◦ σ2(x, π)−

∑
[α]≤M

Δασ1(x, π) X
α
x σ2(x, π)

)
‖L (Hπ)

≤ C‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,0,b2,0
.

The details of the proof of Lemma 5.5.10 are left to the reader. The first
inequality in the statement just above shows that we will require the ability to
choosem1 as negative as one wants. We can do this thanks to the following remark:

Lemma 5.5.11. Let σ1, σ2 ∈ S−∞. For any X ∈ g and any σ1, σ2 ∈ S−∞, we have

(σ1π(X)) ◦ σ2 = σ1 ◦ (Xxσ2) + σ1 ◦ (π(X)σ2).

More generally, for any β ∈ Nn
0 , we have

{σ1π(X)β} ◦ σ2 =
∑

[β1]+[β2]=[β]

σ1 ◦ {π(X)β1Xβ2
x σ2},

where
∑

denotes a linear combination independent of σ1, σ2.

Note that in the expression above, π(X)β1 and Xβ2
x commute.

Proof of Lemma 5.5.7. We keep the notation of Lemma 5.5.4. Using integration
by parts and the Leibniz formula, we obtain

(σ1π(X)) ◦ σ2 (x, π) =

∫
G

X̃z1=zκ1,x(z1)π(z)
∗σ2(xz

−1, π) dz

= −
∫
G

κ1,x(z)
(
X̃z1=zπ(z1)

∗σ2(xz
−1, π) + π(z)∗X̃z2=zσ2(xz

−1
2 , π)

)
dz

=

∫
G

κ1,x(z)
(
π(z)∗π(X)σ2(xz

−1, π) + π(z)∗Xx2=xz−1σ2(x2, π)
)
dz.
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This shows the first formula. The next formula is obtained recursively. �

We can now sketch the proof of Theorem 5.5.3 in the case ρ = δ.

Sketch of the proof of Theorem 5.5.3 with ρ = δ. We assume ρ = δ ∈ [0, 1). Writ-
ing σ1 = σ1π(I + R)−Nπ(I + R)N and using Lemma 5.5.11, it suffices to prove
(5.52) for m1 as negative as one wants. We proceed as in the proof of the case ρ > δ
replacing Lemma 5.5.5 with Lemma 5.5.10. The details are left to the reader. �

5.5.3 Adjoint of a pseudo-differential operator

Here we prove that the classes Ψm
ρ,δ are stable under taking the formal adjoints of

operators.

Theorem 5.5.12. We assume 1 ≥ ρ ≥ δ ≥ 0 with δ �= 1 and m ∈ R. If T ∈ Ψm
ρ,δ

then its formal adjoint T ∗ is also in Ψm
ρ,δ. Moreover, the mapping T �→ T ∗ is

continuous on Ψm
ρ,δ.

Recall that the formal adjoint of an operator T : S(G) → S ′(G) is the
operator T ∗ : S(G)→ S ′(G) defined by

∀φ, ψ ∈ S(G)

∫
G

Tφ(x) ψ(x) dx =

∫
G

φ(x) T ∗ψ(x) dx.

We observe that the operator T = Op(σ) ∈ Ψm
ρ,δ maps S(G) to itself contin-

uously (see Theorem 5.2.15) and therefore has a formal adjoint T ∗.
Before beginning the proof of Theorem 5.5.12, let us point out some of its

consequences.

Corollary 5.5.13. 1. We assume 1 ≥ ρ ≥ δ ≥ 0 with δ �= 1, and m ∈ R.

Any T ∈ Ψm
ρ,δ extends uniquely to a continuous operator on S ′(G). Fur-

thermore the mapping T �→ T from Ψm
ρ,δ to the space L (S ′(G)) of continuous

operators on S ′(G) is linear and continuous.

2. Any smoothing operator T ∈ Ψ−∞ maps continuously the space E ′(G) of
compactly supported distributions to the Schwartz space S(G). Furthermore
the mapping T �→ T from Ψ−∞ to the space L (E ′(G),S(G)) of continuous
mappings from E ′(G) to S(G) is linear and continuous.

Proof of Corollary 5.5.13. We admit Theorem 5.5.12 (whose proof is given below).
The statement then follows by classical arguments of duality and Theorem 5.2.15
for Part 1, and Part 2 of Theorem 5.4.9 for Part 2. �

Let us start the proof of Theorem 5.5.12 by observing that the symbol σ(∗)

of the adjoint T ∗ of T = Op(σ) is necessarily known and unique at least formally
or under favourable conditions such as in the case of a smoothing operator:
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Lemma 5.5.14. Let σ ∈ S−∞ and let κ : (x, y) �→ κx(y) be its associated kernel.
We set

κ(∗)
x (y) := κ̄xy−1(y−1), x, y ∈ G.

Then κ(∗) : (x, y) �→ κ
(∗)
x (y) is smooth on G×G and for every α ∈ Nn

0 , x �→ Xακ
(∗)
x

is continuous from G to S(G).

The symbol σ(∗) defined via

σ(∗)(x, π) := FG(κ
(∗)
x )(π), (x, π) ∈ G× Ĝ,

is a smooth symbol in the sense of Definition 5.1.34 and satisfies

(Op(σ))∗ = Op(σ(∗)).

In particular, if σ does not depend on x, then σ(∗) = σ∗.

Note that this operation is an involution since

κx(y) = κ̄
(∗)
xy−1(y

−1).

Recall that if σ = {σ(x, π), (x, π) ∈ G× Ĝ} then we have defined the adjoint
symbol

σ∗ = {σ(x, π)∗, (x, π) ∈ G× Ĝ},

(see Theorem 5.2.22). Hence we may write

σ∗(x, π) := σ(x, π)∗.

Proof of Lemma 5.5.14. By Corollary 3.1.30, we have

Xβo
x {κ(∗)

x (y)} = Xβo
x {κ̄xy−1(y−1)} = (−1)|βo|X̃βo

y1=y−1{κ̄xy1
(y−1)}

= (−1)|βo|
∑

|β|≤|βo|, [β]≥[βo]

Qβo,β(y
−1)Xβ

y1=y−1{κ̄xy1
(y−1)}

= (−1)|βo|
∑

|β|≤|βo|, [β]≥[βo]

Qβo,β(y
−1)Xβ

x1=xy−1{κ̄x1
(y−1)},

where the Qβo,β ’s are ([βo] − [β])-homogeneous polynomials. The regularity of κ

described in Theorem 5.4.9 implies that κ(∗) : (x, y) �→ κ
(∗)
x (y) is smooth in x and

y (but maybe not compactly supported in x), and it is also Schwartz in y in such

a way that all the mappings G � x �→ Xα
x κ

(∗)
x ∈ S(G) are continuous. Clearly

σ(∗)(x, π) = π(κ
(∗)
x ) defines a smooth symbol σ(∗).



366 Chapter 5. Quantization on graded Lie groups

Let φ, ψ ∈ S(G) and let x ∈ G. The regularity of κ described in Theorem
5.4.9 justifies easily the following computations:∫
G

(Op(σ)φ)(x)ψ(x)dx =

∫
G

φ ∗ κx(x)ψ̄(x)dx =

∫
G

∫
G

φ(z)κx(z
−1x)ψ̄(x)dzdx

=

∫
G

∫
G

φ(z)κ̄
(∗)
x(z−1x)−1((z

−1x)−1)ψ̄(x)dzdx

=

∫
G

∫
G

φ(z)κ
(∗)
z (x−1z)ψ(x)dzdx

=

∫
G

φ(z)ψ ∗ κ(∗)
z (z)dz.

This shows that Op(σ)∗ψ(z) = ψ ∗ κ(∗)
z (z). �

In general, σ(∗) is not the adjoint σ∗ of the symbol σ, unless for instance
it does not depend on x ∈ G. However, we can perform formal considerations to
link σ(∗) with σ∗ in the following way: using the Taylor expansion for κ∗

x in x (see
equality (5.27)), we obtain

κ(∗)
x (y) = κ∗

xy−1(y) ≈
∑
α

qα(y
−1)Xα

x κ
∗
x(y) =

∑
α

q̃α(y)X
α
x κ

∗
x(y).

Thus, taking the group Fourier transform at π ∈ Ĝ, we get

σ(∗)(x, π) = π(κ(∗)
x ) ≈

∑
α

π(q̃α(y)X
α
x κ

∗
x(y)) =

∑
α

ΔαXα
x σ(x, π)

∗.

From Theorem 5.2.22 we know that if σ ∈ Sm
ρ,δ then

ΔαXα
x σ(x, π)

∗ ∈ S
m−(ρ−δ)[α]
ρ,δ . (5.58)

From these formal computations we see that the main problem is to estimate the
remainder coming from the use of the Taylor expansion. This is the purpose of the
following technical lemma.

Lemma 5.5.15. We fix a positive Rockland operator of homogeneous degree ν. Let
m ∈ R, 1 ≥ ρ ≥ δ ≥ 0 with ρ �= 0 and δ �= 1, β0 ∈ Nn

0 , and M,M1 ∈ N0. We
assume that M ≥ νM1 and (ρ − δ)M + ρQ > m + δ[β0] + νM1 + Q. Then there
exist a constant C > 0, and a seminorm ‖ · ‖Sm

ρ,δ,a,b,0
, such that for any σ ∈ S−∞

and any (x, π) ∈ G× Ĝ we have

‖Xβ0
x

(
σ(∗)(x, π)−

∑
[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1‖L (Hπ) ≤ C‖σ‖Sm

ρ,δ,a,b,0
.
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Proof of Lemma 5.5.15, case β0 = 0. By Lemma 5.5.14 and the observations that
follow, we have

σ(∗)(x, π)−
∑

[α]≤M

ΔαXα
x σ

∗(x, π)

=

∫
G

⎛⎝κ∗
xz−1(z)−

∑
[α]≤M

qα(z
−1)Xα

x κ
∗
x(z)

⎞⎠π(z)∗dz

=

∫
G

R
κ∗
x(z)

x,M (z−1)π(z)∗dz,

where R
κ∗
x(z)

x,M denotes the remainder of the (vector-valued) Taylor expansion of
v �→ κ∗

xv(z) of order M at 0. Using (5.48), we can integrate by parts to obtain(
σ(∗)(x, π)−

∑
[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1

=
∑

[β1]+[β2]≤νM1

∫
G

X̃β1
z1=zR

X̃β2
z2=zκ

∗
x(z2)

x,M (z−1
1 )π(z)∗dz

=
∑

[β1]+[β2]≤νM1

∫
G

R
X̃β2

z2=zX
β1
x1

κ∗
x1

(z2)

x1=x,M−[β1]
(z−1)π(z)∗dz.

Taking the operator norm, we have

‖
(
σ(∗)(x, π)−

∑
[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1‖L (Hπ)

�
∑

[β1]+[β2]≤νM1

∫
G

|RX̃β2
z2=zX

β1
x1

κ∗
x1

(z2)

x1=x,M−[β1]
(z−1)|dz.

For |z| < 1, we will use Taylor’s theorem, see Theorem 3.1.51:

|RX̃β2
z2=zX

β1
x1

κ∗
x1

(z2)

x1=x,M−[β1]
(z−1)| �

∑
|γ|≤�(M−[β1])+�+1

[γ]>(M−[β1])+

|z|[γ] sup
x1∈G

|Xγ
z X̃

β2
z2=zX

β1
x1
κ∗
x1
(z2)|,

together with the estimate for z near the origin given in Theorem 5.4.1. The link
between left and right derivatives, see (1.11), implies

sup
x1∈G

|Xγ
z X̃

β2
z2=zX

β1
x1
κ∗
x1
(z2)| = sup

x1∈G
|Xγ

zX
β2
z2=zX

β1
x1
κx1

(z2)|.

Proceeding as in the proof of Lemma 5.5.6, we obtain that the integral∫
|z|<1

|RX̃β2
z2=zX

β1
x κ∗

x(z2)

x,M−[β1]
(z−1)|dz

�
∑

|γ|≤�(M−[β1])+�+1
[γ]>(M−[β1])+

∫
|z|<1

|z|[γ] sup
x1∈G

|Xγ
x1
Xβ2

z2=zX
β1
x1
κx1

(z2)|dz
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is finite whenever [γ] + Q > (m + [β2] + δ([γ] + [β1]) + Q)/ρ with the indices
as above. These conditions are implied by the hypotheses of the statement. The
estimates for z large given in Theorem 5.4.1 show directly that the integral∫

|z|>1

|RX̃β2
z2=zX

β1
x1

κ∗
x1

(z2)

x1=x,M−[β1]
(z−1)|dz,

is finite. Collecting the various estimates yields the statement in the case ρ �= 0
and β0 = 0. �
Proof of Lemma 5.5.15, general case. We proceed as above and introduce the de-
rivatives with respect to x. We obtain

Xβ0
x

(
σ(∗)(x, π)−

∑
[α]≤M

ΔαXα
x σ

∗(x, π)
)
=

∫
G

R
Xβ0

x κ∗
x ·(z)

0,M (z−1)π(z)∗dz.

And adding (I +R)M1 , we have

Xβ0
x

(
σ(∗)(x, π)−

∑
[α]≤M

ΔαXα
x σ

∗(x, π)
)
(I +R)M1

=
∑

[β1]+[β2]≤νM1

∫
G

R
X̃β2

z2=zX
β1
x1

Xβ0
x κ∗

xx1
(z2)

x1=0,M−[β1]
(z−1)π(z)∗dz.

Taking the operator norm, we have

‖Xβ0
x

(
σ(∗)(x, π)−

∑
[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1‖L (Hπ)

�
∑

[β1]+[β2]≤νM1

∫
G

|RX̃β2
z2=zX

β1
x1

Xβ0
x κ∗

xx1
(z2)

x1=0,M−[β1]
(z−1)|dz.

For |z| < 1, we use the more precise version of Taylor’s theorem than in the case
β0 = 0:

|RX̃β2
z2=zX

β1
x1

Xβ0
x κ∗

xx1
(z2)

x,M−[β1]
(z−1)|

�
∑

|γ|≤�(M−[β1])+�+1
[γ]>(M−[β1])+

|z|[γ] sup
|y|≤η�(M−[β1])+�+1|z|

|Xγ
y X̃

β2
z2=zX

β1
y Xβ0

x κ∗
xy(z2)|.

We proceed as in the proof of Lemma 5.5.5, that is, we use (5.51) to obtain

sup
|y|≤η�(M−[β1])+�+1|z|

|Xγ
y X̃

β2
z2=zX

β1
y Xβ0

x κ∗
xy(z2)|

�
∑

[β′
0]≥[β0]

|β′
0|≤|β0|

|z|[β′
0]−[β0] sup

x1∈G
[γ0]=[γ]+[β′

0]

|Xγ0
x1
X̃β2

z2=zκ
∗
x1
(z2)|.

We conclude by adapting the case β0 = 0. �
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To take into account the difference operator, we will use the following obser-
vation.

Lemma 5.5.16. For any α ∈ Nn
0 and σ ∈ S−∞, Δασ(∗) can be written as a linear

combination (independent of σ) of {Δα′
σ}(∗) over α′ ∈ Nn

0 , [α
′] = [α]. This is

the same linear combination as when writing Δασ∗ as a linear combination of
{Δα′

σ}∗.
Proof of Lemma 5.5.16. For σ ∈ S−∞, let κσ be the kernel associated with the
symbol σ and similarly for any other symbol.

Let us prove Part 1. We have

{q̃ακσ(∗),x}(y) = q̃α(y)κ̄σ,xy−1(y−1).

As q̄α is a [α]-homogeneous polynomial, by Proposition 5.2.3, q̃α is a linear com-
bination of q̃α′ over multi-indices α′ ∈ Nn

0 satisfying [α′] = [α]. Hence

{q̃ακσ(∗),x}(y) =
∑

[α′]=[α]

q̃α′κσ,xy−1(y−1) =
∑

[α′]=[α]

{q̃α′κσ}(∗)(y),

where
∑

means taking a linear combination. Taking the Fourier transform, we
obtain

FG{q̃ακσ(∗),x}(π) = Δασ(∗)(x, π) =
∑

[α′]=[α]

{Δα′
σ}(∗).

�
We can now prove Theorem 5.5.12 in the case ρ > δ.

Proof of Theorem 5.5.12 with ρ > δ. We assume ρ > δ. We fix a positive Rockland
operator of homogeneous degree ν. Let us show that for any α0, β0 ∈ Nn

0 , and
M0 ∈ N, there exists M ≥ M0, a constant C > 0 and a seminorm ‖ · ‖Sm

ρ,δ,a1,b1,0,

such that for any σ ∈ S−∞ we have∥∥Xβ0
x Δα0τM (x, π) π(I +R)−

m−(ρ−δ)M0−ρ[α0]+δ[β0]
ν

∥∥
L (Hπ)

≤ C‖σ‖Sm
ρ,δ,a1,b1,0, (5.59)

where we have denoted τM := σ(∗) −
∑

[α]≤M ΔαXα
x σ

∗. By Lemma 5.5.16, it

suffices to show (5.59) only for α0 = 0.
Let β0 ∈ N0 and M0 ∈ N. Let M1 ∈ N0 be the smallest non-negative integer

such that

−m− (ρ− δ)M0 + δ[β0]

ν
≤M1.

We choose M ≥ max(M0, νM1) such that (ρ− δ)M + ρQ > m+ δ[β0] + νM1 +Q.
This is possible as ρ > δ. Then (5.59) follows from the application of Lemma 5.5.15
to M,M1 and the symbol σ.
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Using (5.58), classical considerations imply that (5.59) yields that for any
M0 ∈ N0, and any seminorm ‖ · ‖

S
m−M0(ρ−δ),R

ρ,δ ,a,b
, there exist a constant C > 0 and

a seminorm ‖ · ‖Sm
ρ,δ,a1,b1,0, such that for any σ1, σ2 ∈ S−∞ we have

‖τM0
‖
S

m−M0(ρ−δ),R

ρ,δ ,a,b
≤ C‖σ‖Sm

ρ,δ,a1,b1,0.

We can then conclude as in the proof of Theorem 5.5.3 in the case ρ > δ. �
In fact, we have obtained a much more precise result:

Corollary 5.5.17. We assume 1 ≥ ρ > δ ≥ 0. If σ ∈ Sm
ρ,δ, then there exists a unique

symbol σ(∗) in Sm
ρ,δ such that

(Op(σ))∗ = Op(σ(∗)).

Furthermore, for any M ∈ N0,

{σ(∗)(x, π)−
∑

[α]≤M

Xα
xΔ

ασ∗(x, π)} ∈ S
m−(ρ−δ)M
ρ,δ .

Moreover, the mapping{
Sm
ρ,δ −→ S

m−(ρ−δ)M
ρ,δ

σ �−→ {σ(∗)(x, π)−
∑

[α]≤M Xα
xΔ

ασ∗(x, π)} ,

is continuous.

Consequently, we can also write

σ(∗) ∼
∞∑
j=0

⎛⎝ ∑
[α]=j

Xα
xΔ

ασ∗

⎞⎠ , (5.60)

where the asymptotic was defined in Definition 5.5.2.

As for composition, in the case ρ = δ, the asymptotic formula does not bring
any improvement and, in this sense, is not interesting. The proof of this case is
more delicate to prove but relies on the same kind of arguments as above. Using
Lemma 5.5.9 instead of Lemma 5.5.6 in the proof of Lemma 5.5.15 produces the
following result:

Lemma 5.5.18. We fix a positive Rockland operator of homogeneous degree ν. Let
m ∈ R, 1 ≤ ρ ≤ δ ≤ 0 with δ �= 1, β0 ∈ Nn

0 , and M,M1 ∈ N0. We assume that

M ≥ νM1 and m+ δ(M + cβ0) + νM1 < −Q,

where
cβ0

:= max
[β′

0]≤[β0]

[β′]≥[β′
0], |β′|≥|β′

0|

[β′].
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Then there exist a constant C > 0, and a seminorm ‖ · ‖Sm,R
ρ,δ ,a,b, such that for any

σ ∈ S−∞ and any (x, π) ∈ G× Ĝ we have

‖Xβ0
x

(
σ(∗)(x, π)−

∑
[α]≤M

ΔαXα
x σ

∗(x, π)
)
π(I +R)M1‖L (Hπ) ≤ C‖σ‖Sm,R

ρ,δ ,a,b.

The details of the proof of Lemma 5.5.18 are left to the reader. The conditions
in the statement just above show that we will require the ability to choose m as
negative as one wants. We can do this thanks to the following remark.

Lemma 5.5.19. For any σ ∈ S−∞ and any X ∈ g, we have

{π(X)σ}(∗) = −σ(∗)(x, π) π(X)− {Xxσ}(∗)(x, π).

More generally, for any β ∈ Nn
0 , we have

{π(X)βσ}(∗) =
∑

[β1]+[β2]=[β]

{Xβ1
x σ}(∗)π(X)β2 ,

where
∑

denotes a linear combination independent of σ1, σ2.

Proof of Lemma 5.5.19. We keep the notation of Lemma 5.5.14. The kernel of
σ(∗)π(X) is given via

X̃yκ
(∗)
x (y) = X̃y{κ̄xy−1(y−1)} = −Xx1=xy−1 κ̄x1(y

−1)−Xy2=y−1 κ̄xy−1(y2),

having used (5.50) and the Leibniz property for vector fields. Hence we recognise:

X̃yκ
(∗)
x (y) = −(Xxκx)

(∗)(y)− (Xκx)
(∗)(y),

and
σ(∗)π(X) = −(Xxσ)

(∗) − (π(X)σ)(∗).

This shows the first formula. The second formula is obtained recursively. �
We can now show sketch the proof of Theorem 5.5.3 in the case ρ = δ.

Sketch of the proof of Theorem 5.5.3 with ρ = δ. We assume ρ = δ ∈ [0, 1). Writ-
ing σ = π(I+R)Nπ(I+R)−Nσ and using Lemma 5.5.19, it suffices to prove (5.59)
for m as negative as one wants. We proceed as in the proof of the case ρ > δ
replacing Lemma 5.5.15 with Lemma 5.5.18. The details are left to the reader. �

5.5.4 Simplification of the definition of Sm
ρ,δ

In this section, we show that it is possible to choose γ = 0 in the definition
of symbols as it was pointed out in Remark 5.2.13 Part (3). This simplifies the
definition of the symbol classes Sm

ρ,δ given in Definition 5.2.11. We will also show
a pivotal argument in the proof of Theorems 5.5.3 and 5.5.12, namely Inequalities
(5.54).
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Theorem 5.5.20. Let m, ρ, δ ∈ R with 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1.

(L) A symbol σ = {σ(x, π), (x, π) ∈ G × Ĝ} is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 , the field of operators

Xβ
xΔ

ασ = {Xβ
xΔ

ασ(x, π) : H∞
π → Hπ, (x, π) ∈ G× Ĝ}

is in L∞
0,ρ[α]−m−δ[β](Ĝ) uniformly in x ∈ G, that is,

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

0,ρ[α]−m−δ[β]
(Ĝ) <∞. (5.61)

Furthermore, the family of seminorms

σ �−→ ‖σ‖Sm
ρ,δ,a,b,0

= sup
[α]≤a
[β]≤b

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

0,ρ[α]−m−δ[β]
(Ĝ), a, b ∈ N0,

yields the topology of Sm
ρ,δ.

(R) A symbol σ = {σ(x, π), (x, π) ∈ G × Ĝ} is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 , the field of operators

Xβ
xΔ

ασ = {Xβ
xΔ

ασ(x, π) : H∞
π → Hπ, (x, π) ∈ G× Ĝ}

is in L∞
m+δ[β]−ρ[α],0(Ĝ) uniformly in x ∈ G, that is,

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

m+δ[β]−ρ[α],0
(Ĝ) <∞. (5.62)

Furthermore, the family of seminorms

σ �−→ ‖σ‖Sm,R
ρ,δ ,a,b = sup

[α]≤a
[β]≤b

sup
x∈G
‖Xβ

xΔ
ασ(x, ·)‖L∞

m+δ[β]−ρ[α],0
(Ĝ), a, b ∈ N0,

yields the topology of Sm
ρ,δ.

In other words,

(R) a symbol σ = {σ(x, π), (x, π) ∈ G × Ĝ} is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 , the field of operators

Xβ
xΔ

ασ = {Xβ
xΔ

ασ(x, π) : H∞
π → Hπ, (x, π) ∈ G× Ĝ}

is defined on smooth vectors and satisfy

sup
x∈G,π∈Ĝ

‖Xβ
xΔ

ασ(x, ·)π(I +R)
ρ[α]−m−δ[β]

ν ‖L (Hπ) <∞

for one (and then any) positive Rockland operator R of homogeneous degree
ν (as the symbol is given by a field of operators defined on smooth vectors,
and since π(I +R) s

ν acts on smooth vectors, this condition makes sense);
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(L) a symbol σ = {σ(x, π), (x, π) ∈ G × Ĝ} is in Sm
ρ,δ if and only if for each

α, β ∈ Nn
0 , the field of operators

Xβ
xΔ

ασ = {Xβ
xΔ

ασ(x, π) : H∞
π → Hρ[α]−m−δ[β]

π , (x, π) ∈ G× Ĝ}

is defined on smooth vectors and has range in Hρ[α]−m−δ[β]
π , and satisfies

sup
x∈G,π∈Ĝ

‖π(I +R)
ρ[α]−m−δ[β]

ν Xβ
xΔ

ασ(x, ·)‖L (Hπ) <∞

for one (and then any) positive Rockland operator R of homogeneous degree
ν. The notion of a field having range in a Sobolev space Hs

π is described in
Definition 5.1.10 and allows us to compose on the left with π(I +R) s

ν with
s = ρ[α]−m− δ[β] here, see (5.4).

Naturally, the condition does not depend on the choice of the positive Rockland
operator R.

Theorem 5.5.20 makes it considerably easier to check whether a symbol is
in one of our symbol classes. However using the definition ‘with any γ’ has the
advantages

1. that we see easily that the symbols are fields of operators acting on smooth
vectors,

2. that we see easily that the symbols in Sm
ρ,δ, m ∈ R, form an algebra (cf.

Theorem 5.2.22),

3. and that the properties for the multipliers in R in Proposition 5.3.4 are for
the definition ‘with any γ’.

While showing Theorem 5.5.20, we will also finish the proofs of Theorems
5.5.3 and 5.5.12. Indeed, an important argument used in the proof of Theorems
5.5.3 and 5.5.12 (i.e. the properties of stability under composition and taking the
adjoint) is Inequality (5.54) which can easily be seen as equivalent to Part 2 of
Theorem 5.5.20.

Before showing Theorem 5.5.20, let us summarise what has been shown in
the proofs of Theorems 5.5.3 and 5.5.12 up to before the use of Inequality (5.54):

‖σ1 ◦ σ2‖Sm1+m2,R

ρ,δ ,a,b
� ‖σ1‖Sm1,R

ρ,δ ,a1,b1
‖σ2‖Sm2

ρ,δ ,a2,b2,c2
, (5.63)

‖σ(∗)‖Sm,R
ρ,δ ,a,b � ‖σ‖Sm

ρ,δ,a
′,b′,0; (5.64)

these estimates are valid for any σ, σ1, σ2 ∈ S−∞ in the sense that for any seminorm
on the left hand side, one can find seminorms on the right.

Proof of Theorem 5.5.20. Using Estimate (5.64) together with the properties of
taking the adjoint and of the difference operators together, one checks easily that
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the two families of seminorms {‖ · ‖Sm,R
ρ,δ ,a,b, a, b ∈ N} and {‖ · ‖Sm

ρ,δ,a,b,0
, a, b ∈

N} yield the same topology on S−∞ and that taking the adjoint of a symbol is
continuous for this topology. Consequently, for any γ ∈ R, any symbol σ ∈ S−∞

and any seminorm ‖ · ‖Sm,R
ρ,δ ,a,b, we have

‖π(I +R)
γ
ν σ‖Sm+γ,R

ρ,δ ,a,b � ‖σ
∗π(I +R)

γ
ν ‖Sm+γ,R

ρ,δ ,a1,b1
� ‖σ∗‖Sm,R

ρ,δ ,a2,b2
,

having used (5.63) and the fact that π(I +R) γ
ν ∈ Sγ . As taking the adjoint is a

continuous operator for the Sm,R-topology, we have obtained

‖π(I +R)
γ
ν σ‖Sm+γ,R

ρ,δ ,a,b � ‖σ‖Sm,R
ρ,δ ,a3,b3

.

One checks easily that

∀a, b, c ∈ N0 ‖σ‖Sm
ρ,δ,a,b,c

≤ max
|γ|≤c

‖π(I +R)
γ
ν σ‖Sm+γ,R

ρ,δ ,a,b,

whereas
∀a, b ∈ N0 ‖σ‖Sm,R

ρ,δ ,a,b ≤ ‖σ‖Sm
ρ,δ,a,b,|m|+ρa+δb.

This easily implies that the topologies on S−∞ coming from the two families of
seminorms {‖ · ‖Sm

ρ,δ,a,b,c
, a, b, c ∈ N0} and {‖ · ‖Sm,R

ρ,δ ,a,b, a, b ∈ N0} coincide. This
together with Lemma 5.4.11 (to pass from S−∞ to Sm

ρ,δ) concludes the proof of
Theorem 5.5.20. �

5.6 Amplitudes and amplitude operators

In this section, we discuss the notion of an amplitude extending that of the symbol,
to functions/operators depending on both space variables x and y. This allows
for another way of writing pseudo-differential operators as amplitude operators,
analogous to Formula (2.27) in the case of compact groups. However, as in the
classical theory, or as in Theorem 2.2.15 in the case of compact groups, we can
show that amplitude operators with symbols in suitable amplitude classes reduce
to pseudo-differential operator with symbols in corresponding symbol classes, with
asymptotic formulae relating amplitudes to symbols.

5.6.1 Definition and quantization

Following the Euclidean and compact cases, it is natural to define amplitudes in
the following way, extending the notion of symbols from Definitions 5.1.33 and
5.1.34:

Definition 5.6.1. An amplitude is a field of operators

{A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ}
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depending on x, y ∈ G, satisfying for each x, y ∈ G

∃a, b ∈ R A(x, y, ·) := {A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ).

• An amplitude {A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} is said to be continuous in

x, y ∈ G whenever there exists a, b ∈ R such that

∀x, y ∈ G A(x, y, ·) := {A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} ∈ L∞

a,b(Ĝ),

and the map (x, y) �→ A(x, y, ·) is continuous from G×G ∼ Rn × Rn to the

Banach space L∞
a,b(Ĝ).

• An amplitude A = {A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} is said to be smooth

in x, y ∈ G whenever it is a field of operators depending smoothly on
(x, y) ∈ G × G (see Remark 1.8.16) and, for every β1, β2 ∈ Nn

0 , the field

{∂β1
x ∂β2

y A(x, y, π) : H∞
π → Hπ, π ∈ Ĝ} is continuous.

Clearly if an amplitude A = {A(x, y, π)} does not depend on y, that is,
A(x, y, π) = σ(x, π), then it defines a symbol σ = {σ(x, π)}. More generally any
amplitude A = {A(x, y, π)} defines a symbol σ given by σ(x, π) = A(x, x, π). In
Section 5.6.2, we will define amplitude classes and give other examples of ampli-
tudes.

Similarly to the symbol case, one can associate a kernel with an amplitude:

Definition 5.6.2. Let A be an amplitude. For each (x, y) ∈ G×G, let κx,y ∈ S ′(G)
be the unique distribution such that

FG(κx,y)(π) = A(x, y, π).

The map G×G � (x, y) �→ κx,y ∈ S ′(G) is called its kernel.

As in the symbol case, the map G × G � (x, y) �→ κx,y ∈ S ′(G) is smooth,
see Lemma 5.1.35 for the proof of this as well as for the existence and uniqueness
of κx,y in the case of symbols.

Before defining the amplitude quantization, we need to open a (quick) paren-
thesis to describe the following property from distribution theory:

Lemma 5.6.3. Let G × G � (x, y) �→ κx,y ∈ S ′(G) be a continuous mapping. For
each x, we consider the distribution κ̃x defined by∫

G

κ̃x(y)φ(y)dy = lim
ε→0

∫
G×G

κx,w(y
−1x)φ(y)ψε(wy

−1)dydw,

where φ ∈ D(G), ψ1 ∈ D(G),
∫
G
ψ1 = 1 and ψε(z) = ε−Qψ(ε−1z), ε > 0.

Indeed this limit exists and is independent of the choice of ψ1.
This defines a continuous map G � x �−→ κ̃x ∈ D′(G).
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Proof of Lemma 5.6.3. Since κx,y ∈ S ′(G), there exists a seminorm ‖ · ‖S(G),N

such that

∀φ ∈ S(G) |〈κx,y, φ〉| ≤ Cx,y,N‖φ‖S(G),N .

Furthermore, since the map G×G � (x, y) �→ κx,y ∈ S ′(G) is smooth, we obtain
that the constant Cx,y,N = ‖κx,y‖S′(G),N can be chosen locally uniform with
respect to x and y. Furthermore, fixing two compacts K1 and K2 of G, there
exists a seminorm ‖ · ‖S(G),N (depending on K1 and K2) such that the map

((x, y), (x′, y′)) ∈ (K1 ×K2)× (K1 ×K2) �→ ‖κx,y − κx′,y′‖S′(G),N ,

is uniformly continuous. This is easily proved using a cover of the compactsK1×K2

by balls of sufficiently small radius, and the continuity at each centre of these balls.

For any ψ1 ∈ D(G), ε > 0 and x ∈ G, we define the distribution Tψ1,ε,x by

Tψ1,ε,x(φ) :=

∫
G×G

κx,w(y
−1x)φ(y)ψε(wy

−1)dydw,

where φ ∈ D(G) is supported in a fixed compact K ⊂ G. Using the change of
variable from w to z with z = ε−1(wy−1), so that w = (εz)y, we obtain

Tψ1,ε,x(φ) =

∫
G×G

κx,(εz)y(y
−1x)φ(y)ψ1(z)dydz.

Therefore, for any ε1, ε2 ∈ (0, 1), we get

|(Tψ1,ε1,x − Tψ1,ε2,x)(φ)|

=

∣∣∣∣∫
G×G

(
κx,(ε1z)y(y

−1x)− κx,(ε2z)y(y
−1x)

)
φ(y)ψ1(z)dydz

∣∣∣∣
≤ sup

z∈suppψ1
y∈suppφ

‖κx,(ε1z)y − κx,(ε2z)y‖S′(G),N‖φ‖S(G),N‖ψ1‖L1(G),

where ‖ · ‖S(G),N is chosen with respect to the compact sets

{x} and {(εz)y, ε ∈ [0, 1], z ∈ suppψ1, y ∈ K2}.

This shows that the scalar sequence (Tψ1,ε,x(φ)) converges as ε→ 0 and that the
linear map

ψ1 ∈ D(G) �−→ lim
ε→0

Tψ1,ε,x(φ), (5.65)

extends continuously to L1(Ko) → C for any compact Ko ⊂ G. Thus the map
given in (5.65) is given by integration against a locally bounded function on G.
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Let us show that the map given in (5.65) is invariant under left or right
translation. Indeed, modifying the argument above we obtain∣∣∣Tψ1,ε,x(φ)− Tψ1(·y−1

o ),ε,x(φ)
∣∣∣

=

∣∣∣∣∫
G×G

(
κx,(εz)y − κx,(ε(zyo))y

)
(y−1x)φ(y)ψ1(z)dydz

∣∣∣∣
≤ sup

z∈suppψ1
y∈suppφ

‖κx,(εz)y − κx,(ε(zyo))y‖S′(G),N‖φ‖S(G),N‖ψ1‖L1(G)

for a suitable seminorm ‖ · ‖S(G),N , (depending locally on yo). Since the two se-
quences ((εz)y)ε>0 and ((ε(zyo))y)ε>0 converge to y in G, we see that

lim
ε→0

Tψ1,ε,x(φ) = lim
ε→0

Tψ1(·y−1
o ),ε,x(φ),

and the same is true for right translation. Therefore, the locally bounded function
given by the mapping (5.65) is a constant which we denote by T0,x(φ):

lim
ε→0

Tψ1,ε,x(φ) = T0,x(φ)

∫
G

ψ1.

One checks easily that T0,x(φ), φ ∈ D(G), suppφ ⊂ K, defines a distribution
κ̃x ∈ D′(G) which is therefore independent of ψ1. Refining the argument given
above shows that κ̃x ∈ D′(G) depends continuously on x ∈ G. �

If G × G � (x, y) �→ κx,y ∈ S ′(G) is a continuous mapping, we will allow
ourselves to denote the distribution defined in Lemma 5.6.3 by

κ̃x(y) := κx,y(y
−1x).

This closes our parenthesis about distribution theory.

We can now define the operator

T = AOp(A)

associated with an amplitude A = {A(x, y, π)} with amplitude kernel κx,y, by

Tφ(x) :=

∫
G

φ(y)κx,y(y
−1x)dy, φ ∈ D(G), x ∈ G. (5.66)

The quantization defined by formula (5.66) makes sense for any amplitude A =
{A(x, y, π)}. Clearly the quantization mapping A �→ AOp(A) is linear. However,
as in the Euclidean or compact cases, it is injective but not necessarily 1-1 since
different amplitudes may lead to the same operator, in contrast to the situation
for symbols, cf. Theorem 5.1.39.
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Remark 5.6.4. If an amplitude A = {A(x, y, π)} does not depend on y, that is,
A(x, y, π) = σ(x, π), then the corresponding symbol σ = {σ(x, π)} yield the same
operator:

AOp(A) = Op(σ)

since in this case the amplitude κx,y is a function/distribution κx independent of
y which coincides with the kernel of the symbol σ.

As in the symbol case in Lemma 5.1.42, we may see AOp(A) as a limit of
nice operators in the following sense:

Lemma 5.6.5. If A = {A(x, y, π)} is an amplitude, we can construct explicitly a
family of amplitudes Aε = {Aε(x, y, π)}, ε > 0, in such a way that

1. the kernel κε,x,y(z) of Aε is smooth in both x, y and z, and compactly sup-
ported in x and y,

2. the associated kernel κ̃ε,x(y) = κε,x,y(y
−1x) is smooth and compactly sup-

ported in both x, y,

3. if φ ∈ S(G) then AOp(Aε)φ ∈ D(G), and

4. AOp(Aε)φ −→
ε→0

AOp(A)φ uniformly on any compact subset of G.

Proof of Lemma 5.6.5. We use the same notation χε ∈ D(G), |π| and projε,π as
in the proof of Lemma 5.1.42. We consider for any ε ∈ (0, 1) the amplitude given
by

Aε(x, y, π) := χε(x)χε(y)1|π|≤ε−1A(x, y, π) ◦ projε,π.

By Definition 5.6.2 and the Fourier inversion formula (1.26), the corresponding
kernel is

κε,x,y(z) = χε(x)χε(y)

∫
|π|≤ε−1

Tr
(
A(x, y, π) projε,ππ(z)

)
dμ(π),

which is smooth in x, y and z and compactly supported in x and y. The rest follows
easily. �

There is a simple relation between the amplitudes of an operator and its
adjoint, much simpler than in the symbol case:

Proposition 5.6.6. Let A be an amplitude. Then B given by

B(x, y, π) := A(y, x, π)∗

is also an amplitude. Furthermore, the formal adjoint of the operator T = AOp(A)
is T ∗ = AOp(B). If {κx,y(z)} is the kernel of A, then the kernel of B is given via
(x, y, z) �→ κ̄y,x(z

−1).
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Proof. On one hand, from the amplitude quantization in (5.66), we compute for
φ, ψ ∈ D(G), that

(Tφ, ψ) =

∫
G

∫
G

φ(y)κx,y(y
−1x)ψ̄(x)dy dx = (φ, T ∗ψ),

therefore

T ∗ψ(y) =
∫
G

κ̄x,y(y
−1x)ψ(x)dx

or, equivalently,

T ∗ψ(x) =
∫
G

κ̄y,x(x
−1y)ψ(y)dy.

One the other hand, the amplitude kernel for B is κ′
x,y satisfying

π(κ′
x,y) = B(x, y, π) = A(y, x, π)∗ = π(κy,x)

∗ = π(κ∗
y,x),

with κ∗
y,x(z) = κ̄y,x(z

−1), and therefore,

κ′
x,y(z) = κ∗

y,x(z) = κ̄y,x(z
−1).

By (5.66), this implies that T ∗ = AOp(B). �

5.6.2 Amplitude classes

Again similarly to the symbol case, we may define the amplitude classesASm
ρ,δ. This

is done in analogy to Definition 5.2.11 for symbols and its equivalent reformulation
in (5.29).

Definition 5.6.7. Let m, ρ, δ ∈ R with 1 ≥ ρ ≥ δ ≥ 1. An amplitude A is called
an amplitude of order m and of type (ρ, δ) whenever, for each α, β ∈ Nn

0 and

γ ∈ R, the field {Xβ1
x Xβ2

y ΔαA(x, y, π)} is in L∞
γ,ρ[α]−m−δ([β1]+[β2])+γ(Ĝ) uniformly

in (x, y) ∈ G, i.e. if

sup
x,y∈G

‖Xβ1
x Xβ2

y ΔαA(x, y, ·)‖L∞
γ,ρ[α]−m−δ([β1]+[β2])+γ

(Ĝ) <∞. (5.67)

In this case, proceeding in a similar way to Sm
ρ,δ in Section 5.2.2, we see

that the fields of operators Xβ1
x Xβ2

y ΔαA(x, y, ·) act on smooth vectors and (5.67)
implies

sup
x,y∈G

π∈Ĝ

‖π(I +R)
ρ[α]−m−δ([β1]+[β2])+γ

ν Xβ1
x Xβ2

y ΔαA(x, y, ·)π(I +R)−
γ
ν ‖L (Hπ) <∞.

(5.68)
The converse also holds.
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The amplitude class ASm
ρ,δ = ASm

ρ,δ(G) is the set of amplitudes of order m
and of type (ρ, δ). We also define

AS−∞ :=
⋂
m∈R

ASm
ρ,δ,

the class of smoothing amplitudes. As in the case of symbols, the class AS−∞ is
independent of ρ and δ and can be denoted just by AS−∞.

It is a routine exercise to check that each amplitude class ASm
ρ,δ is a vector

space and that we have the inclusions

m1 ≤ m2, δ1 ≤ δ2, ρ1 ≥ ρ2 =⇒ ASm1

ρ1,δ1
⊂ ASm2

ρ2,δ2
. (5.69)

We assume that a positive Rockland operator R of degree ν is fixed. If A is
an amplitude and a, b, c ∈ [0,∞), we set

‖A(x, y, π)‖ASm
ρ,δ,a,b,c

:= sup
|γ|≤c

[α]≤a, [β1],[β2]≤b

‖π(I +R)
ρ[α]−m−δ([β1]+[β2])+γ

ν Xβ1
x Xβ2

y ΔαA(x, y, π)π(I +R)−
γ
ν ‖L (Hπ),

and

‖A‖ASm
ρ,δ,a,b,c

:= sup
(x,y)∈G×G, π∈Ĝ

‖A(x, y, π)‖ASm
ρ,δ,a,b,c

.

Again, one checks easily that the resulting maps ‖ · ‖Sm
ρ,δ,a,b,c

, a, b, c ∈ [0,∞), are
seminorms over the vector space ASm

ρ,δ. Furthermore, taking a, b, c as non-negative
integers, they endow ASm

ρ,δ with the structure of a Fréchet space. The class of

smoothing amplitudes AS−∞ is then equipped with the topology of projective
limit. Similarly to the case of symbols in Proposition 5.2.12, two different positive
Rockland operators give equivalent families of seminorms.

The inclusions given in (5.69) are continuous for these topologies.

Symbols in Sm
ρ,δ are examples of amplitudes in ASm

ρ,δ which do not depend
on y. Conversely, if an amplitude A = {A(x, y, π)} in ASm

ρ,δ does not depend on y,
that is, A(x, y, π) = σ(x, π), then it defines a symbol σ = {σ(x, π)} in Sm

ρ,δ. More
generally we check easily:

Lemma 5.6.8. If A = {A(x, y, π)} is in ASm
ρ,δ, then the symbol σ given by

σ(x, π) := A(x, x, π)

is in Sm
ρ,δ.

A wider class of examples is given by the following property which can be
shown by an easy adaption of Proposition 5.3.4 and Corollary 5.3.7:



5.6. Amplitudes and amplitude operators 381

Corollary 5.6.9. Let R be a positive Rockland operator of degree ν. Let m ∈ R and
0 ≤ δ < 1. Let f : G × G × R+ � (x, y, λ) �→ fx,y(λ) ∈ C be a smooth function.
We assume that for every β1, β2 ∈ Nn

0 , we have

Xβ1
x Xβ2

y fx,y ∈Mm+δ([β1]+[β2])
ν

,

whereM is as in Definition 5.3.1. Then

A(x, y, π) = fx,y(π(R))

defines an amplitude A in ASm
1,δ which satisfies

∀a, b, c ∈ N0 ∃� ∈ N, C > 0

‖A‖ASm
1,δ,a,b,c

≤ C sup[β1],[β2]≤b ‖Xβ1
x Xβ2

y fx,y‖Mm+δ[β1+β2]
ν

,�,

with � and C independent of f .

This can also be generalised easily to multipliers in a finite family of strongly
commuting positive Rockland operators.

5.6.3 Properties of amplitude classes and kernels

One can readily prove properties for the amplitudes similar to the ones already
established for symbols. Here we note that although the subsequent properties
would follow also from Theorem 5.6.14 in the sequel and from the correspond-
ing properties of symbols in Section 5.2.5, we now indicate what can be shown
concerning amplitudes and their classes by a simple adaptation of proofs of the
corresponding properties for symbols.

Proceeding as in Section 5.2.5, we also have the following properties for the
amplitude classes:

Proposition 5.6.10. Let 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1.

(i) Let A ∈ ASm
ρ,δ have kernel κx,y. Then we have the following properties.

1. For every x, y ∈ G and γ ∈ R, q̃αXβ1
x Xβ2

y κx,y ∈ Kγ,ρ[α]−m−δ[β1+β2]+γ ,
where we recall the notation q̃α(x) = qα(x

−1).

2. If β1, β2 ∈ Nn
0 then the amplitude {Xβ1

x Xβ2
y A(x, y, π), (x, y, π) ∈ G ×

G× Ĝ} is in AS
m+δ[β1+β2]
ρ,δ with kernel Xβ1

x Xβ2
y κx,y, and

‖Xβ1
x Xβ2

y A(x, y, π)‖AS
m+δ[β1+β2]

ρ,δ ,a,b,c
≤ C‖A(x, y, π)‖ASm

ρ,δ,a,b+[β1+β2],c,

with C = Cb,β1,β2 .
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3. If αo ∈ Nn
0 then the amplitude {ΔαoA(x, y, π), (x, y, π) ∈ G×G× Ĝ} is

in AS
m−ρ[αo]
ρ,δ with kernel q̃αo

κx,y, and

‖ΔαoA(x, π)‖
S

m−ρ[αo]
ρ,δ ,a,b,c

≤ Ca,αo‖A(x, π)‖Sm
ρ,δ,a+[αo],b,c.

4. The symbol {A(x, y, π)∗, (x, π) ∈ G × G × Ĝ} is in ASm
ρ,δ with kernel

κ∗
x,y given by κ∗

x,y(z) = κ̄y,x(z
−1), and

‖A(x, y, π)∗‖ASm
ρ,δ,a,b,c

=

sup
|γ|≤c

[α]≤a, [β1],[β2]≤b

‖π(I+R)−
γ
ν Xβ1

x Xβ2
y ΔαA(x, y, π)π(I+R)

ρ[α]−m−δ([β1]+[β2])+γ
ν ‖L (Hπ).

(ii) Let A1 ∈ ASm1

ρ,δ and A2 ∈ ASm2

ρ,δ have kernels κ1,x,y and κ2,x,y, respectively.
Then

A(x, y, π) := A1(x, y, π)A2(x, y, π)

defines the amplitude A in Sm
ρ,δ, m = m1+m2, with kernel κ2,x,y ∗κ1,x,y with

the convolution in the sense of Definition 5.1.19. Furthermore,

‖A(x, y, π)‖Sm
ρ,δ,a,b,c

≤ C‖A1(x, y, π)‖Sm1
ρ,δ ,a,b,c+ρa+|m2|+δb‖A2(x, y, π)‖Sm2

ρ,δ ,a,b,c,

where the constant C = Ca,b,c > 0 does not depend on A1,A2.

A direct consequence of Part (ii) of Proposition 5.6.10 is that the amplitudes
in the introduced amplitude classes form an algebra:

Corollary 5.6.11. Let 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1. The collection of symbols⋃
m∈R

ASm
ρ,δ forms an algebra.

Furthermore, if A0 ∈ AS−∞ is smoothing and A ∈ ASm
ρ,δ is of order m ∈ R,

then A0A and AA0 are also in AS−∞.

Another consequence of Part (ii) together with Lemma 5.2.17 gives the fol-
lowing property:

Corollary 5.6.12. Let 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1. Let A ∈ ASm
ρ,δ have kernel κx,y. If

β and β̃ are in Nn
0 , then

{π(X)βAπ(X)β̃ , (x, π) ∈ G× Ĝ} ∈ AS
m+[β]+[β̃]
ρ,δ

with kernel Xβ
z X̃

β̃
z κx,y(z). Furthermore, for any a, b, c there exists C = Ca,b,c

independent of A such that

‖π(X)βAπ(X)β̃‖ASm
ρ,δ,a,b,c

≤ C‖A‖ASm
ρ,δ,a,b,c+ρa+[β]+[β̃]+δb.
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Proceeding as in Section 5.4.1, taking into account the dependence in x and
y, we obtain

Proposition 5.6.13. Let A = {A(x, y, π)} be in ASm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0. Let κx,y

denote its associated kernel.

1. If α, β1, β2, βo, β
′
o ∈ Nn

0 are such that

m− ρ[α] + [β1] + [β2] + δ([βo] + [β′
o]) < −Q/2,

then the distribution Xβ1
z X̃β2

z (Xβo
x X

β′
o

y q̃α(z)κx,y(z)) is square integrable and
for every x ∈ G we have∫

G

∣∣∣Xβ1
z X̃β2

z (Xβo
x X

β′
o

y q̃α(z)κx,y(z))
∣∣∣2 dz ≤ C sup

π∈Ĝ

‖A(x, π)‖2ASm
ρ,δ,a,b,c

where a = [α], b = [βo] + [β′
o], c = ρ[α] + [β1] + [β2] + δ([βo] + [β′

o]) and
C = Cm,α,β1,β2,βo,β′

o
> 0 is a constant independent of A and x, y.

2. For any α, β1, β2, βo, β
′
o ∈ Nn

0 satisfying

m− ρ[α] + [β1] + [β2] + δ([βo] + [β′
o]) < −Q,

the distribution z �→ Xβ1
z X̃β2

z Xβo
x X

β′
o

y q̃α(z)κx,y(z) is continuous on G for
every (x, y) ∈ G×G and we have

sup
z∈G

∣∣∣Xβ1
z X̃β2

z

{
Xβo

x X
β′
o

y q̃α(z)κx,y(z)
}∣∣∣ ≤ C sup

π∈Ĝ

‖A(x, π)‖ASm
ρ,δ,[α],[βo]+[β′

o],[β2],

where C = Cm,α,β1,β2,βo,β′
o
> 0 is a constant independent of A and x, y.

We now assume ρ > 0. Then the map κ : (x, y, z) �→ κx,y(z) is smooth
on G × G × (G \{0}). Fixing a homogeneous quasi-norm | · | on G, we have the
following more precise estimates:

at infinity: For any M ∈ R and any α, β1, β2, βo, β
′
o ∈ Nn

0 there exist C > 0 and
a, b, c ∈ N independent of A such that for all x ∈ G and z ∈ G satisfying
|z| ≥ 1, we have∣∣∣Xβ1

z X̃β2
z (Xβo

x X
β′
o

y q̃α(z)κx,y(z))
∣∣∣ ≤ C sup

π∈Ĝ

‖A(x, y, π)‖ASm
ρ,δ,a,b,c

|z|−M .

at the origin: For any α, β1, β2, βo, β
′
o ∈ Nn

0 with Q+m+δ([βo]+[β′
o])−ρ[α]+[β1]+

[β2] ≥ 0 there exist a constant C > 0 and computable integers a, b, c ∈ N0

independent of A such that for all x ∈ G and z ∈ G\{0}, we have, if

Q+m+ δ([βo] + [β′
o])− ρ[α] + [β1] + [β2] > 0,
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then ∣∣∣Xβ1
z X̃β2

z (Xβo
x X

β′
o

y q̃α(z)κx,y(z))
∣∣∣

≤ C sup
π∈Ĝ

‖A(x, π)‖ASm
ρ,δ,a,b,c

|z|−
Q+m+δ([βo]+[β′

o])−ρ[α]+[β1]+[β2]

ρ ,

and if
Q+m+ δ([βo] + [β′

o])− ρ[α] + [β1] + [β2] = 0,

then∣∣∣Xβ1
z X̃β2

z (Xβo
x X

β′
o

y q̃α(z)κx,y(z))
∣∣∣ ≤ C sup

π∈Ĝ

‖A(x, y, π)‖ASm
ρ,δ,a,b,c

ln |z|.

5.6.4 Link between symbols and amplitudes

Symbols can be viewed as amplitudes which do not depend on the second variable
of the group. Then Sm

ρ,δ ⊂ ASm
ρ,δ and, by Remark 5.6.4, we have the inclusion

Ψm
ρ,δ = Op(Sm

ρ,δ) ⊂ AOp(ASm
ρ,δ).

The next theorem shows the converse, namely, that the class of operators
AOp(ASm

ρ,δ) is included in Ψm
ρ,δ. Therefore this will show that the amplitude quan-

tization of ASm
ρ,δ coincides with the symbol quantization of Sm

ρ,δ.

Theorem 5.6.14. Let A ∈ ASm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0, δ �= 1. Then AOp(A) is in

Ψm
ρ,δ, that is, there exists a (unique) symbol σ ∈ Sm

ρ,δ such that

AOp(A) = Op(σ).

Furthermore, for any M ∈ N0, the map{
ASm

ρ,δ −→ S
m−(ρ−δ)(M+1)
ρ,δ

A �−→ σ(x, π)−
∑

[α]≤M ΔαXα
y A(x, y, π)|y=x

,

is continuous. If ρ > δ, we have the asymptotic expansion

σ(x, π) ∼
∑
α

ΔαXα
y A(x, y, π)|y=x.

The proof of Theorem 5.6.14 is in essence close to the proofs of product and
adjoint of operators in ∪m∈RΨ

m
ρ,δ, see Theorems 5.5.12 and 5.5.3. As for these

theorems, it is helpful to understand formally the steps of the rigorous proof.

From the amplitude quantization in (5.66), we see that if AOp(A) can be
written as Op(σ), then, denoting by κσ,x the symbol kernel and by κA,x,y the
amplitude kernel, we have

AOp(A)(φ)(x) =
∫
G

φ(y)κA,x,y(y
−1x)dy =

∫
G

φ(xz−1)κA,x,xz−1(z)dz
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whereas

Op(σ)(φ)(x) =

∫
G

φ(y)κσ,x(y
−1x)dy =

∫
G

φ(xz−1)κσ,x(z)dz.

Therefore, formally we must have

κA,x,xz−1(z) = κσ,x(z)
(
or equivalently κA,x,y(y

−1x) = κσ,x(y
−1x)

)
.

Using the Taylor expansion in y = xz−1 for κA,x,y at x, we have (again formally)

κσ,x(z) = κA,x,xz−1(z) ≈
∑
α

q̃α(z)X
α
y κA,x,y(z)|y=x. (5.70)

Note that the group Fourier transform in z of each term in the sum above is

Fz∈G{q̃α(z)Xα
y=xκA,x,y(z)}(π) = ΔαXα

y=xFz∈G{κA,x,y(z)}(π)
= ΔαXα

y=xA(x, y, π).

Taking the group Fourier transform in z on both sides of (5.70), we obtain still
formally that

σ(x, π) ≈
∑
α

ΔαXα
y A(x, y, π)|y=x.

As in the proofs of Theorems 5.5.12 and 5.5.3, the crucial point is to control the
remainder while using Taylor’s expansion. The method is similar as in the proof
of Theorem 5.5.12 and the adaptation is easy and left to the reader.

Note that Theorem 5.6.14 together with Proposition 5.6.6 give another proof
of Theorem 5.5.12. This is not surprising given the similarity between the proof
of Theorems 5.6.14 and 5.5.12.

5.7 Calderón-Vaillancourt theorem

In this section, we prove the analogue of the Calderón-Vaillancourt theorem, now
in the setting of graded Lie groups. This extends the L2-boundedness of operators
in the class Ψ0

1,0 given in Theorem 5.4.17 to the classes Ψ0
ρ,δ.

Theorem 5.7.1. Let T ∈ Ψ0
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1. Then T extends to a

bounded operator on L2(G).

Moreover, there exist a constant C > 0 and a seminorm ‖ · ‖Ψ0
ρ,δ,a,b,c

with

computable integers a, b, c ∈ N0 independent of T such that

∀φ ∈ S(G) ‖Tφ‖L2(G) ≤ C‖T‖Ψ0
ρ,δ,a,b,c

‖φ‖L2(G).

Before showing Theorem 5.7.1, let us mention that together with the pseudo-
differential calculus, it implies the following boundedness on Sobolev spaces L2

s.
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Corollary 5.7.2. Let T ∈ Ψm
ρ,δ with 1 ≥ ρ ≥ δ ≥ 0 and δ �= 1. Then for any s ∈ R,

the operator T extends to a continuous operator from L2
s(G) to L2

s−m(G):

∀φ ∈ S(G) ‖Tφ‖L2
s−m(G) ≤ Cs,m,ρ,δ‖T‖Ψm

ρ,δ,a,b,c
‖φ‖L2

s(G),

with some (computable) integers a, b, c depending on s,m, ρ, δ.

Proof of Corollary 5.7.2. Let R be a positive Rockland operator. By the compo-
sition theorem (e.g. Theorem 5.5.3), we have

(I +R)
−m+s

ν T (I +R)− s
ν ∈ Ψ0

ρ,δ.

Therefore, by Theorem 5.7.1, we have

‖(I +R)
−m+s

ν T (I +R)− s
ν φ‖L (L2(G) � ‖(I +R)

−m+s
ν T (I +R)− s

ν ‖Ψ0
ρ,δ,a1,b1,c1

� ‖T‖Ψm
ρ,δ,a2,b2,c2 ,

by Theorem 5.5.3. �
Remark 5.7.3. Combining the results obtained so far, for each (ρ, δ) with 1 ≥ ρ ≥
δ ≥ 0 and δ �= 1, we have therefore obtained an operator calculus, in the sense that
the set

⋃
m∈R

Ψm
ρ,δ forms an algebra of operators, stable under taking the adjoint,

and acting on the Sobolev spaces in such a way that the loss of derivatives in L2

is controlled by the order of the operator.

Note that the L2-boundedness in the case (ρ, δ) = (1, 0) was already proved
by different methods, see Theorem 5.4.17 and its proof. With the same proof as in
the corollary above, one obtains easily boundedness for Lp-Sobolev spaces in this
case:

Corollary 5.7.4. Let T ∈ Ψm
1,0. Then for any s ∈ R and p ∈ (1,∞) the operator T

extends to a continuous operator from Lp
s(G) to Lp

s−m(G):

∀φ ∈ S(G) ‖Tφ‖Lp
s−m(G) ≤ Cs,m,ρ,δ‖T‖Ψm

ρ,δ,a,b,c
‖φ‖Lp

s(G),

with some (computable) integers a, b, c depending on s,m, ρ, δ.

Proof of Corollary 5.7.4. As above, (I + R)−m+s
ν T (I + R)− s

ν ∈ Ψ0 therefore, by
Corollary 5.4.20 we have

‖(I +R)
−m+s

ν T (I +R)− s
ν φ‖L (Lp(G)) � ‖(I +R)

−m+s
ν T (I +R)− s

ν ‖Ψ0,a1,b1,c1

� ‖T‖Ψ0,a2,b2,c2 ,

by Theorem 5.5.3. �

The rest of this section is devoted to the proof of the Calderón-Vaillancourt
Theorem, that is, Theorem 5.7.1. In Section 5.7.2, we prove the result for ρ = δ = 0.
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The proof will rely on an analogue on G of the familiar decomposition of Rn into
unit cubes presented in Section 5.7.1. The case ρ = δ ∈ (0, 1) will be proved in
Section 5.7.4 and its proof relies on the case ρ = δ = 0 and on a bilinear estimate
proved in Section 5.7.3. The case of ρ = δ ∈ [0, 1) will then be proved and this will
imply Theorem 5.7.1 thanks to the continuous inclusions between symbol classes
(see (5.31)).

5.7.1 Analogue of the decomposition into unit cubes

In this section, we present an analogue of the dyadic cubes, more precisely we con-
struct a useful covering of the general homogeneous Lie group G by unit balls and
the corresponding partition of unity with a number of advantageous properties.
The proof is an adaptation of [FS82, Lemma 7.14].

Lemma 5.7.5. Let | · | be a fixed homogeneous quasi-norm on the homogeneous Lie
group G. We denote by Co ≥ 1 a constant for the triangle inequality

∀x, y ∈ G |xy| ≤ Co(|x|+ |y|). (5.71)

Denoting by B(x,R) the | · |-ball centred at point x with radius R,

B(x,R) := {y ∈ G : |x−1y| < R},

there exists a maximal family {B(xi,
1

2Co
)}∞i=1 of disjoint balls of radius 1

2Co
, and

we choose one such family. Then the following properties hold:

1. The balls {B(xi, 1)}∞i=1 cover G.

2. For any C ≥ 1, no point of G belongs to more than �(4C2
oC)Q	 of the balls

{B(xi, C)}∞i=1.

3. There exists a sequence of functions χi ∈ D(G), i ∈ N, such that each χi is
supported in B(xi, 2) and satisfies 0 ≤ χi ≤ 1 while we have

∑∞
i=1 χi = 1.

Moreover, for any β ∈ Nn
0 , X

βχi is uniformly bounded in i ∈ N.

4. For any p1 > Q+ 1, we have

∃Cp1
> 0 ∀io ∈ N

∞∑
i=1

(1 + |x−1
io

xi|)−p1 ≤ Cp1
<∞.

Remark 5.7.6. The conclusion of Part (4) is rough but will be sufficient for our
purposes. We note, however, that if the quasi-norm in Lemma 5.7.5 is actually a
norm, i.e. if the constant Co in (5.71) is equal to one, Co = 1, then the conclusion
of Part (4) of Lemma 5.7.5 holds true for all p1 > Q. This will be proved together
with the lemma.
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Proof of Lemma 5.7.5 and of Remark 5.7.6. If x ∈ G then by maximality there
exists i such that the distance from x to B(xi,

1
2Co

) is < 1/(2Co). Denoting by y

a point in B̄(xi,
1

2Co
) which realises the distance, we have

|x−1
i x| ≤ Co(|x−1

i y|+ |y−1x|) < Co

(
1

2Co
+

1

2Co

)
= 1.

This proves Part (1).

If x is in all the balls B(xi� , C), � = 1, . . . , �o, then

∀y ∈ ∪�o�=1B(xi� , C) ∃� ∈ [1, �o] |x−1y| ≤ Co(|x−1xi� |+ |x−1
i�

y|) ≤ Co2C.

This shows that B(x, 2CoC) contains ∪�o�=1B(xi� , C) and, therefore, it must contain

the disjoint balls ∪�o�=1B(xi� ,
1

2Co
). Taking the Haar measure and denoting c1 :=

|B(0, 1)|, we have

| ∪�o�=1 B(xi� ,
1

2Co
)| = �oc1

(
1

2Co

)Q

≤ |B(x, 2CoC)| = (2CoC)
Q
c1.

This proves Part (2).

Let us fix χ ∈ D(G) satisfying 0 ≤ χ ≤ 1 with χ = 1 on B(0, 1) and χ = 0
on B(0, 2). The sum

∑∞
i′=1 χ(x

−1
i′ ·) is locally finite by Part (2); it is a smooth

function with values between 1 and �(4C2
o × 2)Q	. We define

χi(x) :=
χ(x−1

i x)∑∞
i′=1 χ(x

−1
i′ x)

.

This gives Part (3).

To prove Part (4), we fix a point xio and observe that if x ∈ G is in one of
the balls B(xi,

1
2Co

) with |x−1
io

xi| ∈ [�, �+1) for some � ∈ N, let us say B(xi1 ,
1

2Co
),

then

|x−1
io

x| ≤ Co(|x−1
i1

x|+ |x−1
io

xi1 |) ≤ Co(
1

2Co
+ �+ 1).

This yields the inclusion

'|x−1
io

xi|∈[�,�+1)B(xi,
1

2Co
) ⊂ B(xio , Co(

1

2Co
+ �+ 1)).

The measure of the left hand side is c1(2Co)
−Qcard{i : |x−1

io
xi| ∈ [�, � + 1)} and

the measure of the right hand side is c1(Co(
1

2Co
+ �+ 1))Q. Therefore,

card{i : |x−1
io

xi| ∈ [�, �+ 1)} ≤ c�Q.
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Now we decompose

∞∑
i=1

(1 + |x−1
io

xi|)−p1 =
∑

|x−1
i xio |<1

(1 + |x−1
io

xi|)−p1 +

∞∑
�=1

∑
|x−1

i xio |∈[�,�+1)

(1 + |x−1
io

xi|)−p1 .

By Part (2) the first sum on the right hand side is ≤ �(4C2
o )

Q	 whereas from the
observation just above, the second sum is ≤

∑∞
�=0(1 + �)−p1c′(1 + �)Q. This last

sum being convergent whenever −p1 +Q < −1, Part (4) is proved.
Let us finally prove Remark 5.7.6, that is, Part (4) of the lemma for p1 > Q

provided that Co = 1. This will follow by the same argument as above if we can
show a refined estimate

card{i : |x−1
io

xi| ∈ [�, �+ 1)} ≤ c�Q−1.

We claim that this estimate holds true. Since Co = 1, we can estimate

|x−1
io

x| ≥ |x−1
io

xi1 | − |x−1
i1

x| > �− 1

2Co
= �− 1

2
.

We also have Co(
1

2Co
+ �+ 1) = �+ 3

2 . Consequently, we have the inclusion

'|x−1
io

xi|∈[�,�+1)B(xi,
1

2Co
) ⊂ B(xio , �+

3

2
)\B(xio , �−

1

2
),

with the measure on the right hand side being c1(�+
3
2 )

Q− c1(�− 1
2 )

Q. Therefore,

card{i : |x−1
io

xi| ∈ [�, �+ 1)} ≤ c�Q−1,

so that the required claim is proved. �

5.7.2 Proof of the case S0
0,0

This section is devoted to the proof of the following result which is a particular case
of Theorem 5.7.1. We also give an explicit estimate on the number of derivatives
and differences of the symbol needed for the L2-boundedness.

Proposition 5.7.7. Let T ∈ Ψ0
0,0. Then T extends to a bounded operator on L2(G).

Furthermore, if we fix a positive Rockland operator R (in order to define the semi-
norms on Ψm

ρ,δ) then

∀φ ∈ S(G) ‖Tφ‖L2(G) ≤ C‖T‖Ψ0
0,0,a,b,c

‖φ‖L2(G),

where C > 0 and a, b, c ∈ N0 are independent of T . In particular, this estimate
holds with a = rpo, b = rν + �Q2 	, c = rν, where ν is the degree of R, po/2 is the
smallest positive integer divisible by υ1, . . . , υn, and r ∈ N0 is the smallest integer
such that rpo > Q+ 1.



390 Chapter 5. Quantization on graded Lie groups

Throughout Section 5.7.2, we fix the homogeneous norm | · | = | · |po
given

by (3.21), where po/2 is the smallest positive integer divisible by υ1, . . . , υn. We
fix a maximal family {B(xi,

1
2Co

)}∞i=1 of disjoint balls and a sequence of functions
(χi)

∞
i=1 so that the properties of Lemma 5.7.5 hold. We also fix ψ0, ψ1 ∈ D(R)

supported in [−1, 1] and [1/2, 2], respectively, such that 0 ≤ ψ0, ψ1 ≤ 1 and

∀λ ≥ 0

∞∑
j=0

ψj(λ) = 1 with ψj(λ) := ψ1(2
−(j−1)λ), j ∈ N.

Let us start the proof of Proposition 5.7.7. Let σ ∈ S0
0,0.

For each I = (i, j) ∈ N× N0, we define

σI(x, π) := χi(x)σ(x, π)ψj(π(R)).

We denote by TI and κI the corresponding operator and kernel.

Roughly speaking, the parameters i and j correspond to localising in space
and frequency, respectively. The localisation in space corresponds to the covering
of G by the balls centred at the xi’s, while the localisation in frequency is deter-
mined by the spectral projection of R to the L2(G)-eigenspaces corresponding to
eigenvalues close to each 2j .

It is not difficult to see that each TI is bounded on L2(G):

Lemma 5.7.8. Each operator TI is bounded on L2(G).

Since σI is localised both in space and in frequency, we may use one of the
two localisations.

Proof of Lemma 5.7.8 using frequency localisation. Let α, β ∈ Nn
0 . By the Leibniz

formulae for difference operators (see Proposition 5.2.10) and for vector fields, we
have

Xβ
xΔ

ασI(x, π) =
∑

[β1]+[β2]=[β]
[α1]+[α2]=[α]

Xβ1
x χi(x) X

β2
x Δα1σ(x, π) Δα2ψj(π(R)).

Therefore,

‖π(I +R)
[α]+γ

ν Xβ
xΔ

ασI(x, π)π(I +R)−
γ
ν ‖L (Hπ)

≤ C
∑

[β2]≤[β]
[α1]+[α2]=[α]

‖π(I +R)
[α]+γ

ν Xβ2
x Δα1σ(x, π) Δα2ψj(π(R))π(I +R)−

γ
ν ‖L (Hπ)

≤ C
∑

[β2]≤[β]
[α1]+[α2]=[α]

‖π(I +R)
[α]+γ

ν Xβ2
x Δα1σ(x, π)π(I +R)−

[α2]+γ
ν ‖L (Hπ)

‖π(I +R)
[α2]+γ

ν Δα2ψj(π(R))π(I +R)−
γ
ν ‖L (Hπ).
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Therefore, by Lemma 5.4.7, we obtain

‖σI‖S0
1,0,a,b,c

≤ ‖σ‖S0
0,0,a,b,c+a2

ja/ν .

This shows that the operator TI is in Ψ0 and is therefore bounded on L2(G) by
Theorem 5.4.17. �

Proof of Lemma 5.7.8 using space localisation. Another proof is to apply the fol-
lowing lemma since the symbol σI(x, π) has compact support in x. �

Lemma 5.7.9. Let σ(x, π) be a symbol (in the sense of Definition 5.1.33) supported
in x ∈ S, and assume that S is compact. Then the operator norm of the associated
operator on L2(G) is

‖Op(σ)‖L (L2(G)) ≤ C|S|1/2 sup
x∈G

[β]≤�Q
2 �

‖Xβ
xσ(x, π)‖L∞(Ĝ).

Proof of Lemma 5.7.9. Let T = Op(σ) and let κx be the associated kernel. We
have by the Sobolev inequality in Theorem 4.4.25,

|Tφ(x)|2 = |φ ∗ κx(x)|2 ≤ sup
xo∈G

|φ ∗ κxo
(x)|2

≤ C
∑

[β]≤�Q
2 �

∥∥φ ∗Xβ
xo
κxo(x)

∥∥2

L2(dxo)
.

Hence

‖Tφ‖2L2(G) ≤ C
∑

[β]≤�Q
2 �

∫
G

∫
G

|φ ∗Xβ
xo
κxo(x)|2dxodx

≤ C
∑

[β]≤�Q
2 �

∫
G

‖φ ∗Xβ
xo
κxo‖2L2(dx)dxo

≤ C|S| sup
xo∈G,[β]≤�Q

2 �

∥∥φ ∗Xβ
xo
κxo

(x)
∥∥2

L2(dx)
.

Now by Plancherel’s Theorem,∥∥φ ∗Xβ
xo
κxo

(x)
∥∥
L2(dx)

≤ ‖φ‖L2(dx) ‖Xβ
xo
σ(xo, π)‖L∞(Ĝ).

This implies that the L2-operator norm of T is

≤ C|S|1/2 sup
xo∈G,[β]≤�Q

2 �
‖Xβ

xo
σ(xo, π)‖L∞(Ĝ),

and concludes the proof of Lemma 5.7.9. �
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Let us go back to the proof of Proposition 5.7.7. The approach is to apply
the following version of Cotlar’s lemma:

Lemma 5.7.10 (Cotlar’s lemma here). Suppose that r ∈ N0 is such that rpo > Q+1
and that there exists Ar > 0 satisfying for all (I, I ′) ∈ N× N0:

max
(
‖TIT

∗
I′‖L (L2(G)), ‖T ∗

I TI′‖L (L2(G))

)
≤ Ar2

−|j−j′|r(1 + |x−1
i′ xi|)−rpo .

Then T = Op(σ) is L2-bounded with operator norm ≤ C
√
Ar.

Lemma 5.7.10 can be easily shown, adapting for instance the proof given in
[Ste93, ch. VII §2] using Part (4) of Lemma 5.7.5. Indeed, the numbering of the
sequence of operators to which the Cotlar-Stein lemma (see Theorem A.5.2) is
applied is not important, and the condition rpo > Q+ 1 is motivated by Lemma
5.7.5, Part (4). This is left to the reader.

Lemma 5.7.11 which follows gives the operator norm for TIT
∗
I′ and T ∗

I TI′ .
Combining Lemmata 5.7.10 and 5.7.11 gives the proof of Proposition 5.7.7.

Lemma 5.7.11. 1. For any r ∈ N0, the operator norm of TIT
∗
I′ on L2(G) is

‖TIT
∗
I′‖L (L2(G)) ≤ Cr1|j−j′|≤1(1 + |x−1

i′ xi|)−rpo‖σ‖2
S0
0,0,rpo,�Q

2 �,0.

2. For any r ∈ N0, the operator norm of T ∗
I TI′ on L2(G) is

‖T ∗
I TI′‖L (L2(G)) ≤ Cr1|x−1

i′ xi|≤4Co
2−|j−j′|r‖σ‖2

S0
0,0,0,rν+�Q

2 �,rν .

In the proof of Lemma 5.7.11, we will also use the symbols σi, i ∈ N, given
by

σi(x, π) := χi(x) σ(x, π),

and the corresponding operators Ti = Op(σi) and kernels κi. We observe that σi is
compactly supported in x, therefore by Lemma 5.7.9, the operator Ti is bounded
on L2(G).

Proof of Lemma 5.7.11 Part (1). We have (see the end of Lemma 5.5.4)

TI = Op(σI) = Ti ψj(R),

thus

TIT
∗
I′ = Tiψj(R)ψj′(R)T ∗

i′ .

Since ψj(R)ψj′(R) = (ψjψj′)(R), this is 0 if |j−j′| > 1. Let us assume |j−j′| ≤ 1.
We set

Ti′j′j := Ti′ ◦ (ψjψj′)(R) = Op (σi′ ◦ (ψjψj′) (π(R))) ,
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see again the end of Lemma 5.5.4. Therefore TIT
∗
I′ = TiT

∗
i′j′j , and we have by the

Sobolev inequality in Theorem 4.4.25,

|TIT
∗
I′φ(x)| =

∣∣∣∣∫
G

T ∗
i′j′jφ(z) κix(z

−1x)dz

∣∣∣∣
≤ sup

xo

∣∣∣∣∫
G

T ∗
i′j′jφ(z) κixo

(z−1x)dz

∣∣∣∣ 1x∈B(xi,2)

≤ C
∑

[β]≤�Q
2 �

∥∥∥∥Xβ
xo

∫
G

T ∗
i′j′jφ(z)κixo(z

−1x)dz

∥∥∥∥
L2(dxo)

1x∈B(xi,2).

Hence,

‖TIT
∗
I′φ‖L2 ≤ C

∑
[β]≤�Q

2 �

∥∥∥∥∫
G

T ∗
i′j′jφ(z)X

β
xo
κixo

(z−1x)dz 1x∈B(xi,2)

∥∥∥∥
L2(dxodx)

.

The idea of the proof is to use a quantity which will help the space localisa-
tion; so we introduce this quantity 1+ |z−1x|rpo and its inverse, where the integer
r ∈ N is to be chosen suitably. Notice that for the inverse we have

(1 + |z−1x|rpo)−1 ≤ Cr(1 + |z−1x|)−rpo ≤ Cr(1 + |x−1
i′ xi|)−rpo ,

for any z ∈ suppχi′ and x ∈ B(xi, 2). Therefore, we obtain∥∥∥∥∫
G

T ∗
i′j′jφ(z)X

β
xo
κixo

(z−1x)dz 1x∈B(xi,2)

∥∥∥∥
L2(dxodx)

=

∥∥∥∥∫
G

T ∗
i′j′jφ(z)

1 + |z−1x|rpo

1 + |z−1x|rpo
Xβ

xo
κixo(z

−1x)dz 1x∈B(xi,2)

∥∥∥∥
L2(dxo,dx)

≤ C(1 + |x−1
i′ xi|)−rpo

∥∥T ∗
i′j′jφ(z1)

∥∥
L2(dz1)∥∥(1 + |z−1

2 x|rpo)Xβ
xo
κixo

(z−1
2 x) 1x∈B(xi,2)

∥∥
L2(dz2,dxo,dx)

by the observation just above and the Cauchy-Schwartz inequality. The last term
can be estimated as∥∥(1 + |z−1

2 x|rpo)Xβ
xo
κixo

(z−1
2 x) 1x∈B(xi,2)

∥∥
L2(dz2,dxo,dx)

≤ |B(xi, 2)| sup
xo∈G

∥∥(1 + |z′|rpo)Xβ
xo
κixo(z

′)
∥∥
L2(dz′)

≤ C sup
xo∈G

rpo∑
[α]=0

∥∥Xβ
xo
Δασi(xo, π)

∥∥
L∞(Ĝ)

by the Plancherel theorem and Theorem 5.2.22, since |z′|rpo can be written as a
linear combination of q̃α(z), [α] = rpo. Combining the estimates above, we have
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obtained

‖TIT
∗
I′φ‖L2 ≤ C(1 + |x−1

i′ xi|)−rpo
∥∥T ∗

i′j′jφ
∥∥
L2 sup

xo∈G
[β′]≤�Q

2 �,[α]≤rpo

∥∥∥ΔαXβ′
xo
σ(xo, π)

∥∥∥
L∞(Ĝ)

.

The supremum is equal to ‖σ‖S0
0,0,rpo,�Q

2 �,0. So we now want to study the operator

norm of T ∗
i′j′j , which is equal to the operator norm of Ti′j′j . Since the symbol of

Ti′j′j is localised in space we may apply Lemma 5.7.9 and obtain

‖T ∗
i′j′j‖L (L2(G)) = ‖Ti′j′j‖L (L2(G)) = ‖Op (σi (ψjψj′) (π(R))) ‖L (L2(G))

≤ C|B(xi, 2)|1/2 sup
x∈G

[β]≤�Q/2�

‖Xβ
x {χi(x)σ(x, π) (ψjψj′) (π(R))} ‖L∞(Ĝ)

≤ C sup
x∈G, π∈Ĝ
[β]≤�Q/2�

∑
[β1]+[β2]=[β]

|Xβ1χi(x)| ‖Xβ2
x σ(x, π)‖L (Hπ)‖ (ψjψj′) (π(R)) ‖L (Hπ)

≤ C sup
x∈G, π∈Ĝ
[β2]≤�Q/2�

‖Xβ2
x σ(x, π)‖L (Hπ) = C‖σ‖S0

0,0,0,�Q/2�,0,

since the Xβ2χi’s are uniformly bounded on G and over i.
Thus, we have obtained

‖TIT
∗
I′φ‖L2 ≤ C(1 + |x−1

i′ xi|)−rpo‖σ‖S0
0,0,0,�Q/2�,0 ‖φ‖L2 ‖σ‖S0

0,0,rpo,�Q
2 �,0,

and this concludes the proof of the first part of Lemma 5.7.11. �
Proof of Lemma 5.7.11 Part (2). Recall that each κIx(y) is supported, with re-
spect to x, in the ball B(xi, 2). We compute easily that the kernel of T ∗

I TI′ is

κI∗I′(x,w) =

∫
G

κI′xz−1(wz−1)κ∗
Ixz−1(z)dz.

Therefore, κI∗I′ is identically 0 if there is no z such that xz−1 ∈ B(xi, 2)∩B(xi′ , 2).
So if |x−1

i′ xi| > 4Co (which implies B(xi, 2)∩B(xi′ , 2) = ∅) then T ∗
I TI′ = 0. So we

may assume |x−1
i′ xi| ≤ 4Co.

The idea of the proof is to use a quantity which will help the frequency
localisation; so we introduce this quantity (I + R)r and its inverse, where the
integer r ∈ N is to be chosen suitably. We can write

T ∗
I TI′ = T ∗

I Ti′ψj′(R) = T ∗
I Ti′(I +R)r (I +R)−rψj′(R).

By the functional calculus (see Corollary 4.1.16),

‖(I +R)−rψj′(R)‖L (L2(G)) = sup
λ≥0

(1 + λ)−rψj′(λ) ≤ Cr2
−j′r.
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Thus we need to study T ∗
I Ti′(I +R)r. We see that its kernel is

κx(w) =

∫
G

(I + R̃)rκi′xz−1(wz−1)κ∗
Ixz−1(z)dz

=

∫
G

(I + R̃)rκi′xw−1z(z)κ
∗
Ixw−1z(z

−1w)dz.

We introduce (I +R)r(I +R)−r on the first term of the integrand acting on the
variable of κi′xw−1z, and then integrate by parts to obtain

κx(w) =
∑

[β1]+[β2]+[β3]=rν

∫
G

Xβ1
z1=z(I +R)−r(I + R̃)rκi′xw−1z1(z)

Xβ2
z2=zX

β3
z3=zκ

∗
Ixw−1z2

(z−1
3 w)dz

=
∑

[β1]+[β2]+[β3]=rν

∫
G

Xβ1

z1=xw−1z(I +R)
−r(I + R̃)rκi′z1(z)

Xβ2

z2=xw−1z(X
β3κIz2)

∗(z−1w)dz.

Re-interpreting this in terms of operators, we obtain

T ∗
I Ti′(I +R)r =

∑
[β1]+[β2]+[β3]=rν

Op
(
π(Xβ3)Xβ2

x σI(x, π)
)∗

Op
(
π(I +R)−rXβ1

x σi′(x, π)π(I +R)r
)
.

By Lemma 5.7.9,

‖Op
(
π(I +R)−rXβ1

x σi′(x, π)π(I +R)r
)
‖L (L2(G))

≤ C sup
x∈G

[β]≤�Q
2 �

‖π(I +R)−rXβ
xX

β1
x σi′(x, π)π(I +R)r‖L∞(Ĝ)

≤ ‖σ‖S0
0,0,0,[β1]+�Q

2 �,rν ,

and

‖Op
(
π(Xβ3)Xβ2

x σI(x, π)
)
‖L (L2(G))

≤ sup
[β]≤�Q

2 �
‖π(Xβ3)Xβ

xX
β2
x σi(x, π)ψj(π(R))‖L∞(Ĝ)

≤ sup
[β]≤�Q

2 �
‖π(Xβ3)π(I +R)−

[β3]
ν ‖L∞(Ĝ) ×

×‖π(I +R)
[β3]
ν Xβ+β2

x σi(x, π)π(I +R)−
[β3]
ν ‖L∞(Ĝ) ×

×‖π(I +R)
[β3]
ν ψj(π(R))‖L∞(Ĝ)

≤ Cβ2
j
[β3]
ν ‖σ‖S0

0,0,0,[β2]+�Q
2 �,[β3]

,
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by Lemma 5.4.7. Hence we have obtained

‖T ∗
I TI′‖L (L2(G)) ≤ Cr2

−j′r
∑

[β1]+[β2]+[β3]=rν

‖σ‖2
S0
0,0,0,rν+�Q

2 �,rν2
j
[β3]
ν

≤ Cr2
(j−j′)r‖σ‖2

S0
0,0,0,rν+�Q

2 �,rν .

This shows Part 2 of Lemma 5.7.11 up to the fact that we should have −|j − j′|
instead of (j− j′) but this can be deduced easily by reversing the rôle of I and I ′,
and using ‖T‖L (L2(G)) = ‖T ∗‖L (L2(G)). �

This concludes the proof of Lemma 5.7.11. Therefore, by Lemma 5.7.10,
Proposition 5.7.7 is also proved.

5.7.3 A bilinear estimate

In this section, we prove a bilinear estimate which will be the major ingredient in
the proof of the L2-boundedness for operators of orders 0 in the case ρ = δ ∈ (0, 1)
in Section 5.7.4.

Note that if f, g ∈ S(G) and if γ ∈ N0 then the Leibniz properties to-
gether with the properties of the Sobolev spaces (cf. Theorem 4.4.28, especially
the Sobolev embeddings in Part (5)) imply

‖(I +R)γ(fg)‖L2(G) �
∑

[β1]+[β2]≤νγ

‖Xα1f Xα2g‖L2(G)

�
∑

[β1]+[β2]≤νγ

‖Xα1f‖L∞(G)‖Xα2g‖L2(G)

�
∑

[β1]+[β2]≤νγ

‖Xα1f‖Hs(G)‖Xα2g‖L2(G)

� ‖f‖Hs+νγ(G)‖g‖Hνγ(G),

where s > Q/2. As usual,R is a positive Rockland operator of homogeneous degree
ν; we denote by E its spectral decomposition, see Corollary 4.1.16. Consequently,
if f, g are localised in the spectrum of R in the sense that f = E(Ii)f , g = E(Ij)g,
where Ii, Ij are the dyadic intervals given via

Ij := (2j−2, 2j), j ∈ N, and I0 := [0, 1), (5.72)

we obtain easily

‖(I +R)γ(fg)‖L2(G) � ‖f‖L2(G)‖g‖L2(G)2
(γ+ s

ν )max(i,j). (5.73)

Our aim in this section is to prove a similar result but for γ ) 0:
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Proposition 5.7.12. Let R be a positive Rockland operator of homogeneous degree
ν. As usual, we denote by E its spectral decomposition. There exists a constant
C > 0 such that for any γ ∈ R with γ + Q/(2ν) < 0, for any i, j ∈ N0 with
|i− j| > 3, we have

∀f, g ∈ L2(G) f = E(Ii)f and g = E(Ij)g

=⇒ ‖(I +R)γ(fg)‖L2(G) ≤ C‖f‖L2‖g‖L22(γ+
Q
2ν )max(i,j).

The intervals Ii, Ij were defined via (5.72). The proof of Proposition 5.7.12
relies on the following lemma:

Lemma 5.7.13. Let R be a positive Rockland operator. As in Corollary 4.1.16, for
any strongly continuous unitary representation π1 on G, Eπ1

denotes the spectral
decomposition of π1(R). There exists a ‘gap’ constant a ∈ N such that for any
i, j, k ∈ N0 with k < j − a and i ≤ j − 4, we have

∀τ, π ∈ Ĝ Eτ⊗π(Ii)
(
Eτ (Ij)⊗ Eπ(Ik)

)
= 0.

and

∀τ, π ∈ Ĝ
(
Eτ (Ij)⊗ Eπ(Ik)

)
Eτ⊗π(Ii) = 0.

Proof of Lemma 5.7.13. We keep the notation of the statement. We also set

Hπ1,j := Eπ1
(Ij), j ∈ N0,

for any strongly continuous unitary representation π1 on G. We can write R as a
linear combination

R =
∑
[α]=ν

cαX
α,

for some complex coefficients cα. For any strongly continuous unitary representa-
tion π1, we have

π1(R) =
∑
[α]=ν

cαπ1(X)α.

Let τ, π ∈ Ĝ. We consider the strongly continuous unitary representation
π1 = τ ⊗ π. For any X ∈ g, its infinitesimal representation is given via π1(X) =
Xx=0{π1(x)}, see Section 1.7. Consequently, we have for any u ∈ Hτ , v ∈ Hπ,

π1(X)(u, v) = Xx=0π1(x)(u, v)

= Xx=0τ(x)u⊗ π(x)v

= τ(X)u⊗ v + u⊗ π(X)v.

In other words,

(τ ⊗ π)(X) = τ(X)⊗ IHπ
+ IHτ

⊗ π(X).
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We obtain iteratively

(τ ⊗ π)(X)α = τ(X)α ⊗ IHπ
+ IHτ

⊗ π(X)α +
∑

[β1]+[β2]=[α]
0<[β1],[β2]<[α]

τ(X)β1 ⊗ π(X)β2 ,

where
∑

denotes a linear combination which depends only on α ∈ Nn
0 and on the

structure of G but not on τ, π ∈ Ĝ. This easily implies

(τ ⊗ π)(R) =
∑
[α]=ν

cα(τ ⊗ π)(X)α

= τ(R)⊗ IHπ + IHτ ⊗ π(R) +
∑

[β1]+[β2]=ν
0<[β1],[β2]<ν

τ(X)β1 ⊗ π(X)β2 ,

where
∑

denotes a linear combination which depends only on R and on the
structure of G but not on π, τ . Hence there exists a constant C > 0 independent
of π, τ such that for any u ∈ Hτ , v ∈ Hπ, we have

‖(τ ⊗ π)(R)(u⊗ v)‖Hτ⊗π
≥ ‖τ(R)u‖Hτ

‖v‖Hπ
− ‖u‖Hτ

‖π(R)v‖Hπ

−C
∑

[β1]+[β2]=ν
0<[β1],[β2]<ν

‖τ(X)β1u‖Hτ
‖π(X)β2v‖Hπ

.

If u ∈ Hτ,j then from the properties of the functional calculus of τ(R), we have

‖τ(R)u‖Hτ
∈ ‖u‖Hτ

Ij .

Furthermore, the properties of the functional calculus of R and τ(R) yield

‖τ(X)β1u‖Hτ
≤ ‖τ(X)β1Eτ (Ij)‖L (Hτ )‖u‖Hτ

,

and, as Xβ1R− [β1]
ν is bounded on L2(G) by Theorem 4.4.16, we have

‖τ(X)β1Eτ (Ij)‖L (Hτ ) ≤ ‖Xβ1E(Ij)‖L (L2(G))

≤ ‖Xβ1R− [β1]
ν ‖L (L2(G))‖R

[β1]
ν E(Ij)‖L (L2(G))

� 2j
[β1]
ν .

We have similar inequalities for v ∈ Hπ,k. For any unit vectors u ∈ Hτ,j and
v ∈ Hπ,k with j, k ∈ N, we then have

‖(τ ⊗ π)(R)(u⊗ v)‖Hτ⊗π ≥ 2j−2 − 2k − C1

∑
[β1]+[β2]=ν
0<[β1],[β2]<ν

2
j[β1]+k[β2]

ν ,
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where the constant C1 depends only on R and on the structure of G. We notice
that ∑

[β1]+[β2]=ν
0<[β1],[β2]<ν

2
j[β1]+k[β2]

ν = 2j
∑

[β1]+[β2]=ν
0<[β1],[β2]<ν

2
[β2]
ν (k−j) ≤ 2jC ′2−aυ1 ,

if k − j ≤ −a. Here C ′ is a constant which depends on the structure of G and on
ν. We choose a ∈ N the smallest integer such that

CC ′2−aυ1+2 < 1/2 and 2−a+3 < 1/2.

Note that a depends only on the structure of G and on R. When k − j ≤ −a, we
have obtained

‖(τ ⊗ π)(R)(u⊗ v)‖Hτ⊗π
≥ 2j−2 − 2k − C2jC ′2−aυ1

= 2j−2(1− CC ′2−aυ1+2)− 2k

> 2j−3 − 2j−a > 2j−4.

This implies that u⊗ v can not be in Hτ⊗R,π for i ∈ N0 such that 2i ≤ 2j−4. This
shows the first equality of the statement when i, j, k ∈ N. The case of k = 0 or
i = 0 requires to modify slightly some constants above and is left to the reader.
This shows the first equality of the statement and the second follows by taking
the adjoint. This concludes the proof of Lemma 5.7.13. �

Proof of Proposition 5.7.12. We keep the notation of Proposition 5.7.12 and Lem-
ma 5.7.13. We notice that it suffices to prove the statement for large enough
max(i, j) and that the rôles of i and j are symmetric. Hence we may assume that
i ≤ j − 4 and that j ≥ a where a is the ‘gap’ constant of Lemma 5.7.13

Let f, g ∈ L2(G) such that f = E(Ii)f and g = E(Ij)g. The inverse formula
for g yields

(I +R)γ(fg)(x) =
∫
Ĝ

Tr
(
π(g)(I +R)γx{f(x)π(x)}

)
dμ(π).

We also have π(g) = Eπ(Ij)π(g). By the Cauchy-Schwartz inequality and the
Plancherel formula, we obtain

|(I +R)γ(fg)(x)|2 ≤ ‖g‖2L2(G)

∫
Ĝ

‖Eπ(Ij)(I +R)γx{f(x)π(x)}‖2HSdμ(π).

Integrating on both side over x ∈ G, we have

‖(I +R)γ(fg)‖2L2(G) ≤ ‖g‖2L2

∫
Ĝ

∫
G

‖Eπ(Ij)(I +R)γx{f(x)π(x)}‖2HSdxdμ(π).
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For each π ∈ Ĝ, we fix an orthonormal basis of Hπ, so that we can write the
Hilbert-Schmidt norm as the square of the coefficients of a (possibly infinite di-
mensional) matrix. The Plancherel formula then yields∫

G

‖Eπ(Ij)(I +R)γx{f(x)π(x)}‖2HSdx

=
∑
kl

∫
G

|[Eπ(Ij)(I +R)γx{f(x)π(x)}]kl|2dx

=
∑
kl

∫
Ĝ

‖F [Eπ(Ij)(I +R)γfπ]kl (τ)‖
2
HS(Hτ )

dμ(τ),

where

F [Eπ(Ij)(I +R)γfπ]kl (τ)

=

∫
G

(I +R)γx {f(x)[Eπ(Ij)π(x)]kl} τ(x)∗dx

= τ(I +R)γ
∫
G

f(x)[Eπ(Ij)π(x)]kl τ(x)
∗dx

=

[
Eπ(Ij)⊗ τ(I +R)γ

∫
G

f(x)(π ⊗ τ∗)(x)dx
]
kl,·

.

Here the notation [·]kl,· means considering the (kl)-coefficients in Hπ in the tensor
product over Hπ ⊗Hτ . We recognise∫

G

f(x)(π ⊗ τ∗)(x)dx = (π∗ ⊗ τ)(f)

thus ∑
kl

‖F [Eπ(Ij)(I +R)γfπ]kl(τ)‖2HS(Hτ )

= ‖ (Eπ(Ij)⊗ τ(I +R)γ) ((π∗ ⊗ τ)(f)) ‖2HS(Hπ⊗Hτ )
.

So far, we have obtained∫
Ĝ

∫
G

‖Eπ(Ij)(I +R)γx{f(x)π(x)}‖2HSdxdμ(π)

=

∫
Ĝ

∫
Ĝ

‖ (Eπ(Ij)⊗ τ(I +R)γ) ((π∗ ⊗ τ)(f)) ‖2HS(Hπ⊗Hτ )
dμ(τ)dμ(π)

= ‖‖ (Eπ(Ij)⊗ τ(I +R)γ) ((π∗ ⊗ τ)(f)) ‖HS(Hπ⊗Hτ )‖2L2(dμ(τ),dμ(π)).

We fix a dyadic decomposition, that is, we fix ψ0, ψ1 ∈ D(R) supported in
(−1, 1) and (1/2, 2), respectively, valued in [0, 1] and such that

∀λ ≥ 0

∞∑
k=0

ψk(λ) = 1 with ψk(λ) = ψ1(2
−(k−1)λ) if k ∈ N.
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The series
∑

k ψk(τ(R)) converges to IHτ
in the strong operator topology and we

can apply the following general property:

‖(B ⊗ C)A‖HS(Hπ⊗Hτ )

≤
∞∑
k=0

‖Eτ (Ik)C‖L (Hτ )‖(B ⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ ),

to B = Eπ(Ij), C = τ(I +R)γ , and

A = (π∗ ⊗ τ)(f).

We keep momentarily this notation for A and C. As ‖Eτ (Ik)C‖L (Hτ ) � 2γk, we
have obtained

‖‖ (Eπ(Ij)⊗ τ(I +R)γ)A‖HS(Hπ⊗Hτ )‖L2(dμ(τ),dμ(π))

�
∞∑
k=0

2γk‖‖ (Eπ(Ij)⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )‖L2(dμ(τ),dμ(π)).

Now

A = ((π∗ ⊗ τ)(f)) = Eπ∗⊗τ (Ii) ((π
∗ ⊗ τ)(f)) ,

thus we can apply Lemma 5.7.13 and the sum over k above is in fact from k ≥ j−a.
We claim that

‖‖ (Eπ(Ij)⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )‖L2(dμ(τ),dμ(π)) � ‖f‖L2(G)2
k Q

2ν . (5.74)

Collecting the equalities and estimates above, (5.74) would then imply

‖(I +R)γ(fg)‖2L2(G) � ‖g‖2L2‖f‖2L2(G)

∞∑
k=j−a

2k(γ+
Q
2ν ),

and would conclude the proof of Proposition 5.7.12.

Hence it just remains to prove (5.74). Natural properties of tensor product
and functional calculus yield

‖ (Eπ(Ij)⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )

≤ ‖Eπ(Ij)‖L (Hπ)‖ (IHπ
⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )

≤ ‖ (IHπ
⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ ).

We notice that

(IHπ
⊗ ψk(τ(R)))A =

∫
G

f(x)(π ⊗ ψk(τ(R))τ∗)(x)dx,
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and introducing an orthonormal basis on Hτ ,

[(IHπ
⊗ ψk(τ(R)))A]·,l′k′ =

∫
G

f(x) [ψk(τ(R))]l′k′ π(x)dx

= F [fψk(τ(R))]l′k′ (π
∗) = F{[fψk(τ(R))]l′k′ ( ·−1)}(π).

Therefore we have

‖‖ (IHπ
⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )‖2L2(dμ(τ),dμ(π))

=

∫
Ĝ

∑
k′l′

∫
Ĝ

‖F [fψk(τ(R))]l′k′ (π
∗)‖2HS(Hπ)

dμ(π)dμ(τ)

=

∫
Ĝ

∑
k′l′

∥∥[fψk(τ(R))]l′k′ ( ·−1)
∥∥2

L2(G)
dμ(τ),

having applied the Plancherel formula in π. Simple manipulations yield∑
k′l′

∥∥[fψk(τ(R))]l′k′ ( ·−1)
∥∥2

L2(G)
=

∑
k′l′
‖[fψk(τ(R))]l′k′‖2L2(G)

=
∑
k′l′

∫
G

|f(x) [ψk(τ(R))]l′k′ |2dx

=

∫
G

|f(x)|2dx
∑
k′l′
| [ψk(τ(R))]l′k′ |2

= ‖f‖2L2(G)‖ψk(τ(R))‖2HS(Hτ )
.

Integrating over τ ∈ Ĝ, we can apply the Plancherel formula and obtain∫
Ĝ

∑
k′l′

∥∥[fψk(τ(R))]l′k′ ( ·−1)
∥∥2

L2(G)
dμ(τ) = ‖f‖2L2(G)‖ψk(R)δ0‖2L2(G).

Using the properties of dilations, we have for any k ∈ N:

‖ψk(R)δ0‖L2(G) = 2
Q
2

k−1
ν ‖ψ1(R)δ0‖L2(G).

Collecting the equalities and inequalities above yields that the left-hand side of
(5.74) is

‖‖ (Eπ(Ij)⊗ ψk(τ(R)))A‖HS(Hπ⊗Hτ )‖L2(dμ(τ),dμ(π))

≤ ‖f‖L2(G)2
Q
2

k−1
ν ‖ψ1(R)δ0‖L2(G).

By Hulanicki’s theorem, see Corollary 4.5.2, ‖ψ1(R)δ0‖L2(G) is a finite constant.
This shows (5.74) and concludes the proof of Proposition 5.7.12. �
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5.7.4 Proof of the case S0
ρ,ρ

In this section, we prove the L2-boundedness of operators in Ψ0
ρ,ρ with ρ ∈ (0, 1):

Proposition 5.7.14. Let σ ∈ S0
ρ,ρ with ρ ∈ (0, 1). Then Op(σ) is bounded on L2(G)

and the operator norm is, up to a constant, less than a seminorm of σ ∈ S0
ρ,ρ;

the parameters of the seminorm depend on ρ but not on σ and could be computed
explicitly.

The rest of this section is devoted to the proof of Proposition 5.7.14. The
strategy is broadly similar to the one in [Ste93, ch VII §2.5] for the Euclidean case.
Technically, this means using analogous rescaling arguments but also replacing
certain integrations by parts on the (Euclidean) Fourier side with the bilinear
estimate obtained in Proposition 5.7.12.

Strategy of the proof

We fix a dyadic decomposition, that is, we fix ψ0, ψ1 ∈ D(R) supported in (−1, 1)
and (1/2, 2), respectively, valued in [0, 1] and such that

∀λ ≥ 0
∞∑
j=0

ψj(λ) = 1 with ψj(λ) = ψ1(2
−(j−1)λ) if j ∈ N.

Let σ ∈ S0
ρ,ρ. We define

σj(x, π) := σ(x, π)ψj(π(R)) and Tj := Op(σj) = Tψj(R),

where T = Op(σ).
It is clear that TjT

∗
i = T (ψjψi)(R)T ∗ is zero if |j − i| > 1 and the strategy

of the proof is to apply the crude version of the Cotlar-Stein Lemma, see Propo-
sition A.5.3. We will first prove that the operator norms of the Tj ’s are uniformly
bounded in j by a S0

ρ,ρ-seminorm, see Lemma 5.7.15. Then we will show that there
exist a constant C > 0 and a S0

ρ,ρ-seminorm such that∑
|i−j|>3

‖T ∗
j Ti‖L (L2(G)) ≤ C‖σ‖2S0

ρ,ρ,a,b,c
. (5.75)

These two claims together with Proposition A.5.3 and Remark A.5.4 imply that the
series

∑
j Tj ∈ L (L2(G)) converges in the strong operator topology of L (L2(G))

and that the operator norm of the sum is � ‖σ‖S0
ρ,ρ,a,b,c

. As Op(σ) =
∑

j Tj in
the strong operator topology, this will conclude the proof of Proposition 5.7.14.

Step 1

Let us show that the operator norms of the Tj ’s are uniformly bounded with
respect to j:
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Lemma 5.7.15. The operator Tj = Op(σj) is bounded on L2(G) with operator norm
≤ C‖σ‖S0

ρ,ρ,a,b,c
with a, b, c as in Proposition 5.7.7.

The proof of Lemma 5.7.15 uses the following result which is of interest on
its own. In particular, it describes the action of the dilations on Ĝ.

Lemma 5.7.16. Let σ be a symbol with kernel κx and operator T = Op(σ). Let
r > 0. We define the operator

Tr : S(G) � φ �−→ (Tφ(r ·)) (r−1·).

Then (with operator norm possibly infinite)

‖T‖L (L2(G)) = ‖Tr‖L (L2(G)).

Furthermore, the symbol of Tr is

σr := Op−1(Tr) given by σr(x, π) := σ
(
r−1x, π(r)

)
,

where the representation π(r) is defined by

π(r)(y) := π(ry).

The kernel of σr is r−Qκr−1x(r
−1·). Moreover, we have

FG(κ)(π
(r)) = FG

(
r−Qκ(r−1·)

)
(π),

Δα
{
FG(κ)(π

(r))
}

= r[α] {ΔαFG(κ)} (π(r)),

f(π(r)(R)) = f(rνπ(R)),

for any α ∈ Nn
0 , any positive Rockland operator R of homogeneous degree ν, and

any reasonable functions f and κ (for instance f measurable bounded and κ in
some Ka,b).

Proof of Lemma 5.7.16. We keep the notation of the statement. The property
‖T‖L (L2(G)) = ‖Tr‖L (L2(G)) follows easily from ‖φ(r·)‖2 = r−Q/2‖φ‖2. We com-
pute

(Tφ(r ·)) (r−1x) =

∫
G

φ(ry) κr−1x(y
−1r−1x)dy

=

∫
G

φ(z) κr−1x(r
−1z−1r−1x)r−Qdz

= φ ∗
(
r−Qκr−1x(r

−1·)
)
(x).

Therefore, the kernel of the operator Tr is r−Qκr−1x(r
−1·). The computation of

its symbol follows from

FG

(
r−Qκ(r−1·)

)
(π) =

∫
G

r−Qκ(r−1x)π(x)∗dx

=

∫
G

κ(y)π(ry)∗dx = FG(κ)(π
(r)).
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The difference operator applied to the above expression is

Δα
{
FG(κ)(π

(r))
}

= Δα
{
FG

(
r−Qκ(r−1·)

)
(π)

}
= FG

(
q̃α(·) r−Qκ(r−1·)

)
(π)

= r[α]
{
FG

(
r−Q(q̃ακ)(r

−1·)
)
(π)

}
= r[α] {ΔαFG(κ)} (π(r)).

The kernels of the operators f(R) and f(rνR) are respectively f(R)δo and
r−Qf(R)δo(r−1·) (see (4.3) in Corollary 4.1.16, and Example 3.1.20 for the ho-
mogeneity of δo). Since the group Fourier transform of the former is f(π(R)), the
group Fourier transform of the latter is f(rνπ(R)) = f(π(r)(R)). �

We can now show Lemma 5.7.15 using the rescaling arguments (together with
the lemma above) and the case ρ = δ = 0.

Proof of Lemma 5.7.15. Using the Leibniz formula in Proposition 5.2.10, we first
estimate

‖π(I +R)
γ
ν Xβo

x Δαoσj(x, π)π(I +R)−
γ
ν ‖L (Hπ)

≤ Cαo

∑
[α1]+[α2]=[αo]

‖π(I +R)
γ
ν Xβo

x Δα1σ(x, π)π(I +R)
ρ([α1]−[βo])−γ

ν ‖L (Hπ)

qquad ‖π(I +R)−
ρ([α1]−[βo])−γ

ν Δα2ψj(π(R))π(I +R)−
γ
ν ‖L (Hπ)

≤ Cαo
‖σ‖S0

ρ,ρ,[αo],[βo],|γ|
∑

[α1]+[α2]=[αo]

2−j ν
ρ

[α2]+ρ([α1]−[βo])
ν

≤ Cαo
‖σ‖S0

ρ,ρ,[αo],[βo],|γ|2
−j([αo]−[βo]), (5.76)

by Lemma 5.4.7.
For each j ∈ N0, we define the symbol σ′

j given by setting

σ′
j(x, π) := σj

(
2−jρx, π(2jρ)

)
.

By Lemma 5.7.16, the corresponding operator T ′
j := Op(σ′

j) satisfies

(T ′
jφ)(x) =

(
Tjφ(2

jρ·)
)
(2−jρx).

Lemma 5.7.16 and Proposition 5.7.7 imply that

‖Tj‖L (L2(G)) = ‖T ′
j‖L (L2(G)) ≤ C‖σ′

j‖S0
0,0,a,b,c

, (5.77)

with a, b, c as in Proposition 5.7.7. So we are led to compute ‖σ′
j‖S0

0,0,a,b,c
. By

Lemma 5.7.16, we have

Xβo
x Δαoσ′

j(x, π) = 2−jρ[βo]2jρ[αo]Xβo

xo=2−jρxΔ
αo

πo=π(2jρ)
σj(xo, πo)

= 2jρ([αo]−[βo])π(I + 2jρR)−
γ
ν(

πo(I +R)
γ
ν Xβo

xo=2−jρxΔ
αoσj(xo, πo)πo(I +R)−

γ
ν

)
πo=π(2jρ)

π(I + 2jρR)
γ
ν ,
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so that

‖π(I +R)
γ
ν Xβo

x Δαoσ′
j(x, π)π(I +R)−

γ
ν ‖L (Hπ)

≤ 2jρ([αo]−[βo])‖π(I +R)
γ
ν π(I + 2jρR)−

γ
ν ‖L (Hπ)

‖
(
πo(I +R)

γ
ν Xβo

xo=2−jρxΔ
αoσj(xo, πo)πo(I +R)−

γ
ν

)
πo=π(2jρ)

‖L (Hπ)

‖π(I + 2jρR)
γ
ν π(I +R)−

γ
ν ‖L (Hπ).

By the functional calculus (Corollary 4.1.16),

‖π(I +R)
γ
ν π(I + 2jρR)−

γ
ν ‖L (Hπ) ≤ sup

λ≥0

(
1 + λ

1 + 2jρλ

) γ
ν

≤ C2−jρ γ
ν ,

‖π(I + 2jρR)
γ
ν π(I +R)−

γ
ν ‖L (Hπ) ≤ sup

λ≥0

(
1 + 2jρλ

1 + λ

)γν

≤ C2jρ
γ
ν ,

for any j ∈ N0. Thus, we have obtained

‖π(I +R)
γ
ν Xβo

x Δαoσ′
j(x, π)π(I +R)−

γ
ν ‖L (Hπ)

≤ C2jρ([αo]−[βo]) sup
xo∈G, πo∈Ĝ

‖πo(I +R)
γ
ν Xβo

xo
Δαoσj(xo, πo)πo(I +R)−

γ
ν ‖L (Hπ)

≤ C‖σ‖S0
ρ,ρ,[αo],[βo],|γ|,

because of (5.76). Taking the supremum over π ∈ Ĝ, x ∈ G, [αo] ≤ a, [βo] ≤ b and
|γ| ≤ c yields

‖σ′
j‖S0

0,0,a,b,c
≤ C‖σ‖S0

ρ,ρ,a,b,c
.

With (5.77), we conclude that ‖Tj‖L (L2(G)) ≤ C‖σ‖S0
ρ,ρ,a,b,c

. �

Step 2

Now let us prove Claim (5.75). This relies on the bilinear estimate obtained in
Proposition 5.7.12.

Proof of Claim (5.75). For each i ∈ N0, we denote by κi,x the kernel associated
with σi. Then one computes easily the integral kernel Kji(x, y) of the operator
T ∗
j Ti, that is,

(T ∗
j Ti)f(x) =

∫
G

Kji(x, y)f(y)dy, f ∈ S(G),

with

Kji(x, y) =

∫
G

κ̄j,z(x
−1z)κi,z(y

−1z)dz.
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By Schur’s lemma [Ste93, §2.4.1], we have

‖T ∗
j Ti‖L (L2(G)) ≤ max

(
sup
x∈G

∫
G

|Kji(x, y)|dy, sup
y∈G

∫
G

|Kji(x, y)|dx
)
,

� ‖T ∗
j Ti‖Ψ2

ρ,ρ,a,b,c
+ max

|y−1x|≤1
|Kji(x, y)|,

since the estimates at infinity for the kernels of a pseudo-differential operator
obtained in Theorem 5.4.1 for ρ �= 0 yield

|Kji(x, y)| � ‖T ∗
j Ti‖Ψ2

ρ,ρ,a1,b1,c1 |y−1x|−N

for any N ∈ N0. (We have assumed that a quasi-norm | · | has been fixed on
G.) The properties of composition and of taking the adjoint of pseudo-differential
operators (see Theorems 5.5.3 and 5.5.12) together with Lemma 5.4.7 yield

‖T ∗
j Ti‖Ψ2

ρ,ρ,a1,b1,c1 � ‖σj‖S1
ρ,ρ,a2,b2,c2‖σi‖S1

ρ,ρ,a3,b3,c3 � ‖σ‖2S0
ρ,ρ,a4,b4,c4

2−
i+j
ν .

We now analyse max|y−1x|≤1 |Kji(x, y)|. So let x, y ∈ G with |y−1x| ≤ 1. We
fix a function χ ∈ D(G) which is a smooth version of the indicatrix function of the
ball B(0, 10) = {z ∈ G : |x−1z| < 10} about 0 with radius 10, that is, we assume
that χ ≡ 1 on B(0, 10) and χ ≡ 0 on B(0, 11). Let us assume that the quasi-
norm is in fact a norm, that is, it satisfies the triangle inequality ‘with constant
1’ (although we could give a proof without this restriction, it simplifies the choice
of constants and therefore avoids dwelling on unimportant technical points). We
can always decompose

Kji(x, y) =

∫
z∈G

κ̄j,z(x
−1z)κi,z(y

−1z)
(
χ(x−1z) + (1− χ(x−1z)

)
dz

= I1 + I2.

We first estimate the second integral via

|I2| � ‖σj‖S1
ρ,ρ,a5,b5,c5‖σi‖S1

ρ,ρ,a6,b6,c6

∫
|x−1z|>10

|x−1z|−N1 |y−1z|−N1dz.

having used the estimates at infinity for the kernels of a pseudo-differential op-
erator obtained in Theorem 5.4.1 for ρ �= 0. As |y−1x| ≤ 1, the last integral is
just a finite constant if we choose N1 = Q + 1 for instance. We estimate the
S1
ρ,ρ-seminorms with Lemma 5.4.7 and we obtain then

|I2| � ‖σ‖2S0
ρ,ρ,a7,b7,c7

2−
i+j
ν .

We now estimate the integral I1:

I1 =

∫
G

κ̄j,z(x
−1z)κi,z(y

−1z)χ(x−1z)dz.
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It is of the form
∫
G
f(z, z)dz for a given function f on G × G. Simple formal

manipulations yield for any N ∈ N0∫
G

f(z, z)dz =

∫
G

(I +R)Nz2=z(I +R)−N
z2 f(z, z2)dz

=

∫
G

(I + R̄)Nz1=z(I +R)−N
z2=zf(z1, z2)dz,

having used integration by parts or equivalently Rt = R̄, since R is essentially
self-adjoint. Hence, we obtain formally in our case

I1 =

∫
G

(I + R̄)Nz1=z(I +R)−N
z2=z

{
κ̄j,z1(x

−1z2)κi,z1(y
−1z2)χ(x

−1z1)
}
dz,

where N ∈ N0 is to be fixed later. Note that the expression in z1 is supported in
B(x1, 11), hence so is the integrand in z. This produces the following estimate

|I1| ≤
∫
|x−1z2|≤11

S(z2)dz2

where S(z2) is the supremum

S(z2) = sup
z1∈G

∣∣(I + R̄)Nz1(I +R)−N
z2

{
κ̄j,z1(x

−1z2)κi,z1(y
−1z2)χ(x

−1z1)
}∣∣

�
∥∥∥(I + R̄)N+

s0
ν

z1 (I +R)−N
z2 κ̄j,z1(x

−1z2)κi,z1(y
−1z2)χ(x

−1z1)
∥∥∥
L2(dz1)

�
∑

[β01]+[β02]
≤νN+s0

∥∥(I +R)−N
z2 {X

β01
z1 κ̄j,z1(x

−1z2) X
β02
z1 κi,z1(y

−1z2)}
∥∥
L2(B(x,11),dz1)

,

by the properties of the Sobolev spaces, see Theorem 4.4.28, especially the Sobolev
embedding in Part (5). Here s0 ∈ νN denotes the smallest integer multiple of ν
such that s0

ν > Q/2. By the Cauchy-Schwartz inequality, as B(x, 11) has finite
volume independent of x, we obtain

|I1| �
∑

[β01]+[β02]
≤νN+s0

∥∥(I +R)−N
z2 {X

β01
z1 κ̄j,z1(x

−1z2) X
β02
z1 κi,z1(y

−1z2)}
∥∥
L2(B(x,11)2,dz1dz2)

� sup
z1∈B(x,11)

[β01]+[β02]≤νN+s0

∥∥(I +R)−N
z2 {X

β01
z1 κ̄j,z1(x

−1z2) X
β02
z1 κi,z1(y

−1z2)}
∥∥
L2(dz2)

.

Choosing N > Q
2ν , we can apply Proposition 5.7.12 to the L2-norm above, so that∥∥(I +R)−N
z2 {X

β01
z1 κ̄j,z1(x

−1z2) X
β02
z1 κi,z1(y

−1z2)}
∥∥
L2(dz2)

�
∥∥Xβ01

z1 κ̄j,z1(z2)
∥∥
L2(dz2)

∥∥Xβ02
z1 κi,z1(z2)

∥∥
L2(dz2)

2(−N+ Q
2ν )max(i,j).
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By Corollary 5.4.3, we have∥∥Xβ01
z1 κ̄j,z1(z2)

∥∥
L2(dz2)

� ‖Xβ01
x σj‖Sm′

ρ,ρ,a7,b7,c7
,

where m′ is a number such that m′ < −Q/2, for instance m′ := −1 − Q/2. By
Lemma 5.4.7, we have (with ρ = δ)

‖Xβ01
x σj‖Sm′

ρ,ρ,a7,b7,c7
� ‖σ‖S0

ρ,ρ,a8,b8,c82
−j

m′−δ[β01]
ν .

We have similar estimates for
∥∥Xβ02

z1 κi,z1(z2)
∥∥
L2(dz2)

, thus

max
[β01]+[β02]
≤νN+s0

∥∥Xβ01
z1 κ̄j,z1(z2)

∥∥
L2(dz2)

∥∥Xβ02
z1 κi,z1(z2)

∥∥
L2(dz2)

� ‖σ‖2S0
ρ,ρ,a9,b9,c9

max
[β01]+[β02]
≤νN+s0

2−j
m′−δ[β01]

ν 2−i
m′−δ[β02]

ν

� ‖σ‖2S0
ρ,ρ,a9,b9,c9

2max(i,j)(−2m′+δ(N+s0)).

The estimates above show that the first formal manipulations on I1 are justified
and we obtain

|I1| � ‖σ‖2S0
ρ,ρ,a9,b9,c9

2max(i,j)(−(1−δ)N−2m′+s0+
Q
2ν ).

Consequently, we have

max
|y−1x|≤1

|Kji(x, y)| � ‖σ‖2S0
ρ,ρ,a,b,c

(
2−

i+j
ν + 2max(i,j)(−(1−δ)N−2m′+s0+

Q
2ν )

)
,

thus

‖T ∗
j Ti‖L (L2(G)) � ‖σ‖2S0

ρ,ρ,a,b,c

(
2−

i+j
ν + 2max(i,j)(−(1−δ)N−2m′+s0+

Q
2ν )

)
.

As δ = ρ ∈ (0, 1), we can choose N such that −(1 − δ)N − 2m′ + s0 +
Q
2ν < −1.

Summing over i > j + 3 and using the symmetry of the rôle played by i and j
yield (5.75). �

Hence we have shown Proposition 5.7.14 and this concludes the proof of
Theorem 5.7.1.

5.8 Parametrices, ellipticity and hypoellipticity

In this section, we obtain statements regarding ellipticity and hypoellipticity which
are similar to the compact case presented in Section 2.2.3 where the Laplacian has
the role of the positive Rockland operator. However, on nilpotent Lie groups, since
Ĝ is not discrete and the representations are often not (and can be almost never)
finite dimensional, the precise hypotheses become more technical to present.
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5.8.1 Ellipticity

Roughly speaking, we define the ellipticity by requiring that the symbol is invert-
ible for ‘high frequencies’. These ‘high frequencies’ are determined with respect to
the spectral projection E of a positive Rockland operator R, and its group Fourier
transform Eπ, see Corollary 4.1.16.

We will use the following shorthand notation:

H∞
π,Λ := Eπ(Λ,+∞)H∞

π . (5.78)

Since Eπ(Λ,∞) = FG(1(Λ,∞)(R)δ0) yields a symbol acting on smooth vectors (see
Examples 5.1.27 and 5.1.38), H∞

π,Λ is a subspace of H∞
π .

We can now define our notion of ellipticity:

Definition 5.8.1. Let R be a positive Rockland operator of homogeneous degree
ν. Let σ be a symbol given by fields of operators acting on smooth vectors, i.e.
σ(x, ·) = {σ(x, ·) : H∞

π → H∞
π , π ∈ Ĝ} is in some L∞

a,b(Ĝ) for each x ∈ G.
The symbol σ is said to be elliptic with respect to R of elliptic order mo

if there is Λ ∈ R such that for any γ ∈ R, x ∈ G, μ-almost all π ∈ Ĝ, and any
u ∈ H∞

π,Λ we have

∀γ ∈ R ‖π(I +R)
γ
ν σ(x, π)u‖Hπ

≥ Cγ‖π(I +R)
γ
ν π(I +R)

mo
ν u‖Hπ

. (5.79)

with Cγ = Cσ,R,mo,Λ,γ independent of (x, π) ∈ G× Ĝ and u ∈ H∞
π,Λ.

We will say that the symbol σ or the corresponding operator Op(σ) is
(R,Λ,mo)-elliptic, or elliptic of elliptic order mo, or just elliptic.

The notation H∞
π,Λ was defined in (5.78). As H∞

π,Λ is a subspace of H∞
π and

since π(I +R) γ
ν and σ(x, ·) are fields of operators acting on smooth vectors, the

expression in the norm of the left-hand side of (5.79) makes sense.
In our elliptic condition in Definition 5.8.1, σ is a symbol in the sense of

Definition 5.1.33 which is given by fields of operators acting on smooth vectors. It
will be natural to consider symbols in the classes Sm

ρ,δ to construct parametrices,
see Proposition 5.8.5 and Theorem 5.8.7.

Our definition of ellipticity requires a property of ‘x-uniform partial injectiv-

ity’. Of course, we note that π(I +R) γ
ν π(I +R)mo

ν = π(I +R) γ+mo
ν .

Naturally, we will see shortly in Corollary 5.8.4 that it suffices to check (5.79)
for a sequence of real numbers {γ�, � ∈ Z} which tends to ±∞ as �→ ±∞.

Our first examples of elliptic operators are provided by positive Rockland
operators:

Proposition 5.8.2. Let R be a positive Rockland operator of homogeneous degree
ν. Then we have the following properties.

1. The operator (I + R)mo
ν , for any mo ∈ R, is elliptic with respect to R of

elliptic order mo.
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2. If f1 and f2 are complex-valued (smooth) functions on G such that

inf
x∈G,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

> 0 for some Λ ≥ 0,

then the differential operator f1(x) + f2(x)R is (R,Λ, ν)-elliptic.

3. The operator E(Λ,∞)R, for any Λ > 0, is (R,Λ, ν)-elliptic.

More generally, if f is a complex-valued function on G such that infG |f |
> 0, then f(x)E(Λ,∞)R is (R,Λ, ν)-elliptic.

4. Let ψ ∈ C∞(R) be such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying 0 < Λ1 < Λ2, Then the operator
ψ(R)R is (R,Λ2, ν)-elliptic.

More generally, if f is a complex-valued function on G such that infG |f |
> 0, then f(x)ψ(R)R is (R,Λ2, ν)-elliptic.

Proof. The symbols involved in the statement are multipliers in R. By Example
5.1.27 and Corollary 5.1.30, the corresponding symbols are symbols in the sense of
Definition 5.1.33 which are given by fields of operators acting on smooth vectors.
Hence it remains just to check the condition in (5.79).

Part (1) is easy to check using the functional calculus of π(R).

Let us prove Part (2). Let Λ, f1, f2, and m be as in the statement. The
properties of the functional calculus for π(R) yield that, for each x ∈ G fixed and
u ∈ H∞

π,Λ we have

π(I +R)
γ
ν π(I +R)u = φx(π(R))π(I +R)

γ
ν (f1(x) + f2(x)π(R))u,

where φx ∈ L∞[0,∞) is given by

φx(λ) =
1 + λ

f1(x) + f2(x)λ
1λ≥Λ.

Our assumption implies that φx is bounded on [0,∞) with

C := sup
x∈G
‖φx‖∞ =

(
inf

x∈G,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

)−1

<∞.

The property of the functional calculus for π(R) yields

∀x ∈ G ‖φx(π(R))‖L (Hπ) ≤ C.
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Thus we have

‖π(I +R)
γ
ν π(I +R)u‖Hπ

= ‖φx(π(R))π(I +R)
γ
ν (f1(x) + f2(x)π(R))u‖Hπ

≤ C‖π(I +R)
γ
ν (f1(x) + f2(x)π(R))u‖Hπ

.

This proves Part (2).

Let us prove Part (3). The properties of the functional calculus for π(R) yield

π(I +R)u = φ(π(R))Eπ(Λ,∞)π(R)u,

where φ ∈ L∞[0,∞) is given by

φ(λ) =
1 + λ

λ
1(Λ,∞)(λ).

Moreover,

‖π(I +R)1+
γ
ν u‖Hπ

= ‖φ(π(R))π(I +R)
γ
ν Eπ(Λ,∞)π(R)u‖Hπ

≤ ‖φ‖∞‖π(I +R)
γ
ν Eπ(Λ,∞)π(R)u‖Hπ

.

Since C = ‖φ‖−1
∞ is a finite positive constant, we have obtained

C‖π(I +R)1+
γ
ν u‖Hπ

≤ ‖π(I +R)
γ
ν Eπ(Λ,∞)π(R)u‖Hπ

.

This shows that E(Λ,∞)R, is elliptic.
If f is as in the statement, we proceed as above, replacing φ by

φx(λ) =
1 + λ

f(x)λ
1(Λ,∞)(λ),

and C such that C−1 is equal to the right-hand side of the estimate

‖φx‖∞ ≤
1

infG |f |
sup
λ≥Λ

1 + λ

λ
:= C−1.

This shows Part (3).

For Part (4), we proceed as in Part (3) replacing 1(Λ,∞) by ψ(λ) and Λ by
Λ2. �

The next lemma is technical. It states that we can construct a partial inverse
of an elliptic symbol. The analogue for scalar-valued symbols would be obvious: if
|a(x, ξ)| does not vanish for |ξ| > Λ then we can consider 1|ξ|>Λ1/a(x, ξ). However,
in the context of operator-valued symbols, we need to proceed with caution.
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Lemma 5.8.3. Let σ be a symbol (R,Λ,mo)-elliptic as in Definition 5.8.1.
For any v ∈ H∞

π , if there is a vector u ∈ H∞
π,Λ such that σ(x, π)u = v then

this u is necessarily unique. In this sense σ(x, π) is invertible on H∞
π,Λ and we can

set

Eπ(Λ,∞)σ(x, π)−1(v) :=

{
u if v = σ(x, π)u, u ∈ H∞

π,Λ,

0 if H∞
π � v ⊥ σ(x, π)H∞

π,Λ.
(5.80)

This yields the symbol (in the sense of Definition 5.1.33) given by fields of operators
acting on smooth vectors

{Eπ(Λ,∞)σ(x, π)−1 : H∞
π → H∞

π , (x, π) ∈ G× Ĝ}. (5.81)

Furthermore, for every γ,

‖Eπ(Λ,∞)σ(x, π)−1‖L∞
γ,γ+mo

(Ĝ) ≤ C−1
γ , (5.82)

where Cγ is the constant appearing in (5.79) of Definition 5.8.1.
If σ is continuous in the sense of Definition 5.1.34, then the symbol in (5.81)

is continuous in the sense of Definition 5.1.34. If σ is smooth, then the symbol
in (5.81) is continuous and depends smoothly on x ∈ G in the sense of Remark
1.8.16.

Proof. Recall that Eπ(Λ,∞) = FG(1(Λ,∞)(R)δ0) yields a symbol acting on smooth
vectors, see Examples 5.1.27 and 5.1.38.

If v = σ(x, π)u where u ∈ H∞
π,Λ, then, using (5.79), we have

‖π(I +R)
mo+γ

ν u‖Hπ ≤ C−1
γ ‖π(I +R)

γ
ν σ(x, π)u‖Hπ = C−1

γ ‖π(I +R)
γ
ν v‖Hπ .

It is now easy to check {Eπ(Λ,∞)σ(x, π)−1, (x, π) ∈ G × Ĝ} is a symbol in the
sense of Definition 5.1.33 and that the estimates in (5.82) hold.

If σ is continuous, then one checks easily that the map

G � x �→ Eπ(Λ,∞)σ(x, π)−1 ∈ L∞
γ,γ+mo

(Ĝ)

is continuous. Consequently {Eπ(Λ,∞)σ(x, π)−1, (x, π) ∈ G× Ĝ} is continuous.
If σ is smooth, then {Eπ(Λ,∞)σ(x, π)−1, (x, π) ∈ G× Ĝ} depends smoothly

in x ∈ G, see Remark 1.8.16. �

Corollary 5.8.4. Let R be a positive Rockland operator of homogeneous degree ν.
The symbol σ satisfies (5.79) for each γ ∈ R if and only if σ satisfies (5.79) for a
sequence of real numbers {γ�, � ∈ Z} which tends to ±∞ as �→ ±∞.

We may choose the constants Cγ such that max|γ|≤c Cγ in (5.79) is finite for
any c ≥ 0.
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Proof. From the proof of Lemma 5.8.3, we see that σ satisfies (5.79) for γ if and
only if

sup
x∈G
‖Eπ(Λ,∞)σ(x, π)−1‖L∞

γ,γ+mo
(Ĝ) <∞

is finite. The conclusion follows from Corollary 4.4.10. �

The next statement says that if a symbol in some Sm
ρ,δ is elliptic and if the

elliptic order is equal to the order m of the symbol, then we can define a symbol
in S−m

ρ,δ using the operator Eπ(Λ,∞)σ(x, π)−1 defined via (5.80). This will be the
main ingredient in the construction of a parametrix, see the proof of Theorem
5.8.7.

Proposition 5.8.5. Assume 1 ≥ ρ ≥ δ ≥ 0. Let σ ∈ Sm
ρ,δ be a symbol which is

(R,Λ,m)-elliptic with respect to a positive Rockland operator R. If ψ ∈ C∞(R) is
such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying Λ < Λ1 < Λ2, then the symbol

{ψ(π(R))σ−1(x, π) , (x, π) ∈ G× Ĝ},

given by

ψ(π(R))σ−1(x, π) := ψ(π(R))Eπ(Λ1,∞)σ(x, π)−1,

is in S−m
ρ,δ . Moreover, for any ao, bo ∈ N0, we have

‖ψ(π(R))σ−1(x, π)‖S−m
ρ,δ ,ao,bo,0

≤ C
∑

a′
1,a

′
2≤ao

b′1,b
′
2≤bo

max
|γ|≤ρao+δbo

C
a′
1+b′1+1

γ,σ,Λ1
‖σ(x, π)‖a

′
2+b′2

Sm
ρ,δ,ao,bo,|m|,

where C > 0 is a positive constant depending on ao, bo, ψ, and where the constant
Cγ,σ,Λ1 was given in (5.79).

The following lemma is helpful in the proof of Proposition 5.8.5. Indeed, in
the case of Rn, if a cut-off function ψ(ξ) on the Fourier side is constant for |ξ| > Λ
(Λ large enough), then its derivatives are ∂α

ξ ψ(ξ) = 0 if |ξ| > Λ. In our case, we can
not say anything in general. If we use ψ(π(R)) as ‘a cut-off in frequency’ with ψ as
in Proposition 5.8.5 for example, it is not true in general that its (Δα-)derivatives
will vanish on Eπ(Λ,∞) or will be of the form ψ1(π(R)). However, we can show
that these derivatives are smoothing:

Lemma 5.8.6. Let ψ ∈ C∞(R) satisfy ψ|[Λ,+∞) = 1 for some Λ ∈ R. Then for any
α ∈ Nn

0\{0}, the symbol given by Δαψ(π(R)) is smoothing, i.e. is in S−∞.
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Proof of Lemma 5.8.6. Let α ∈ Nn
0\{0}. Then ΔαI = 0 by Example 5.2.8. There-

fore

Δαψ(π(R)) = −Δα(1− ψ)(π(R)).

As 1−ψ is a smooth function such that supp(1−ψ)∩[0,∞) is compact, the symbol
(1− ψ)(π(R)) is smoothing. Hence so is Δα(1− ψ)(π(R)) and Δαψ(π(R)). �

Proof of Proposition 5.8.5. Recall that by the Leibniz formula (Proposition 5.2.10),
we have

Δαo (σ1σ2) =
∑

[α1]+[α2]=[αo]

cα1,α2
Δα1σ1 Δα2σ2,

with

cα1,0 =

{
1 if α1 = αo

0 otherwise
, c0,α2 =

{
1 if α2 = αo

0 otherwise
.

It is also easy to see that

Xβo(f1f2) =
∑

[β1]+[β2]=[βo]

c′β1,β2
Xβ1f1 Xβ2f2,

with

c′β1,0 =

{
1 if β1 = αo

0 otherwise
, c′0,β2

=

{
1 if β2 = βo

0 otherwise
.

Let σ = σ(x, π) ∈ Sm
ρ,δ and ψ ∈ C∞(R) as in the statement. By Lemma 5.8.3,

the continuous symbol

{Eπ(Λ,∞)σ(x, π)−1 : H∞
π → H∞

π , (x, π) ∈ G× Ĝ},

depends smoothly on x ∈ G. Hence so does the continuous symbol σo defined via

σo(x, π) := ψ(π(R))σ−1(x, π).

Since ψ(π(R)) commutes with powers of π(I +R) and

‖ψ(π(R))‖L (Hπ) ≤ ‖ψ‖∞,

we have

‖π(I +R)m
ν σo(x, π)‖L (Hπ)

≤ ‖ψ‖∞‖π(I +R)
m
ν

{
Eπ(Λ,∞)σ(x, π)−1

}
‖L (Hπ)

= ‖ψ‖∞C−1
0 ,

where by Lemma 5.8.3, C0 is the finite constant intervening in the ellipticity
condition for γ = 0 in (5.79). More generally, in this proof, Cγ denotes the constant
depending on γ in (5.79), see also Corollary 5.8.4.
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By Proposition 5.3.4, ψ(π(R)) ∈ S0. We also see that

ψ(π(R)) = σo(x, π)σ(x, π). (5.83)

Hence for any left-invariant vector field X we have

0 = Xxψ(π(R))
= Xxσo(x, π) σ(x, π) + σo(x, π) Xxσ(x, π).

Thus
Xxσo(x, π)σ(x, π) = −σo(x, π) Xxσ(x, π),

and since σ(x, π) is invertible on Eπ(Λ1,∞)H∞
π ,

Xxσo(x, π) = −σo(x, π) {Xxσ(x, π)} E(Λ1,∞)σ−1(x, π).

Assuming that X is homogeneous of degree d, we can take the operator norm and
estimate

‖π(I +R)
m−δd

ν Xxσo(x, π)‖L (Hπ)

≤ ‖π(I +R)
m−δd

ν σo(x, π)π(I +R)
δd
ν ‖L (Hπ)

‖π(I +R)− δd
ν Xxσ(x, π)π(I +R)−

m
ν ‖L (Hπ)

‖π(I +R)m
ν

{
Eπ(Λ1,∞)σ(x, π)−1

}
‖L (Hπ)

≤ ‖ψ‖∞C−1
−δdC

−1
0 ‖σ(x, π)‖Sm

ρ,δ,0,d,|−m|.

Recursively on d=[βo], we can show similar properties forXβo
x

{
ψ(π(R))σ(x, π)−1

}
,

and obtain

‖ψ(π(R))σ(x, π)−1‖S−m
ρ,δ ,0,bo,0

≤ Cbo,‖ψ‖∞

∑
b′1,b

′
2≤bo

max
|γ|≤δbo

C
−(b′1+1)
γ ‖σ(x, π)‖b

′
2

Sm
ρ,δ,0,bo,|m|.

We can proceed in a parallel way for difference operators. Indeed, for any
αo ∈ Nn

0 with |αo| = 1, we apply Δαo to both sides of (5.83) and obtain

Δαo{ψ(π(R))} = Δαoσo(x, π) σ(x, π) + σo(x, π) Δ
αo{σ(x, π)},

thus

Δαoσo(x, π) = Δαo{ψ(π(R))}E(Λ1,∞)σ−1(x, π)

−σo(x, π) {Δαoσ(x, π)} E(Λ1,∞) σ−1(x, π).

Then
‖π(I +R)

ρ[αo]+m
ν Δαoσo(x, π)‖L (Hπ) ≤ N1 +N2,
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with

N1 = ‖π(I +R)
ρ[αo]+m

ν Δαo{ψ(π(R))}E(Λ1,∞)σ−1(x, π)‖L (Hπ),

N2 = ‖π(I +R)
ρ[αo]+m

ν σo(x, π) {Δαoσ(x, π)} E(Λ1,∞) σ−1(x, π)‖L (Hπ).

For the first norm, we see that

N1 ≤ ‖π(I +R)
ρ[αo]+m

ν Δαo{ψ(π(R))}π(I +R)−m
ν ‖L (Hπ)

‖π(I +R)m
ν E(Λ1,∞)σ−1(x, π)‖L (Hπ)

≤ CψC
−1
0 ,

since Δαo{ψ(π(R))} ∈ S−∞ by Lemma 5.8.6. For the second norm, we see that

N2 ≤ ‖π(I +R)
ρ[αo]+m

ν σo(x, π)π(I +R)−
ρ[αo]

ν ‖L (Hπ)

‖π(I +R)
ρ[αo]

ν Δαoσ(x, π)π(I +R)−m
ν ‖L (Hπ)

‖π(I +R)m
ν E(Λ1,∞) σ−1(x, π)‖L (Hπ)

≤ ‖ψ‖∞C−1
ρ[αo]

C−1
0 ‖σ‖Sm

ρ,δ,[αo],0,|m|.

Recursively on [αo], we can show similar properties for Δαo
{
ψ(π(R))σ(x, π)−1

}
,

and obtain

‖σo(x, π)‖S−m
ρ,δ ,ao,0,0

≤ Cao,ψ

∑
a′
1,a

′
2≤ao

max
|γ|≤ρao

C
−(a′

1+1)
γ ‖σ(x, π)‖a

′
2

Sm
ρ,δ,ao,0,|m|.

More generally, we have

Xβo
x Δαo {ψ(π(R))} =

∑
[α1]+[α2]=[αo]
[β1]+[β2]=[βo]

c′β1,β2
cα1,α2 Xβ1

x Δα1σo(x, π)

Xβ2
x Δα2σ(x, π).

Because of the very first remark of this proof, we obtain XβoΔαoσo in terms of
Xβ′

Δα′
σo with [β′] < [βo] and [α′] < [αo] and of some derivatives of ψ(π(R)) and

σ. If we assume that we can control all the seminorms ‖σo‖S−m
ρ,δ ,a,b,c with a < [αo],

b < [βo] and any c ∈ R, then we can proceed as above introducing powers of I+R
to obtain the estimate for the seminorms of ψ(π(R))σ(x, π)−1. Recursively this
shows Proposition 5.8.5. �

5.8.2 Parametrix

In the next theorem, we show that our notion of ellipticity implies the construction
of a parametrix.
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Theorem 5.8.7. Let σ ∈ Sm
ρ,δ be elliptic of elliptic order m with 1 ≥ ρ > δ ≥ 0.

We can construct a left parametrix B ∈ Ψ−m
ρ,δ for the operator A = Op(σ), that is,

there exists B ∈ Ψ−m
ρ,δ such that

BA− I ∈ Ψ−∞.

Comparing with two-sided parametrices in the case of compact Lie groups
(Theorem 2.2.17), this parametrix is one-sided. It was also the case in [CGGP92].

Proof. We can adapt the proof in [Tay81, §0.4] to our setting. Let ψ ∈ C∞(R) be
such that ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1 for some Λ1,Λ2 ∈ R with Λ < Λ1 < Λ2.
By Proposition 5.8.5,

ψ(π(R))σ−1(x, π) ∈ S−m
ρ,δ .

Since ψ(π(R)) = ψ(π(R))σ−1(x, π)σ(x, π), by Corollary 5.5.8,

Op
(
ψ(π(R))σ−1(x, π)

)
A = ψ(R) modΨ

−(ρ−δ)
ρ,δ ;

now ψ(R) = I− (1− ψ)(R) and (1− ψ) ∈ D([0,∞)) so (1− ψ)(R) ∈ Ψ−∞. This
shows

Op
(
ψ(π(R))σ−1(x, π)

)
A = I modΨ

−(ρ−δ)
ρ,δ .

So we have

Op
(
ψ(π(R))σ−1(x, π)

)
A = I− U with U ∈ Ψ

−(ρ−δ)
ρ,δ .

By Theorem 5.5.1, there exists T ∈ Ψ0
ρ,δ such that

T ∼ I + U + U2 + . . .+ U j + . . .

By Theorem 5.5.3,

B := T Op
(
ψ(π(R))σ−1

)
∈ Ψ−m

ρ,δ .

Therefore, we obtain

BA = T (I− U) = I modΨ−∞,

completing the proof. �

It is not difficult to construct the following examples of elliptic operators
satisfying Theorem 5.8.7 out of any Rockland operator. Indeed, combining Propo-
sition 5.3.4 or Corollary 5.3.8 together with Proposition 5.8.2 yield

Example 5.8.8. Let R be a positive Rockland operator of homogeneous degree ν.

1. For any m ∈ R, the operator (I +R)m
ν ∈ Ψm is elliptic with respect to R of

elliptic order m.
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2. If f1 and f2 are complex-valued smooth functions on G such that

inf
x∈G,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

> 0 for some Λ ≥ 0,

and such that Xα1f1, X
α2f2 are bounded for each α1, α2 ∈ Nn

0 , then the
differential operator

f1(x) + f2(x)R ∈ Ψν

is (R,Λ, ν)-elliptic.
3. Let ψ ∈ C∞(R) be such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying 0 < Λ1 < Λ2, Then the operator
ψ(R)R ∈ Ψν is (R,Λ2, ν)-elliptic.

More generally, if f is a smooth complex-valued function on G such that
infG |f | > 0 and that Xαf is bounded on G for every α ∈ Nn

0 , then

f(x)ψ(R)R ∈ Ψν

is elliptic with respect to R of elliptic order ν.

Hence all the operators in Example 5.8.8 admit a left parametrix.

We will see other concrete examples of elliptic differential operators on the
Heisenberg group in Section 6.6.1, see Example 6.6.2.

In fact we can prove the existence of left parametrices for symbols which are
elliptic with an elliptic order lower than their order. Indeed, we can modify the
hypothesis of the ellipticity in Section 5.8.1 to obtain the analogue of Hörmander’s
theorem about hypoellipticity involving lower order terms, similar to Theorem
2.2.18 in the compact case.

Theorem 5.8.9. Let σ ∈ Sm
ρ,δ with 1 ≥ ρ > δ ≥ 0. We assume that σ is elliptic with

respect to a positive Rockland operator R in the sense of Definition 5.8.1, and that
its elliptic order is mo ≤ m.

We also assume that the following hypothesis on the lower order terms holds:
there is Λ ∈ R such that for any γ ∈ R, x ∈ G, μ-almost all π ∈ Ĝ, and any
u ∈ H∞

π,Λ, we have

‖π(I +R)
ρ[α]−δ[β]+γ

ν

{
ΔαXβσ(x, π)

}
π(I +R)−

γ
ν u‖Hπ

≤ C ′
α,β,γ‖σ(x, π)u‖Hπ

, (5.84)

with C ′
α,β,γ = C ′

α,β,γ,σ,R,mo,Λ,γ independent of (x, π) ∈ G× Ĝ and u ∈ H∞
π,Λ.

Then we can construct a left parametrix B ∈ Ψ−mo

ρ,δ for the operator A =

Op(σ), that is, there exists B ∈ Ψ−mo

ρ,δ such that

BA− I ∈ Ψ−∞.
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Proceeding as in Corollary 5.8.4, we can show easily that it suffices to assume
(5.79) and (5.84) for a countable sequence γ which goes to +∞ and −∞.

Proof. Let ψ ∈ C∞(R) be such that ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1 for some
Λ1,Λ2 ∈ R with Λ < Λ1 < Λ2. Proceeding as in the proof of Proposition 5.8.5, we
see that

σo(x, π) := ψ(π(R))σ−1(x, π) ∈ S−mo

ρ,δ ,

with similar estimates for the seminorms of σo and σ.

With similar ideas, using (5.84), we claim that, for any multi-index βo ∈ Nn
0 ,

we have
Xβoσ(x, π) σo(x, π) ∈ S

δ[βo]
ρ,δ .

Indeed, from the proof of Proposition 5.8.5, we know that

Xσo = −σo Xσ E(Λ,∞)σ−1,

hence

X
(
Xβoσ(x, π) σo(x, π)

)
= XXβoσ(x, π) σo(x, π) +Xβoσ(x, π) Xσo(x, π)

= XXβoσ(x, π) σo(x, π)−Xβoσ(x, π) σo Xσ E(Λ,∞)σ−1,

and we can use the hypothesis (5.84) on each term to control the Sm
ρ,δ-seminorms

of the expression on the right-hand side. For the difference operators, from the
proof of Proposition 5.8.5, we know with |αo| = 1, that

Δαoσo = Δαoψ(π(R)) E(Λ,∞)σ−1 − σo Δαoσ E(Λ,∞)σ−1.

Hence

Δαo
{
Xβoσ(x, π) σo(x, π)

}
= XβoΔαoσ(x, π) σo(x, π) +Xβoσ(x, π) Δαoσo(x, π)

= XβoΔαoσ(x, π) σo(x, π)−Xβoσ(x, π) σo Δαoσ E(Λ,∞)σ−1

+Xβoσ(x, π) Δαoψ(π(R)) ψo(π(R))σ−1,

where ψo ∈ C∞(R) is a fixed smooth function such that ψo|[Λ1,∞) = 1 and
ψo|(−∞,Λ1/2) = 0. While we can use the hypothesis (5.84) on the first two terms,
we use Lemma 5.8.6 for the last term which is then smoothing. Proceeding recur-
sively as in the proof of Proposition 5.8.5, we obtain the estimates for the sum on
the right-hand side.

We now define recursively

σn(x, π) :=

⎛⎝ ∑
0<[α]≤n

Δασn−[α]X
ασ

⎞⎠σo, n = 1, 2, . . .
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It is easy to check that each symbol σn(x, π) is in S
−mo−n(ρ−δ)
ρ,δ and that as in the

compact case,

Op(σo)Op(σ)− I −Op(σ1)Op(σ)− . . .−Op(σn)Op(σ) ∈ Ψm−m0−n
ρ,δ .

Therefore, the operator B ∈ Ψ−mo

ρ,δ whose symbol is given by the asymptotic sum

σo −
∑∞

j=1 σj is a left parametrix for A = Op(σ). �
We will see a concrete example of hypoelliptic differential operators on the

Heisenberg group in Section 6.6.2, see Example 6.6.4.

We now note the following generalisation of Proposition 5.8.5 that we have
already used in the proof of Theorem 5.8.9.

Proposition 5.8.10. Assume 1 ≥ ρ ≥ δ ≥ 0. Let σ ∈ Sm
ρ,δ be a symbol which is

(R,Λ,mo)-elliptic with respect to a positive Rockland operator R. If ψ ∈ C∞(R)
is such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying Λ < Λ1 < Λ2, then the symbol

{ψ(π(R))σ−1(x, π) , (x, π) ∈ G× Ĝ},

given by
ψ(π(R))σ(x, π)−1 := ψ(π(R))Eπ(Λ1,∞)σ−1(x, π),

is in S−mo

ρ,δ . Moreover, for any ao, bo ∈ N0, we have

‖ψ(π(R))σ−1(x, π)‖S−mo
ρ,δ ,ao,bo,0

≤ C
∑

a′
1,a

′
2≤ao

b′1,b
′
2≤bo

max
|γ|≤ρao+δbo

C
a′
1+b′1+1

γ,σ,Λ1
‖σ(x, π)‖a

′
2+b′2

Sm
ρ,δ,ao,bo,|m|,

where C > 0 is a positive constant depending on ao, bo, ψ, and where the constant
Cγ,σ,Λ1

was given in (5.79).

Here the elliptic order mo and the symbol order m are different but the same
results holds: one can construct a symbol ψ(π(R))σ−1(x, π) ∈ S−mo

ρ,δ . The proof is
easily obtained by generalising the proof of Proposition 5.8.5.

We now show that Theorem 5.8.7 has a partial inverse.

Proposition 5.8.11. Suppose that the operator A = Op(σ) ∈ Ψm
ρ,δ, with 1 ≥ ρ >

δ ≥ 0, admits a left parametrix B ∈ Ψ−m
ρ,δ , i.e. BA− I ∈ Ψ−∞. Then σ is elliptic

of order m, that is, there exist a positive Rockland operator R of homogeneous
degree ν, and Λ ∈ R such that for any γ ∈ R, x ∈ G, μ-almost all π ∈ Ĝ, and any
u ∈ H∞

π,Λ we have

‖π(I +R)
γ
ν σ(x, π)u‖Hπ

≥ Cγ‖π(I +R)
γ
ν π(I +R)m

ν u‖Hπ
.
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Moreover, if this property holds for one positive Rockland operator then it holds
for any Rockland operator.

Proof. Let A and B be as in the statement. Let σ and τ be their respective
symbols. Then the symbol

ε := τσ − I

= (τσ −Op−1(BA))− (I−Op−1(BA)),

is in S
−(ρ−δ)
ρ,δ , and we can write

π(I +R)
m+γ

ν τσ = π(I +R)
m+γ

ν + ε0π(I +R)−
ρ−δ
ν π(I +R)

m+γ
ν ,

where
ε0 := π(I +R)

m+γ
ν επ(I +R)

ρ−δ
ν −m+γ

ν ∈ S0
ρ,δ.

For any u ∈ H∞
π , (x, π) ∈ G× Ĝ, we thus have

‖π(I +R)
m+γ

ν τ(x, π)σ(x, π)u‖Hπ

= ‖
(
π(I +R)

m+γ
ν + ε0(x, π)π(I +R)−

ρ−δ
ν π(I +R)

m+γ
ν

)
u‖Hπ

.

We can bound the left hand side by

‖π(I +R)
m+γ

ν τ(x, π)σ(x, π)u‖Hπ

≤ ‖π(I +R)
m+γ

ν τ(x, π)π(I +R)−
γ
ν ‖L (Hπ)‖π(I +R)

γ
ν σ(x, π)u‖Hπ

≤ ‖τ‖S−m
0,0,|γ|

‖π(I +R)
γ
ν σ(x, π)u‖Hπ

,

and the right hand side below by

‖
(
π(I +R)

m+γ
ν + ε0(x, π)π(I +R)−

ρ−δ
ν π(I +R)

m+γ
ν

)
u‖Hπ

≥ ‖π(I +R)
m+γ

ν u‖Hπ − ‖ε0(x, π)π(I +R)−
ρ−δ
ν π(I +R)

m+γ
ν u‖Hπ

≥ ‖π(I +R)
m+γ

ν u‖Hπ

−‖ε0(x, π)‖L (Hπ)‖π(I +R)−
ρ−δ
ν π(I +R)

m+γ
ν u‖Hπ .

Hence if u ∈ E(Λ,∞)H∞
π where Λ ≥ 0 then

‖τ‖S−m
0,0,|γ|

‖π(I +R)
γ
ν σ(x, π)u‖Hπ

≥ ‖π(I +R)
m+γ

ν u‖Hπ

−‖ε0(x, π)‖L (Hπ)(1 + Λ)−
ρ−δ
ν ‖π(I +R)

m+γ
ν u‖Hπ

.

Clearly τ �≡ 0 and ‖τ‖S−m
0,0,|γ|

�= 0. Furthermore

‖ε0(x, π)‖L (Hπ) ≤ ‖ε0‖S0
ρ,δ,0,0,0

<∞,
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hence we can choose Λ ≥ 0 such that

‖ε0(x, π)‖L (Hπ)(1 + Λ)−
ρ−δ
ν ≤ ‖ε0‖S0

ρ,δ,0,0,0
(1 + Λ)−

ρ−δ
ν ≤ 1

2
,

in view of ρ > δ. We have therefore obtained for u ∈ E(Λ,∞)H∞
π with the chosen

Λ, that

‖π(I +R)
γ
ν σ(x, π)u‖Hπ ≥

1

2‖τ‖S−m
0,0,|γ|

‖π(I +R)
m+γ

ν u‖Hπ ,

which is the required statement. �

5.8.3 Subelliptic estimates and hypoellipticity

The existence of a parametrix yields subelliptic estimates:

Corollary 5.8.12. Let m ∈ R and 1 ≥ ρ > δ ≥ 0. If A ∈ Ψm
ρ,δ is elliptic of order

m, then A satisfies the following subelliptic estimates

∀s ∈ R ∀N ∈ R ∃C > 0 ∀f ∈ S(G) ‖f‖L2
s+m
≤ C

(
‖Af‖L2

s
+ ‖f‖L2

−N

)
.

If A ∈ Ψm
ρ,δ is elliptic of order mo and satisfies the hypotheses of Theorem 5.8.9,

then A satisfies the subelliptic estimates

∀s ∈ R ∀N ∈ R ∃C > 0 ∀f ∈ S(G) ‖f‖L2
s+mo

≤ C
(
‖Af‖L2

s
+ ‖f‖L2

−N

)
.

In the case (ρ, δ) = (1, 0), assume that A ∈ Ψm is either elliptic of order m0 = m
or is elliptic of some order m0 and satisfies the hypotheses of Theorem 5.8.9. Then
A satisfies the subelliptic estimates

∀s ∈ R ∀N ∈ R ∀p ∈ (1,∞) ∃C > 0 ∀f ∈ S(G)

‖f‖Lp
s+mo

≤ C
(
‖Af‖Lp

s
+ ‖f‖Lp

−N

)
.

In the estimates above, ‖ ·‖Lp
s
denotes any (fixed) Sobolev norm, for example

obtained from a (fixed) positive Rockland operator.

Proof. By Theorem 5.8.7 or Theorem 5.8.9, A admits a left parametrix B, i.e.
BA− I = R ∈ Ψ−∞. By using the boundedness on Sobolev spaces from Corollary
5.7.2, we get

‖f‖L2
s+mo

≤ ‖BAf‖L2
s+mo

+ ‖Rf‖L2
s+mo

≤ C(‖Af‖L2
s
+ ‖f‖L2

−N
).

In the case (ρ, δ) = (1, 0), the last statement follows from Corollary 5.7.4 with
Sobolev Lp-boundedness instead. �
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Local hypoelliptic properties

Our construction of parametrices implies the following local property:

Proposition 5.8.13. Let A ∈ Ψm
ρ,δ with m ∈ R, 1 ≥ ρ > δ ≥ 0. We assume that the

operator A is elliptic of order m0 and that

• either m = m0,

• or m > m0 and in this case A satisfies the hypotheses of Theorem 5.8.9.

Then the singular support of any f ∈ S ′(G) is contained the singular support of
Af ,

sing supp f ⊂ sing suppAf,

that is, if Af coincides with a smooth function on any open subset of G, then f is
also smooth there.

Consequently, if A is a differential operator, then it is hypoelliptic.

The notion of hypoellipticity for a differential operator with smooth coeffi-
cients is explained in Appendix A.1.

Proposition 5.8.13 follows easily from the following property:

Lemma 5.8.14. Let A ∈ Ψm
ρ,δ with m ∈ R, 1 ≥ ρ > δ ≥ 0. We assume that there

exists an open set Ω such that the symbol of A satisfies the elliptic condition in
(5.79) for any x ∈ Ω only. We also assume that

• either m = m0,

• or m > m0 and in this case A satisfies the hypotheses of Theorem 5.8.9 with
x ∈ Ω.

If f ∈ S ′(G) and if Ω′ is an open subset of Ω where Af is smooth, i.e.
Af ∈ C∞(Ω′), then f ∈ C∞(Ω′).

The proof requires to revisit the construction of parametrices ‘to make it
local’.

Proof of Lemma 5.8.14. We keep the hypotheses and notation of the statement.
As the properties are essentially local, we may assume that the open subsets Ω,Ω′

are open bounded and that there exists an open subset Ω1 such that Ω̄′ ⊂ Ω1

and Ω̄1 ⊂ Ω. Let χ ∈ D(G) be such that χ ≡ 1 on Ω′ and χ ≡ 0 outside Ω1. The
symbol of the operator A′ := χ(x)A is given via χ(x)σ(x, π). An easy modification
of the proof of Proposition 5.8.5 implies that the symbol given by

χ(x)ψ(π(R))σ(x, π)−1

is in S−m0

ρ,δ (here ψ is a function as in Proposition 5.8.5). Adapting the proof of

Theorem 5.8.7 or Theorem 5.8.9, we construct an operator B ∈ Ψ−m0

ρ,δ such that

BA′ = χ(x) +R with R ∈ Ψ−∞.
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Let χ1 ∈ D(G) be such that χ1 ≡ 1 on Ω1 and χ1 ≡ 0 outside Ω. Let
f ∈ S ′(G). As A admits a singular integral representation, see Lemma 5.4.15
and its proof, the function x �→ χ(x) A{(1 − χ1)f}(x) is smooth and compactly
supported. Let us assume that Af is smooth on Ω′. Since we have for any x ∈ G

A′{χ1f}(x) = χ(x) Af(x)− χ(x) A{(1− χ1)f}(x),

the function A′{χ1f} is necessarily smooth and compactly supported on G, i.e.
A′{χ1f} ∈ D(G). Applying B, we have BA′{χ1f} ∈ S(G) by Theorem 5.2.15. By
Corollary 5.5.13. R{χ1f} ∈ S(G) since the distribution χ1f ∈ E ′(G) has compact
support. Hence χ1f = BA′{χ1f} − R{χ1f} must be in S(G). This shows that f
is smooth on Ω′. �

Global hypoelliptic-type properties

Our construction of parametrix is global. Hence we also obtain the following global
property:

Proposition 5.8.15. Let A ∈ Ψm
ρ,δ with m ∈ R, 1 ≥ ρ > δ ≥ 0. We assume that the

operator A is elliptic of order m0 and that

• either m = m0,

• or m > m0 and in this case A satisfies the hypotheses of Theorem 5.8.9.

If f ∈ S ′(G) and Af ∈ S(G), then f is smooth and all its left-derivatives
(hence also right-derivatives and abelian derivatives) have polynomial growth. More
precisely, for any multi-index β ∈ Nn

0 , there exists a constant C > 0, an integer
M ∈ N0 and seminorms ‖ · ‖S′(G),N1

, ‖ · ‖S(G),N2
such that for any f ∈ S ′(G) with

Af ∈ S(G), we have

|Xβf(x)| ≤ C
(
(1 + |x|)M‖f‖S′(G),N1

+ ‖Af‖S(G),N2

)
, x ∈ G.

Proof. We keep the hypotheses and notation of the statement. By Theorem 5.8.7
or Theorem 5.8.9, A admits a left parametrix B, i.e. BA− I ∈ Ψ−∞. By Corollary
5.4.10, (BA − I)f is smooth with polynomial growth. As Af ∈ S(G), B(Af) ∈
S(G) by Theorem 5.2.15. Thus

f = −(BA− I)f +B(Af)

is smooth with polynomial growth. The estimate follows easily from the ones in
Corollary 5.4.10 and Theorem 5.2.15. �

Examples

Hence we have obtained hypoellipticity and subelliptic estimates for the operators
in Examples 5.8.8.
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Corollary 5.8.16. Let R be a positive Rockland operator of homogeneous degree ν
and let p ∈ (1,∞).

1. If f1 and f2 are complex-valued smooth functions on G such that

inf
x∈G,λ≥Λ

|f1(x) + f2(x)λ|
1 + λ

> 0 for some Λ ≥ 0,

and such that Xα1f1, Xα2f2 are bounded for each α1, α2 ∈ Nn
0 , then the

differential operator
f1(x) + f2(x)R

satisfies the following subelliptic estimates

∀p ∈ (1,∞) ∀s ∈ R ∀N ∈ R ∃C > 0 ∀ϕ ∈ S(G)

‖ϕ‖Lp
s+ν
≤ C

(
‖(f1 + f2R)ϕ‖Lp

s
+ ‖ϕ‖Lp

−N

)
,

and is (locally) hypoelliptic. It is also globally hypoelliptic in the sense of
Proposition 5.8.15.

2. Let ψ ∈ C∞(R) be such that

ψ|(−∞,Λ1] = 0 and ψ|[Λ2,∞) = 1,

for some real numbers Λ1,Λ2 satisfying 0 < Λ1 < Λ2. Let also f1 be a smooth
complex-valued function on G such that

inf
G
|f1| > 0

and that Xαf1 is bounded on G for each α ∈ Nn
0 . Then the operator

f1(x)ψ(R)R ∈ Ψν

satisfies the following subelliptic estimates

∀p ∈ (1,∞) ∀s ∈ R ∃C > 0 ∀N ∈ R ∀ϕ ∈ S(G)

‖ϕ‖Lp
s+ν
≤ C

(
‖f1ψ(R)Rϕ‖Lp

s
+ ‖ϕ‖Lp

−N

)
,

and is (locally) hypoelliptic. It is also globally hypoelliptic in the sense of
Proposition 5.8.15.
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