Chapter 5

Quantization on graded Lie
groups

In this chapter we develop the theory of pseudo-differential operators on graded Lie
groups. Our approach relies on using positive Rockland operators, their fractional
powers and their associated Sobolev spaces studied in Chapter 4. As we have
pointed out in the introduction, the graded Lie groups then become the natural
setting for such analysis in the context of general nilpotent Lie groups.

The introduced symbol classes Sg?(; and the corresponding operator classes

Zé = Op Sg,l&a
for (p,d) with 1 > p > § > 0 and § # 1, have an operator calculus, in the sense that
the set (J,,cp W75 forms an algebra of operators, stable under taking the adjoint,
and acting on the Sobolev spaces in such a way that the loss of derivatives is
controlled by the order of the operator. Moreover, the operators that are elliptic
or hypoelliptic within these classes allow for a parametrix construction whose
symbol can be obtained from the symbol of the original operator.

During the construction of the pseudo-differential calculus UmeR\I/Z?(; on
graded Lie groups in this chapter, there are several difficulties one has to over-
come and which do not appear in the case of compact Lie groups as described in
Chapter 2. The immediate one is the need to find a natural framework for dis-
cussing the symbols to which we will be associating the operators (quantization)
and we will do so in Section 5.1. In Section 5.2 we define symbol classes leading
to algebras of symbols and operators and discuss their properties. The symbol
classes that we introduce are based on a positive Rockland operator on the group
and contain all the left-invariant differential operators. As with Sobolev spaces,
the symbol classes can be shown to be actually independent of the choice of a
positive Rockland operator used in their definition. In Section 5.3 we show that
the multipliers of Rockland operators are in the introduced symbol classes. We
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272 Chapter 5. Quantization on graded Lie groups

investigate the behaviour of the kernels of operators corresponding to these sym-
bols in Section 5.4, both at 0 and at infinity and show, in particular, that they
are Calderén-Zygmund (in the sense of Coifman and Weiss, see Sections 3.2.3 and
A.4). The symbolic calculus is established in Section 5.5. In Section 5.7 we show
that the operators satisfy an analogue of the Calderén-Vaillancourt theorem. The
construction of parametrices for elliptic and hypoelliptic operators in the calculus
is carried out in Section 5.8.

Conventions

Throughout Chapter 5, G is always a graded Lie group, endowed with a family
of dilations with integer weights. Its homogeneous dimension is denoted by Q.
Also throughout, R will be a homogeneous positive Rockland operator of homo-
geneous degree v. If G is a stratified Lie group, we can choose R = —L with L
a sub-Laplacian, or another homogeneous positive Rockland operator. Since it is
a left-invariant differential operator, we denote by 7(R) the operator described
in Definition 1.7.4. Both R and m(R) and their properties have been extensively
discussed in Chapter 4, especially Section 4.1.

Finally, when we write
sup
WE@
we always understand it as the essential supremum with respect to the Plancherel
measure on G.

5.1 Symbols and quantization

The global quantization naturally occurs on any unimodular Lie (or locally com-
pact) group of type 1 thanks to the Plancherel formula, see Subsection 1.8.2 for
the Plancherel formula. The quantization was first noticed by Michael Taylor in
[Tay86, Section 1.3]. The case of locally compact type 1 groups was studied re-
cently in [MR15]. The case of the compact Lie groups was described in Section
2.2.1. Here we describe the particular case of graded nilpotent Lie groups, with an
emphasis on the technical meaning of the objects involved. A very brief outline of
the constructions of this chapter appeared in [FR14a].

Formally, for a family of operators o(x, ) on H, parametrised by « € G and
m € G, we associate the operator T'= Op(o) given by

To(z) = /@Tr (W(x)a(% w)a(w)) dp(). (5.1)

Again formally, the Fourier inversion formula implies that if o(x,7) does not de-
pend on z and is the group Fourier transform of some function «, i.e. if o(z,7) =
R(m), then Op(o) is the convolution operator with right-convolution kernel x, i.e.



5.1. Symbols and quantization 273

Op(0)¢ = ¢*k. We would like this to be true not only for (say) integrable functions
K but also for quite a large class of distributions, in order

to quantize X = Op(o) by o(z,7) = 7(X)“,

with 7(X) as in Definition 1.7.4.

The first problem is to make sense of the objects above. The dependence of
o on x is not problematic for the interpretation in the formula (5.1), but we have
identified a unitary irreducible representation 7 with its equivalence class and the
families of operators may be measurable in 7 € RepG but not defined for all
7 € G. More worryingly, we would like to consider collections of operators which
are unbounded, for instance such as 7(X)®, m € G. For these reasons, it may be
difficult to give a meaning to the formula (5.1) in general.

Thus, our first task is to define a large class of collections of operators o(x, ),
r € G, m € G, for which we can make sense of the quantization procedure. We
will use the realisations

K(G), L®(G), and Z,(L*(@))

of the von Neumann algebra of the group G described in Section 1.8.2. We will
also use their generalisations

Kap(G), LZ(G), and 2 (L2(G), LE(G))

which we define in Section 5.1.2. In order to do so we use a special feature of our
setting, namely the existence of positive Rockland operators and the corresponding
L?-Sobolev spaces.

5.1.1 Fourier transform on Sobolev spaces

In Section 4.3, we have discussed in detail the fractional powers of a positive
Rockland operator R and of the operator I4+R. In the sequel, we will also need to
understand powers of the operators m (I+ R), m1 € Rep G. We now address this,
and use it to extend the group Fourier transform to the Sobolev spaces L2(G).

From now on we will keep the same notation for the operators R and m(R)
(where m; € Rep (G)) and their respective self-adjoint extensions, see Proposition
4.1.15. We note that by Proposition 4.2.6 the operator 71 (R) is also positive. We
can consider the powers of I+ R and m(I+ R) = I+ m(R) as defined by the
functional calculus

I+R)> :/000(1+>\)3dE(>\), m(I4+R)? :-/Ooo(l—k)\)ngm(/\),

where E and E,, are the spectral measures of R and m1(R), respectively, and v
is the homogeneous degree of R, see Corollary 4.1.16.



274 Chapter 5. Quantization on graded Lie groups

Remark 5.1.1. If a/v is a positive integer, there is no conflict of notation between

o the powers of 71 (I+R) as the infinitesimal representation of 71 (see Definition
1.7.4) at I+ R € U(g)

e and the operator 7 (I +R)+ defined by functional calculus.

Indeed, if a = v, the two coincide. If a = fv, £ € N, then the operator 7 (I +R)*>
defined by functional calculus coincides with the ¢-th power of 71 (I4+R). The case
a = 0 is trivial.

We can describe more concretely the operators m (I+R)¥, m € RepG.

Lemma 5.1.2. Let R be a positive Rockland operator of homogeneous degree v. As
in Corollary 4.8.11, we denote by B, the right-convolution kernels of its Bessel
potentials (I+R)™v, Rea > 0.

If a € C with Rea < 0, then B_, is an integrable function and

Vmi1 € RepG A+ R)¥ = B_y(m).

For any a € C and any m, € RepG, the operator m (I + R)¥ maps HY

onto H bijectively. Furthermore, the inverse of m(I1+R)v is m(I1+R)™% as
operators acting on HJ: .

Proof. Let a € C, Rea < 0. Then the Bessel potential (I + R)¥ coincides with
the bounded operator with right-convolution kernel B_, € L'(G), see Corollary
4.3.11. Therefore, (I+R)¥ € .Z(L*(G)) and

FlU+R)o fy = Falf B} = B_of, feL*Q).

Now we apply Corollary 4.1.16 with the bounded multiplier given by ¢(\) =
(14+A)¥, A > 0. By Equality (4.5) in Corollary 4.1.16, we obtain

Fe{0+ R fl=x(1+R)*f, feL*G).

The injectivity of the group Fourier transform on K(G) yields that B’\,a(ﬂ) =
7(I+R)¥ for any 7 € G, and the first part of the statement is proved.

Let a € C. We apply Corollary 4.1.16 with the multiplier given by ¢(\) =
(14+X)¥, A > 0. Although this multiplier is unbounded, simple modifications of the
proof show that Equality (4.5) in Corollary 4.1.16 still holds for f in the domain
of the operator. Recall that the domain of (I + R)» contains S(G) by Corollary
4.3.16 and moreover (I1+R)»S(G) = S(G). Consequently, if 1 € Rep G, we have

m{I+R)" flv=m(I+R)vmi(f)v, feS(Q), veEHn,

with 71 (I+ R)¥ defined spectrally. Recall that 1 (f)v € HZ° when f € S(G) by

L

Proposition 1.7.6 (iv), hence here 71 {(I+R)? f}v € HZ as well. By Lemma 1.8.19,
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m1(I+R)* maps H2° to H2°. The spectral calculus implies that as operators acting
on HY, we have
m(I+R)Pm(I+R) * = Hi‘i and m(I+R) vm(I+R)v = 3"1'

a

Consequently, the inverse of 71 (I +R)¥ is (I + R)™¥ as operators defined on
H and m (14 R)PHD = H®. O

Lemma 5.1.2 and Remark 4.1.17 now imply easily

Corollary 5.1.3. Let R be a positive Rockland operator of homogeneous degree v.
For any a € C, {n(I+R)? : HX — HX, 7 € G} is a measurable G-field of
operators acting on smooth vectors (in the sense of Definition 1.8.14).

Lemma 5.1.2 together with the Plancherel formula (see Section 1.8.2) and
Corollary 4.3.11 also imply

Corollary 5.1.4. Let R be a positive Rockland operator of homogeneous degree v.
For any a € R, we have

a>Q/72 =  {r(1+R) ¥, 7meG}ell?q),
and also, for a > Q/2,
71+ R)~% oy = I1Ba(m)l 2 = I1Ball @) < oo

Note that an analogue of Corollary 5.1.4 for compact Lie groups may be
obtained by noticing that (2.15) yields

m>n/2 = Y delln(I-La) ? i =Y di(m)

re@ re@

The following statement describes an important property of the field {7 (I +
R)¥, 7 € G}, in relation with the right Sobolev spaces (see Section 4.4.8 for right
Sobolev spaces):

Proposition 5.1.5. Let R be a positive Rockland operator on G of homogeneous
degree v. Let also a € R.

If f € L2(Q), then (I+R)* f € L*(G) and there exists a field of operators
{op: H® = Hy, m € G} such that

{om(I+R)" : H® = H., me G e L*G), (5.2)
and for almost all ™ € é,
Fe{lI+R)? fi(r) = oxr(I+R)*. (5.3)

Conversely, if {ox : HY — Hyp, 7 € @} satisfies (5.2) then there exists a
unique function f € L2(G) satisfying (5.3).
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In Proposition 5.1.5, o,m(I + R)* is not obtained as the composition of
(possibly) unbounded operators as in Definition A.3.2. Instead, for o,m(I+ R)7,
it is viewed as the composition of a field of operators defined on smooth vectors
with a field of operators acting on smooth vectors, see Section 1.8.3.

In Proposition 5.1.5, we use the right Sobolev spaces associated with the
positive Rockland operator R. These spaces are in fact independent of the choice
of a positive Rockland operator used in their definition, see Sections 4.4.5 and 4.4.8.
Consequently, if (5.2) holds for one positive Rockland operator then (5.2) and (5.3)
hold for any positive Rockland operator and the Sobolev norm of f € L?(G), using
one particular positive Rockland operator R, is equal to the L? (@)—norm of (5.2).

Proof of Proposition 5.1.5. If f € L2(G), then by Theorem 4.4.3 (3) (see also
Section 4.4.8), we have that f, := (I+R)¥ f is in L?(G) and its Fourier transform
is a field of bounded operators (in fact in the Hilbert-Schmidt class). By Lemma
5.1.2, 1(I+ R)~% maps H onto itself. Hence we can define

or 1= n(fa)m(I+R)E,

as an operator defined on HS°. One readily checks that the operators o,, 7 € @,
satisfy (5.2) and (5.3).

For the converse, if {o; : H®® — H, : 7 € G} satisfies (5.2) then we define
the function

LQ(G) 3 fao = }—51{0’#77(1""7%)%}7

which is square integrable by the Plancherel theorem (see Theorem 1.8.11), and
the function

J= (I + 7~z)7%.](;1’

which will be in L2(G) by Theorem 4.4.3 (3). One readily checks that the function
f satisfies the properties described in the statement. O

We now aim at stating and proving a property similar to Proposition 5.1.5 for
the left Sobolev spaces. It will use the composition of a field with 7(I+7R)*" on the
left and this is problematic when we consider any general field o = {0, : H>°® —
H,} without utilising the composition of unbounded operators as in Definition

A.3.2. To overcome this problem, we introduce the following notion:

Definition 5.1.6. Let m; € Rep G and a € R. We denote by H% the Hilbert space
obtained by completion of HS for the norm

I llag, = 0= (@ + R) vl = [lvllos,

where R is a positive Rockland operator on G of homogeneous degree v.
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We may call them the H, -Sobolev spaces. Note that in the case of the
Schrodinger representation for the Heisenberg group, they coincide with Shubin-
Sobolev spaces, see Section 6.4.3. More generally, if we realise an element 7 € G
as a representation 71 acting on some L?(R™) via the orbit methods, see Section
1.8.1, then we view the corresponding Sobolev spaces as tempered distributions:

He C S'(R™).
The following lemma is a routine exercise.
Lemma 5.1.7. Let my € Rep G and a € R.

1. Ifa=0, then H% = Hy, . If a >0, we realise Hy, as a subspace of Hr, and
it is the domain of the operator m (I + R)v. If a < 0, we realise Hy, as a
Hilbert space containing H,, and the operator m (1 + R)*v extends uniquely
to a bounded operator Hy — Hr, .

2. For any a € R, realising H3 as in Part 1, this space is independent of
the positive Rockland operator R and two positive Rockland operators yield
equivalent norms.

3. We have the continuous inclusions
a<b = H, CH:.

For any a,b € R, the operator m (1+R)¥ maps 7—[21 to "Hfr:“ injectively and
continuously. In this way, Hy, and H - are in duality via

(w,0) 300 wpze = (MI+R) u,m(I+R)"

NG

17)7.[_"1 .
This duality extends the Hyr, duality in the sense that

Vu € Hy, NHeryy, vEH NHy, (u, v>7{21 KM = (u,0)2,, -

4. If mo is another strongly continuous representation such that w ~7 s, that
is, T is a unitary operator satisfying T'my = w1z, then T maps HZT to H7,
bijectively by Lemma 1.8.12 and extends uniquely to an isometric operator

Hy — He, .

Lemma 5.1.7, especially Part 4, shows that G-fields with domain or range on
these Sobolev spaces make sense:

Definition 5.1.8. Let a € R. A G-field of operators 0 = {0 : HX® — Hn,m € é}
defined on smooth vectors is defined on the Sobolev spaces HE when for each
71 € Rep G, the operator o, is bounded on Hj in the sense that

C Yo eH lomuvlr., < Cllofus,-

T —
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Thus, by density of H5Y in Hy |, or, extends uniquely to a bounded operator

defined on Hj for which we keep the same notation o, : Hy — Hy,.

Ezample 5.1.9. For any positive Rockland operator of degree v, the field {7 (I +

R)v,m € 6}7 is defined on the Sobolev spaces H%. This is an easy consequence of
Lemma 5.1.7, especially Part 3.

We will allow ourselves the shorthand notation
o={oy:H* = Hy,me G},

to indicate that the G-field of operators is defined on the Sobolev spaces Hy.

Instead of Definition 5.1.8, we could also have defined G-fields of operators
defined on H%-Sobolev spaces in a way similar to Definition 1.8.13 (where G-
fields of operators defined on smooth vectors were defined). Naturally, these two
viewpoints are equivalent since H:? is dense in Hy. .

However, in order to define G-fields of operators with range in the ‘Hy-Sobolev
spaces, we have to adopt the latter viewpoint in the sense that we modify Defini-
tions 1.8.13 and 1.8.14 (in this way, we make no further assumptions on the fields
or on the Sobolev spaces):

Definition 5.1.10. Let a € R.

o A é’—ﬁeld of operators defined on smooth vectors with range in the Sobolev
spaces HE is a family of classes of operators {o,, 7 € G} where

op = {0on, Hy = HE T €T}

T

for each m € G viewed as a subset of Rep G, satisfying for any two elements
Or, and o, in o,:

T ~op Ty = Op, L = Toq, on H.

(Here we have kept the same notation for the intertwining operator 7' and
its unique extension between Sobolev spaces Hy, — Hy , see Lemma 5.1.7
Part 4.)

e It is measurable when for one (and then any) choice of realisation 71 € 7 and

any vector v, € Hy , as m runs over G, the resulting field {07V, ™ E G} is
p-measurable whenever [z [|vr |3 dp(m ) oo. (Here we assume that all the
‘He-norms are realised via a fixed positive Rockland operator.)

Unless otherwise stated, a G-field of operators defined on smooth vectors
with range in the Sobolev spaces H2 is always assumed measurable. We will allow
ourselves the shorthand notation

o={o, : HZ > HE e G
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to indicate that the G-field of operators has range in the Sobolev space HZ.
Naturally, if a G-field of operators is defined on smooth vectors o = {0, :

HY — Hyym € CA?} with the usual range H, = H2, then it has range in the Sobolev

spaces Hy when for each m; € Rep G and any v € HZS, we have o, v € Hy, .

T
Moreover, the following property of composition is easy to check: if o has
range in H% and o9 is defined on HZ,

ie. o ={o1r HX > Hs € @} and o9 ={09r:Hy = Hr,mE é},
then the following field
0201 := {02201 7 : HY — Hn,m € @}

makes sense as a G-field of operators defined on smooth vectors. This coincides
or extends the definition of composition of fields (the first one acting on smooth
vectors) given in Section 1.8.3.

We can apply this property of composition to 0 = {o; : H® — HE, 7 € é}
and {m(I+ R)v,nm € G}, see Example 5.1.9 for the latter, to obtain the G-field
defined on smooth vectors by

I+ R)vo = {r1+R)¥oy: HX — Hn,m € G} (5.4)

We can now state the proposition which will enable us to define the group
Fourier transform of a function in a left or right Sobolev space.

Proposition 5.1.11. Let a € R.
(L) If f € L2(G), then (I+R)¥ f € L*(G) and there exists a field of operators
{or : H® — HE, m € G} such that
(rA+R)vor: HE = Hy, e G} € L*(G), (5.5)
Fe{+R)¥ fY(x) =n(1+ R)¥ oy, for almost all 7 € G, (5.6)

where R is a positive Rockland operator on G of homogeneous degree v.

Conversely, if {05 : H® — He, © € G} satisfies (5.5) for one positive
Rockland operator R, then there exists a unique function f € L2(Q) satisfying
(5.6).

(R) If f € L2(G), then the (unique) field o obtained in Proposition 5.1.5 can be
extended uniquely into a field {o, : HE — Hr, m € G} defined on HE.
Properties (L) and (R) are independent of the choice of R.

In Proposition 5.1.11, 7(I + R)¥ o, is not obtained as the composition of
(possibly) unbounded operators as in Definition A.3.2 but is understood via (5.4).
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In Proposition 5.1.11, we use the left and right Sobolev spaces associated
with the positive Rockland operator R. These spaces are in fact independent of
the choice of a positive Rockland operator used in their definition, see Sections
4.4.5 and 4.4.8. Consequently, if (5.5) hold for one positive Rockland operator then
(5.5) and (5.6) hold for any positive Rockland operator and the Sobolev norm of
f € L?*(G), using one particular positive Rockland operator R, is equal to the

L? (@)—norm of (5.5).

Proof of Proposition 5.1.11. Property (L). If f € L2(G), then by Theorem 4.4.3
(3), we have that f, := (I+R)v f is in L?(G) and its Fourier transform is a field
of bounded operators (in fact in the Hilbert-Schmidt class). By (5.4) we can define
o= {0, : H® — H} via 0, := 7(1+R)™ v 7(f.). One readily checks that the
field o satisfies (5.2) and (5.3).

For the converse, if {0, : H® — H® : 7 € G} satisfies (5.2) then we define
the function

L*(G) 3 fo = FH{r(I+R) 0},

which is square integrable by the Plancherel theorem (see Theorem 1.8.11), and
the function

fi=0+R)"%fa,

which will be in L2(G) by Theorem 4.4.3 (3). One readily checks that the function
f satisfies the properties described in the statement. This shows the property (L).
Property (R) follows easily from (5.2). O

From the proof above, one can check easily that if f € L2(G) or L2(Q) is also
in any of the spaces where the group Fourier transform has already been defined,
namely, L*(G) or K(G), then 0 = {0, : HX — H,,m € G} will coincide with
the group Fourier transform of f. Hence we can extend the definition of the group
Fourier transform to Sobolev spaces:

Definition 5.1.12. Let a € R. The group Fourier transform of f € L2(G) or f €
L2(G) is the field o of operators defined on smooth vectors given in Proposition
5.1.11.

This leads us to define the following spaces of fields of operators:
Definition 5.1.13. (L) Let L2(G) denote the space of fields of operators o with
range in H? and satisfying (5.5), that is,
o= {ox:HZ - H, meqY,
{(7A+R)¥0oq: HX® = Hy, we Gt e L2(G),
for one (and then any) positive Rockland operator of homogeneous degree v.

We also set
10l 2 @) = I+ R) ¥ 0ell 2 (5.7)
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(R) Let L2

(@) denote the space of fields of operators o defined on H% and satis-
fying (5.2

), that is,

o={oy: HE = H,, 7 G},
{o,m(I+R)% : HX — H,, m e G} € L2(G),

for one (and then any) positive Rockland operator of homogeneous degree v.
We also set

lollz2 @) = loam@+R)¥ |l 125

It is a routine exercise, using Proposition 5.1.11 and the properties of the
Sobolev spaces (see Section 4.4), to show that

Proposition 5.1.14. Let a € R. If R is a positive Rockland operator of homogeneous
degree v, the map || - || 12 &) given by (5.7) is a norm on the vector space L2(G).

Endowed with this norm, Li(@) 1s a Banach space which is independent of R.
Two norms corresponding to any two choices of Rockland operators via (5.7) are
equivalent.

The Fourier transform Fg is an isomorphism between Banach spaces acting
from L2(G) onto L2(G). It coincides with the usual Fourier transform on L?(G)
fora=0.

Let o = {op,m € G} be in L2(G). Then
{m(X)0x,me G}
is in Li_[a] (G) for any o € Ng, and
{r(1+R)* o, 7€ G}

is in L2_(G) for any s € R. Furthermore, if f = Fglo € L2(G) then

Fa(Xf) () =n(X)*F(r) and Fe((l+R)*f)(x) = w1+ R)*" f(x).

We have similar results for the right Sobolev spaces. Furthermore the adjoint
map o + o* maps L2(G) — L2(G) and L2(G) — L2(G) isomorphically as Banach
spaces.

Recall that the tempered distributions X*f and (I 4+ R)*/*f used in the
statement just above are respectively defined via

(Xf,0) = (fAX}o), ¢€S(G), (5:8)

and

(T+ R f,0) = (f,A+R)*"¢), ¢€S(G). (5.9)
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For (5.9), see Definition 4.3.17. For (5.8), this is the composition of the formula
obtained for one vector field (with polynomial coefficients) by integration by parts.
See also (1.10) for the definition of { X}

In Corollary 1.8.3, we stated the inversion formula valid for any Schwartz
function on any connected simply connected Lie group. Here we weaken the hy-
pothesis using the Sobolev spaces in the context of a graded Lie group G:

Proposition 5.1.15 (Fourier inversion formula). Let f be in the left Sobolev space
L2(G) or in the right Sobolev space L*(G) with s > Q/2. Then for almost every

m € Rep G, the operator f(m) is trace class with

[l dntm) < . (5.10)

Furthermore, f is continuous on G, and for every x € G we have
= [ Tr (n(2)f(m)) du(x) = | Tr(f(m)r du (). .
@)= [T (w@)fm) dutr) = [ T (Fimye(a)) dutm) (5.11)

In the statement above, as s > Q/2 > 0, the field f is in LQ(@), it is
then a field of bounded operators (even in Hilbert-Schmidt classes) and so can be
composed on the left and the right with 7(z). The (possibly infinite) traces

o~

Tr ‘m(m) ()],

~

Te | fim)m (@) and T |F(m)|

are equal for m_€ RepG as m is unitary. They are constant on the class of
m € RepG in G and are, therefore, treated as depending on 7 € G. They are
finite for p-almost all m € G in view of (5.10).

Note that (5.10) implies not only that the two expressions

/é 1 (x(2) () ) dia()  and / v (flm)r(@)) du(r)

make sense but that they are also equal by the properties of the trace since m(x)
is bounded.

Proof of Proposition 5.1.15. Let R be a positive Rockland operator of homoge-
neous degree v. Let f € L%(G) with s > Q/2. We set

fo = (1+R)" f € L*Q).

The properties of the trace imply

Tr| f(m)] = Tr |x(1+R) ™% fo(m)| < 7T+ R) ™% lus | fo () ss-
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Integrating against the Plancherel measure, we obtain by the Cauchy-Schwartz

inequality

L TRt < I+ R)E a1l

By Corollary 5.1.4, Cy := ||[r(I1+R)™ ¥ ll72(@) 1s a positive finite constant. Since

||fs(7r)\|L2(é) is equal to || f||z2(q) which is finite, we have obtained (5.10).
Let ¢ € S(G). By the Plancherel formula, especially (1.30), we have

(£, D)2 = (fssT+R)7¢)r2c)

f
_ /GTr<f )

/éTr (Falfohm) (FolT+R)"20}(m)") du(m)
[ (4 R)? Fim) G w(Im)—%)W
G

Note that the two functions f, and (I + R)¥ ¢ are both square integrable so all

the traces above are finite.

We now fix a non-negative function y € D(G) with compact support con-
taining 0 and satisfying fGX = 1. We apply what precedes to ¢ := x. given

by
Xe(y) =€ “x(ey), €>0,yeq,
and obtain

(Foxduze) = [T (Fm) 2um)”) duto).

Let us show that the right hand-side of (5.12) converges to

L (Fm) ) dutm) s [ 11 (Fm)) do)

Note that the right hand-side of (5.13) is finite by (5.10).
The integrand on the left-hand side is bounded by

T (F(7) Re(m)* )| < 1R (M) 200 T F ),

and
IXe(M)l. 234, < lIxellzre = lIxllr @)

Hence

Tr (F(m) %(m)") | < Il o T F(m) s
and the right-hand side is p-integrable by (5.10).

(5.12)

(5.13)
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Let us show the convergence for every m € G

Tr (f(w) ys(w)*) o Tr (f(w)) . (5.14)

In order to do this, we want to estimate the difference

T (f(m) Xe(m)*) =T (F(m)|

Te (fm) Relm) = D)

1% (7)* = Ul e ) T | Fm)|

IN

Since
ﬂWVZL%MMWWfLK%WMW@@Z/X@ﬂ@ﬁ,

and as [, x = 1, we have

IXe(m)" =12,y = II/GX(Z) (m(e2) = D) dz|.2(n,)

IN

/u@wmm—wﬂme
G

< sup WW%W@mﬁéMMW~

zEsuppx

As 7 is strongly continuous and suppy compact, we know that

sup |Im(ez) — I 2(3,) —res0 0.
zZEsuppx

This implies the convergence in (5.14) for each 7w € G.
We can now apply Lebesgue’s dominated convergence theorem to obtain the
convergence in (5.13).

By the Sobolev embeddings (see Theorem 4.4.25), f is continuous on G and
it is a simple exercise to show that the left hand-side of (5.12) converges to

(fa XE)L2(G) —7e—0 f(O)

Hence we have obtained the inversion formula given in (5.11) at 2 = 0. Replacing
f by its left translation f(x -) which is still in L2(G) with the same Sobolev norm,
it is then easy to obtain (5.11) for every x € G.

For the case of f € L2(G) with s > Q/2, we set f, == (I+R)* f € L*(G)
and we obtain similar properties as above, ending by using right translations to
obtain (5.11). O
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5.1.2  The spaces K,,(G), Z.(L2(G), L}(G)), and L(G)

In this section we describe the spaces Ko 4(G), ZL(L2(G), L3 (G)) and Lgfb(@),
extending the notion of the group von Neumann algebras discussed in Section
1.8.2, to the setting of Sobolev spaces.

Definition 5.1.16 (Spaces .71, (L2(G), L3(GR)) and Ko (G)). Let a,b € R. We de-
note by
L (L3(G), Ly (G))

the subspace of operators 7' € .Z(L2(G), L}(G)) which are left-invariant.

We denote by
Kan(G)

the subspace of tempered distributions f € §’(G) such that the operator S(G) >
¢+ ¢ * f extends to a bounded operator from L2(G) to L2 (G).

If a positive Rockland operator R of homogeneous degree v is fixed, then the
Kap(G)-norm is defined for any f € Iy 3(G), as the operator norm of ¢ — ¢ * f
viewed as an operator from L2(G) to L(G), i.e.

[flla, = 16— &= fllowze).L2e)- (5.15)

Here we have considered the Sobolev norms ¢ — ||(I+ R)¥ ¢||2 for ¢ = a,b for
L2(G) and L3(G), respectively.

The vector space . (L2, L?) is a Banach subspace of (L2, L?). Since the
Sobolev spaces L2(G) are independent of the choice of a positive Rockland operator
R (see Section 4.4.5), so are .Z1(L2(G), L}(G)) and also K, ,(G). However, the
norms on these spaces do depend on a choice of a positive Rockland operator R.

We may often write Iy instead of Iy 5(G) to ease the notation when no
confusion is possible.

We have the immediate properties:

Proposition 5.1.17. 1. Ifa=b=0 then
’CO,OZIC and XL(L?L,Lg):gL(LQ)

The norms || - ||y, and || - ||x (defined in (5.15) and in (1.37) respectively)
coincide. For any f € K we have

£l = Iflc where f*(x) = f(a™"),

and
vr>0  |foDllc=r"%flk
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2. Fizing a positive Rockland operator R, the mapping f — ||fllk,, defines
a norm on the vector space K, which becomes a Banach space. Any two
positive Rockland operators produce equivalent norms on Kg p.

3. Let a,b € R. We have the continuous inclusion
Kap(G) C S'(G).

Moreover if Ty denotes the convolution operator ¢ — ¢ = f for f € S'(G),
then the following are equivalent:

fE€Kap = Tye L(LLG),LYG))
= (+R)T;1+R)+ € L (L*G))
= ([+R)*(I+R)"%feK(G)
where R is any positive Rockland operator of homogeneous degree v.

4. For any c1,co > 0 we have the inclusions

gL(L§>L%) - XL(Li+cl7L2 )

b*Cz
and

]Ca,b C ,Ca+c1,b—cz .

5. If f € Kap then Xf € Ko p_[o) for any o € Ni and (I + R)S/Vf € Kap—s
for any s € R. Furthermore, X® and (1+ R)*/" are bounded on K, p:

||Xaf||lca,b—[a] < Ca,b,[a]”leCa,b
and
1T+ R)* fllicas . < CopsllFllic..,

for some positive finite constants C,p (o) and C’fhb’s

independent of f.
If —a and b are in vNy, a norm equivalent to the K, p-norm is
f— > XX Ik,
[a]g_av [B]Sb
and if a’ € [a,0] and b' € [0,b] then
£l v < Capapr Z 1 XXPf.

[CE]S—LL, [B]Sb

The definitions of the tempered distributions X®f and (I + R)*/*f were
recalled in (5.8) and (5.9) respectively. For the proper definition of the operators

(I1+R)", 1+ R)" ¥, see Definitions 4.3.17 and 4.4.31.
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Proof of Proposition 5.1.17. Part (1) follows from the properties of the von Neu-
mann-algebras K(G) and 7 (L*(G)) as well as from the following two easy ob-
servations:

Ve LX(@Q) o Dplla =7 % [[]|a,
and for any f € K, ¢ € S(G) and r > 0,

o*(foD,) () =r @ ((gboD%) *f) (rx).

Part (2) is easy to check. Part (3) follows from the Schwartz kernel theorem, see
Corollary 3.2.1. Parts (4) and (5), follow easily from the properties of the Sobolev
spaces and Part (3). O

We now show that we can make sense of convolution of distributions in some
Ka b (G)-spaces. The following lemma is almost immediate to check.

Lemma 5.1.18. Let f € Ky ,(G) and g € Ky o(G) for a,b,c € R, and let Ty : ¢ —
¢x fand Ty : ¢ — ¢xg be the associated operators. Then the operator TyTy is

continuous from L2(G) to L*(G) and its right-convolution kernel (as a continuous
linear operator from S(G) to S'(G)) is denoted by h € K4 o(G).

If (fn) and (gn) are sequences of Schwartz functions converging to f in
Kap(G) and g in Ky o(G), respectively, then h is the limit of f, * gn in Ko o(G).

Consequently, with the notation of the lemma above, h coincides with the
convolution of f with g whenever the convolution of f with g makes any techni-
cal sense, for instance, if the tempered distributions f and g (which are already
assumed to be in /I, ,(G) and Ky o(G) respectively) satisfy

e f and g are locally integrable functions with |f| = |g| € L*(G),
e or at least one of the distributions f or g has compact support,
e or at least one of the distributions f or g is Schwartz.

Hence we may extend the notation and define:

Definition 5.1.19. If f € K, (G) and g € Ky o(G) for a,b,c € R, and Ty : ¢ — ¢xf,
T, : ¢ — ¢ * g are the associated operators, we denote by f * g the distribution in
Ka,c(G) which is the right convolution kernel of T,T.

We obtain easily the following properties:

Corollary 5.1.20. Let f € Ko 5(G) and g € Ky o(G) for a,b,c € R. Then we have
the following property of associativity for any ¢ € S(G)

¢x(fxg)=(ox[)*g,
and more generally for any h € K. q4(G) (where d € R)

fx(gxh)=(f=g)*h,
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as convolutions of an element of K4 p(G) with an element of Ky 4(G) for the left-
hand side, and of an element of K, .(G) with an element of K. q4(G) for the right-
hand side.

The rest of this section is devoted to the definition of the group Fourier
transform of a distribution in &, ,(G). We start by defining what will turn out to

~

be the image of the group Fourier transform on K, ;(G). We recall that L>(G)
is the space of measurable fields of operators on G which are uniformly bounded,

see Definition 1.8.8.
Definition 5.1.21. Let a,b € R. We denote by LZfb(é) the space of fields of opera-
tors 0 = {0y : H® — HY, m € G} satisfying

30>0 V6 eSEG) bl < Cléllzz: (516)

Here we assume that a positive Rockland operator has been fixed to define the
norms on L}(G) and L2(G).

For such a field o, ||U||Lmb(@) denotes the infimum of the constant C' > 0
satisfying (5.16). Y

We may sometimes abuse the notation and write [lox|[;~ () When no con-
a,b
fusion is possible.
Note that as ¢ € S(G), its group Fourier transform acts on smooth vectors,

see Example 1.8.18. Hence the composition o(g above makes sense, see Section
1.8.3.
Naturally, the space Lgfb(G) introduced in Definition 5.1.21 is independent of

the choice of a Rockland operator used to define the norms on L? (@) and L2(G):

Lemma 5.1.22. If {0, : H — Hb, 7w € G} satisfies the condition in Definition

5.1.21 for one positive Rockland operator, then it satisfies the same property for

any positive Rockland operator. Moreover, if R1 and Ro are two positive Rockland

operators, and if ||O'||Loob e and HJHLmb (O denote the corresponding infima,
a,b,/<]1 a,0,/x2

then there exists C' > 0 independent of o such that

—1
C ||0||L§f’b,7z2(§) < ||0||L3f’b,n1(é) < C”U”Loo (G)"

a,b,Ro

Proof. This follows easily from the independence of the Sobolev spaces on G and
G of the positive Rockland operators, see Section 4.4.5 and Proposition 5.1.14. [

If the field acts on smooth vectors, we can simplify Definition 5.1.21:

Lemma 5.1.23. Let 0 = {0, : H® — H®, w € G} be a field acting on smooth
vectors. Then o € L35, (G) if and only if

CHE —» HZ e G e L®(G), (5.17)

NG

{0+ R)vorm(I+R)"
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where R is a positive Rockland operator of degree v, and in this case,

b
v

ol ey @) = 70U+ R)Eon (14 R) 2 .

Proof. This follows easily from the density of S(G) in L(G). O

Note that the composition in (5.17) makes sense as all the fields involved act
on smooth vectors. In Corollary 5.1.30, we will see a sufficient condition (which
will be useful later) for a field to be acting on smooth vectors.

We can now characterise the elements of /C, ,(G) in terms of Lgf’b(@):

Proposition 5.1.24. Let a,b € R.

(i) If o € L35(G), then the operator T, : S(G) — S'(G) defined via
Tod(r) == 0xd(m), ¢€S(G), 7eG, (5.18)
extends uniquely to an operator in .,S,”(L?l, Lﬁ). Moreover,
||Ta||$(L§,L§) = HUHLZ%(a)’ (5-19)

where the Sobolev norms are defined using a chosen positive Rockland oper-
ator R with homogeneous degree v. The right convolution kernel f € S'(G)
of Ty is in Ky p(G).

(11) Conversely, if f € Kqp(G) then there exists a unique o € Lg‘fb(@) such that

b+ f(n) = ord(n), ¢€S(Q), med. (5.20)

Furthermore, if f is also in any of the spaces where the group Fourier trans-
form has already been defined, namely any Sobolev space L2(G) or K(Q),

then o = {o,7 € CA;} will coincide with the group Fourier transform of f.

Proof. The properties of T, in Part (i) follow from the Plancherel theorem (The-
orem 1.8.11) and the density of S(G) in L?(G). The right convolution kernel
feS(G) of T, is in K, 4 (G) by Proposition 5.1.17.

Conversely, let f € K,,(G). By assumption the operator Ty : S(G) 3 ¢ +—
¢ * f admits a bounded extension from L2(G) to L7(G). Thus the operator (I +
R)>T(I+R)"% is bounded on L*(G) and we denote by f,, € K(G) its right
convolution kernel. For any ¢ € S(G), we have ¢, := I+ R)"¢ € S(G) by
Corollary 4.3.16 thus ¢, * fq, € L*(G) and we have

Tip € L2(G) with Tpd = 1+ R) "+ (g * fas)-
Consequently Feo(Ty¢) € L%(@) and

Fa(Tid) = 1+ R) "% fapda = 11+ R) ¥ fupn(I1+R) 6.
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One checks easily that {o, : H® — H2, 7 € é} defined via
0r = a1+ R) 77 fap(r) (I +R)¥

is in Lzob(@) and satisfies (5.20). The rest of the proof of Part (ii) follows easily
from the computations above and the uniqueness of the group Fourier transforms
already defined. g

Thanks to Proposition 5.1.24, we can extend the definition of the group
Fourier transform to I, ,(G):

Definition 5.1.25 (The group Fourier transform on /C, 3(G)). The group Fourier
transform of f € K,,(G) is the field of operators {0, : H® — HZ,m € G} in

~

Lg%, (G) associated to f by Proposition 5.1.24, and we write

fm)=n(f):=0. 7E G.

As the next example implies, any left-invariant vector field is in some K 5(G)
and their Fourier transform can be defined via Definition 5.1.25. As is shown in
the proof below, this coincides with the infinitesimal representation of the corre-
sponding element of $l(g) defined in Section 1.7.

Ezample 5.1.26. Let o € Njj. The operator X is in X(L[Qa] (@), L*(@)) and more
generally in .Z (L[Qa] +,(G), L(@)) for any s € R. Its right convolution kernel is the

distribution Xdy defined via (see (5.8))
(X0, ¢) = (00, {X}'¢) = {X}'¢(0),

which is in Kjy) 0, and more generally in Ky [q],s for any s € R. Its group Fourier
transform is
Fa (X)) (m) = m(X¥) = m(X)?

and coincides with the infinitesimal representation on (g). It is in L%, 8(@) for
any s € R.

Proof. By Theorem 4.4.16, X“ maps L[Qa](G) continuously to L?(G) and, more
generally, Lgﬂa} (@) continuously to L2(G).
By Proposition 1.7.6, we have for any ¢ € S(G)

o~

Fo(X*9)(m) = m(X*)g(r) = m(X)* ().
This shows that F(X®d,) coincides with {m(X®), 7 € G}. O

As our next example shows, when multipliers in a positive Rockland operator
are in £, (L2(G), L?_,(Q)), the group Fourier transform of their right convolution
kernels can also be given via the functional calculus of the Rockland operators:
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Example 5.1.27. Let R be a positive Rockland operator of homogeneous degree
v. Let m be a measurable function on [0, 00) satisfying

AC>0 YA>0 |m\)| <C(L+A)>.

Then the operator m(R) defined by the functional calculus of R extends uniquely
to an operator in £ (L2, ,(G), L2(G)) for any s € R. Its right convolution kernel
m(R)dp is in K1y s for any s € R. Its group Fourier transform is

Fa(m(R)do)(m) = m(m(R))

defined by the functional calculus of 7(R). It is in L3S, S((A?) for any s € R. For a
fixed s € R, we have

IRz, 22, ,0).22060) = IM(R)Sollkss. = Im(T (Rl =, (@)

<sup(1 4+ \) " [m(N)],
A>0

if we realise the Sobolev norms with R.

We refer to Section 4.1.3 and Corollary 4.1.16 for the properties of the func-
tional calculus of Ry and 7(R).

Proof. The function m; given by
mi(A) ==mA)(L+A) "%, A>0,

is measurable and bounded on [0, c0). The operator ms(R) defined by the func-
tional calculus of R is therefore bounded on L?(G) with

[m1(R)||.z(z2(q)) < sup mi(A)].
A>0

Again from the properties of the functional calculus of R, we also have

b
v

m(R) D mi(R) I+ R)v,

in the sense of operators. Since Dom(I+R)"* > S(G) (see Corollary 4.3.16), this
shows that the domain of m(R) contains S(G) and that

b
v

mi(R) =m(R)I+R)"» onS(G).

The properties of the functional calculus of R yield for any s € R,

[mi(R)| z2cy = [mi(R ||$(L2<G))
= ImR)I+R)™* | 2wz
= [mR)lzr2,,@).20))-

)
(
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By Corollary 4.1.16, the kernel of m4 (R) is the tempered distribution m4(R)do

with Fourier transform {m; (7(R)), 7 € é} Adapting the proof of Corollary 4.1.16,
we see that

mi(r(R)) = m(x(R))(I+7(R)"* onH®, =ed.

It is now straightforward to check that the kernel of the operator m(R) is in Kytp,s
and its Fourier transform is {m(w(R)),n € G}. O

Naturally, any Schwartz function is in any K, , and one can readily estimate
the associated norm:

Ezample 5.1.28. If ¢ € S(G), then for any a,b € R, the operator Ty : ¢ — Y * ¢ is

in Z(L3(G), L (Q)), ¢ € Kq,p and bec L5, If we fix a positive Rockland operator
R of homogeneous degree v, then we have

b
v

1Tl (220,200 = 16llka, = l1@llLe, < NA+R)¥ (I+R)™ %611 @) < oo,
where the norms on Z(L%(G), L} (G)), Kap and LS, are defined with R.

With Definition 5.1.25, we can reformulate Proposition 5.1.24 and parts of
Proposition 5.1.17 and Corollary 5.1.20 as the following proposition.

Proposition 5.1.29. 1. Let a,b € R. The Fourier transform Fg maps Kqp(G)
onto Lg% (G). Furthermore, Fg @ Kop(G) — L35 (G) is an isomorphism
between Banach spaces. In particular, for f € Kqp(G),

o~

[ fllica,, = ||f||Lgfb(§)'

It coincides with the Fourier transform on K(G) for a =b=0.

2. Ifor € LS 4, (é) and o3 € Lg; 4, (é) with by = aq, then their product o109

~

makes sense as the element of Ly, (G) given by the Fourier transform of

(]:510'2) * (]:510'1).

In other words, if fi € Kqy b, (G) and f» € Kas bs (G) with by = ay, then
the Fourier transform of fo* fi € Koy, (G) is

Falfax ) = Fa(f1)Fa(f2).
3. Let o ={oz : H® = Hp,m € é} € Lgob(é) Then we have for any o € Njj,
{M(X)%0n : HE — Haym € G} € LT, 1)(G), (5.21)
and for any s € R,

(r(1+R)or : HE = Heym e Gy e L2, (G). (5.22)

a,b—s
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Furthermore, if f = Fglo € Kay(G) then
Fo(X°f)(m) = n(X)*f(m) and Fo((L+R)*" f)(x) = n(l+R)*/" f(m).

The fields of operators in (5.21) and (5.22) are understood as compositions
of fields of operators in Lg> , and Lg; , with by = a1, see Part 2 and Examples
5.1.26 and 5.1.27.

With the help of Proposition 5.1.29, we can now give a usefull sufficient
condition for a field to act on smooth vectors and reformulate Corollary 4.4.10
into

Corollary 5.1.30. Let a,b € R and let {ve, { € Z} be a sequence of real numbers
which tends to £00 as { — Foo. Let o € LS. 4., (G) for every £ € Z. Then o
is a field of operators acting on smooth vectors:

o={os:H® = HZ 1 G}

Furthermore o € Lﬁ77b+ﬂ{(é) for every v € R and for any ¢ > 0, we have

@ < Cemax (||0|LSCW,M(@)7 ol oo @) ,

sup ||J||L°° at+vy_g,b+v_gp

|y|<e a+vy,b+y

where £ € Ny is the smallest integer such that v¢ > ¢ and —y_y > c.

Proof. By Proposition 5.1.29, 7(X)% € L35 ..,

every ¢ € Z. Thus choosing v, > [a] — b, we have W(X)aagg € L2(é) for every
¢ € S(G). Realising m € G as a representation of G and fixing v € H°, this
implies that the mapping x — W(m)aﬂa(ﬂ')v is smooth. Hence oﬂa(ﬂ)v is smooth
and 05 acts on smooth vectors. As this holds for every ¢ € D(G), so does o by
Lemma 1.8.19. We conclude with Corollary 4.4.10. O

o) for every a € Ng and

We end this section with one more technical property:

Lemma 5.1.31. Let o € Lgf’b(é) where a,b € R. Let ¢ € S(G). Then we have
oo € ig(@) for any s € R and

/Tr
G

Setting f := ]-'510 € Kap, the function ¢x* f is smooth and we have for any x € G
the equality

U,rgg(w)‘ du(m) < oc. (5.23)

o2 1(w) = [ T (rl@)ord(m)) du(r).
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Remark 5.1.32. The composition anS makes sense since o is defined on smooth
vectors and ¢ acts on smooth vectors. The composition 7(x)o,7(¢) makes sense
since 7(z) is bounded and ¢ is bounded (even in Hilbert Schmidt classes) since
it is stated first that o¢ € L2 (é) for any s, hence in particular in LQ(@).

Proof. Let T, be the operator with right convolution kernel f := F lo. Then
T, € Z(L4(G),L}(G)) and T:T, extends to an operator in .Z(L2(G)). For any
¢ € S(G), the definition of the adjoint and the duality between Sobolev spaces
yield

2 * n
HT0¢||L2(G) = <T0T0¢7¢>L§(G)><L27Q(G)

1T5T5 | 2219l L2 o)1l 22 ()

IA

This last expression is finite since 77T, € £ (L%(G)) and S(G) C L% (G) for any
s’ € R. Thus T,¢ € L*(G) and its Fourier transform is oo € L2(@). For any
s € R, we may replace ¢ with ¢ = (I+ R)*/¢ € S(G) and 0, € L*(G) yields
o¢ € LA(G).

Applying Proposition 5.1.15 to ag/b\ € E%(@) for some s > @Q/2, we obtain
(5.23). Note that f := ]-'510 is a tempered distribution so ¢ * f is smooth (see
Lemma 3.1.55). The group Fourier transform of ¢ x f is U¢A> by Proposition 5.1.29
Part 2 and Example 5.1.28. We now conclude with the inversion formula given in
Proposition 5.1.15. g

5.1.3 Symbols and associated kernels

In this section we aim at establishing a one-to-one correspondence between a
collection o of operators parametrised by G x G and a function x; this function
will turn out to be the kernel of the operator naturally associated to o. For the
abstract setting behind measurable fields of operators and some of their properties
we refer to Section B.1.6, especially to Proposition B.1.17, as well as Section 1.8.3.

Definition 5.1.33 (Symbols). A symbol is a field of operators {o(z,7) : H® —
Hr,7m € G} depending on z € G, satisfying for each x € G

da,b e R o(x,) = {o(z,7) : HX = Hrme G} € Lf:’b(@).

Here we use the usual identifications of a strongly continuous irreducible
unitary representation from Rep G with its equivalence class in G, and of a field
of operators acting on the smooth vectors parametrised by G with its equivalence
class with respect to the Plancherel measure .

We will usually assume that the symbols are uniformly regular in z:
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Definition 5.1.34 (Continuous and smooth symbols).

e A symbol {o(z,7) : H® — Hn,m € G} is said to be continuous in z € G
whenever there exists a,b € R such that

Vee G o(z,):={o(x,m) : H° = He,m € G} e Lg‘fb(@),
and the map = — o(z,-) is continuous from G ~ R™ to the Banach space
LZf’b(G).

e A symbol 0 = {o(z,7) : H® — H,,m € G} is said to be smooth in z € G
whenever it is a field of operators depending smoothly in = € G (see Remark
1.8.16) and, for every 3 € N&, the field {070 (z,7) : H® — Hp,m € G} is

continuous.

Important note: In the sequel, whenever we talk about symbols (on graded Lie
groups), we always mean the symbols which are smooth in 2 € G in the sense of
Definition 5.1.34 unless stated otherwise.

For a symbol as in Definition 5.1.34, we will usually write

but we may sometimes abuse the notation and refer to the symbol simply as
o(x,m).

Lemma 5.1.35. If o = {o(z,7), (x,7) € G x G} is a symbol, then
Kz = Fg ' {o(z,)}
is a tempered distribution and the map
G2z r, € 5(G)

is smooth.

In other words,

ke C®(G,S'(Q)).
Here C*(G,S'(G)) denotes the set of smooth functions from G to S'(G).

Proof. As o is a smooth symbol, for every 5 € Ny, there exists ag, bg € R such that
G2z do(x,) € ng,bﬁ(@) is continuous. By Proposition 5.1.29, composing
this with .7-'51 implies that G > z — (‘33[5/% € Kas.by is continuous. Since the
inclusion Ko, 5, C S'(G) is continuous, this implies that each map G > = —

0%k, € 8'(Q) is continuous. Hence G > = +— k., € S'(G) is smooth. O
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Definition 5.1.36 (Associated kernels). If o is a symbol, then the tempered distri-
bution

Ky = Fg {o(z,)} € S'(G)

is called its associated kernel, sometimes its right convolution kernel, or just a
kernel. We may also call the smooth map G > x — k, € S'(G) or the map
(z,y) = kz(y) = k(z,y) the kernel associated with o.

The smoothness of the map x +— o(x, ) implies easily:

Lemma 5.1.37. If o = {o(x,7)} is a symbol with kernel r, then for any 8 € Ny,
XPo = {XPo(z,n)}, XPo:={XPo(z,n)}, and 3’0 = {90 (x,7)},
are symbols with respective kernels
XPky, XPk., and 0%k,.

Examples of symbols are the symbols in the classes S, 5(G) defined later on.
Here are more specific examples of symbols which do not depend onzx € G.

~ o~

Ezample 5.1.38. If f € Ko p(G), then f = {f(7m) : HX = H,, 7€ G} is a symbol
with kernel f.

The following are particular instances of this case:

ey =1= {IT:HP - H®, 7w e CA}’} is a symbol and its kernel is the Dirac
measure dg.

e For any o € NI, {m(X)™ : H® — H=, 7w € G} is a symbol with kernel
X%, see Example 5.1.26. It acts on smooth vectors, see Example 1.8.17, or
alternatively Example 5.1.26 together with Corollary 5.1.30.

e If R is a positive Rockland operator of homogeneous degree v and if m is a
measurable function on [0, c0) satisfying

3C>0 YA>0 |m\)|<C1+ N7,

then {m(m(R)) : HX — Hr,m € G} is a symbol with kernel m(R)dy, sce
Example 5.1.27. By Corollary 5.1.30, this symbol also acts on smooth vectors

{m(m(R)) : H® — HX, 7w € G}.

5.1.4 Quantization formula

With the notion of symbol explained in Section 5.1.3, our quantization makes
sense:
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Theorem 5.1.39 (Quantization). The quantization defined by formula (5.1) makes
sense for any symbol o = {o(x,m)}. More precisely, for any ¢ € S(G) and x € G,
we have

On(e)oa) = [ Tr (w(o)o(am)3(m) du(m) = 6 mofa). (524

where K, denotes the kernel of o. The integral over G in (5.24) is well-defined
and absolutely convergent. We also have Op(o)¢p € C(G). Furthermore, the
quantization mapping o — Op(o) is one-to-one and linear.

Proof. Lemma 5.1.31 (see also Remark 5.1.32) implies that the integral in (5.24)
is well defined, absolutely convergent and is equal to ¢ * k,(z).
By Lemma 3.1.55, for each x € G, the function ¢ * K, is smooth. By Lemma
5.1.35, z — Kk, € §'(G) is smooth. Hence by composition, x — ¢k, (z) is smooth.
The quantization is clearly linear. Since the kernel is in one-to-one linear
correspondence with the operator, and by Lemma 5.1.35 also with the symbol,
the quantization o — Op(o) is one-to-one. O

Definition 5.1.40 (Notation). If an operator T is given by the formula (5.24) with
symbol o(x, ), so that T'= Op(o), we will also write

oc=or or o(x,m)=or(x,m) oreven o=O0p YT).
This notation is justified since the quantization given by (5.24) is one-to-one by
Theorem 5.1.39.

The operators associated with the symbols given in Example 5.1.38 are the
ones alluded to in the introduction of this Section:

~

Continued Evample 5.1.38: If f € KCo 3(G), then Op(f) is the convolution operator
¢ +— ¢ * f with the right convolution kernel f.

The following are particular instances of this case:
e Op(I) =T and, more generally, for any o € N}, Op(7(X)*) = X*.
These relations can also be expressed as

[e3

o1(z,7) = Iy, and oxe(z, ) = 7w(X)“.
o If R is a positive Rockland operator of homogeneous degree v and if m is a
measurable function on [0, 00) satisfying
IC>0 YA>0 |jm\)|<Ca+ N7,
then Op(m(7(R))) = m(R).

In these examples, the symbols are independent of x. However it is easy to
produce z-dependent symbols out of them using the following two observations.



298 Chapter 5. Quantization on graded Lie groups

e If 0 = {o(z,7),(z,7) € G x G} is a symbol and ¢ : G — C is a smooth
function, then co := {c(x)o(x,7), (z,7) € G x G} is a symbol.

o If o = {o(z,7),(z,7) € G x G} and 7 = {7(z,7), (x,7) € G x G} are two
symbols, then so is their sum o + 7 = {o(x,7) + 7(z,7), (z,7) € G x G}.

Remark 5.1.41. 1. The observations just above together with Example 5.1.38
and its continuation above imply that any differential operator of the form

Z co(x)X*  with smooth coefficients ¢, (5.25)
[a]<M

may be quantized, in the sense that 3, <y ca(2)m(X)® is a (smooth) sym-
bol and we have -

Z co(z)X“=0p Z Co(z)m(X)
[a] <M

[e]<M

The differential calculus is, by definition, the space of differential oper-
ators of the form

Z bo(z)0y  with smooth coefficients by,
|| <d

or, equivalently, of the form (5.25), see (3.1.5). Hence, we have obtained
that the differential calculus may be quantized. This could be viewed as ‘the
minimum requirement’ for a notion of symbol and quantization on a manifold.

2. In order to achieve this, we had to consider and use fields of operators de-
fined on smooth vectors in our definition of symbol. Indeed, for instance, the
symbol associated to a left-invariant vector field X is {m(X)} while 7(X) are
defined on H2° but is not bounded on H.

This technicality has also the following advantage when we apply our
theory in the setting of the Heisenberg group H,_ in Chapter 6. Realising
(almost all of) its dual group ]ﬁlno via Schrodinger representations, the spaces
of smooth vectors will coincide with the Schwartz space S(R™). In this con-
text, the symbols will be operators acting on S(R™°) (which are smoothly
parametrised by points in H,_).

3. With our notion of symbols and quantization, we also obtain part of the
functional calculus of any Rockland operators. More precisely, if R is a pos-
itive Rockland operator, we obtain all the operators of the form m(R) with
m : [0,00) — C a measurable function of (at most) polynomial growth at
infinity.
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4. The symbol classes that we have introduced are based on the quantization
relying on writing the operators as operators with right-convolution ker-
nels. There is an obvious parallel theory of quantization and of the corre-
sponding symbols and their classes suited for problems based on the right-
invariant operators. With natural modifications we could have considered
at the same time right-invariant vector fields in Part (1) above and a quan-
tization involving left-convolution kernels of operators, i.e. writing the same
operators but now in the form ¢ — Kk, *¢. As an outcome, with natural mod-
ifications we would obtain a parallel theory with the same parallel collection
of results to those presented here.

Op(o) as a limit of nice operators

The operators we have obtained as Op(o) for symbols ¢ are limits of ‘nice opera-
tors’ in the following sense:

Lemma 5.1.42. If 0 = {o(x,m)} is a symbol, we can construct explicitly a family
of symbols o = {oc(x,m)}, € > 0, in such a way that
1. the kernel ke(x,y) of oe is smooth in both x and y, and compactly supported
m x,
2. if p € S(G) then Op(oc)¢p € D(G), and
3. Op(oe)o v Op(0)¢ uniformly on any compact subset of G.
[d

Proof of Lemma 5.1.42. We fix a number p such that p/2 is a positive integer
divisible by all the weights v, ...,v,. Therefore, if | - |, is the quasi-norm given
by (3.21), then the mapping z + |z[} is a p-homogeneous polynomial. We also fix
Xo € CP(R) with x, > 0, xo = 1 on [1/2,2] and x, = 0 outside of [1/4,4]. For
any € > 0, we write

Xe(z) := Xo(€|$|§)-
Clearly x. € D(G).

If 7 € G, we denote by || the distance between the co-adjoint orbits corre-
sponding to 7 and 1.

Applying the orbit method, one can construct explicitly for each 7 € G a basis
(ve,x)32, formed by smooth vectors and such that the field of vectors G 5 7 — vy »
is measurable. We denote by proj, . the orthogonal projection on the subspaces
spanned by v r,...,vsr where £ is the smallest integer such that £ > e~ 1.

We consider for any € € (0,1) the mapping
oc(2, ) = Xe(T)|5|<e10(x, T) 0 PrOj, -
By Definition 5.1.36, the symbol and the kernel are related by

]:G("ie,z)(ﬂ—) = 0'5(.%',7'(').
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By the Fourier inversion formula (1.26), the corresponding kernel is

hew(y) = Kelz,y) = Xel2) / Tt (o(2,7) proje ,m(y)) du(r),

|m|<e=?
which is smooth in x and y and compactly supported in x.

The corresponding operator is Op(o,), given for any ¢ € S(G) and = € G by

Op(e)o(e) = [ T (rla)or (e, () ) du(r)

G

Xe () /|7T<el Tr (ﬂ(m)o(az,ﬂ) projema(ﬂ)) dp ().

It is also given by
Op(06)¢($) =¢x* “e,w(x)-

Clearly Op(o.)¢ is smooth and compactly supported.

Since
G>m—Tr ’J(x,ﬂ)g/b\(w)’

is integrable against p, using the dominated convergence theorem, we obtain easily
the uniform convergence of Op(o.)¢ to Op(c)¢ on any compact set. O

5.2 Symbol classes S'; and operator classes U7';

In Section 5.2, we will define and study classes of symbols S = S7'(G). By

applying the quantization procedure described in Section 5.1, we will then obtain
the corresponding classes of operators

o5 = Op(S)%)-

In Section 5.5, we will show that this collection of operators Umer 7’5 forms an
algebra and satisfies the usual properties expected from a symbolic calculus.

Before defining symbol classes, we need to define difference operators.

5.2.1 Difference operators

On compact Lie groups the difference operators were defined as acting on Fourier
coefficients, see Definition 2.2.6. Its adaptation to our setting leads us to (densely)
defined difference operators on K, ;,(G) viewed as fields.
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Definition 5.2.1. For any ¢ € C*°(G), we set

~

A f(n) = qf (m) = 7(af),

for any distribution f € D'(G) such that f € K,p and ¢f € Kq p for some
a,b,a’, b € R.

Recall that if f € D'(G) and ¢ € C°(G), then the distribution ¢f € D'(G)
is defined via

(af,¢) :=(f.q9), ¢€D(G), (5.26)

which makes sense since g¢ € D(G). In Definition 5.2.1, we assume that the two
distributions f and gqf are in Uy~ pcr/Cqor 1. Note that, as all the definitions of
group Fourier transform coincide, different values for the parameters a,b,a’, b’ in

o~

Definition 5.2.1 yield the same fields of operators {f(7) : H®® — H, 7 € @} and

{(;}(ﬂ') : H® — M., m € G}. This justifies our use of the notation A, without
reference to the parameters a,b,a’,b’.

Remark 5.2.2. In general, it is not possible to define an operator A, on a single
m, and it has to be viewed as acting on the ‘whole’ fields parametrised by G.
For example, already on the commutative group (R™, +), the difference operators
corresponding to coordinate functions will satisfy

36 = (15¢) 0 gern

with appropriately chosen functions ¢, thus involving derivatives in the dual vari-
able, see Example 5.2.6. Furthermore if ¢ is not a coordinate function but for
instance a (non-zero) smooth function with compact support, the corresponding
difference operator is not local.

Also, on the Heisenberg group H,  (see Example 1.6.4), taking ¢ = ¢ the
central variable, and 7 the Schrodinger representations (see Section 6.3.2), then
Ay is expressed using derivatives in A, see Lemma 6.3.6 and Remark 6.3.7.

Let us fix a basis of g. For the notation of the following proposition we refer
to Section 3.1.3 where the spaces of polynomials on homogeneous Lie groups have
been discussed, with the set W defined in (3.60). We will define the difference
operators associated with the polynomials appearing in the Taylor expansions:

Proposition 5.2.3. 1. For each o € Nfj, there exists a unique homogeneous poly-
nomial q,, of degree (@] satisfying

1 iff=a«
n B — = '
VBeENy  X7qu(0) =dap = { 0 otherwise.

2. The polynomials q., o € Nij, form a basis of P. Furthermore, for each M €
W, the polynomials qq, [o] = M, form a basis of Piaj=n-
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3. The Taylor polynomial of a suitable function f at a point x € G of homoge-
neous degree M € W 1is

PR = Y qaly)Xf(a). (5.27)

[o]<M

4. For any o € N§, we have for any x,y € G,

Ga(2y) = Z Cay,as o (T)qas (Y)

[c1]+[az]=[a]

for some coefficients ca, 0, € R independent of x and y. Moreover, we have

1 ifog =« 1 ifas=a
00617():{ O f ! b CO,O[zZ{ O f 2

otherwise otherwise

Proof. For each M € W, by Corollary 3.1.31, there exists a unique polynomial
o € P satisfying XPq,,(0) = d, s for every 8 € N with [8] = M, therefore for
every € Nj. This shows parts (1) and (2). Part (3) follows from the definition
of a Taylor polynomial.

It remains to prove Part (4). For this it suffices to consider ¢,(zy) as a
polynomial in  and in y, using the bases (¢, (%)) and (g, (y)). Therefore, ¢, (zy)
can be written as a finite linear combination of ¢u, (2)ga, (y). Since

]

Ga((rz)(ry)) = r'%qa(zy),

this forces this linear combination to be over ag, as € NI satisfying [a1] + [a2] =
[a]. The conclusions about the coefficients follow by setting y = 0 and then a = 0,
see also (3.14). O

In the case of (R™, +) the polynomials g, are the usual normalised monomials
(aq!...a,!) "1z, But it is not usually the case on other groups:

Example 5.2.4. On the three dimensional Heisenberg group H; where a point is
described as (z,y,t) € R? (see Example 1.6.4), we compute directly that for degree
1 we have

q(1,0,0) = Z, 4(0,1,0) = Y,
and for degree 2,
2 2 1
4(2,0,00 =T, 4(0,2,00 =Y 4(1,1,00 = LY, 4(0,0,1) = t— 51721-

Definition 5.2.5. For each o € Nfj, the difference operators are

A% :=ANg,, aeNg,
where
o () = Qa(mil)

and g, € P—[y) is defined in Proposition 5.2.3.
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The difference operators generalise the Euclidean derivatives with respect to
the Fourier variable on (R™, +) in the following sense:

Ezample 5.2.6. Let us consider the abelian group G = (R™, 4). We identify R"
with R™. If the Fourier transform of a function ¢ € S(R™) is given by

Fool€) = (2n) % / ey (a)dr, € R,

n

then
10

e () () dw — () ’ Fao(§).

aFeole) = [ 9

n

[e%
Thus, A% coincide with the operators D¢ = (%(%) usually appearing in the

Fourier analysis on R”.

Ezample 5.2.7. A° is the identity operator on each K, ,(G).
Ezample 5.2.8. For I = §, = {I:H — H®, 7w e @} and any o € Nj\{0}, we
have A®T = 0.
Proof. We know that I = 3\0 (see Example 5.1.38). The distribution ¢,d¢ is defined
by
<‘ia607 ¢> = <§0a6a¢>a ¢ € D(G)v

see (5.26). Since

(605 Ga®) = (Ga®)(0) = 4a(0) #(0) =0
we must have ¢dy = 0. Therefore, Al = q/(% =0. g

More generally, we have
Lemma 5.2.9. Let o, 3 € N, Then the symbol {m(X)? : H® — H, 7w € G} (see
Ezample 5.1.38) satisfies
ACR(X)P =0 if[a] > [8].

If [a] < [B], then A%T(X)? is a linear combination depending only on «, 3, of the
terms w(X)%2 with [Bs] = [8] — [a], that is,

Ar(X)P = Y w(x)*
[a]+[821=(8]

Proof of Lemma 5.2.9. We see that A®7(X)? is the group Fourier transform of
the distribution g, X?dy defined via

(GaX P80, 0) = (X750, 4ad) = {XP}{Gad}(0)

for any ¢ € D(G), see Example 5.1.38. This is so as long as we prove that g, X?do
is in some K, 5. Let us find another expression for this distribution. As {X#}* is
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a [f]-homogeneous left-invariant differential operators, by the Leibniz formula for
vector fields, we have

{Xﬁ}t{(jaqb} _ Z Xﬁlq’a X62¢.
[B1]+[B2]=[A]

We easily see that X1, € P_ia]—-15,] and, therefore, by Part (2) of Proposition
5.2.3 we have

Xﬁlqa = Z Go’ -
[o]=[a]=[51]

Hence we have obtained

(X Gt} = D Gu X729,
(B1]+[B=2]=[8]
[@']=[a]=[81]

and

(@X%50,0) = Y (@Xe)0)= > X%¢(0),
[B1]+[82]=[8] [B1]+[82]=1[8]
[a']=[a]—[B1] 0=[a]—[B1]

with the convention that the sum is zero if there are no such g1, 82. Thus
WX = > xPs,
[81]+[B2]=[8]
[e]=([B1]

Since X?2§, € Kis,1,0 (see Example 5.1.26), we see that GuXP5g € Kig),0- Further-
more, taking the group Fourier transform we obtain

Ar(X)P = Y w(X)P
[B1]+[82]=1[8]
[e]=[B1]
This sum is zero if there are no such g1, fs, for instance if [5] < [a]. O

Let us collect some properties of the difference operators.

Proposition 5.2.10. (i) For any o € N{, the operator A% is linear, its domain

of definition contains Fo(S(G)) and A*Fq(S(G)) C Fa(S(Q)).

(ii) For any ay,as € N{, there exist constants co, a.,0 € R, with a € NJ such
that o] = [aq] + [az], so that for any ¢ € S(G), we have

A7 (A%20) =A% (A%6) = D caranad,

[e)=[a1]+[az]

where the sum is taken over all o € Ny satisfying [a] = [oa] + [ae).
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(iii) For any o € NY}, there exist constants ¢q a0 € R, a1, a0 € N, with [aq] +
[az] = [a], such that for any ¢1,d2 € S(G), we have

A® (gg :;,;) = Y Caanan A%G A%y, (5.28)
for ]+ [22]=o]

where the sum is taken over all oy, a0 € Ni satisfying [a1] + [a2] = [a].
Moreover,

. |1 ifor =« . |1 ifae=a

@er0 =00 otherwise © %2 T | 0 otherwise

The coefficients cq, 4,0 i (i) and cq,q,,0, 10 (iil) are different in general.
We interpret Formula (5.28) as the Leibniz formula.

Proof. Since the Schwartz space is stable under multiplication by polynomials,
Ga® is Schwartz for any ¢ € S(G), and A%@(7w) = 7(Gad). This shows (i).

For Part (ii), we see that the polynomial ¢4, ¢a, is homogeneous of degree
[a1] + [ag]. Since {qa, [@] = M} is a basis of P_y; by Proposition 5.2.3, there exist

constants ¢a,.a,,0 € R, a1, as € Nj with [a1] + [ae] = [a], satisfying
o 9ar = Z Cay oz, o+
[o1]+[az]=[e]
Therefore
A (8%20(m)) = Wi daxd) = Y. Cavasam(@ad)

[oa]+[az]=[a]
= Y CaranadO(T).
[a1]+[o] =[]
This and the equality Ga, Gos = GusGa, show (ii).
Let us prove (iii). By Proposition 5.2.3 (4),

G () (62 % ) () = /G Go(a™ Yy y™) da(y) b1y ~'z) dy
= Z Ca11a2/an2(y71)¢2(y) Qal(l"ily)ﬁbl(yilx) dy

[e1]+[az]=[a]

= Z cal,ag (Qa2¢2) * (6011 ¢1)7
[on]+[az]=[e]
with constants depending on «, a, as. Taking the Fourier transform implies the

formula (5.28), with conclusions on coefficients following from Proposition 5.2.3.
U

We will see that the difference operators A% defined in Definition 5.2.5 appear
in the general asymptotic formulae for adjoint and product of pseudo-differential
operators in our context, see Sections 5.5.3 and 5.5.2.
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5.2.2  Symbol classes S

In this section we define the symbol classes S5 = Zé(G) of symbols on a graded
Lie group G and discuss their properties. We use the notation for the symbol
classes similar to the familiar ones on the Euclidean space and also on compact
Lie groups.

Let us give the formal definition of our symbol classes.

Definition 5.2.11. Let m,p,6 € R with 0 < p < § < 1. Let R be a positive
Rockland operator of homogeneous degree v. A symbol

o= {o(@,7): H = Hy, (z,7) € G x G}
is called a symbol of order m and of type (p,d) whenever, for each «, 8 € Njj and
v € R, we have

sgg I XA (z,)|| o @) <o (5.29)

v.pla]=m—=35[B]+~y
The symbol class S}'s = S)'5(G) is the set of symbols of order m and of type (p,d).

By Corollary 5.1.30, the symbols X? A% are fields acting on smooth vectors.
By Lemma 5.1.23, we can reformulate (5.29) as

pla]=m—3[Bl+v

sup [7(I+R) XEA“o (2, m)m(I+R) ™% | 2.y < 0. (5.30)

zeG,meG

Recall that, as usual, the supremum in 7 in (5.30) has to be understood as the
essential supremum with respect to the Plancherel measure.

Clearly, the converse holds: if ¢ is a symbol such that X?A%s are fields
acting on smooth vectors for which (5.30) holds, then o is in ).

We note that condition (5.30) requires one to fix a positive Rockland operator
R in order to fix the norms of Lg7 (@) However, the resulting class S5 does not
depend on the choice of R, see Lemma 5.1.22.

If a positive Rockland operator R of homogeneous degree v is fixed, then we

set for o € S/T& and a, b, c € Ny,

= XPAe . -~
Iolspme = sup supIXCA 0@ iz, @
[]<a, [B]<b

This quantity is also equal to

lollsypane = sup _llo(@m sy, abe
zeG, meG

where we define for any symbol o, a,b, ¢ € Ny, and (z,7) € G X G (fixed)

pla]—m—5[8]+~ o _x
lo(z, m)llsm;,ab.c = ISlllp [m(I+R) v XA (z, M1+ R) ™ || 2 (,)-
' v|<e

[]<a, [B]<b
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Here, as always, the supremum has to be understood as the essential supremum
with respect to the Plancherel measure.

Before making some comments, let us say that the classes of symbols we have
just defined have the usual structures of symbol classes.

Proposition 5.2.12. The symbol class ngé is a vector space independent of any

~

Rockland opemtor‘ R used in (5,29) to consider the L3 554, (G)-norms.
We have the continuous inclusions

my <mg, 01 <02, p1>py = 5 C Spasy (5.31)

We fiz a positive Rockland operator R. For any m € R, p,6 > 0, the resulting
maps || - Hsyé,a,b,c; a,b,c € Ny, are seminorms over the vector space S} which
endow Sg}(; with the structure of a Fréchet space.

We may replace the family of seminorms || - ||S:;}5,a,b,c, a,b,c € Ny, by
o— sup sup | XPA%%(z,); =, a,beNy, LeZ,
[a]SI?z,zeg” ‘ ( )”L“fzvo[a]—m—é[ﬂHw(G) 0

[B]<b

where the sequence {ve, £ € Z} of real numbers satisfies Z—! +o0.
— 00

Two different positive Rockland operators give equivalent families of semi-
norms. The topology on ng(; is independent of the choice of the Rockland operator
R.

Proof. Using Corollary 5.1.30 and Lemma 5.1.22, this is a routine exercise. O

Remark 5.2.13. Let us make some comments about Definition 5.2.11:

1. In the abelian case, that is, R™ endowed with the addition law, and R = —L
with £ being the Laplace operator, 05 boils down to the usual Hormander
class, in view of the difference operators corresponding to the derivatives, see
Example 5.2.6.

2. In the case of compact Lie groups with R being the (positive) Laplacian,
a similar definition leads to the one considered in (2.26) since the operator
m(I4+R) is scalar. However, here, in the case of non-abelian graded Lie groups,
the operator R can not have a scalar Fourier transform.

3. The presence of the parameter v is included to facilitate proving that the
space of symbols Uy, erS)’s, with suitable restrictions on p, d, forms an algebra
of operators later on. It already has enabled us to see that the symbols are
fields of operators acting on smooth vectors and therefore can be composed

without using the composition of unbounded operators (in Definition A.3.2).

We will see in Theorem 5.5.20 that in fact we can remove this 7. By
this we mean that a symbol o is in S}’s if and only if the condition in (5.29)
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holds for any «, 5 € Ny and v = 0. Furthermore, the seminorms | - |

Sms,a,b,05
a,b € Ny, yield the topology of S7";.

We could have used other families of difference operators instead of the A“’s
to define the symbol classes S;)" For instance, we could have used any family
of difference operators associated with a family {ps}aens of homogeneous
polynomials on G which satisfy

e for each o € NY, p,, is of homogeneous degree [a],
e and {pa }aeny is a basis of P(G).
Indeed, in this case, the following properties hold.
- Any ¢, is a linear combination of pg, [5] = [a].
- Conversely, any p, is a linear combination of g, [8] = [«].
Thus,
- any A% is a linear combination of A, [3] = [a].
- Conversely, any A, is a linear combination of A®, [3] = [al.
It is then easy to see that a symbol o is in S}; if and only if for each

o, 8 € Nj and v € R,
sup || XA, 0z, Mz

< o0.
zeG plat—m—si814+ (@)
Note that this implies that the symbol class 57" 05 does not depend on
a particular choice of realisation of G through a basis of g (of eigenvectors
for the dilations) but only on the graded Lie group G and its homogeneous
structure.

For such a family A, , the same proof as for Proposition 5.2.10 shows
a Leibniz formula in the sense of (5.28).

Although we could use ‘easier’ difference operators to define our symbol
classes, for instance Ay, a € Nj, we choose to present our analysis with the
difference operators A% given in Definition 5.2.5. Note that the asymptotic
formulae for composition and adjoint in (5.57) and (5.60) will be expressed
in terms of the difference operators A® and derivatives X

Note that the change of difference operators explained just above is lin-
ear, whereas in the compact case, one can use many more difference operators
to define the symbol classes 57, see Section 2.2.2.

The type (1,0) can be thought of as the basic class of symbols and the

types (p,d) as its generalisations. There are certain limitations on the parame-
ters (p,0) coming from reasons similar to the ones in the Euclidean settings. For
type (1,0), we set

m ._ Qm
S D 51’07
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and

lo (@, m)llspg.a0.c = lo(@ M) apes [0llsyg.abe = lollape ete....

We also define the class of smoothing symbols

Definition 5.2.14. We set

ST = ﬂ S

meR

One checks easily that

S = Sp

meR
independently of p and § as long as 0 < § < p < 1 and p # 0. Moreover, S™>°
is equipped with the topology of projective limit induced by NmerS)'s, again
independently of p and 4.

We will see in Corollary 5.4.10 that the symbols in S~ really deserve to be
called smoothing.

5.2.3 Operator classes V7

The pseudo-differential operators of order m € R U {—oo} and type (p,d) are
obtained by the quantization

Op(0)o(z) = [ T (r(a)ota, () ) ds(m)

G

justified in Theorem 5.1.39, from the symbols of the same order and type, that is,
Z,Ls = Op( ;Ta)
They inherit a structure of topological vector spaces from the classes of symbols,
HOP(U)H\P;?[pmb,c = ||U||S;’f§7a7b,c-
For type (1,0), we set as for the corresponding symbol classes:

o= \I/TO.
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Continuity on S(G)

By Theorem 5.1.39, any operator in the operator classes defined above maps
Schwartz functions to smooth functions. Let us show that in fact it acts con-
tinuously on the Schwartz space:

Theorem 5.2.15. Let T € W[5 where m € R, 1 > p > 0 > 0. Then for any
¢ € S(G), Ty € S(G). Moreover the operator T' act continuously on S(G): for
any seminorm ||-||sqy,n there exist a constant C > 0 and a seminorm ||-||sa),n-
such that for every ¢ € S(G),

1T¢lsc),n < Clléllsa,n-

The constant C can be chosen as C’1|\T||q,;n57a7b)c where Cy is a constant of and the
seminorm || - ||\pm abe depend on G, m, p, 6§, and on the seminorm || - || s, N -

In other words, the mapping 7" — T from U7'; to the space .Z(S(G)) of
continuous operators on S(G) is continuous (it is clearly linear).

Our proof of Theorem 5.2.15 will require the following preliminary result on
the right convolution kernels:

Proposition 5.2.16. Let 0 = {o(x,m)} be in S5 with 1 > p > 6 > 0. Let ky
denote its associated kernel. If m < —Q/2 then for any x € G, the distribution Kk,
is square integrable and

Ikallz2ey < Csup [x(1+R) ™ oz, m)l|2mt,),
meG

lkallrz@@ < Csup [lo(@,m)m(l+R)>
TeG

with C = C,, > 0 a finite constant independent of o and x.

The proof below will show that we can choose Cyy, = ||B_p || 12(¢) the L?-norm
of the right-convolution kernel of the Bessel potential of the positive Rockland
operator R.

Proof of Proposition 5.2.16. We write

Ir(L+R) ¥ w1+ R) ™ o, m) s

Iw(L+R) ¥ [lasll (L + R) ™+ o (2, )| 3

llo (2, ) lus

A

which shows

lo (2, ™) lus < sup [ma(I+R) 7 o (2, m) | 2 () 7L+ R) ¥ [lus
T EG

Squaring and integrating against the Plancherel measure, we obtain

/é Jor(ar, ) Bsdia(m) < sup. [ (14R) = 0oy m) o /G Im(1+R) % Zgdpa(r).
mEeG
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By the Plancherel formula and Corollary 5.1.4, if m < —Q/2, we have

= [ Im(+ R [sa(m) = 1B ey < .
This gives the first estimate in the statement. For the second estimate, we write
oz, 7) =o(z,m)r(I+R) " 71+ R) ¥
and adapt the ideas above. O

We can now prove Theorem 5.2.15.

Proof of Theorem 5.2.15. Let T € ¥7s where m € R, 1 > p > 6 > 0. Then for
any ¢ € S(G), T¢ is smooth by Theorem 5.1.39.

Let & : (z,y) — ks(y) be the kernel associated with T. Let R be a positive
Rockland operator of homogeneous degree v. The properties of R (see Sections
4.3 and 4.4.8) yield for any ¢ € S(G) and x € G that

/ o(y)ra (v 2)dy
G

/G [T+ R) NI+ R)VIw)] raly x)dy

To(x)

J AT+ R 6) {1+ R) VYo ),
thus, by the Cauchy-Schwartz inequality,
To(x)] < |0+ R)N [l L2 1T+ R) Nkl L2(6)-

Since Fo{(I+R) Nk, }(n) = o(z,7)r(I1+ R)~ "N yields a symbol in S;’?(;N”, by
Proposition 5.2.16, we have

1T+ R) Nrall2) < Csup [lo(@, m)m(l+R) "N 2.,
TeG

whenever m — Nv < —Q/2. Note that in this case,

0 0,|m\||7T(I +R)7N+%

sup [|lo(z, m)m(L+R) V|| z(a,) < llollsm
TeG

0,87 =.%7(’)'{7,)7

and by functional calculus

lm(@+R) ™ | 23, < Sup(l +A)TVE <1

Thus if we choose N € Ny such that N > (m + )/1/ then

[To(x)| < Cllofsm

p,8?

0.0, m X+ RNl L2 ()
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This shows that T'¢ is bounded.
Let 8 € Njj. Using the Leibniz property of vector fields, we easily obtain

XTow) = S s [ SWXIXE Lk (aa)dy.
[B1]+182]=[8] ¢

As above, we can insert powers of I + R. Noticing that the symbol

FAT+ RN XD, Xy} = n(X)2 XL o (@, ))m(1+R) N

r1=x

is in S?;é[ﬁl]+[52]_NV, we proceed as above to obtain

| XPTo()| <Cr > 1A+ R)VGllL2 (o) Im(X)2 X P o (2, m)m(1+R) N[ 125,
[B1]+[B2]=I[8]
< Collollsm, o061 iml+ 1| (T+ R)Y dll L2 (-

as long as N > (m + [f] + %)/1/
Let o € Njj. Proceeding as in the proof of Proposition 5.2.3 (4), we can write

(my)a = Z Cix,al,ag do,y (1’) oy (y)
[o1]+[az]=[a]
Using this, we easily obtain
e Tow) = [ o v ) otm v ey
SHD DN O E O R e

[o1 ]+ [o2]=[0]
Noticing that
Fol 1+ R) ™M {gayha} = {A%0(2, )} w1+ R)™Y € sy Mool
we can now proceed as in the first paragraph above to obtain
2°THp(x)[ <Cr Y [T+ R)y {dar @}l ll(T+ R) ™V {gansa} 2

[1]+[ez]=[c]
N
< Collo(@,m) s (0 0.fmiplal D, [T+ R)y {gas 0} 2

[n]<[a]

as long as N > (m+ Q/2)/v.
We can combine the two paragraphs above to show that for any o, 8 € Nj,
we have

|2*XPT(z)| < Cllo(z, )| s [al,[8],Iml+[8]+pla] Z 1T+ R)} {gas ¢} l2,

[ea]<[a]
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as long as N > (m + [8] + Q/2)/v. By Lemma 3.1.56, we have

> 1T+ R) g0, 82 < C'llsca,n

[e1]<[e]

for some N’ € N depending on N and «, and T'¢ is a Schwartz function. Further-
more, these estimates also imply the rest of Theorem 5.2.15. O

Theorem 5.2.15 shows that composing two operators in (possibly different)
s makes sense as the composition of operators acting on the Schwartz space.
We will see that in fact, the composition of 77 € W'} with T € \Pzg is T4Ty in
\I/:§+m2, see Theorem 5.5.3.

We will see that our classes of pseudo-differential operators are stable under
taking the formal L?-adjoint, see Theorem 5.5.12. This together with Theorem
5.2.15 will imply the continuity of our operators on the space S'(G) of tempered
distributions, see Corollary 5.5.13.

Returning to our exposition, before proving that the introduced classes of
symbols UperS)'s and of the corresponding operators Up,erW}'s are stable under
composition and taking the adjoint, let us give some examples.

5.2.4 First examples

As it should be, U,,cg¥™ contains the left-invariant differential operators. More
precisely, the following lemma implies that Z[ﬁ]gm csXP € U™, The coefficients
Co. here are constant and it is easy to relax this condition with each function c,
being smooth and bounded together with all of its left derivatives.

Lemma 5.2.17. For any f3, € NI, the operator X% = Op(n (X)) is in W],
Proof. By Lemma 5.2.9, we have

o if [a] > [Bo],
A (X) = > w(X)P it [a] < [B):
[a]+[B2]=(Bo]
Recall that, by Example 5.1.26, {n(X)?, 7 € G} € L,‘;°+[B]7(CA¥) for any
v € R,B € NI. So {A*n(X)Pe,m € G} is zero if [o] > [B,] whereas it is in

~

L (G) for any v € R if [a] < [Bo]- O

HBol-[o]y
Remark 5.2.18. Lemma 5.2.17 implies that U,,cg VU™ contains the left-invariant
differential calculus, that is, the space of left-invariant differential operators.

One could wonder whether it also contains the right-invariant differential
calculus, since we can quantize any differential operator, see Remark 5.1.41 (1).
This is false in general, see Example 5.2.19 below. Thus, if one is interested in
dealing with problems based on the setting of right-invariant operators one can
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use the corresponding version of the theory based on the right-invariant Rockland
operator, see Remark 5.1.41 (4).

Ezxample 5.2.19. Let us consider the three dimensional Heisenberg group H; and
the canonical basis X, Y, T of its Lie algebra (see Example 1.6.4). Then the right
invariant vector field X can not be in U,,cg ™.

Proof of the statement in Fxample 5.2.19 . We have already seen that any opera-
tor A € U™ acts continuously on the Schwartz space, cf. Theorem 5.2.15. We will
see later (see Corollary 5.7.2) that it also acts on Sobolev spaces with a loss of
derivative controlled by its order m. By this, we mean that, if an operator A in
U™ is homogeneous of degree v4, then we must have

VseR 3C>0 VfeSG)  [Afllzz, <Cllfllzz,

s—m

and when s +m and s are non-negative, we realise the Sobolev norm as || f||p2 =
Il fllzz + |R> f||2 for some positive Rockland operator of degree v, cf. Theorem
4.4.3 Part (2). Applying the inequality to dilated functions f o D, and letting
r — oo yield that m > vy4.

Applying this to the case of X shows that if X were in some U” then m > 1

and X would map L? to L?_, hence to L? continuously. We have already shown

in the proof of Example 4.4.32 that this is not possible. g

An example of a smoothing operator is given via convolution with a Schwartz
function:

Lemma 5.2.20. Let k € S(G). We denote by Ty, : ¢ — ¢ * k the corresponding
convolution operator. Its symbol o, is independent of x and is given by

or, () = R(m).
Furthermore, the mapping
SG)2k—T, eV
18 CONtINUOUS.

Proof. For the first part, see Example 5.1.38 and its continuation.

For any k € S(G), we have §ox € S(G) for any o € Njj, and
I+ R)“1+R)’k € S(G)

for any a,b € N (see also (4.34) and Proposition 4.4.30). For any m € R, v € R
and o € Njj, we have by (1.38)

[o]—m+~y

= |Ir(@+R) A () (1 + R) 7 | e

(&3 o~
1A KHL?[aJ—mM(G)

[a]—m+y

I+ R) ™= A+ R) ™ {dar}l (-

IN
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As k € 8(G), this L'-norm is finite and this shows that o7, € ¥=°°. More precisely,
this L'-norm is less or equal to

1B 11111+ R)*{Gar}r if 4 and =77 5 0 and o = [le=m4,
IB_ totmmes 11X+ R){Garc} |1 if v and 22" < 0 and b= [-2],

v

v

where [z] denotes the smallest integer > x and B, is the right-convolution kernel
of the Bessel potential of R, see Corollary 4.3.11. By Proposition 4.4.27, these
quantities can be estimated by Schwartz seminorms. g

More generally, the operators and symbols with kernels ‘depending on z’ but
satisfying the following property are smoothing:

Lemma 5.2.21. Let k : (x,y) — kz(y) be a smooth function on G x G such that,
for each multi-index B € N and each Schwartz seminorm ||- || sa),n, the following
quantity

sup || X2 k|| s(q),n < 00,
zeG

is finite.
Then the symbol o given via o(x,m) = Ry () is smoothing. Furthermore for
any seminorm || - ||sm q.p.c, there exists C >0 and B € Ny, N € Ny such that

lollsm a,p,e < C sup HXgHmHS(G),N~
zeG

Proof of Lemma 5.2.21. By (1.38), we have

sup [lo(z, 7)|| 23, = sup [|Ka(m) | 2(3,) < 8allrr(c)-
TeG TeG

More generally, for any ~1,7v, € R, denoting by N, Ny € Ny integers such that
7 < N1 72 < Na, we have

sup [|[7(I+ R)™ Xng‘a(x, ) (I +R)?|| 2,
71'6@
< sup [r(I+R)M XA (2, 7) 71+ R)™ || 23,
‘n'Gé

= sup | Fe{(L+ R)™M (I + R) ™ X garis} ()| 2 (31.)
TeG

<JI+R)M I+ R)N o XL ko110

This last L'-norm is, up to a constant, less or equal than a Schwartz seminorm of
XPBk,, see Section 3.1.9. This implies the statement. O

In Theorem 5.4.9, we will see that the converse holds, that is, that any
smoothing operator has an associated kernel as in Lemma 5.2.21.
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5.2.5 First properties of symbol classes

We summarise in the next theorem some properties of the symbol classes which
follow from their definition.

Theorem 5.2.22. Let1>p> 6§ > 0.
(i) Let o € S5 have kernel k; and order m € R.
1. For every x € G and v € R,

GaXP ks € Koy pla]—m—s[8]1~-

2. If B, € N then the symbol {XPoo(x,7), (z,7) € G x G} is in S;'f;&w"]
with kernel XPx,, and

12020, M) gt < Cop (@ ) b o

3. If oy € NI then the symbol {A* o (z,7), (x,7) € G x G} is in S;T’Lgp[a"]
with kernel o, ke, and

1A% 0 (@, )| gm—stee < Caallo(,m)]
P,

,a,b,c =

S sa+lao) bie

4. The symbol R
o i={o(z,n)*, (z,7) € G x G}

s 1 S;’?[; with kernel K% given by
Ka(y) = Ra(y™),

and

||U(Ia7)*||sgj5,a,b,c =

sup [|m(I+R)™% X/ A% (x,m)m(1+R)"

[a]—m— 5[5]+w
|2 (3

(ii) Let o1 € S/Tg and oo € SZ’; have kernels k1, and ko, respectively. Then
O'(J,‘, 7T') =01 (337 71')0'2(33, 7T)

defines the symbol o in S s, M = My + ma, with kernel Koy * K1, with the
convolution in the sense of Definition 5.1.19. Furthermore,

||O'(l‘, 7T) ||S;’T§,a,b,c < C”Ul (J}, 7T) HS;"(} ,a,b,c+pa+|mao H—5b||0-2 ($7 7T) HS;"(? ,a,b,c)

where the constant C' = Cq p ¢ mym, > 0 does not depend on o1, 05.
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Note that, in Part (ii), the composition o(z,7) := o1(z, 7)oa(z, 7) may be
understood as the composition of two fields of operators acting on smooth vectors
as well as the composition of o1 (z,-) € L (G) with oy(z,-) € L (G)

Y1,Y1—ma Y2,Y2—M2

for any choice of v1,7v2 € R such that Y1 —my = Yo.
Proof. Properties (1), (2), (3), and (4) of (i) are straightforward to check.

Let us prove Part (ii). By Property (1) of (i), or by the definition of symbol
classes,
Kje € Kyj —m;4~; forany v; €R, j=1,2,

thus choosing v = 72 and 73 = —mso + 72, we have by Corollary 5.1.20
Koz * K1z € Ky, —m4n forany ~yeR.
Its group Fourier transform is
(K1) (Kaz) = o1(x, m)os(z, m) = o(x, ).

Therefore, o is a symbol with kernel ko, * K1,.

Let o, 8 € Njj and v € R. From the Leibniz rules for A% (see Proposition
5.2.10) and X?, the operator

r(l+R) T X P A (2, m)n(I+ R) ™+
is a linear combination over (1, 82, a1, as € N™ satistying [51] + [B2] = [6], [ea] +
[as] = [@], of terms

pla)=m—[s]+

r(I+R)" XPr A gy (2, 1) X2 A2 00 (2, m)m (14 R) ™

whose operator norm is bounded by

m—3[ as]—mg—45[B2]

(1 4+ R)“ 5 X A% oy (, M (T4 R) ™2 | g
plon]—mo —8[Ba]+y ~y

In(@+R) % X2 A% 0y (a, 1) w1+ R) || 2,

This shows that the inequality between the seminorms of o, o7 and oy given in
(ii) holds. Consequently o is a symbol of order m = my + ms and of type (p,d),
and (ii) is proved. O

A direct consequence of Part (ii) of Theorem 5.2.22 is that the symbols in
the introduced symbol classes form an algebra:

Corollary 5.2.23. Let 1 > p > § > 0. The collection of symbols |
an algebra.

Furthermore, if oo € ST and o € S5 is of order m € R, then ogo and
oog are also in S™°°.

mer Ops forms
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The fact that the symbol classes J,,cp SZ)”% form an algebra does not imply

directly the same property for the operator classes |J,,cp b since our quanti-
zation is not an algebra morphism, that is, Op(o102) is not equal in general to
Op(01)Op(02). However, we will show that indeed (J,,cp ¥}'s is an algebra of
operators, cf. Theorem 5.5.3, and we will often use the following property:

Lemma 5.2.24. Let 01 and oo be as in Theorem 5.2.22, (ii). We assume that oo
does not depend on x: 09 = {oa(m) : m € G}. Then
o(x,m) :=o1(x, 7)o ()

defines the symbol o in S;’fé, m = mi + ma and

Op(o) = Op(o1)Op(02)

Proof. We keep the notation of the statement. Let k1, and ko be the convolution
kernels of o1 and oy respectively. Hence ks is a function on G independent of z.
By Theorem 5.2.22(ii), kg * K1, is the convolution kernel of o, thus

Vo € S(G)  Op(0)(9)(x) = ¢ * (K2 * K1a)-
As ¢ x ko = Op(0o2)¢, this implies easily that Op(o) is the composition of Op(oy)
with Op(o2). O
The following will also be useful, for instance in the estimates for the kernels
in Section 5.4.1.
Corollary 5.2.25. Let 1 >p>6>0. Let o € Sg?(; have kernel k. If B1 and By are
i Ni, then

(R (X)P 0, m)w(X)™, (2,7) € G x G} € ST PI+]

with kernel X' )~(52 Ky (y). Furthermore, for any a,b, ¢ there exists C = Cy p.c.8, 8s
independent of o such that

Il (X)% o (a, m)m (X)%2|

Syssabe = CHJHS;’:’(S,a,b,c+pa+[ﬁl]+[52]+5b.

If B2 = 0, for any a, b, c there exists C = Cq . c 3, independent of o such that

Im(X) o llsm,ape < Cllollsm,ab.e-

Proof. The first part follows directly from Theorem 5.2.22 Part (ii) together with
Lemma 5.2.17.

We need to show a better estimate for 2 = 0. Let o, 8, € N{j. By the Leibniz
formula (see (5.28)), we have

XA (X) o (z, )}

= Y CaanadAMT(X)I) {XP A% o(2, ).
[ar]+[az]=[a]
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Hence, denoting m, := m + §[5,], we have

pla]— mo _
|| (T —l—R) XB"AO‘{W( Vro(z, m)}n(I+R) | 2
<C Z ”ﬂ_ I—|—R) [ﬁlH”YA (X)BIW(I+R) plag]— MO-HHE%;(H :
[a1]+[az2]=[a]
(1 + R) 5 X e A0 (2, m)m(I+R) ™7

As {n(X)*} € Sfé] by Lemma 5.2.17, each quantity
sup |[r(I+R) plelmme i A (X)) I+ R)™ e |23,y < o0

ly|<e,meG

is finite for any ¢ > 0 and aq, e € NjJ such that [aq] + [a2] = [@]. This implies

plal—mo—[B1]+~ _a
sup[[7(I+R) X3 A (X) o (2, )} (T + R) ™7 || 23,
[v|<e,meG

plagl—motry

<C Y sup |r(I+R) T T XP A0 (2, m)n(1+R) T | 2.

[az]<[a] ‘;'5;

Taking the supremum over [a] < a and [8] < b yields the stated estimate. O

5.3 Spectral multipliers in positive Rockland operators

In this section we show that multipliers in positive Rockland operators belong to
the introduced symbol classes W,

The main result is stated in Proposition 5.3.4. This will allow us to use the
Littlewood-Paley decompositions associated with a positive Rockland operator,
and therefore will enter most of the subsequent proofs.

5.3.1 Multipliers in one positive Rockland operator

The precise class of multiplier functions that we consider is the following:

Definition 5.3.1. Let M,, be the space of functions f € C*°(R;) such that the
following quantities for all £ € Ny are finite:

1flnyee = sup (142"
A>0,£/=0,...,0
In other words, the class of functions f that appears in the definition above
are the functions which are smooth on Ry = (0,00) and have the symbolic be-
haviour at infinity of the Hérmander class S7%(R) on the real line. However, we
rather prefer the notation M,, in order not to create any confusion between these
classes and the classes ST (@) defined on the group G.
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Ezample 5.3.2. For any m € R, the function A — (1 + X)™ is in M,,.

It is a routine exercise to check that M,, endowed with the family of maps
Il A, 05 £ € No, is a Fréchet space. Furthermore, it satisfies the following property.

Lemma 5.3.3. If fi € M,,, and fa € My, then f1fo € M, +m, with
[ f1foll Moy mge < Cellfill My o L2l Moy o

Proof. This follows from the Leibniz formula for [8¢ (f1 f2)| and from the following
inequality which holds for A > 0 and ¢}, ¢, < ¢:

g —ma -l 4051 Al 2
(LA me Ot g [0 fa )] < il Mty e 2l Moy e
which implies the claim. 0
The main property of this section is

Proposition 5.3.4. Let m € R and let R be a positive Rockland operator of homoge-
neous degree v. If f € M=, then f(R) is in U™ and its symbol { f(7(R)), 7 € G}
satisfies

Va, b, c € Ny HeN C>0: (T (R lap,e < C||f||M%7g,

with £ and C independent of f.

Proof. First let us show that it suffices to show Proposition 5.3.4 for m < —v. If
[ € M= with m > —v, then we define

e my > v such that 2 is the smallest integer strictly larger than =7,

o fi(N) == (14X f(\) and fo(A) == (14 X\) 7.
By Example 5.3.2 and Lemma 5.3.3, we see that f; € Mm1 with m; = m — ms.
By Lemma 5.2.17, we see that fo(m(R)) € S™2. If Proposition 5.3.4 holds for
my < —v, then we can apply it to f; and hence fi(m(R)) € S™. Thus the
product

f(7(R)) = fu(m(R)) f2((R))
is in Smatmz2 = gm,
Therefore, as claimed above, it suffices to show Proposition 5.3.4 for m < —v.

Now we show that we may assume that f is supported away from 0. Indeed,
if f € M=, we extend it smoothly to R and we write

f=1Ixo+ (1= Xo),

where x, € D(R) is identically 1 on [—1,1]. Since fx, € D(R), by Hulanicki’s
theorem (cf. Corollary 4.5.2), the kernel of (fx,)(R) is Schwartz and by Lemma
5.2.20, we have (fx,)(R) € ¥~°° with suitable inequalities for the seminorms.
Thus we just have to prove the result for f(1 — x,) which is supported in [1, c0)
where A < 1 4+ \. The statement then follows from the following lemma. g
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Showing Proposition 5.3.4 boils then down to
Lemma 5.3.5. Let m < —v. If f € C>(R) is supported in [1,00) and satisfies

VeeN, 30, VAZ1 5N < GAE Y,
then f(R) € U™, and for any a,b,c € Ny we have

IfF(R)lwmape <C  sup A" FF104 F(N),
A>1,0/=0,....0

with £ = Uy ap,c €N and C = Cp, q.p,c > 0 independent of f.

The proof of Lemma 5.3.5 relies on the following consequence of Hulanicki’s
theorem (see Theorem 4.5.1).

Lemma 5.3.6. Let R be a positive Rockland operator on a graded Lie group G.
Letm € D(R) and o, € NjJ. We denote by m(R)dg the kernel of the multiplier
m(R) and we set

The function k is Schwartz.
For anyp € (1,00), N € N and a € R with 0 < a < Nv, there exist C > 0
and k € N such that for any ¢ € S(G),

IR (¢ * k)|, < C sup (14 N*1oxmN)| 1RF ¢l Le (-
0=0,....k

Proof of Lemma 5.3.6. By Hulanicki’s Theorem 4.5.1 or Corollary 4.5.2, k € S(G).

It suffices to prove the result with X<, [a] = Nv, instead of RY. By Corollary
3.1.30, we can write X% as a finite sum of X”p, 3 with p, s a homogeneous
polynomial of homogeneous degree [3] — [a] > 0. We then have

XY p*xkK)=¢*x X% = Zgb* (XPpapr) = Z(XBQS) * (Pa,Bk)-

Therefore, by Proposition 4.4.30,

—[Blta [Bl—a

S TIRTFTXPG) % (R pasr)lly
—[Bl+a ~ [Bl—a
S IRT XP[,IR ™ paprls-

[ X0 5)llp

IN

IN

By Theorem 4.4.16, Part 2,

—[Bl+a

IR X%, < CIR¥ ¢,

And we have
18] 18]

IR™7 pasklli = IR pasi1,
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see Section 4.4.8. By Theorem 4.3.6, since [3] > [a] = Nv > a, we obtain

Bl—a Bl—a

Bl-a _ U L Ble
IR Papsills < Cllpasilly,” ™ IR pasil,™ -

Note that because of (4.8), we have
R(z) = (=1)1*lz%m(R)do(z).
By Hulanicki’s theorem (see Theorem 4.5.1), ||pq, k|1 and ||R%ﬁa7g/%||1 are

< sup (1+X)F|osm(N)],

for a suitable k, therefore this is also the case for ||7~Zm;apa,5/<v||1.
Combining all these inequalities shows the desired result. O

Proof of Lemma 5.3.5. Let f be as in the statement. We need to show for any
a € N that the convolution operator with right convolution kernel g, f(R)do
maps L?/ (G) boundedly to L[Qa]fm%y(G) for any v € R. It is sufficient to prove this
for 4 in a sequence going to +o0o and —oo (see Proposition 5.2.12) and, in fact,
only for a sequence of positive 7y since

(Gaf(R)60)* = (—1)!*Ga f(R)d0.

At the end of the proof, we will see that, because of the equivalence between the
Sobolev norms, it actually suffices to prove that for a fixed « in this sequence, the
operators given by

[a]=m+~y

b 6% (@uf (R)0) and ¢ — R“FH ({R-20} + (@uf(R)%)) . (5.32)

are bounded on L?(G). So, we first prove this by decomposing f and applying the
Cotlar-Stein lemma.

We fix a dyadic decomposition: there exists a non-negative function n € D(R)
supported in [1/2,2] and satisfying

VA1 1= ni(\) where 5;(A):=n27N).
j€Np

We set for j € Ng and A > 1,

m

Fi) = ATV (N,
fON = @,
gi(N) = AV D).
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One obtains easily that for any j € Ny and ¢ € Ny, we have

(N = S ATET @) 2775 (0% (270N,
L+Lo+L3=L

O f; N < Cosup A EHO0F)] DD ATEATR27I (0% n) (277N,
e O +0o+ b3 =0

where 3 stands for a linear combination of its terms with some constants. As 7
is supported in [1/2,2] and since A =< 27, we have

—l1y—loo—jls _ o—jli+la+L
AP NT29 33/\2 JE1TE2 3,

so that

> AT (9%n)(279N)] < Crp27
Ly +Lo+L3=L
Therefore, we have obtained
0 £;(N)| < Cosup A= %+ 105 F(N)] 277¢.
A>1
r<e
Hence, for each j € Ny, f) is smooth and supported in [1/2,2], and satisfies for
any ¢ € Ny the estimate
0 O] = 2710 £;(N)] < Crsup A~ 5 H (0 F(N).
A>1

<o
Consequently, each g; is smooth and supported in [1/2,2], and satisfies

Ve € Ny sup |6€/gj()\)| < Cosup A= |94 F(N)]. (5.33)
A€l5,2] A>1
0'=0,....0 o<t

Clearly f(\) is the sum of the terms
2% g;(2790) = fF(N)n;(A)

over j € Ny and this sum is uniformly locally finite with respect to A. Furthermore,
since the functions f and g, are continuous and bounded, the operators f(R) and
g;(277R) defined by the functional calculus are bounded on L?*(G) by Corollary
4.1.16. Therefore, we have in the strong operator topology of .Z(L*(G)) that

oo

F(R)=3_ 2 g;(277R),

Jj=0
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and in K(G) or §'(G) that
f(R)d, = Z 2j%gj (2_jR)6o'
j=0

We fix o € Njj. For each j € Ny, by Hulanicki’s theorem (see Corollary 4.5.2),

g;(279R)6, is Schwartz, thus so is
Kj =27 §og;,(277R)5,

and also (see (4.8))

m
v

K§ = K (o) = Kj(a™) = (-1)*129% gug; (2 R)do(a").

We claim that for any a,b € R satisfying
e cither b € vNy and a € [0,b)
eorb>0anda< |b/v|
there exist £ € N and C' > 0 such that for all j € Ny, we have

IR™¥RY K| < C(2v)m~lel-ath sup ATEH O F O, (5.34)
<

and the same is true for R-¢ R+ K;.

Let us prove this claim. By homogeneity (see (4.3)), we see that
gj(Q_jR)éo(x) = (2_%)_ng(R)50(2;33)7
thus
Kj(w) = 27%(27)7 g, (272) (277)79g;(R)S,(2V )
(29)" 719 (Gog; (R)Ss) (27 ).

More generally, by Part (7) of Theorem 4.3.6 for R and consequently for R (see
(4.50)) we have

ROEREK = (20" Q=ett (REERE {4ag; (R)O,}) o D, 1,
whenever it makes sense (that is, K; is in the L*-domain of R+ such that R+ K;
is in the L2-domain of R~+). Consequently, by Proposition 5.1.17 (1), with norms

possibly infinite, we have

IRTRE K e = (28)" 0 [RERY {dag; (R)50}

’/C'
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Since (ﬁ_%R%Kj)* = Q%R_%K; for any a, b whenever it makes sense, or by the
same argument as above, we also have

||7€7%R%K;||K — (2%)m7[a]7a+b "7@7%72% {‘jagj(R)(;o}

’n'

Therefore, if b € vNy and a € [0,b), by Lemma 5.3.6, there exist £ = £, € N such
that

~ _a__ b . /
|22 R (dags R < s sup (140105 4,0
>
0'=0,...,0
< Cup sup |05 9,00,
A>0
0'=0,...,0

since each g; is supported in [1/2,2]. As g; satisfies (5.33), we have shown Claim
(5.34) in the case b € vNy and a € [0, D).

If a < [b/v] then we can apply the result we have just obtained to v(|b/v])
and v[b/v]. Using Theorem 4.3.6 we then have for any ¢ € S(G), with 0 :=
[Z][5177, that

IR” 8|2 CIRV |3 IR 19|18

IN

1-0+6

C sup [05g;(N] IRV 6ll2 ,
A>0
0'=0,...,0

IN

for some . This shows Claim (5.34) in the case a < [b/v].

We set T : S(G) 5 ¢ — ¢+ K;. We want to apply the Cotlar-Stein lemma
(Theorem A.5.2) to two families of L?(G)-bounded operators: first to T}, j € No,
and then to Y

Tjp~:¢r— ¢xR¥R VK, j€N.
where v € vN is such that 8 :=[a] — m + v > 0.

Let us check the hypothesis of the Cotlar-Stein lemma for 7. By Claim (5.34)
for a = b = 0, there exists ¢ € Ny such that for any j,k € Ny,

max (||TkaHz(L2(G))a IT5T3 | (22 (cy))
< Cmax (1T} [l 222 @ Tl 2 2@ 1Tl 2 22 1Tk | 2 226p)
< 025 m=leD) (qup A= EH |98 F()))2
A>1
ng
< 027 m=le]) (sup AT 9L F(\)))2,
A>1

<
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since m — [a] < 0.
Let us check the hypothesis of the Cotlar-Stein lemma for 7} 3 . By Propo-
sition 4.4.30 the right convolution kernel of the operator 175 Ty 5,4 is given by

~ 283

RVK) * (RPRVE]) = (RTVRVE) « (R™7 R™VK]).

B
v

(R

Therefore, its operator norm is

28

1T 5.4 T p 2226y < IIRT#RY K|k |[R™% R™% K|k

E
v

(m—[a]=y+7) 9 L (m—[a] —y+26—7) sup AT ‘aﬁlf()\”
A>1
<t

)

for some ¢, thanks to Claim (5.34) with a = b =+~ € vN and with b = 28 — v =
2[a] —2m + v and a = 7. So we have obtained

k=g
v

i (m—1a)) sup B |6§/f()\)|
A>1

o<

175 5,7 Th,84 |l 2(22(G)) <2

Since the adjoint of @fﬁﬁTkﬁﬁ is Tl:,ﬁ,'yTj»Bv’Y’ we may replace k — j above by
)

We proceed in a similar way for the operator norm of T} g , T} By whose right
convolution kernel is

Therefore, we obtain

max (|75 5, Tr.py |l 22 115,80 Tk g4l 2(L2(G)))

< 02" m=leD (sup A= EH (08 F()))2
A>1

<

By the Cotlar-Stein lemma (see Theorem A.5.2), >°T; and >, T} 5~ con-

verge in the strong operator topology of .Z(L?(G)) and the resulting operators
have operator norms, up to a constant, less or equal than

sup ATV O[OS F(N)].
A>1,0<k

Clearly > T; and ), T} g, coincide on S(G) with the operators in (5.32), respec-
tively. Using the equivalence between the two Sobolev norms (Theorem 4.4.3, Part
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4), this implies

6% (@ f(RY) 3y < C (6% @ RISz + IR (6 % (daf(R)) |12)

< Cswp X E L )] (9]l + [RF6)l2)
<

< Csup AT FO8] 2 6)-
A>1
v<e

We have obtained that the convolution operator with the right convolution
kernel o f(R)do maps L2(G) boundedly to LEn—[OéHv (@) for any v € vN such that
m — [a] + v > 0, with operator norm less or equal than

sup ATV 195 F(N)],
A>1,0/<e

up to a constant, with ¢ depending on 7. This concludes the proof of Lemma

5.3.5. 0

Hence the proof of Proposition 5.3.4 is now complete.
Looking back at the proof of Proposition 5.3.4, we see that we can assume
that f depends on « € G in the following way:

Corollary 5.3.7. Let R be a positive Rockland operator of homogeneous degree v.
LetmeR and 0 < § < 1. Let
F:GxRy3(z, )= fr(A) eC

be a smooth function. We assume that for every B € Ng, X2 f, € Mm+5 8- Then
o(z,m) = fz(7m(R)) defines a symbol o in S{'s which satisfies

Va,b,ceNy 3 EN, C>0 : ol abe < C sup ||X5fw||Mm+5 "
[B1<
with £ and C independent of f.

5.3.2 Joint multipliers

To a certain extent, we can tensorise the property in Proposition 5.3.4. But we need
to define the tensorisation of the space M,, and the multipliers of two Rockland
operators.

First, we define the space M,,,, ® M, of functions f € C*°(Ry xR ) such
that

_ ! _ ! VAN
Al Moy @My = sup (L A) ™01+ Ag) T2 F2(0)1 932 f (A1, Ao,
A1,A2>0
e=0,..
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is finite for every ¢ € Ny. It is a routine exercise to check that M,,, ® M,,, is a
Fréchet space.

Secondly, we observe that if £ and R are two Rockland operators on G which
commute strongly, meaning that their spectral measures F, and Fxr commute,
then we can define their common spectral measure £, via

E; r(B1 x By) :== E.(B1)Er(B2), for By, By Borel subsets of R,

and we can also define the multipliers in £ and R by
FER)= [ fOu s o)
Ry xRy
for any f € L (R4 x Ry).

Corollary 5.3.8. Let L and R be two positive Rockland operators on G of respective

degrees vy and vr. We assume that L and R commute strongly, that is, their

spectral measures Ep and Er commute. If f € Mmi @ Mma then f(L,R) is in
YL YR

ymitme - Byrthermore, we have for any a,b,c € Ny,

1L, R)fwmitms ape < ClF Mm@ Mms 25

ve YR
where ¢ and C > 0 are independent of f.

Proof. By uniqueness, the spectral measure E, x is invariant under left transla-

tions. Denoting by m(E. ) for m € G its group Fourier transform, we see that the
group Fourier transform of a multiplier f(£,R) for f € LRy x Ry) is

T(f(LR)) = / FO Ao)dr (B =) (M. M),

]R+ XR+

since it is true for a function f of the form f(A1, A2) = f1(A1)f2(A2) with fi1, fo €
L>(R,), by Corollary 5.3.7.

We fix n € C*°(R) supported in [—3, 1] such that

VNER Y (N +4)=1
j'EL

We also fix another function 7 € C*°(R) supported in [—1,1] such that 7 =1 on
[—3.4]. For any j', k" € Z, we define 1;/ j» € C*°(R) by

ke (X) i= e O ),
It is easy to show that for any ¢/ € Ny there exists C' = Cp > 0 such that

Vj/7]g/ cZ ||1/}j',k’||/\/lm,£’ < C(l + |k/|)£/(1 4 |j,|)_m+£/.
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Since the symbols form an algebra (see Section 5.2.5), and by Proposition 5.3.4,
writing m = mq + mso, we have for any ji, jo, k1, ko € Z:

195150 (T(L)) Yy 1o (T(R)) |l 57 0,1,
< Ol (T L)) 51 1,101 150 (T (R 572 .02
<COA+ k) (14 [ )77 T (1 + ko) 2 (1 + |ga) 7% T (5.35)

for some 51762 € Np.

Let f be as in the statement. We extend f to a smooth function supported
n (—1,00)? and decompose it as a locally finite sum:

F=Yf  where fi(\) =)0 —)n0e = jz), A= (A ).
jez?

For each j € Z, we view f;(-+7) as a smooth function supported in [—1,1] x [-1, 1]
and we expand it in the Fourier series

filA+j) = chkei'
kez?

The hypothesis on f implies that for any ¢, /5 € Ny, we have
|cj,k| < OZl,£2||f“Mm®Mm,fl+52(l+ |k1|)_€1(1+ ‘k2|)_62 X (536)

ve YR
NS N
XL+l v (U ) e
We have obtained that (taking different £’s)

Z |C] klllel,kl ||M oS A1 ||wjz,k2||M my Ly < OO
§,kEZ? "R

We have therefore obtained the following decomposition of f in the Fréchet
space Mmi @ Mma,
ve VR

f()‘h)‘?) = Z Cjakwjh]ﬁ(Al)wh,kQ(}‘Z)'

j,ke€Z?

And so for any a, b, ¢ with ¢1, /5 as in (5.35),
£ (L), RN smape < Y el ke (FL)) g ks (F(R)) [ 57 a,0rc

j,k€Z?
my _m2
< S e RlCA+ Rl (14 1) 77 T (U + [kal) (1 + |a]) 7R T
j,kez?

< C||f||Mu®Mm,f1+l2+4a
073 7=y

by (5.37) with ¢; + 2 and ¢3 4+ 2. This shows that f(m(L£),n(R)) € S™ and the
desired inequalities for the seminorms. O
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Corollary 5.3.8 could be generalised by considering a finite family of positive
Rockland operators which commute strongly between themselves (i.e. with com-
muting spectral measures), with symbols possibly depending on x in a similar way
to Corollary 5.3.7.

5.4 Kernels of pseudo-differential operators

In this section we obtain estimates for the kernels of operators in the classes W"s
(cf. Section 5.4.1) and some consequences for smoothing operators (cf. Section
5.4.2) and for operators of Calderén-Zygmund type in the calculus (cf. Section
5.4.4). We will also show the LP boundedness of ¥ in Section 5.4.4.

For technical reasons which will become apparent in Section 5.5.2, we will
also consider the seminorms:

m=plal+ss
ol gy = sup  [ATXEo(w, mym(I+ R)~
PO (z,m)eGxqG
[e]<a,[B]<b

||$(?-L y  (5.37)

where R is a positive Rockland operator of homogeneous degree v. The superscript
R indicates that the powers of I+ R are ‘on the right’. As for the S}';-seminorms,
this is a seminorm which is equivalent to a similar seminorm for another positive
Rockland operator.

5.4.1 Estimates of the kernels

This section is devoted to describing the behaviour of the kernel of an operator
with symbol in the class S7"5. As usual in this chapter, G is a graded Lie group of
homogeneous dimension ). Our results in this section may be summarised in the
following theorem.

Theorem 5.4.1. Let o = {o(x,m)} be in S with 1 > p > 6 >0, p # 0. Then
its associated kernel K : (x,y) — kg (y) is smooth on G x (G\{0}). We also fix a
homogeneous quasi-norm | -| on G.

(i) Away from 0, k, has a Schwartz decay:

VM eN 3C>0, ab,ceN: V(z,y) eGxG
ly > 1= |ka(y)| < Csup, g llo(z, m)|

smsabelyl =M.

(i) Near 0, we have

- if Q+m > 0, Ky behaves like |y\ : there exists C > 0 and a,b,c € N
such that

V(z,y) € G x (G\{0}) [ra(y)l < Csup |lo(z, 7)||sm, a,
TeG
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- if Q+m =0, Kk, behaves like In|y|: there exists C > 0 and a,b,c € N
such that

V(z,y) € G x (G\{0})  [ra(y)| < Csup |lo(z, 7|57, ap.cnlyl;

p,6'%
TeG

—if Q@+ m <0, Ky is continuous on G and bounded:

sup |k (2)] < Csup [lo(z, )| sm,0.0.0-
zeG el 1

Moreover, it is possible to replace the seminorm | - ||sm, ap.c in (i) and (i)
with a seminorm || - | S™4F 0, given in (5.37).

Remark 5.4.2. Using Theorem 5.2.22 (i) Parts (3) and (2), and Corollary 5.2.25,
we obtain similar properties for X51 X52 (X5 Go (y)kn(y)).

We start the proof of Theorem 5.4.1 with consequences of Proposition 5.2.16
as preliminary results on the right convolution kernels and then proceed to analy-
sing the behaviour of these kernels both at zero and at infinity.

Proposition 5.2.16 has the following consequences:

Corollary 5.4.3. Let o = {o(z,m)} be in S)'s with 1 > p > 6 > 0. Let r, denote
its associated kernel.

1. If a, By, B2, Bo € N§ are such that

m — pla] + [B] + [B2] + 6[Bo] < —Q/2,
then the distribution X5 XP?(XPoG,(2)k.(2)) is square integrable and for

every x € G we have

~ 2
[ |k (e o] d < 0sup lotam I
i >

prgaasbc
TeG

where a = [a], b= [B,], ¢ = pla]+ [B1]+[B2]46[Bo] and C = Cr a8, 85,8, > 0
18 a constant independent of o and x. If B1 = 0 then we may replace the
seminorm | - |sm. ap.c with a seminorm || - ||Sm,(,sR wp given in (5.37).

: va,

2. For any «, B1, B2, Bo € N§ satisfying

m = pla] + [Ai] + [B2] + 8[Bo] < @,

the distribution z — X5 X2 XPog,(2)ke(2) is continuous on G for every
x € G and we have

81612 ‘Xflf(zﬂz {Xfoqa(z)/{m(z)}‘ <C sup ||O'(£L'7W)“S/T§7[a]7[go],[52]7
z TeG
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where C' = Ciy.a.8,,8,.8, > 0 is a constant independent of o and x. If B1 =
0 then we may replace the seminorm || - HS;"(;,[oz],[Bo].,[Bﬂ with the seminorm

| - HS%R’[QLWD], see (5.87).

Consequently, if p > 0 then the map k : (z,y) — K(y) is smooth on
G x (G \{0}).

Proof. Part (1) follows from Proposition 5.2.16 together with Theorem 5.2.22 (i)
Parts (3) and (2), and Corollary 5.2.25 . Now by the Sobolev inequality in Theorem
4.4.25 (ii), if the right-hand side of the following inequality is finite:

sup ‘XﬁlXﬁQ {Xﬁo 2)kg (2 }’ <C H (I+R.) Xﬁlxﬁ2 {Xﬁa (2)ks(2 }‘
z€G

L2(dz)’
for s > /2, then the distribution

2 XD XD { X7 (2)Ra(2) }
is continuous and the inequality of Part (2) holds. By Theorem 4.4.16,

|+ REXD RS (X a2 ()}

L2(dz)
+[/31

<CH I+R) 1+ R {Xf%(z)nx(Z)}‘

[ﬁ2]

L2(dz)
+[ﬁ1]

XA (z, m)n(I+R)™

~_

< CHw(I—FR) )

by the Plancherel formula (1.28). By Proposition 5.2.16 (together with Theorem
5.2.22 (ii)) as long as

m+ s+ [B1] — pla] + 0[B,] + [B2] < —Q/2,

since
s+161] - [B2] 3,

I+R) (I+R) 7 {XGa(2)ra(2)}

is the kernel of the symbol

DoAY (x,m)m(T+ R)@

A1+ R)H
we have

PoAo(z,m)m(T+ R)@

Hﬂ'(l T R)T

<C m
L@ S llo (2, ) [ s7e, 10, 18], (821

if s+ [B1] < pla] — m — §[B,] — [B2]. This shows Part (2). O
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Estimates at infinity

We will now prove better estimates for the kernel than the ones stated in Corollary
5.4.3. First let us show that the kernel has a Schwartz decay away from the origin.

Proposition 5.4.4. Let o = {o(z, )} be in S5 with1 > p > 6 > 0. Let k, denote
its associated kernel.

We assume that p > 0 and we fiz a homogeneous quasi-norm |-| on G. Then
for any M € R and any o, b1, 52,8, € N§ there exist C > 0 and a,b,c € N
independent of o such that for all x € G and z € G satisfying |z| > 1, we have

XP X P2(XPGa(2)Ra(2))| < O sup [lo(@,m) sy a,0el 217
meG

Furthermore, if 81 = 0 then we may replace the seminorm || - Hsyé,a,b,c with a
ST ab given in (5.37).

seminorm || - |

Proof. We start by proving the stated result for « = 5, = 2 = B, = 0 and for
the homogeneous quasi-norm |- |, given by (3.21). Here p > 0 is a positive number
to be chosen suitably. We also fix a number b, > 0 and a function 7, € C*°(R)
valued in [0, 1] with 1, =0 on (—o0, 1] and 7, = 1 on [1,00). We set

() = 10(by " [[})-

Therefore, 1 is a smooth function on G such that n(z) = 1 if |z|, > b,. Conse-
quently,

sup | |2]p"ka ()] < sup |21 Ko (2)0(2)]
|z|p>bo 2€G

e > xR em)}

[B11<[Q/2]

(5.38)

L2(G,dz)

by the Sobolev inequality in Theorem 4.4.25.
We study each term separately. We assume that p/2 is a positive integer
divisible by all the weights vy, ..., v, and we introduce the polynomial

n
l21b = |z
j=1

P
v

and its inverse, so that

X2 {2 ko(2)n(2)} = X2 {12121, P 2lhma(2) ()}

= Y xRl ()} X2 (e R ()}
(B11+[B5]=[8]
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where ) means taking a linear combination, that is, a sum involving some con-
stants. We observe that, using a polar change of coordinates,

8, _
IXE {1215 121, P0(2) } | L2(Gaz) < 00

as long as 2(M —p—[B1]) +Q —1 < —1. We assume that p has been chosen so that
2(M — p) + Q < 0. Therefore, all these L?-norms can be viewed as constants. By
the Cauchy-Schwartz inequality and the properties of Sobolev spaces, we obtain

IXE2 {12 ko (2)n(2)} 12y < € D 1X22 {12Bk0(2)} 26002
[B51<[87]

c Z Z ||AXZBé {@1"%}}”27

[B21<[8] [l <p

IN

P
since |z[h = Z;;l z;j is a polynomial of homogeneous degree p. Therefore, by
Corollary 5.4.3 Part (1), we get

1X2 {12l ke (2)n(2) } 1 22(@az) < C sup [lo (@, m)llsm, p,0,0p+187
TeG

if pp—m > Q/2+[B']. We choose p accordingly. Combining this with (5.38) yields

‘Z‘Sufb ||Z|£4/€x(2)| < Csug ||0(9C77T)|\Sg}5,p70,pp+[Q/2w-
p=0o e

Therefore, we have obtained the result for the homogeneous norm | - |, and a =
B1= B2 =B, =0.

The full result follows for any homogeneous norm and indices «, 51, 82, B,
from the equivalence of any two homogeneous norms and by Theorem 5.2.22 (i)
Parts (3) and (2), and Corollary 5.2.25. O

Remark 5.4.5. 1. During the proof of Proposition 5.4.4, we have obtained the
following statement which is quantitatively more precise. We keep the setting
of Proposition 5.4.4. Then for any M € R and b, > 0, there exists C' =
OM,bo,m > (0 such that

M
sup Hz\p f%(z)‘ <C sup ||a(x,7r)||S;n§,p,07ppHQ/2],
[2]p>bo TeG '
where p € N is the smallest positive integer such that p/2 is divisible by all
the weights vq,...,v, and p > max(Q/2 + M, %(m +Q+1)).

2. Combining Part (1) above, Theorem 5.2.22 (i) Parts (3) and (2), and Corol-
lary 5.2.25, it is possible (but not necessarily useful) to obtain a concrete
expression for the numbers a, b, ¢ appearing in Proposition 5.4.4, in terms of

map567a761a/827/60 and of Q

Furthermore, the same statement is true for |z| > b, for an arbitrary
lower bound b, > 0. However, the constant C' may depend on b,,.
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Estimates at the origin

We now prove a singular estimate for the kernel near the origin which is (therefore)
not covered by Corollary 5.4.3 (2).

Proposition 5.4.6. Let 0 = {o(z,7)} be in SZL(; with 1> p> 6> 0. Let k,, denote
its associated kernel.

We assume that p > 0 and we fiz a homogeneous quasi-norm |-| on G. Then
for any o, B1, P2, Bo € N§ with Q + m + [Bo] — pla] + [B1] + [B2] > 0 there exist
a constant C > 0 and computable integers a,b,c € Ny independent of o such that
for all x € G and z € G\{0}, we have that if

Q@+ m+d[Bo] — pla] + [B1] + [B2] > 0,

then
‘Xflf(fz (Xfoda(z)mz(z))‘ < C'sup ||U(:C77T)|\S;757a’bxc|z|fQ+m+6[ﬁ°]_ﬁ[a]HﬁlHﬁQ]’
reCG
and if
Q+m+6[B,] — pla] + [B1] + [B2] = 0,
then

| X2 R (X o (2) 0 ()| < € sup [0, 7)1y 0 In -
Tl'Eé '
In both estimates, if B1 = 0 then we may replace the seminorm || - |

S;"L(;,a,b,c with
a seminorm || - ||SméR wp given in (5.37).
P& 1%

During the proof of Proposition 5.4.6, we will need the following technical
lemma which is of interest on its own.

Lemma 5.4.7. Let o = {o(z, )} be in S with1>p>¢6>0. Let n € D(R) and
co > 0. We also fix a positive Rockland operator R of homogeneous degree v with
corresponding seminorms for the symbol classes S/Té‘

Then for any £ € Ny, the symbols given by
op(z,m) =2 x(R))o(z,7) and ope(w,7):=o(z,m)n2 “m(R)),
are in ST°°. Moreover, for any m; € R and a,b,c € Ny, there exists a constant
C = Cnmymyps,a,b,em,e, > 0 such that for any £ € Ng we have
loz.e(@ ™) lsms ap.e < Csup lloe, m)llsy 0027 7™,
' TeG

The same holds for og(x, ), but with a possibly different seminorm on the right
hand side.
Only for og e(z, ), we also have for the seminorm ||-||S:7,éR7a7b given in (5.37),

the estimate

2@%’(77177711)
b ’

lore(e, mllgnr ,, < Csup oz, )]

R
SR
’ el

m,R
Spﬁ @
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Proof of Lemma 5.4.7. For each ¢ € Ny, the symbol n(2~*°n(R)) is in S~ by
Proposition 5.3.4. Therefore, by Theorem 5.2.22 (ii) and the inclusions (5.31), oy, ¢
and og ¢ are in S7°°.
Let us fix a,, 8, € Nj and v € R. By the Leibniz formula (see (5.28)),
(I 4 R) plao]— "'1 3[Bolt+~ Xﬁ"Aa"O'L gﬂ'(I + ,R,),
(14 R) T X B A (2o (R)) o, m) } w(I+ R)F
_ Z ca17a27r(I+R) ploo]— ml S[Bolt+~ Aal (Q_KCO'TF(R))
[ar]+[az]=([a0]

ol
v

XPoA%g(z, m)r(1+R) ">

Therefore, taking the operator norm, we obtain

n]*M1*5[ﬁ I+

WXBUAaUJL e7T( _’_R),%”

—my—b[Bo]tn

plo
lr(I1+R)
<Y |n(1+R)" =

[ ][] =[exo]

[og]=m—5[Bol+

A~ on(R)r(I+R)™" 7 |
M Bo A -2
[m(I+R) Xy Aoz, m)r(I+R)™ |
< Cllo(z, W)Hs;né,[ao} [Bo). 1

plagl—m—3[Bol+~

aol— ml 3[Bol+ ai —ZCo Yl Sea”/S B e e B B D
3 r+R)" T A2~ o (R))m(I+ R) z I
[ea]+[az]=[a0]

By Proposition 5.3.4,

plao]l— m1 3[Bol+ plagl=m—93[Bol+~

Ir(1+R)" TATp 2T e n(R)) (14 R) v I
< Cln@ )| Muma by

for some k, where ms is such that

[a1] = ma = plae] —my = 6[Bo] + v — (plaz] —m —6[B,] +),
that is,
mo =mq —m+ [a1](1 — p).

Now, we can estimate
_ my -
@ Mt = mp, [T )
v >0, k'=0,...,

sup (14 N T reok (9F gy (27 )
A>0, k'=0,....k

. m2

< g2t
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Therefore,

plog]—m—35[Bol+v

3 I+ R) T A2 o n(L))w(1+ R) T
[a1]+[az]=([ao]

mq—m+log](1—p) my—m
<C Z 272%71 ” < 027&:0
fors]+iova =levo]

)

and we have shown that

plaol—my —3[Bol+

Ir(I+R) v XPeA%qy, M(I +R)"¥|
mq—

< Ca,llo(@ ™) lsm, ool i8] 112 7

The desired property for o, , follows easily. The property for o g, may be obtained
by similar methods and its proof is left to the reader. O

Proof of Proposition 5.4.6. By Theorem 5.2.22 (i) Parts (3) and (2), and Corollary
5.2.25, it suffices to show the statement for a« = 51 = B3 = 5, = 0. By equivalence
of homogeneous quasi-norms (Proposition 3.1.35), we may assume that the homo-
geneous quasi-norm is | - |, given by (3.21) where p > 0 is such that p/2 is the
smallest positive integer divisible by all the weights vy,...,v,. Since k, decays
faster than any polynomial away from the origin (more precisely see Proposition
5.4.4), it suffices to prove the result for |z|, < 1.

So let o € S with @ +m > 0. By Lemma 5.4.11 (to be shown in Section
5.4.2) we may assume that the kernel  : (x,y) — k. (y) of o is smooth on G x G
and compactly supported in z. By Proposition 5.4.4 it is also Schwartz in y.

We fix a positive Rockland operator R of homogeneous degree v and a dyadic
decomposition of its spectrum: we choose two functions 19, n; € D(R) supported
n [—1,1] and [1/2, 2], respectively, both valued in [0, 1] and satisfying

YASO0 ) me(h) =
=0

where for £ € N we set

ne(N) =y (27 D).
For each ¢ € Ny, the symbol ny(7(R)) is in S~°° by Proposition 5.3.4 and its kernel
1¢(R)dp is Schwartz by Corollary 4.5.2. Furthermore, by the functional calculus,
Zévzo ne(R) converges in the strong operator topology of .Z(L?(G)) to the identity
operator I as N — oo, and thus Zévzo 1¢(R)dy converges in K(G) and in §'(G) to
the Dirac measure Jy at the origin as N — oo.

By Theorem 5.2.22 (ii), the symbol o, given by

oo(z,7) = oz, m)ne(x(R), (z,7)€Gxq,
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is in S7°°. The kernel associated with oy is k¢ given by
re(2,y) = K (y) = (e(R)do) * ka(y)-

For each z, we have k¢, € S(G). The sum Zé\,:o Ki o converges in S'(G) to k, as
N — oo since

N N
> Op(o(x,)) = Op(o(w,-) Y m(R)
=0 £=0

converges to Op(o(z,+)) in the strong operator topology of Z(L?(G), L2, (G)).
This convergence is in fact stronger. Indeed, by Lemma 5.4.7,

o 2€(m—m1)7

||U£||S:'g ,a,b,c < c SUE HJ|
' TeG

m ’ /
Spyé,a b

thus

Z ||O-5HS:L(} ,a,b,c <0

£EN
if m; > m. Consequently, the sum ), oy is convergent in S/Tg and, fixing x € G,
the sum ), sup,cg |ke,2(2)] is convergent where S is any compact subset of G\{0}
by Proposition 5.4.4 or more precisely the first part in Remark 5.4.5. Necessarily,
the limit of ), 04 is 0 and the limit of ), k¢, for the uniform convergence on
any compact subset of G\{0} is k, with

k() <D IRew(2)l, 2 € G\{O).
£=0

By Corollary 5.4.3 (2), for any m; < —@Q and r € Ny, we have

SUP|Z|£T|W,I(2)| < C Z SUE||Aa06(33»7r)||5m;,0,0,0
z2€G [o]=pr TEG "

< Ce, 20 m=mizprr) (5.39)

by Lemma 5.4.7 and its proof, with ¢, .. := sup,__ga [|o(z, 7T)||S;n5 pr0,0-

We write |z|, ~ 27% in the sense that ¢, € Ny is the only integer satisfying
2|, € (27 otD) 2],

Let us assume that @ + m > 0. We use (5.39) with » = 0 and my such that
m —my = (Q +m)/p. In particular,

1
m=m(1-1)- % <q
P’ p
The sum over £ =0,...,¢, — 1, can be estimated as

lo—1 lo—1
Z ‘K/E,I(ZH S Z CCU,O2E(mim1) S CU,OQZO(miml)
£=0 £=0

_Q4m

< Ceoolzlp *



5.4. Kernels of pseudo-differential operators 339

We now choose r € N and m; < —@Q such that

Q+m

m—my—ppr <0 and pr(l—p)+m—my =

More precisely, we set r := [(m+Q)/(pp)], that is, r is the largest integer strictly
greater than (m + @Q)/(pp), while m; is defined by the equality just above; in
particular,

Q+m

m—my > —(1-=p) thus my < —Q.

Q+m
P
We may use (5.39) and sum over £ = £,,0, +1..., to get

oo oo
Z |Z|§T|I€g7w(2’)| < CCa,r Z 9t(m—m1—ppr) < CCU’TZKO(m—ml—ppr)_
=0 l=Lo

Therefore, we obtain

oo
> Ihea(2)]
(=t

IN

Cey T2€o(m—m1—pp7') |2|P"
s p

Qtm
o

—pr—(m—miy—ppr
p

IN

CCU,T ) = CCU,T|Z|;

Z|

This yields the desired estimate for x, when @ +m < 0.
Let us assume that @ +m = 0. Using (5.39) with » = 0 and m; = —m, we
obtain

lo—1 lo—1
Z |I€g)$(2)| S Z CCU,02£(m_m1) S CO’,OKO
£=0 £=0

< Cegolnzy.

Proceeding as above for the sum over £ > (,, we obtain that Y7, [ks.(2)] is
bounded. This yields the desired estimate for x, in the case Q@ +m = 0. g

Remark 5.4.8. It is possible to obtain a concrete expression for the numbers a, b, ¢
appearing in Proposition 5.4.6, in terms of m, p, d, «, 1, B2, B, and of Q.

5.4.2 Smoothing operators and symbols

The kernel estimates obtained in Section 5.4.1 allow us to characterise smoothing
operators in terms of their kernels. Moreover they also imply that the operators
in ¥~°° map the tempered distribution to smooth functions and enable the con-
struction of sequences of smoothing operators converging in \Ilgf(;
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Theorem 5.4.9. 1. IfT € U=, then its associated kernel k : (z,y) — kz(y) is a
smooth function on G x G such that for each x € G, y — K, (y) is Schwartz.
Moreover, for each multi-index 3 € Nij and each Schwartz seminorm || -
lls(a),n, there exist a constant C > 0 and a seminorm || - |[sm qp,. (both
independent of T') such that

sup || X kz|lsa).v < Cllollsm ap.e-
zeG

The converse is true, see Lemma 5.2.21.

2. If T € U=°, then T extends to a continuous mapping from S'(G) to C*°(G)
via

Tf(z) = f* k()
where f € §'(G), x € G, and Kk, is the kernel associated with T.

Furthermore, for any compact subset K C G and any multi-index 3 €
Ny, there exists a constant C > 0 and a seminorm || - ||s/(a),n such that

sup |0°T f(z)| < C| flls(c).n-
zeK

Moreover C' can be chosen as C||o|
independently of f and T .

sm.abes and Cp > 0 and N can be chosen

Part 1 may be rephrased as stating that the map between the smoothing
operators and their associated kernels is a Fréchet isomorphism between W—°
and the space Cp°(G, S(G)) of functions k € C*°(G x G) satisfying

sup ||Xfl€x‘|3(g),]\[ < 00.
zeG

Here Cp° (G, S(G)) is endowed with the Fréchet structure given via the seminorms

B
Kk +—— max sup || X5k <00 N € Np.
[B]SN:zeG” »Kallsa)N ) 0

Part 2 may be rephrased as stating that the mapping 7'+ T from W™ to
the space .Z(S'(G), C*°(G)) of linear continuous mappings from S'(G) to C*(G)
is continuous (it is clearly linear).

Proof. Part 1 follows easily from Theorem 5.4.1 and Remark 5.4.2. By Lemma
3.1.55, for any tempered distribution f € §’(G), the function f x k, is smooth on
G and the function x — f x k,(x) is smooth on G. Hence T extends to §’(G) and
TfeC>if feS(G).

Note that Lemma 3.1.55 also implies the existence of a positive constant C'
and N € Ny such that

|f x ko (2)] < CA+ 12D fllsayn lEalls@) v
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Using the Leibniz property for vector fields, one checks easily that for any
multi-index 3 € Njj, we have

XUTH )= Y commXEa(f * XD ke, (21).
[B1]+[B2]=[8]

Thus, proceeding as above, passing from left derivatives to the right, and using
Lemma 3.1.55, we get

XP(TH@)] < ¢ Y A leDPIRD(f * (X2 k) (221)]

[B1]+[B=2]=[8]

< C Z A+ 2P X, f) % (X2 ki) (1))
[B1]+[B2]=[8]

< C Z 1+ 2PN XP fll sy NI X2 s s () v
[B1]+[B2]=[8]

< O+ 2™ (| flls eym 1 X2y kias | s(ay v

with a new constant C' > 0 and integers Ny, N1, N € Ngy. This shows that f +— T'f
is continuous from S’(G) to C*°(G).

Using Part 1, the inequality above also shows the continuity of T+ T from
U~ to the space of continuous mappings from S’(G) to C*°(G). This concludes
the proof of Theorem 5.4.9. O

Using the stability of taking the adjoint, reasoning by duality from Part 2
of Theorem 5.4.9, will yield the fact that smoothing operators map distributions
with compact support to Schwartz functions, see Corollary 5.5.13.

Note that the proof of Part 2 of Theorem 5.4.9 yields the more precise result:

Corollary 5.4.10. If T € V= and f € S'(G), then Tf is smooth and all its
left-derivatives XPTf, 3 € NI, have polynomial growth. More precisely, for any
multi-index B € N{, there exist a constant C' > 0, and integer M € Ny and a
seminorm || - ||s/(a),n such that

(XPTf ()| < OO+ 2™ fllsr .-

Moreover C' can be chosen as C1||o||sm ab,c, and C1 >0 and N, M can be chosen
independently of f and T.

5.4.3 Pseudo-differential operators as limits of smoothing opera-
tors

In the proof of Lemma 5.1.42, for a given symbol o, we constructed a sequence of
symbols o, such that Op(o.) is a sequence of ‘nice operators’ converging towards
Op(0) in a certain sense. If we assume that o € S7';, then we can construct
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a sequence of smoothing operators with a convergence in \I/:)"é described in the
next lemma and its corollary. These operators are therefore ‘nice’ since they have
Schwartz associated kernels in the sense of Theorem 5.4.9.

Lemma 5.4.11. Let 1 > p > > 0. If o = {o(z, )} is in S)s, then we can con-
struct a family o = {oc(x,m)}, € > 0, in ST, satisfying the following properties:

1. For each ¢ > 0, the x-support of each o. is compact, or in other words,
the function x — sup,_ a llo(z,7)||23,) is zero outside a compact set in
G. Hence the kernel k. : (x,y) > ke q(y) associated with each symbol o, is
Schwartz on G X G and compactly supported in x.

2. For any seminorm || - || gm1 there exist a constant C = Cq b c.m,myp,5 > 0
I3

5,a,b,c7
such that

my—m

S;’fa ,a,b,c€ Vo,

Ve € (07 ]‘) ||0—6||S:§,a,b,c < CHUl

and when m < maq,
mip—m
vee (0,1)  lloc=allsmiape < Clollsyapetrpac -

Here v is the degree of homogeneity of the positive Rockland operator used to
define the seminorms.

Consequently, when m < mq, the convergence o, — o as € — 0 holds

in S}
3. If p € S(G) then Op(o.)¢ € D(G) and the convergence
Op(7.)6 — Op(e)o

holds uniformly on any compact subset of G and also in S(G).

Remark 5.4.12. As the construction will show, the symbols o, are constructed
independently of the order m € R.

Proof of Lemma 5.4.11. We consider the function x. on G constructed in Lemma
5.1.42. Let n € D(R) be such that 7 =1 on [0, 1]. Let R be a positive Rockland
operator. Let o € S)5. We set

oe(z,m) = Xe(@)o(z, )n(eT(R)).
Arguing as in Lemma 5.4.7 and its proof yields that
{o(z,m)n(en(R)), (z,7) € G x G}

is in S7°°. Moreover, for any m; € R and a,b,c € Ny, there exists a constant
C = Cnymy,p,s,a,b,c,y > 0 such that for any £ € Ny we have

my—m

S a,b,c€ 7

lo (@, m)n(em(R) 51 ap,e < C sup [lo(z,m)|
el
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From this, it is clear that Property (1) and the first estimate in Property (2) hold.
Let us prove the second estimate in Property (2). We notice that

my

7T+ R)™ (o(z, M)n(em(R)) — oz, m)) |l 2(.)
(em

m 1

= |71+ R)™ % a(z,7) (n(em(R)) = 1) |l £
< 7T+ R)™ 7 o(e, M) r(I+R) 7 @
7L+ R)“ 7" (n(em(R)) — 1) @)

and the spectral calculus properties (cf. Corollary 4.1.16) imply

sup [7(I+R)" 7~ (n(en(R)) = 1) |z,
TeG

= T+R)"7" (eR) — 1) |l 2(r2(c)) < sup(l + ) n(en) — 1]
One checks easily that

sup(1+A) "% |n(er) — 1 7= 1lse sup (14 X)"F "
A>0 A>e— 1

IN

m—m myq—m

tl+e )y 7 <Ce 7,

IN

provided that m —my < 0. Hence

sup [7(I+R)™ (o(w, m)n(en(R)) — o(x,m)) |2
(z,m)EGXG

mi—m
v

< Clloflsm

m5,0,0,[m1—m|€

More generally, we can introduce derivatives in  and difference operators and use
the Leibniz properties (cf. Proposition 5.2.10):
XPA (o(z, m)n(en(R)) - o(z, 7))
= ) CamaXPAMo(z,m) A% (n(em(R)) 1),
[o1]+[az]=[a]
so that the quantity

—mi+tpe a] S[Bl—=~

I+ R) XJA (o(z, m)n(em(R)) — o(a,m)) 7L+ R)¥ | 2.

is, up to a constant, less or equal to the sum over [a;] + [az] = [a] of

my+pla]—5[8] my—m— ﬂ[az

— —5[B]—~
[r(I+7R) v X{A%o(z, m)m(I+R) Neoe
my—m— p[az

x[[r(I+R)~ “A% (g(en(R)) — DL+ R)¥ | 23,
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Applying Proposition 5.3.4, we obtain

mq—m—plag]+ m—mq

7+ R)™ T A% (g(en(R)) — D(I+ R)¥ | p,) < Ce™

Collecting the estimates and taking the supremum over [a] < a, [8] < b, |y] <
¢ yield the second estimate in Property (2).

Property (3) follows from Property (2) and the continuity of o — Op(o)
from S5 to Z(S(G)), see Theorem 5.2.15. O

Keeping the notation of Lemma 5.4.11, we can also show that the kernels &,
converge in some sense towards the kernel of o. In order to make this more precise,
let us define the space C;°(G,S'(G)) as the space of functions z — k, € S§'(G)
such that for each z € G, y — k.(y) is a tempered distribution and, for any
B € NP, the map = + Xk, is continuous and bounded on G. This definition is
motivated by the following property:

Lemma 5.4.13. If o € S5 then its associated kernel k = k(9 is in C2(G,S'(@))
defined above. Furthermore, the map

o k)

from S5 to C3°(G, S'(G)) is continuous.
Naturally, we have endowed C;°(G,S'(G)) with the structure of Fréchet

space given by the seminorms

K+ max sup ||Xfﬁ$|\5/(c)’N, N € Np.
[BISN zea

Proof of Lemma 5.4.13. By Lemma 5.1.35, if o is a symbol then its kernel is in
C>*(G,S8'(G)). Adapting slightly its proof yields

B B
sup || XL kzllsiay < Csup || XEo(x, )| = -
mGG” x z|l (G) zGG” x ( )”Lo,— o (G)

As the inverse Fourier transform is one-to-one and continuous from L0 —m—5[8] (@)

to S’(@), this shows the continuity of the map o + x(?) from S5 to Cp° (G, S'(@G)).
U

We can now express the convergence in distribution of the sequence of kernels
ke constructed in the proof of Lemma 5.4.11:

Corollary 5.4.14. We keep the notation of Lemma 5.4.11. The sequence of kernels
ke converges towards the kernel r associated with o in Cp°(G,S'(GQ)). If p > 0,
the convergence is also uniform on any compact subset of G x (G\{0}).

Proof. The statement follows from the convergence of o, to o in Sm1 for my <m
by Part 2 of Lemma 5.4.11, together with Lemma 5.4.13 for the ﬁrst part and
Corollary 5.4.3 for the second part. O
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5.4.4 Operators in U° as singular integral operators

From the kernel estimates obtained in Section 5.4.1, one can show easily that the
operators in WO are Calderén-Zygmund, and generalise this to some classes s,
see Theorem 5.4.16. We are then led to study the L?-boundedness.

First let us notice that thanks to the kernel estimates, our operators admit
a representation as singular integrals in the following sense:

Lemma 5.4.15. Let k, be the kernel associated with T € \I'm5 with m € R and
1>p>6>0 with p#0. For any f € S'(G) andanymoeGsuchthatf—O on
a neighbourhood of xg, the integral

/ F(0)an (v~ o)y
G

makes distributional sense and defines a smooth function at xg.
This coincides with Tf if f € S(G).

Proof. Let T and k, be as in the statement. Let f € S'(G) and 2o € G. We
assume that there exists a bounded open set {25 containing xy and where f = 0.
Let Q C Q; C Q5 be open subsets of 5 such that zq € Q, Q C Q;, and Q; C Q.
We can find x1, x € D(G) such that x; = 1 on Q; but x; = 0 outside Qq, x =1
on 2 but x = 0 outside ;. At least formally, we have

/f Kao(y ) dy—/ ) x(@)(1 = x1)(y)ra (v~ 2)dy,

since f =0 on {x1 = 1}. Clearly the function (z,y) — x(z)(1 — x1)(y) is smooth
on G x G and supported away from the diagonal {(z,y) € G x G : = y}. By
Theorem 5.4.1, the function

y — x(2)(1 = x1)()ka(y '),

is Schwartz and this yields a smooth mapping G — S(G) (which is also compactly
supported). The rest of the statement follows easily. O

In Corollary 5.5.13, we will see that an operator in W7"s extends naturally
to §’(G). Lemma 5.4.15 and its proof above will then imply that the operator
admits a singular representation for any tempered distribution in the sense that
the following formula makes sense and holds

r) = /G F)ma(y~ ) dy,

for any f € §'(G) and any = € G such that f = 0 on a neighbourhood of x. We
will not use this.

We can now give sufficient condition for operator in some \Ilg?(; to be Calderén-
Zygmund.
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Theorem 5.4.16. 1. If T € WO then the operator T is Calderén-Zygmund in the
sense of Definition 3.2.15.

2. If T € W5 with
m < (p—1)Q,
1>p>02>0andp#0, then the operator T is Calderon-Zygmund in the
sense of Definition 3.2.15.
In Parts 1 and 2, the constants appearing in the Definition 3.2.15 are v =1
and, up to constants of the group, given by seminorms of T € \I!Z,’(;

Proof. We fix a homogeneous quasi-norm |- | on G.

Let T € ¥°. We denote by & its associated kernel. Then its integral kernel #,,
is formally given via k,(z,y) = k. (y~'x). By Theorem 5.4.1, for any two distinct
points y,xz € G, we have

[ko(,y)| = |k (y ™ @) < Cly™'a| %,
Using Remark 5.4.2 as well and the Leibniz property for vector fields, we obtain

(X)akio(@, 9)] < [(X))ar=ahar (v 2)| 4+ [(Xj)zsmatia(y ™ w2)| < Cly~ =@,
and
(X )yho(@,y)| < [(X))amy-10ka(2)] < Cly o] (@F0a).

Hence k&, satisfies the hypotheses of Lemma 3.2.19. This shows Part 1.

Let us now assume that 7" € W7";. Again, let s be its associated kernel. Let
X € C°°(Q) be supported in the unit ball {z € G : |z| < 1} and such that y =1
on{x € G : |x| <1/2}. By Theorem 5.4.1 and Remark 5.4.2 together with Lemma
5.2.21, the operator given by ¢ — ¢*{(1—x)x} is smoothing (as p # 0) hence it is

a Calderén-Zygmund operator by Part 1. Thus we just have to study the operator
¢ — ¢ * {xk}. Its integral kernel is , given via

ko(m,y) = X(y~ ' 2)ka(y ).

Proceeding as above, in particular by Theorem 5.4.1, we have

_M
ko(z,y)l = |(xra)(y™'2)| Sy~
~ _ Qtmtu;
|(X) oz y)| = |(Xj)z=y*1x"$a:( 2) Sy~ CCl )
and k, is supported on {(z,y) € G : |y~ 'z| < 1} where we have
|(Xj)ako(z,y)l < [(Xj)oy=akay (¥~ )| + (X Jas=eka(y” Lao)|

_ Qtmtdu; + o B Qtm &
S ly et 4y tal” ! t
Q+m+v
Syt ;

since |y~ 'z| < 1. Hence if (Q +m)/p < Q, we can apply Lemma 3.2.19. O
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In order to apply the singular integrals theorem (Theorem A.4.4), we still
need to show that the operators are L?-bounded. In the case (p,d) = (1,0), it is
not very difficult to adapt the Euclidean case to show that the operators in W°
are L2-bounded.

Theorem 5.4.17. If T € W° then T extends to a bounded operator on L*(G).
Furthermore, there exist constants C' > 0 and a,b,c € Ny of the group such that

VieS(G)  NTflr2e) < ClTlwmapellfllrz)-
During the proof of Theorem 5.4.17, we will need the following observation:

Lemma 5.4.18. The collection of operators U is invariant under left translations
in the sense that

TeV =Vz,eG 1,77, "' €9 where Te, o [ fxo +).

Furthermore, if K, is the kernel of T and o = Op_l(T) 1s its symbol, then the
operator TJCUTT;O1 has Ky, as kernel and o(x,x,m) as symbol, and

||TH\I/0,a,b,c = HTIUTT;E_:H\IIO,a,b,c-
Proof of Lemma 5.4.18. Let T € U° and let &, be its kernel. Then
TafoTT;olf(x) = T(T;olf)(xox) = (Tg;)lf) * Ko (To)

/G F5 ) (™ o) dy
/G F ()i )z

after the change of variable z = x 'y. Therefore
TonTw_olf(x) =[x ’iwoz(x)~

Since Fg (ko) (m) = o(zox, 7) if o denotes the symbol of T', we see that k,, is the
kernel associated to the symbol {o(z,z, ), (z,7) € G x G} and the corresponding
operator is 7, T'7, '. The rest of the statement follows easily. O

Proof of Theorem 5.4.17. The proof follows the Euclidean case as given in [Ste93,
ch. VI §2]. Let T € ¥° and let ¢ = Op '(T) be its symbol. We claim that it
suffices to show Theorem 5.4.17 under the additional assumption that the kernel
K associated with o is smooth in x and Schwartz in y, and such that G > = —
Ky € S(G) is smooth. Indeed, this would imply that Theorem 5.4.17 is proved
for each operator T, = Op(o.) where o, is as in Lemma 5.4.11. The properties
(2) and (3) in Lemma 5.4.11 allow to pass through the limit as ¢ — 0 and imply
then the theorem. This shows our earlier claim and hence we may assume that
G 3z — Ky € S(G) is smooth.
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We fix | - | to be the homogeneous quasi-norm | - |, given by (3.21), where
p > 0 is such that p/2 is the smallest positive integer divisible by all the weights
V1, ..., Upn. The balls are defined by B(x,,r) := {zr € G : |z~ x,| < r}. We denote
by C, > 1 a constant such that for all z,y € G, we have

lzyl < Colla| +y) and |y| < =5 = [lzy| = |=|] < Colyl,

see the triangle inequality in Proposition 3.1.38 and its converse (3.26).

Let f € S(G) and let us write it as
f=h+f,

where f1 and fo are two smooth functions supported in B(0,4C,) and outside of
B(0,2C,), respectively, and satisfying |f1], |f2] < |f]-

First, we claim that there exists a constant C' > 0 of the group such that

/ T f1(2)Pdz < CllolFo0.1q/21.0 1/172(c)- (5.40)
B(0,1)
Let us prove this. We fix a function x € D(G) which is identically 1 on B(0,1).
Then
[ rh@Pae < [ ) fesade) Pl
B(0,1) B(0,1)

< /B sup |x(2) f1 * k. (z)*da.

(0,1) zeG

A

We now use the Sobolev inequality in Theorem 4.4.25 to get
sup () fem@P<C Y [ X2 fix i)
PeC [0]<TQ/2]
Since
XHx(2) fi*r:(@)} = f1x XI{x(2)r:}Hz),
we have obtained

2 . yo ,
/B(O,l) T fr(x)["dz < /B(01)C Z /|f1 X x(2)k:}(z)|” dzda

[a]<[Q/2]
¢ X L[ ifexs e @ dods,
a]<[Q/2] B(0,1)

by Fubini’s property. But the mtegral over B(0,1) can be estimated using Planche-
rel’s Theorem (see Theorem 1.8.11) by

[ ihe Xt @ e
B(0

)

IN

f1* X2 {x(2)k: 35

(X2 (@D e gy | 1 1B

IN
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Now the Leibniz formula for X gives

In(X 2 {x(rDllzwe)y < D, Canallt (X X(2) X275} L2 w2(a))
[oa]+laz]=o]
< C, ma@uw(xfnz}) lzwe @) D, 1XUx(2)].

[Bl<

[n]<[a]

Since 7 (XPk.) = XPo(z,7), we have obtained

[ Ihe X E@m @R b
B(0,1)

< C max | XZo(z 7. g IAl5 D X x()P
: o <o)

Therefore,

/ T f1(2)2da
B(0,1)

IN

« 2
C S e X e

[]<[Q/2]

C max sup|[XPo(z,m)|%_ - 2.
[ﬁ]S"Q/Q]zegH z ( )HLOO(G) ||f1H2

This concludes the proof of Claim (5.40).

Secondly, we claim that for any r € N, there exists a constant C = C,. > 0
such that

/ T f2(2)Pdx < CllolFo propr 1L+ 1D f2lZ2c)- (5.41)
B(0,1)
Let us prove this. We write
Thla) = [ Faw)ly™ 77 (1) )y,
y¢B(0,2C,)
If x € B(0,1) and y ¢ B(0,2C,), then

_ _ - 1 1
ly =y el < Colz| < C, thus |y~ 'a| > lyl = Co = Syl = 7(1+ [yl),

and
1 e I -1
ma@l < [ el (JaebD) 0P| d
y¢B(0,2C,)
< I D T lliz I P8 g
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after having used the Cauchy-Schwartz inequality. Integrating the square of the
left-hand side over x € B(0, 1), and taking the supremum over z € B(0,1) of the
right-hand side, we obtain

/ T fa())?de < 4277 sup || [P wallZaqy 11+ 1- D77 fallZoiq)- (5.42)
B(0,1) z€B(0,1)

Now writing |2[)" = 3~ (42, Cada(2), we have
1P sallfia) < Cr D Mdarsltae
[e)=pr

and since by Corollary 5.4.3 (1), if [a] > Q/2,

otz |72y < Casup [lo(a, 7T)||sm5,[a]o[a]a
re@

we have obtained that if pr > @Q/2, then

2 2
s - PRl < Ol o

This and (5.42) show Claim (5.41).
Now, combining together Claims (5.40) and (5.41), we obtain

/B o TSP < O g1 041D e

and this is so for any f € S(G). Therefore, by Lemma 5.4.18 (and its notation),
we have for any z, € G, that

/B< Hepes = /| Tf @) de = /B T f (o) Pda’

Zo,1) x5 tal<1 (0,1)

/ (72 (TF) (@) P’ = / (e P75 () () 2
B(0,1

1) B(0,1)
Coll7e, T3 10 pr 121 pr 1L+ 1 D77 7wy FZ2 ()
= ColIT %0 pr oo or 1A+ 1 D772, fll2 ()

IN

Integrating over z, € GG, we obtain for the left hand side,

/. /Bm'Tf L B IR

[ vl @)Pdsdy = 10, vliTs13
GJG
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and for the last term in the right hand side,
—pr —pr 2
JIa+ 1D Btz = [ [ @ Ja) ™ (e dod,
G cJa
115 [ (0 fa) e

Assuming —2pr + @ < 0, this last integral is finite.
We have obtained that if » > Q/2p (for instance r = [Q/2p]) then pr > Q/2
and

This concludes the proof of Theorem 5.4.17. g

Remark 5.4.19. More precisely we have obtained that if 7' € ¥°, then

ITfll2 < ClTwo pr.r/21.5r 1 fll2,

where r := f%], and p € Ris such that p/2 is the smallest positive integer divisible
by all the weights v, ..., v,.

Theorem 5.4.16 and Theorem 5.4.17 show that any operator of order 0 and of
type (1,0) satisfies the hypotheses of the singular integrals theorem, see Sections
3.2.3 and A.4. Therefore, we have the following corollary:

Corollary 5.4.20. If T € W° then T extends to a bounded operator on LP(G) for
any p € (1,00). Furthermore, there exist constants a,b,c € Ny such that

Vpe (l,00) 3IC >0 VYfeS(G) ITfllrc) < ClT(lwo el fllLe(c)-

5.5 Symbolic calculus

In this section we present elements of the symbolic calculus of operators with
symbols in the classes S;fé. In particular, we will discuss asymptotic sums of
symbols, adjoints, and compositions.

5.5.1 Asymptotic sums of symbols

We now establish a nilpotent analogue of the asymptotic sum of symbols of de-
creasing orders going to —oo.

Theorem 5.5.1. We assume 1 > p > > 0. Let {0} }jen, be a sequence of symbols
such that o; € S,Tg with m; strictly decreasing to —oo. Then there exists o € ngg,
unique modulo S™°°, such that

M
VMEN o-) o;€8 (5.43)
j=0
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Definition 5.5.2. Under the hypotheses and conclusions of Theorem 5.5.1, we write
g ~ Z gj.
J

Proof. We keep the notation of the statement. We also fix a positive Rockland
operator R of homogeneous degree v on G. Let x € C*°(R) with x|(—sc,1/2) = 0
and X|[1,00) = 1. We fix t € (0, 1).

Let us check that for any seminorm || - || there exists a constant

mq
0.6 ,a,b,c»

C = Cgyp,c > 0 such that for any ¢t € (0,1) and any j € N, we have

mo—m;

=L (5.44)

o (@, m)x (tr(R))]

Indeed, from the Leibniz formula (see Formula (5.28)), we obtain easily

Smo a,b,c = C”O'J(Z‘ 7T)|

¢
0.a, S™9 a.b,c+patmo—m;

plaol=mo—dlBol+y . g o v
(14 R 2 X80 Ao (g (2, ) x (b0 (R))) 7 (1 + R) ™ || )
< Y R+ R) T X Ay (2, )

for )+ [ez] =l
A x(tm(R)) 71+ R)™¥ | ()

S D i@ mlsr ) 6ol e)—on)+mo-my+ )
[ora ]+ [e2]=[axo]
ploal=motmity 4
[r(I+R) A% x(tr(R)m(IL+R) ™7 2(1,)-
By the functional calculus, we have
plagl— m0+m o _a
[r(I+7R) TACX(tr(R)T(1+ R) |2,
ag]— o+ Y o _a
< |r(1+R) AR X (tr(R)w(T+R)™¥ |2
—mo+my , , m, m7
Sswp(L+NT 7 e ST
K <k
A>0

by Proposition 5.3.4 for some k € Ny. This shows (5.44).

Let us choose strictly increasing sequences {as}, {bs} and {c¢} of positive
integers. For each ¢ there exists Cy > 0 such that for any j € N and t € (0,1), we
have

lloj (2, m)x (¢ (R))]

We may assume that the constants Cy are increasing with £.

mo—m,

C’KHO-J(ér 7'(')”5« é,az,bg,cg—i-pag-l-mo mJt v

m
5,8, a0,be,ce =

We now choose a decreasing sequence of numbers {¢;} such that for any
Jel,
, mo—m; ,
€ (072 ]) and C 221) ||0-.7(£L‘ Tr)HS 5 Ay b',cj+paj+mo—mjtj ! S 2 j'
el
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For any j € N, we define the symbols
Gi(z,m) = oj(x,m)x(t;7(R)).
For any ¢ € N, the sum
9] 4 [eS)
Z Ha-jHS;iLg,ae,bg,Cg S Z H&jHS:)Lg,(Lz,bg,cz + Z 2_j’
=0 j=0 J=L0+1

is finite. Since S::Lg is a Fréchet space, we obtain that

oo
o= E 0j,
=0

. . mo
is a symbol in Sp’(;.

Starting the sequence at my;y1, the same proof gives

o0
~ MM +1
E 0j € SWS .

j=M+1

By Proposition 5.3.4, each symbol given by (1 — x)(¢;7(R)) is in S™°°. Thus by
Theorem 5.2.22 (ii) and the inclusions (5.31), each symbol given by o;(z,7)(1 —
X)(t;jm(R)) is in S~°°. Therefore, the symbol given by

M M o)
o, m) =Y oj(z,m) =Y ojle,m)(1—)GTR)+ Y 65(x,w),
=0 j=0 j=M+1

is in S:)ng‘/”l. This shows (5.43) for o.
If 7 is another symbol as in the statement of the theorem, then for any
M e N,

M M
o—T= O’—E oj | — T—E o
j=0 j=0

isin S™M+1 Thus o — 7 € S~°°. O

We note that the proof above does not produce a symbol o depending con-
tinuously on {0}, the same as in the abelian case.

5.5.2 Composition of pseudo-differential operators

In this section, we show that the class of operators UmerW)'s is an algebra:
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Theorem 5.5.3. Let 1 > p > >0 with § # 1 and my,me € R. If T} € \I/;”g and
T € \I'ng are two pseudo-differential operators of type (p,d), then their composi-

. Moreover, the mapping

tion ThT5 is in \I/;"§+m2

(T, Ty) = ThTy

- : mi ma mi+ma
is continuous from \I'p’[; X ‘I/WS to \I/p’(S .

Since any operator in W7's maps S (G) to itself continuously (see Theorem

5.2.15), the composition of any two operators in \I/;'?g and \I/;'?; defines an operator

in Z(S(Q)).

Let us start the proof of Theorem 5.5.3 with observing that the symbol
of ThT» is necessarily known and unique at least formally or under favourable
conditions such as between smoothing operators:

Lemma 5.5.4. Let o1 and oo be two symbols in S™°° and let k1 and ko be their
associated kernels. We set

ke (y) = /G@’mzfl(yzfl)mw(z)dz, z,y € G.

Then o(xz,m) = w(k,) defines a smooth symbol o in the sense of Definition 5.1.34.
Furthermore, it satisfies

Op(01)Op(o2) = Op(o).

and
o(x, ) :/ K12 (2)m(2) (w27t ) dz, (5.45)
G
In particular, if oo(x, ) is independent of x then o1 0 o9 = 0103.

We will often write
0 .= 01002.

Proof of Lemma 5.5.4. We keep the notation of the statement. Clearly « : (z,y) —
k4 (y) is smooth on G X G, compactly supported in z. Furthermore, k., is integrable

in y since
/ re(ldy < / / ka2 gz VY (, 2)|dedy
G GJG
< / / g,z ()] |1 (3, 2)|dz
GJG
<

< max/ |n2?z/(w)\dw/ |k14(2)|dz.
G G

z'eG

Therefore, o(x,7) = w(k,) defines a symbol ¢ in the sense of Definition 5.1.33.
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_ Using the Leibniz formula iteratively, one obtains easily that for any 3, € Ny,
XPok,(y) is a linear combination of

/G XE_ ke YK (s, (8] + 8] = 8]

Hence proceeding as above
/ \XB" y)ldy < max/ |Xx2/12 o ( |dw/ |X*31/-£1I )|dz.
(B1]+] Bz] (8]

This together with the link between abelian and right-invariant derivatives (see
Section 3.1.5, especially 3.17) implies easily that o is a smooth symbol in the sense
of Definition 5.1.34.

The properties of k1 and k2 (see Theorem 5.4.9) justify the equalities

Op(1)Op(2)d(x) = / Tob(y)n oy~ 2)dy

/ / D212y (=~ y)in o (y~ ) 2y

//¢>(Z)/€2,w—1(Z’lxw’l)m,z(w)dzdw
/¢ 2)kz (27 @) dz = ¢ * kg (2),

with the change of variables y~'x = w. This yields T;T» = Op(c). We have then
finally

olem) = Fulr) = / e (9)m ()" dy
- / / ot (92 ir 0 () (2) (=) dyd
— /GKZLI(Z)’]T(Z)*O'Q(I'Zil,’]T) dz,

after an easy change of variable. O

From Lemma 5.5.4 and its proof, we see that if T = Op(o1)Op(oz) then
the symbol o of T is not o102 in general, unless the symbol {oo(z,7)} does not
depend on x € G for instance. However, we can link formally o with o; and o9
in the following way: using the vector-valued Taylor expansion (see (5.27)) for
o9(x, ) in the variable z, we have

an DX %0y (x, ),
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Thus, implementing this in the expression (5.45), we obtain informally
o(x,m) = /le an NX%0y(2, ) dz
G
= Z / Go(2 ™V 2 (2)7(2) dz X 20w, )

= ZA o1(x,m) Xfoa(x,m).

We will show that in fact these formal manipulations effectively give the asym-
potitcs, see Corollary 5.5.8. From Theorem 5.2.22, we know that if o7 € S;"g,
o9 € S;”g then

A% Xoy € Sratmamlemolel (5.46)

The main problem with the informal approach above is that one needs to estimate
the remainder
01009 — Z Aa(fl Xgag.
[e]<M

We will first show how to estimate this remainder in the case of p > J§ using the
following property.

Lemma 5.5.5. We fiz a positive Rockland operator of homogeneous degree v. Let
my,ma €ER, 1> p>06<0withp+#0 and d # 1, By € N§, and M, M, € Ny. We
assume that

(5.47)
ma + 6(cgy +vn + M) < VM < —Q —mq — 6[Bo] + p(Q + M),

{ matiesgton) < 0y < M~ Q — my — ]Bo] + p(Q + 1),
where

650 = max
[Bo2]<[Bo]
[8'1=[Boz], 18'1=]Boz2]

If M > vM;y, only the second condition may be assumed.

Then there ezist a constant C > 0, and two pseudo-norms || - || gm, .z arby?
p,5 ) )

§72,0,b2,0° such that for any 01,05 € S and any (z,7) € G x G we have

| X2 (a1 0 oo (2, ) Z A%y (z,m) Xoo(z, 7)) | 21,
[a]<Mm
< Cllou]

A L

In the proof of Lemma 5.5.5, we will use the following easy consequence of
the estimates of the kernels given in Theorem 5.2.22.
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Lemma 5.5.6. Let o € S)'s with 1 > p > 6 > 0 with p # 0. We denote by ky
its associated kernel. For any v € R, if v+ Q > max(m+Q 0) then there ezist a
constant C' > 0 and a seminorm || - ||sm, ap.c such that

2|7z (2)|dz < Cllolsmy,a,b,c-
G 7o

We may replace || - ”52?5#1:1770 with || - ||S:15R7a7b.

Proof of Lemma 5.5.6. We keep the notation and the statement and write

[lra@iz= [+
G |z|>1 lz]<1

The estimate for large |z| given in Theorem 5.4.1 easily implies that the integral
f\z\>1 is bounded up to a constant of v, m, p,d, by a seminorm of o. The estimate

for small |z| yield

ﬁz‘<1|z|77mTdez if m+Q >0,
/ |2 ke (2)ldz S S JL< 21 |2]ldz if m 4+ Q =0,
[2]<1 f\z\gl |z|7dz it m+Q <0.
Using the polar change of coordinates yields the result. O

Proof of Lemma 5.5.5, case By = 0. By Lemma 5.5.4 and the observations that
follow, we have

Z A% (z,7) XJoo(x,m)
[a)<M

:/Gm’x(z)ﬂ-(Z)* oo(xz b m) — Z Ga(zHX %0y (2, ) | dz

[a]<M

_ / 1.2 (2)7(2) R (5 ),
G

where Roz( ™) denotes the remainder of the (vector-valued) Taylor expansion of
v = 0'2(1}'0 m) of order M at 0. We now introduce powers of 7(I+ R) near m(z)*

7(2)* = w(2)*t1+ R)Min(I4+R) M = Z 7(z)*n(X)Pr(I+R)~ M
(Bl<vM,

and we notice that

7(2)7(X) = (D) (x(X)’n(2)" = (~D)# (Xen(2)) . (5.48)
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We integrate by parts and obtain

o(x,m) Z A% (z,7) X oo(x,m)

[a]l<M
= Y Rk R RIGTRO T 0 (g
[B1]+[B2]<vM;
- T M B oo,
= Y X0k p(21)m(2)* RJ};@M XM -1,
[B1]+[B2)<vMy * €

by Lemma 3.1.50. Taking the operator norm, we have

|o(z,7) Z A%y (z,7) Xjoo(w, )| 2
[a]<M

r(I+R) M1 xP24 s
S D A L i e G TP

[B1]+[B2]<v My

The adapted statement of Taylor’s estimates remains valid for vector-valued func-
tion, see Theorem 3.1.51 and Remark 3.1.52 (3), so we have

7TI+R —My x B2, s
[y R o [P
< > 2|1 slé%Hw(l+R)—Mlxglefag(xl,mng(m).
T

IVI<ST(M—[B2]) ] +1
]>(M=[B2])+

We have obtained that

lo(x, ) Z A%y (z,m) XJoa(z, m)|| 20,
(o] <M

< ¥ /\szXZl ra(z1)|dz

(V> (M —[Ba]) +
IyI<T(M— [ﬁz])+J+1

sup. L+ R) ™M X X202 (w1, )| 234,
xr1E€

If M — [B2] < 0, the integrals above are finite by Lemma 5.5.6 and the suprema
are bounded by a S;”g—seminorm in o9 when

{ m1 + [Bi] + Q < p(Q + v1)
—vMi +ma+6(vn + [B2]) <0 7

and it suffices
my+vM; — M+ Q < p(Q+ vy)
—v My +mg 4 6(v, +vM;) <0
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If M — [Bs] > 0, the integrals above are finite by Lemma 5.5.6 and the suprema
are bounded by a ngg—seminorm in o9 when

{ mi+ [Bi] +Q < p(Q +[V])
—v My +m2+(5[ ]+[ﬁ2]) ’

and it suffices
my +vM +Q < p(Q + M)
—vMy +mg 4 §(v, + M) <0

Our conditions on M and M; ensure that the sufficient conditions above are
satisfied. Collecting the various estimates yields the statement in the case p # 0
and fy = 0. O

Proof of Lemma 5.5.5, general case. Using Formula (5.45), the Leibniz property
for left invariant vector fields easily implies that

XPo) 00y, m) = / Xy 5 (2)m(2)* X202 oo (2027 ) d.
[Bo1] +[ﬁ02] [Bo]

Proceeding as in the case By = 0, we have

XPo [ oy 0 oy(x, ) Z A% (z,7) Xoo(x,m)
a]<M

Xxb02 o T _
= /Xﬁmlﬂw m(2)" Ry 3y (2 )(z b dz.
[Bo1]+ 502] [Bo]

Introducing the powers of (I + R), each integral on the right-hand side above is
equal to

/Xzﬁll ZXﬁm/‘fl (1)7r(z)*
51]+[52]<VM1
7T(I+R)7M1Xf§2=wxﬁ202($2‘aTr)

Ro 1]

(z71) dz, (5.49)
by Corollary 3.1.53. We use a more precise version for the Taylor remainder than
in the proof of the case 5y = 0:

T(I+R) M1 xPo2 XP20y(xg-ym), _
IRS Dlzow)

SCM Z |Z|[’Y]S(ZaM17’Y7B027B2)7

V]>(M—[Ba2])+
[VIST(M=[B2])+]+1

where S(z, My, 7, Bo2, B2) denotes the supremum
S(z, My, v, Boz, B2) = sup |l w(I+R) M XJX 72 X{Ros(way, )| 20,

To2=x
[yl <nTMIF1 2|
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For any reasonable function f : G — C, the definitions of left and right-invariant
vector fields imply

X7 f(xy) = X f(ay) (5.50)
and the properties of left or right-invariant vector fields (see Section 3.1.5) then
yield

X0 flay) = X fay) = D Qo)X flay), (5.51)

18'1<18]
81=[8]

where Qg g are ([8'] — [8])-homogeneous polynomials. Therefore

S(ZaM1a7>ﬁ027ﬂ2) g Z ‘Z|[562]7[502]§(M13 [’Y] + [662] + [ﬁQ])a

[B02]2[Bo2]
|662|S‘602‘

where S(Mj, [fo]) denotes the supremum
S(My, [Bo]) := sup sup {1+ R)M X a1, 7) | 21,
[v]=[Bo] z1€G

We then obtain that (5.49) is bounded up to a constant by

> [ Y e

[B1]+[B2]<v M,y [v]>(M—[B2])+
[yIS[(M—=[B2])+]+1

ST (2 Poel=Bod S(Nty, 3] + [Bgo] + [Ba]) dz

[B62)>[Boz]
1B521<1Boz|

We conclude in the same way as in the case 8y = 0. g

To take into account the difference operator, we will use the following obser-
vation.

Lemma 5.5.7. Let 01,09 € S™°. For any o € Ny, A%(01 0 02) is a linear com-
bination independent of 1,02 of (A% 01) o (A*203), over ay,as € NI satisfying
[oa] + [a2] = [a]. It is the same linear combination as in the Leibniz rule (5.28).

Proof of Lemma 5.5.7. We keep the notation of Lemma 5.5.4 and adapt the proof
of the Leibniz rule for A® given in Proposition 5.2.10. By Proposition 5.2.3 (4),
we have

Ga(W)roly) = / G (97 2) g1 (y2 ™~ Yip () dz

Z / qag 52 Tz~ (yzil) (jozl (Z)Hlaf(z)dza

O(

where i denotes a linear combination. Lemma 5.5.4 implies easily the statement.
O
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Proof of Theorem 5.5.3 with p > §. We assume p > §. We fix a positive Rockland
operator R of homogeneous degree v. Let us show that for any ag, 8y € Nj, and

My € N, there exists M > My, a constant C' > 0 and seminorms || - || gmy.r by
PR ;A1
Il - ||S:§7a2,b2702 such that for any 01,02 € S we have
m—(p— 5)]\40 plogl+5818g]
HXfOAO‘OTM(er) I+ R)™ Hz(;—t )
S CHO—1||SZ’L§’R,G,1J)1 ||O—2||Sp,'52,a2,b2,62’ (5.52)

where we have denoted m = m1 + mo and

Ty = 01009 — g A% XY oo.
[a]<M

By Lemma 5.5.7, it suffices to show (5.52) only for ag = 0.
Let Sy € Ny and My € N. We fix mf, := —mq + (p — )My — §[5o]. As p > 6,
we can find M > max(Mp, v1) such that

(=Q —m1 = 6[Bo] + p(Q + M)) — (M + d(cg, + vy + M)) > v

This shows that we can find M; satisfying the second condition in (5.47) for my, m}
and therefore also the first. Hence we can apply Lemma 5.5.5 to M, M; and the
m—(p—38)My+45(Bg
symbols o1 and gom(I+R)~ R , with orders my and m/,. The left-hand

side of (5.52) is then bounded up to a constant by
m—(p=8) Mo +6[8q]

17038 g, g loam (R =

’S H0'1 ||S;’?§’R,a1,b1 ”0—2”5';)13707172702 :

Hence (5.52) is proved.
Using (5.46), classical considerations imply that (5.52) yield that for any
My € No, and any seminorm || - || gm-ro¢-),7 . there exist a constant C' > 0 and
P8 say

two seminorms || - || gm.r such that for any 1,02 € 57 we
p,o

| amo
,a1,b1’ ” ”S;M; ,az,bz,co

have
bt lgrotomsrnyy < Clotllgns o g, 1021572 00 .o (5.53)

In Section 5.5.4, we will see that for any seminorm || - ||Sm§ 7.z there exist a
M5a.b,

constant C' > 0 and a seminorm || - || gm = ,, such that
p,5 &

Vo e 57 lollsn, ape < Cllollgnr (5.54)
p,0

5 ,a b
Inequalities (5.54) together with (5.53) and Lemma 5.4.11 (to pass from S~ to

S5.S)'s) conclude the proof of Theorem 5.5.3 in the case p > 4. O
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Note that the proof of the case p > § above also shows:

Corollary 5.5.8. We assume 1> p>§>0. Ifo1 € S]'5 and 02 € S]'7, then there
ezists a unique symbol o in S "s; M =M1 + M2, such that

Op(c) = Op(a1)Op(02). (5.55)

Moreover, for any M € Ny, we have

37 A%y XSon} e SN, (5.56)

[a]l<M
Furthermore, the mapping

Sm . S —(p—0)M
o — {0' > o)< A%01 Xoo}

18 continuous.

Consequently, we can also write

o~ f: > A%y XS0y |, (5.57)

j=0 la]=j
in the sense of an asymptotic expansion as in Definition 5.5.2.

The case p = § is more delicate to prove but relies on the same kind of
arguments as above. If p = §, the asymptotic formula (5.56) does not bring any
improvement and, in this sense, is not interesting.

We will need the following variation of the properties given in Lemma 5.5.6
obtained using Corollary 5.4.3 instead of Theorem 5.4.1.

Lemma 5.5.9. Let 0 € S;” with 1 > p > § > 0. We denote by k; its associated
kernel. Let v > 0 and m < —Q. Then there exist a constant C' > 0 and a seminorm
I+ lsmy.ab.c such that

/ 2P a(2)ldz < Cllo st

We may replace || - ||S;“5,a,b,c with || - | S™E a b
, oaa,

Proof of Lemma 5.5.9. By Part 2 of Corollary 5.4.3, z — |k, (2)| is a continuous
bounded function if m — py < —Q hence the integral flz|<1 |2|7|kz(2)|dz is finite.
By the Cauchy-Schwartz inequality, we have

[ el a2l W 26" W 227+ 9+ g ()2
|z1>1 |z|>1 |z]>1

||ng$HL2(G
la]=M

IN

A
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where M/2 € N is the smallest integer divisible by vy,..., v, satisfying M >
2'7—&—@—1—%, having chosen (3.21) with p = M for quasi-norm. By Part 1 of Corollary
5.4.3, the sum above is finite when m — pM < —Q/2, which holds true. O

Using Lemma 5.5.9 instead of Lemma 5.5.6 in the proof of Lemma 5.5.10
produces the following result.

Lemma 5.5.10. We fix a positive Rockland operator of homogeneous degree v. Let
my ER, 1>p>6 <0 withd #1, Bo € Ny, and M, M, € Ng. We assume that

my +vM; < —Q
—vMy 4+ ma + §(cg, + vy + max(vMy, M)) <0 7

where
!
cg, = max
& [Bo2]<[Bo)
[8'1>[Boz], 18">1Boz|
Then there exist a constant C' > 0, and two seminorms || - ||Sm1,R by Il -
p.5 3 3

my , such that for any 01,09 € ST and any (x,7) € G X G we have
5772,0,b2,0
| X5 (01 0 0g (2, 7) — A% (z,m) XSo2(z, 7)) 22,
(Hr)
[a]<Mm
< Cllotllgryn o, 1920572 0000
The details of the proof of Lemma 5.5.10 are left to the reader. The first

inequality in the statement just above shows that we will require the ability to
choose my as negative as one wants. We can do this thanks to the following remark:

Lemma 5.5.11. Let 01,00 € S™°°. For any X € g and any 01,09 € S™°°, we have
(o17(X)) 009 =01 0 (X,09) + 01 0 (7(X)o2).

More generally, for any B € Nj, we have

{o1m(X)P} ooy = Z o1 0 {m(X)" X 20},
[B1]+(B2]=[8]

where f denotes a linear combination independent of o1, 05.
Note that in the expression above, 7(X)”t and X/?2 commute.

Proof of Lemma 5.5.7. We keep the notation of Lemma 5.5.4. Using integration
by parts and the Leibniz formula, we obtain

(o17(X)) oog (z,7m) = /Gle:zm@(zl)ﬁ(z)*ag(xz_l,7T) dz

= —/ K1,2(2) (XZI:ZTF(Zl)*UQ(LL'Z_l,T() + W(Z)*XZZZZJQ(l'Z;l,’]T)) dz
e}

_ /G k1.0(2) (m(2) 1(X)on(@zt, 1) + 1(2)" Xay —psr09(e2, 7)) de.
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This shows the first formula. The next formula is obtained recursively. O
We can now sketch the proof of Theorem 5.5.3 in the case p = 4.

Sketch of the proof of Theorem 5.5.8 with p = §. We assume p = ¢ € [0,1). Writ-
ing oy = oyr(1+ R) " N¥a(I+ R)YN and using Lemma 5.5.11, it suffices to prove
(5.52) for m; as negative as one wants. We proceed as in the proof of the case p > ¢
replacing Lemma 5.5.5 with Lemma 5.5.10. The details are left to the reader. [

5.5.3 Adjoint of a pseudo-differential operator

Here we prove that the classes \I/Z?(; are stable under taking the formal adjoints of
operators.

Theorem 5.5.12. We assume 1 > p > 6 > 0 withd # 1 and m € R. If T € Vs
then its formal adjoint T™* is also in \I/m Moreover, the mapping T — T* is
continuous on V7.

Recall that the formal adjoint of an operator 7' : S(G) — S'(G) is the
operator T* : §(G) — S'(G) defined by

6,1 € S(G) /¢>< x,/¢, T0(z)

We observe that the operator ' = Op(c) € ¥}'s maps S(G) to itself contin-
uously (see Theorem 5.2.15) and therefore has a formal adjoint 7.

Before beginning the proof of Theorem 5.5.12, let us point out some of its
consequences.

Corollary 5.5.13. 1. We assume 1 > p > >0 with § # 1, and m € R.

Any T € V75 extends uniquely to a continuous operator on S'(G). Fur-
thermore the mapping T +— T from W75 to the space £ (S'(G)) of continuous
operators on S'(G) is linear and continuous.

2. Any smoothing operator T € W~ maps continuously the space E'(G) of
compactly supported distributions to the Schwartz space S(G). Furthermore
the mapping T — T from ¥~°° to the space L (E'(G),S(G)) of continuous
mappings from E'(G) to S(G) is linear and continuous.

Proof of Corollary 5.5.13. We admit Theorem 5.5.12 (whose proof is given below).
The statement then follows by classical arguments of duality and Theorem 5.2.15
for Part 1, and Part 2 of Theorem 5.4.9 for Part 2. 0

Let us start the proof of Theorem 5.5.12 by observing that the symbol o*)
of the adjoint T* of T'= Op(o) is necessarily known and unique at least formally
or under favourable conditions such as in the case of a smoothing operator:
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Lemma 5.5.14. Let 0 € S and let k : (x,y) — kz(y) be its associated kernel.
We set

/@g*)(y) = R}my—l(y_l), x,y € G.

Then k™) : (z,y) ch*)(y) is smooth on G xG and for every o € Ny, © — xopt)

is continuous from G to S(G).
The symbol c*) defined via
oz, 7) = Fo(l))(m), (z,7) €@ xG,
is a smooth symbol in the sense of Definition 5.1.34 and satisfies
(Op(0))* = Op(a™)).
In particular, if o does not depend on x, then o*) = o*.

Note that this operation is an involution since

R (y) = Ry ().

Recall that if o = {o(z,7), (x,7) € G x G} then we have defined the adjoint
symbol

o* = {o(z,7)*, (z,7) € G x G},
(see Theorem 5.2.22). Hence we may write
o (z,7) :=o(x,m)".
Proof of Lemma 5.5.14. By Corollary 3.1.30, we have

XPARS )y = X ARay (v 1)} = (“1)I%IX D (R, (v )

Yi1=y~—

= (=)l Qu sy XD AR (v}
[B1<[Bo, [B]2[80]

=D S Qp sl XY R ()Y
1B1<1B0, [8]2[80]

where the Qg, g’s are ([8,] — [B])-homogeneous polynomials. The regularity of x

described in Theorem 5.4.9 implies that x*) : (z,y) ﬁé*)(y) is smooth in = and

y (but maybe not compactly supported in x), and it is also Schwartz in y in such

a way that all the mappings G > x +— Xgné*) € S(G) are continuous. Clearly

o) (z,7) = w(n&*)) defines a smooth symbol o).
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Let ¢,7 € S(G) and let € G. The regularity of x described in Theorem
5.4.9 justifies easily the following computations:

I R W R e e
//¢ w<z*1x) () (z)dade

[ o8 e @z
/Ggi)(z)q/z*m; (2)dz

This shows that Op(o)*y(z) = 9 * n(z*)(z). O

In general, ¢*) is not the adjoint ¢* of the symbol &, unless for instance
it does not depend on =z € G. However, we can perform formal considerations to
link ) with ¢* in the following way: using the Taylor expansion for % in x (see
equality (5.27)), we obtain

w0 (y) = = SRR = S a0 X

Thus, taking the group Fourier transform at = € CA?, we get

o (2, m) = n(k{)) & > m(Galy) XS HE( mea o(z, )

[e3

From Theorem 5.2.22 we know that if o € S then

A XZo(x,m)" € Sy POl (5.58)

From these formal computations we see that the main problem is to estimate the
remainder coming from the use of the Taylor expansion. This is the purpose of the
following technical lemma.

Lemma 5.5.15. We fix a positive Rockland operator of homogeneous degree v. Let
meR, 1>p>6§>0withp#0andd # 1, By € Ny, and M,M; € Ny. We
assume that M > vMy and (p — 0)M + pQ > m + 6[Bo] + vM; + Q. Then there
exist a constant C' >0, and a seminorm || - ||sm a0, such that for any o € 57

and any (z,7) € G x G we have

1X7 (0@ (2, m) = Y AXPo" (@, m)w(L+R)M | 2, < Cllo]
[al<M

Sms,a,b,0-
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Proof of Lemma 5.5.15, case By = 0. By Lemma 5.5.14 and the observations that
follow, we have

o™ (z, m) Z AXZo" (x, )

[a]<M

:/ () = Y aa(z)XOR() | 7(2) dz

[e]<M

/RM Yr(2)*dz,

where Rx*M) denotes the remainder of the (vector-valued) Taylor expansion of
v k%, (2) of order M at 0. Using (5.48), we can integrate by parts to obtain

(U(*)(m,ﬂ')— Z A“X;‘a*(x,ﬂ))w(I—FR)Ml
[a]<M
N B 7 Bo *
— Z /Xﬁ1 Rfjﬁl Z%(zz)(zl_l)ﬂ(z)*dz
[B1]+(Ba] <My 7 C

z zXflﬁ.z (Z ) — *
= Z / R%QxM 1[ﬁ1]1 2 (z7 Y (2)*dz.

[B1]+[B2]<v My

Taking the operator norm, we have

(o™ (@,m) = D A°Xgo" (z,m)) w1+ R)M | 2o,
l[a]<M

[ IR e e
[ﬂl ,32]<VM1

For |z| < 1, we will use Taylor’s theorem, see Theorem 3.1.51:

XP1g* (z2)

RLAAS S o SN ) sup [XIREL XD ()],

xry Il
Iy I<[(M—[B1])+ | +1 nea
(1> (M—[81])+

together with the estimate for z near the origin given in Theorem 5.4.1. The link
between left and right derivatives, see (1.11), implies

sSup |XPYXz2 szBl (ZQ)I = sup |X’YX22 zXﬁlHlﬂl(Z?)'
z1€G r1€G

Proceeding as in the proof of Lemma 5.5.6, we obtain that the integral
XzB zX.'f K (22) —

5 / |Z| sup |X7 XE; zXBlK'wl ZQ)le
lvI<[(M Bl] ESEACEe: 1€G
]>(M—[81])+
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is finite whenever [y] + Q > (m + [B2] + 0([7] + [B1]) + Q)/p with the indices
as above. These conditions are implied by the hypotheses of the statement. The
estimates for z large given in Theorem 5.4.1 show directly that the integral

X2 XJ1Ry (22)
/||>1 |Rz12xM 1[51]1 ’ ( )|dza

is finite. Collecting the various estimates yields the statement in the case p # 0
and BO =0. O

Proof of Lemma 5.5.15, general case. We proceed as above and introduce the de-
rivatives with respect to z. We obtain

X2 (o ) (2, ) Z A“XCo*(z,T)) :ARég;H:'(Z)(z_l)ﬂ(z)*dz.
[a]<M

And adding (I + R)M!, we have
XP (oW (@, m) = Y AX2o*(2,m) I+ R)M

[o]<M

XP2_ xPixfor;, (22)
- Z /RmZOM Z181) S
[B1]+[B2)<v M,y

“Hr(2)*dz.

Taking the operator norm, we have

1X5° (o (, ) Z A“X o™ () w(T+ R)M | 2,

XB2 Xﬁ1x50
/|Rm1zionwl[51 prl(ZZ)(ZilﬂdZ'

[51]+[52 |<vMy

For |z] < 1, we use the more precise version of Taylor’s theorem than in the case
Bo = 0:
XB2  xh1 Xﬂ

o, o Koy (22)
R, o T

< Z M[“{] sup |X”’X22 ZXﬁlXBo ,(22)]-
MSTM=B]) 41 llsn TR
(1> (M =[B1])+

We proceed as in the proof of Lemma 5.5.5, that is, we use (5.51) to obtain

swp R XX (=)
|y|Snf(M*[51])+J+1H
S Y B sy | XORP kT (2)].
[84)> (o] ol 5]
1841<Bol ’

We conclude by adapting the case Sy = 0. O
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To take into account the difference operator, we will use the following obser-
vation.

Lemma 5.5.16. For any a € Nj and 0 € S™°, A% ) can be written as a linear
combination (independent of o) of {A% o}*) over o/ € NI, [o/] = [a]. This is
the same linear combination as when writing A%c™ as a linear combination of

{AY 5},

Proof of Lemma 5.5.16. For o € S™°°, let Kk, be the kernel associated with the
symbol ¢ and similarly for any other symbol.
Let us prove Part 1. We have

{(jah:a(*),x}(y) = (jOé (y)’_{a,xy_l (y_l)'

As @, is a [a]-homogeneous polynomial, by Proposition 5.2.3, g, is a linear com-
bination of ¢, over multi-indices o € N satisfying [o/] = [a]. Hence

{%Fég(*),z}(y): Z qa”%a,xyfl(y_l): Z {Qa’ﬁa}(*)(y)v
[a']=[q]

where f means taking a linear combination. Taking the Fourier transform, we
obtain

Folakioe o1 (m) = A% (@,m) = 3 {AY 0},

[e]=[a]

We can now prove Theorem 5.5.12 in the case p > 9.

Proof of Theorem 5.5.12 with p > 6. We assume p > §. We fix a positive Rockland
operator of homogeneous degree v. Let us show that for any ag, 5y € Nj, and
My € N, there exists M > My, a constant C > 0 and a seminorm || - ||5;z§7a17b1,0,

such that for any o € S~°° we have

m—(p—8)Mg—plagl+d[Bg
v

||Xf°Aa°7'M(x,7r) I+ R)™ : H_%’(Hw)

< Cllollsm;.ar.b:.05 (5.59)

where we have denoted 7y = o(*) — Z[a]gM A*X%c*. By Lemma 5.5.16, it
suffices to show (5.59) only for g = 0.
Let By € Ny and My € N. Let M; € Ny be the smallest non-negative integer

such that
~m—(p—08)Mo + [Bo]
v
We choose M > max(My, v M) such that (p—0)M + pQ > m+6[Bo] + v M + Q.
This is possible as p > 4. Then (5.59) follows from the application of Lemma 5.5.15
to M, M; and the symbol o.

< M.
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Using (5.58), classical considerations imply that (5.59) yields that for any
My € No, and any seminorm || - || gm-ro¢-5),7 . there exist a constant C' > 0 and
P, YAy

a seminorm || - ||S;m57a17b1,0, such that for any 01,09 € S™°° we have

||7M0\|S:;MO(H>,RW < Cllollsm,.ar,61,0-

We can then conclude as in the proof of Theorem 5.5.3 in the case p > 4. O
In fact, we have obtained a much more precise result:

Corollary 5.5.17. We assumel > p> 06 > 0. If o € S)'s, then there exists a unique
symbol o) in 52?5 such that

(Op(a))* = Op(a™).
Furthermore, for any M € Np,

(oW (@, 1)~ Y X0A“*(x,m)} € STy M,
[a]l<Mm

Moreover, the mapping
m m—(p—0&6)M
Spﬁ - Spﬁ :
o (@ m) = Y XA (2, 7))
18 continuous.

Consequently, we can also write

o0
d® > Y XAt |, (5.60)
7=0 la]=j

where the asymptotic was defined in Definition 5.5.2.

As for composition, in the case p = ¢, the asymptotic formula does not bring
any improvement and, in this sense, is not interesting. The proof of this case is
more delicate to prove but relies on the same kind of arguments as above. Using
Lemma 5.5.9 instead of Lemma 5.5.6 in the proof of Lemma 5.5.15 produces the
following result:

Lemma 5.5.18. We fix a positive Rockland operator of homogeneous degree v. Let
meR, 1<p<d<0withd#1, fy € N§, and M, M; € Ng. We assume that

M>vMy and m—+6(M +ca,)+vM < —Q,

where
cg, = max
o (9,1<150]
B'1>185], 18'1>185]
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Then there exist a constant C > 0, and a seminorm ||| gm.r , . such that for any
p,5 @

o€ 8 and any (z,7) € G x G we have

|XE (9 (@,m) = 3 A"XE (@, m) w1+ R)M [ 2s) < Clol] g
[a]<M '

b’

The details of the proof of Lemma 5.5.18 are left to the reader. The conditions
in the statement just above show that we will require the ability to choose m as
negative as one wants. We can do this thanks to the following remark.

Lemma 5.5.19. For any o € S~ and any X € g, we have

{r(X)o}®) = —o) (2, 7) 7(X) — { X0} (2, 7).
More generally, for any B € N}, we have
{m(X)Po} = Y {XJe}r(x)%,
[B1]+[B2]=[8]
where i denotes a linear combination independent of o1, 0.
Proof of Lemma 5.5.19. We keep the notation of Lemma 5.5.14. The kernel of

o (X)) is given via
(

X K“:c*)<y) = Xy{"%a:y*1 (y_1>} = _Xarlzxy*”%m (y_l) - Xy2=y*1'r€xy*1 (y2)7

having used (5.50) and the Leibniz property for vector fields. Hence we recognise:
Xy (y) = =(Xaka) W (y) = (Xk2) (),
and
o OIn(X) = ~(X,0)*) — ((X)o) ).
This shows the first formula. The second formula is obtained recursively. O
We can now show sketch the proof of Theorem 5.5.3 in the case p = 6.

Sketch of the proof of Theorem 5.5.3 with p = 6. We assume p = § € [0,1). Writ-
ing 0 = 7(I+R)V7(I+R) Vo and using Lemma 5.5.19, it suffices to prove (5.59)
for m as negative as one wants. We proceed as in the proof of the case p > §
replacing Lemma 5.5.15 with Lemma 5.5.18. The details are left to the reader. [

5.5.4 Simplification of the definition of S

In this section, we show that it is possible to choose v = 0 in the definition
of symbols as it was pointed out in Remark 5.2.13 Part (3). This simplifies the
definition of the symbol classes S5 given in Definition 5.2.11. We will also show
a pivotal argument in the proof of Theorems 5.5.3 and 5.5.12, namely Inequalities
(5.54).
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Theorem 5.5.20. Let m,p,0 € R with1>p>5 >0 and § # 1.

(L)

A symbol o = {o(x,7),(xz,7) € G X @} is in S5 if and only if for each
a, B € N, the field of operators

XPA% = {XP A% (z,7) : H — My, (z,7) € G x G}

s in Lgfp[a]_m_é[ﬁ] (@) uniformly in x € G, that is,

B . .
31612 IXE A% (z, )||L8‘,’,,[a]7r,nfa[a](g) < 00. (5.61)
Furthermore, the family of seminorms
m = BA . ~
o — [loflsmab0 [Zlga ;ilelg | XZ A% (x, )|\L8?p[a]7m75w](c), a,b € Ny,
[BI<b

yields the topology of S,T(;.
A symbol o = {o(z,7),(z,7) € G x @} is in S)'s if and only if for each
o, B € N, the field of operators

XPA% = {XPA%0(z,7) : H® — Hy, (z,7) € G x G}

is in L;?«Fﬁ[ﬁ]fp[a],o(é) uniformly in x € G, that is,

sup | XPAYo(z, )| G
Ieg” T ( ’)HLeré[ﬁ]fp[a]»O(G

) < 00. (5.62)

Furthermore, the family of seminorms

7 1l = S0 SR IX AT ez
[Bl<b

yields the topology of S7's.
In other words,
a symbol 0 = {o(z,7),(z,7) € G x G} is in Sy if and only if for each
o, B € Njj, the field of operators
XPA% = {XP A% (z,7) : H — My, (x,7) € G x G}

is defined on smooth vectors and satisfy

8 A plal=m=5(]
sup [ Xy A% (z, )m(I+R) v |22, < o0
rzeG,meG

for one (and then any) positive Rockland operator R of homogeneous degree
v (as the symbol is given by a field of operators defined on smooth vectors,
and since m(I + R)¥ acts on smooth vectors, this condition makes sense);



5.5. Symbolic calculus 373

L) a symbol ¢ = {o(z,7n),(z,7) € G X G} is in 8™ if and only if for each
P56
o, B € Nij, the field of operators

XPA% = {XP Ao (x,7) : H — HAI=m =00 (2 1) € G x G}

is defined on smooth vectors and has range in Hﬁ[a]7m76[6 ], and satisfies
plo]—m—35[8] o
sup [w(I+R)T v XJAY (2, )| 2, < o0

zeG,meG

for one (and then any) positive Rockland operator R of homogeneous degree
v. The notion of a field having range in a Sobolev space H: is described in
Definition 5.1.10 and allows us to compose on the left with 7(I + R)» with
s = pla] —m — §[5] here, see (5.4).

Naturally, the condition does not depend on the choice of the positive Rockland
operator R.

Theorem 5.5.20 makes it considerably easier to check whether a symbol is
in one of our symbol classes. However using the definition ‘with any 7’ has the
advantages

1. that we see easily that the symbols are fields of operators acting on smooth
vectors,

2. that we see easily that the symbols in S;’fé, m € R, form an algebra (cf.
Theorem 5.2.22),

3. and that the properties for the multipliers in R in Proposition 5.3.4 are for
the definition ‘with any ~’.

While showing Theorem 5.5.20, we will also finish the proofs of Theorems
5.5.3 and 5.5.12. Indeed, an important argument used in the proof of Theorems
5.5.3 and 5.5.12 (i.e. the properties of stability under composition and taking the
adjoint) is Inequality (5.54) which can easily be seen as equivalent to Part 2 of
Theorem 5.5.20.

Before showing Theorem 5.5.20, let us summarise what has been shown in
the proofs of Theorems 5.5.3 and 5.5.12 up to before the use of Inequality (5.54):

HUlOU?”S;’,’g*mZ’R@’b S.a ||Ul||5Z§’R,al,blHJQHSZ’(?,ag,bz,cy (5'63)
||0(*)||s;néR,a,b S lollsm.arp o (5.64)

these estimates are valid for any o, 01, 09 € S™°° in the sense that for any seminorm
on the left hand side, one can find seminorms on the right.

Proof of Theorem 5.5.20. Using Estimate (5.64) together with the properties of
taking the adjoint and of the difference operators together, one checks easily that
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the two families of seminorms {[| - [[gm.z , ,,a,b € N} and {[| - [[sm ap,0,0,0 €
p,5 @ f

N} yield the same topology on S~°° and that taking the adjoint of a symbol is
continuous for this topology. Consequently, for any v € R, any symbol ¢ € §7>

and any seminorm || - || TR by We have

La,b ~ ,a1,b1 5 ,a2,b2

T+ R)¥ ol gminn ,y S N T+ R [[gmevn 1 S [0 gm,s
P P P

having used (5.63) and the fact that 7(I+ R)¥ € S7. As taking the adjoint is a
continuous operator for the S™f-topology, we have obtained

ol
||7T(I + R) v O'HS;?};’%R,&,[, S ||U‘|S;7?(’5R,a3,b3 :

One checks easily that

2
v

Va,b,c € Ny lo|

Spabe < MAX [w(I+R)

U||s§f§”’R,a,b»
whereas
Va,b € Ny HaHsgléR,a,b < |lo|lsm

52,0, |m|+pa+5b-

This easily implies that the topologies on S™>° coming from the two families of
seminorms {|| - [[sm, a,b.cab,c € No} and {]| - | s;’j;;R,a,b’a’b € Np} coincide. This

together with Lemma 5.4.11 (to pass from S™°° to S7';) concludes the proof of
Theorem 5.5.20. O

5.6 Amplitudes and amplitude operators

In this section, we discuss the notion of an amplitude extending that of the symbol,
to functions/operators depending on both space variables 2 and y. This allows
for another way of writing pseudo-differential operators as amplitude operators,
analogous to Formula (2.27) in the case of compact groups. However, as in the
classical theory, or as in Theorem 2.2.15 in the case of compact groups, we can
show that amplitude operators with symbols in suitable amplitude classes reduce
to pseudo-differential operator with symbols in corresponding symbol classes, with
asymptotic formulae relating amplitudes to symbols.

5.6.1 Definition and quantization

Following the Euclidean and compact cases, it is natural to define amplitudes in
the following way, extending the notion of symbols from Definitions 5.1.33 and
5.1.34:

Definition 5.6.1. An amplitude is a field of operators
{A(z,y,7) : H® — Hpom € G}
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depending on x,y € G, satisfying for each z,y € G
Ja,beR  Alx,y,-) == {Alz,y,7) : HX = Hn,m e G} € L(G).

o An amplitude {A(z,y,7) : H® — Hn,m € G} is said to be continuous in
x,y € G whenever there exists a,b € R such that

Vr,ye G A(z,y,) = {A,y,7) : HZ — Heom € G} € LS(G),

and the map (z,y) — A(z,y,-) is continuous from G x G ~ R™ x R™ to the
Banach space Lg% (G).

e An amplitude A = {A(z,y,7) : H® — H.,m € G} is said to be smooth
in x,y € G whenever it is a field of operators depending smoothly on
(x,y) € G x G (see Remark 1.8.16) and, for every (1,82 € Nf, the field
{00100 A, y, ) : HY — My, € G} is continuous.

Clearly if an amplitude A = {A(z,y,7)} does not depend on y, that is,
A(z,y,m) = o(x, ), then it defines a symbol o = {o(x,7)}. More generally any
amplitude A = {A(z,y, )} defines a symbol o given by o(z,7) = A(z,z,7). In
Section 5.6.2, we will define amplitude classes and give other examples of ampli-
tudes.

Similarly to the symbol case, one can associate a kernel with an amplitude:
Definition 5.6.2. Let A be an amplitude. For each (z,y) € G x G, let k,, € S'(G)
be the unique distribution such that

Fa(bzy)(m) = Az, y,m).
The map G x G 3 (x,y) — Kgy € S'(G) is called its kernel.

As in the symbol case, the map G x G 3 (z,y) — Kgy € S'(G) is smooth,
see Lemma 5.1.35 for the proof of this as well as for the existence and uniqueness
of k4 in the case of symbols.

Before defining the amplitude quantization, we need to open a (quick) paren-
thesis to describe the following property from distribution theory:

Lemma 5.6.3. Let G x G 3 (z,y) — Kz € S'(G) be a continuous mapping. For
each x, we consider the distribution K, defined by

[ Rty =lim [ weuly )by dydu,

€] =0 Jaxa

where ¢ € D(G), Y1 € D(G), [ov1 =1 and Pe(z) = e (e 'z), € > 0.
Indeed this limit exists and is independent of the choice of V1.
This defines a continuous map G > x — R, € D'(QG).
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Proof of Lemma 5.6.3. Since iy, € S'(G), there exists a seminorm | - [|s(q),n
such that

Vo e S(G)  [(Fay, d)| < Coynlldllsie N

Furthermore, since the map G X G 3 (x,y) — kg € S'(G) is smooth, we obtain
that the constant Cp N = ||kzylls/(c),y can be chosen locally uniform with
respect to x and y. Furthermore, fixing two compacts K; and Ks of G, there
exists a seminorm || - [|s(g),n (depending on K; and K») such that the map

((z,9), (&",y') € (K1 x K2) X (K1 X K3) = ||y = Kar.ylls7().

is uniformly continuous. This is easily proved using a cover of the compacts K1 X Ky
by balls of sufficiently small radius, and the continuity at each centre of these balls.

For any ¢, € D(G), € > 0 and x € G, we define the distribution Ty, ¢, by

Ty, ca(0) = / (™ 2) D) (wy ™)y,

GxG

where ¢ € D(G) is supported in a fixed compact K C G. Using the change of
variable from w to z with z = ¢~ !(wy 1), so that w = (ez)y, we obtain

Ty cald) = /G a0 2)6(0) 0 (2) .

Therefore, for any €1,€3 € (0,1), we get

|(T¢17617£ - T¢1,€2,1)(¢)|
/G o (Km,(slz)y(y_l'r) - Kx,(mz)y(y_lx)) ¢(y)¢1(2)dyd2

< sup H“r,(EM)y - Hm,(ézZ)yHS’(G),N||¢HS(G),N”1/)1||L1(G)a
zEsuppyy
y€Esuppg
where [ - [|s(@),n is chosen with respect to the compact sets

{z} and {(ez)y,e €[0,1], z € suppyy1, y € Ka}.

This shows that the scalar sequence (Ty, ¢ (¢)) converges as ¢ — 0 and that the
linear map

b1 € D(G) — I Ty, . (6), (5.65)

extends continuously to L'(K,) — C for any compact K, C G. Thus the map
given in (5.65) is given by integration against a locally bounded function on G.
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Let us show that the map given in (5.65) is invariant under left or right
translation. Indeed, modifying the argument above we obtain

Trer(9) = Ty .0 (0]

/ (Ka,(ex)y = Fa(e(zpa))y) W @)@y (2)dydz
GxG

< sup Ky (ezyy — Ka (e llsr@) N I9lls@) N I1Y1 L1 @)
zE€suppy1
YyEsuppep

for a suitable seminorm || - |[s(),n, (depending locally on y,). Since the two se-
quences ((€2)y)eso and ((e(zyo))y)e>0 converge to y in G, we see that

lim Twl,e,m(¢) =lm T, (-y;l),e,z(¢)’

e—0 0 Y1

and the same is true for right translation. Therefore, the locally bounded function
given by the mapping (5.65) is a constant which we denote by Ty (¢):

1 Ty (6) = Tosl) [

One checks easily that Ty ,(¢), ¢ € D(G), supp¢ C K, defines a distribution
Ry € D'(G) which is therefore independent of ;. Refining the argument given
above shows that &, € D'(G) depends continuously on z € G. O

If G xG > (z,y) = Kgy € S'(Q) is a continuous mapping, we will allow
ourselves to denote the distribution defined in Lemma 5.6.3 by

Ra(y) = Kay(y~'2).
This closes our parenthesis about distribution theory.
We can now define the operator
T = AOp(A)

associated with an amplitude A = {A(z,y, )} with amplitude kernel &, ,, by

To(z) = /G o)y~ 2)dy, ¢ €D(G), z € G. (5.66)

The quantization defined by formula (5.66) makes sense for any amplitude A =
{A(z,y,m)}. Clearly the quantization mapping A — AOp(.A) is linear. However,
as in the Euclidean or compact cases, it is injective but not necessarily 1-1 since
different amplitudes may lead to the same operator, in contrast to the situation
for symbols, cf. Theorem 5.1.39.
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Remark 5.6.4. If an amplitude A = {A(z,y,7)} does not depend on y, that is,
A(x,y,7) = o(x, ), then the corresponding symbol o = {o(z, 7)} yield the same
operator:

AOp(A) = Op(c)

since in this case the amplitude £, , is a function/distribution x, independent of
y which coincides with the kernel of the symbol o.

As in the symbol case in Lemma 5.1.42, we may see AOp(A) as a limit of
nice operators in the following sense:

Lemma 5.6.5. If A = {A(z,y,7)} is an amplitude, we can construct explicitly a
family of amplitudes A, = {Ac(x,y,m)}, € >0, in such a way that

1. the kernel ke gy (2) of Ae is smooth in both x,y and z, and compactly sup-
ported in x and vy,

2. the associated kernel Fe ;(y) = Kewy(y~'z) is smooth and compactly sup-

ported in both x, v,
3. if ¢ € S(G) then AOp(A.)¢ € D(G), and
4. AOp(Ao)o J AOp(A)¢ uniformly on any compact subset of G.
e—
Proof of Lemma 5.6.5. We use the same notation x. € D(G), |7| and proj, . as
in the proof of Lemma 5.1.42. We consider for any € € (0,1) the amplitude given
by
Ae(xv Y, ﬂ—) = Xe(x)Xe(y)]-hr\ge_lA(‘ra Y, 7T) o proje,ﬂ"

By Definition 5.6.2 and the Fourier inversion formula (1.26), the corresponding
kernel is

fewn(7) = xe(@)xe(v) / Tr (A(z, y,7) proj.,m(2)) du(m),

|| <e—1
which is smooth in z, y and z and compactly supported in = and y. The rest follows
easily. O
There is a simple relation between the amplitudes of an operator and its
adjoint, much simpler than in the symbol case:

Proposition 5.6.6. Let A be an amplitude. Then B given by
B(z,y,7) = Aly,z,7)"

is also an amplitude. Furthermore, the formal adjoint of the operator T = AOp(.A)
is T* = AOp(B). If {Kkuy(2)} is the kernel of A, then the kernel of B is given via

(z,y,2) — Ry,x(zfl).
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Proof. On one hand, from the amplitude quantization in (5.66), we compute for
¢, € D(G), that

(T, ) = /G /G W) ey~ ) () dy d = (6, ),

therefore

T5(0) = [ Ry 0)0(a)de
or, equivalently,
T 6(0) = [ Ryale™ w001
One the other hand, the amplitude kernel for B is x/, , satisfying

7T(l‘<5/ ,y) B(CE Yy, ™ ) A(y,sc, T‘—)* = W(ﬁyJ)* = W(H;I)’

with k% . (2) = Ry(27"), and therefore,

K; y(z) = ”Z,m(z) = Ry,w(z_1)~

)

By (5.66), this implies that T* = AOp(B). O

5.6.2 Amplitude classes

Again similarly to the symbol case, we may define the amplitude classes AS’p” This
is done in analogy to Definition 5.2.11 for symbols and its equivalent reformulation
n (5.29).

Definition 5.6.7. Let m,p,d € R with 1 > p > 6 > 1. An amplitude A is called
an amplitude of order m and of type (p,0) whenever, for each o, € Nj and
v € R, the field {X* X2 A*A(z,y, )} is in L ) —m— 5([51“[&]”7(@) uniformly
n (z,y) € G, ie. if

sup ||XB1Xﬁ2AO‘A(x v, )||LOC

z,yel plal—m—5([81]+B2))+v

@ < 0. (5.67)

In this case, proceeding in a similar way to S’ in Section 5.2.2, we see
that the fields of operators X' X2 A® A(z, y,-) act on smooth vectors and (5.67)
implies

[o]—m—5([B1]+[B2D+~

sup |[r(I+R)" T X XD A Az, y, )m(T+R) ™ [ 230,y < 00
z,yGAG
TeG

(5.68)

The converse also holds.
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The amplitude class AS]'s = AS}'5(G) is the set of amplitudes of order m
and of type (p, ). We also define

AST® = (1) AS)s,
meR

the class of smoothing amplitudes. As in the case of symbols, the class AS™ is
independent of p and § and can be denoted just by AS™°.

It is a routine exercise to check that each amplitude class AS;% is a vector
space and that we have the inclusions
m1 < mo, 0 < (527 pP1 = P2 — AS;nlél C AS”;Q&Z (569)

We assume that a positive Rockland operator R of degree v is fixed. If A is
an amplitude and a, b, ¢ € [0,00), we set

||A(x,y,7r)||A5mé a,b,c
plo]=m=3(P1]+[82])F N
= sup [|r(1+R)" R XX A Ay, ML+ R) T s
lv|<e ’
[a]<a, [81],[B2]<b

and
Al asm;.a.b.c := sup Az, y, )| as7, a,b.c-
' (w,y)EGXG,‘n’E@ '
Again, one checks easily that the resulting maps || - [[sm ap.c; a,b,¢ € [0,00), are

seminorms over the vector space AS’ M. Furthermore, taklng a, b, c as non-negative
integers, they endow AST'; with the structure of a Fréchet space. The class of
smoothing amplitudes AS~>° is then equipped with the topology of projective
limit. Similarly to the case of symbols in Proposition 5.2.12, two different positive
Rockland operators give equivalent families of seminorms.

The inclusions given in (5.69) are continuous for these topologies.

Symbols in S are examples of amplitudes in AS” o6 which do not depend
on y. Conversely, 1f an amplitude A = {A(z,y, )} in AST"; does not depend on y,
that is, A(z,y,m) = o(z, ), then it defines a symbol o = {a(rv ™)} in )%, More
generally we check easily:

Lemma 5.6.8. If A = {A(x,y,m)} is in AS]';, then the symbol o given by
o(x,m) = Az, x,m)
is in S

A wider class of examples is given by the following property which can be
shown by an easy adaption of Proposition 5.3.4 and Corollary 5.3.7:
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Corollary 5.6.9. Let R be a positive Rockland operator of degree v. Let m € R and
0<d<1 Let f:GxGxRY > (x,y,\) = fo,(N) € C be a smooth function.
We assume that for every 31, B2 € N, we have

Xlengm,y € M misqs1+82)
where M is as in Definition 5.5.1. Then

A(JJ, Y, 77) = fas,y(ﬂ-(R))
defines an amplitude A in AST"s which satisfies

Va,b,c € Ny A eN, C>0
ANl asy, abe < Csupig,) a,1<p X X2 oy M ooy s 00

with ¢ and C' independent of f.

This can also be generalised easily to multipliers in a finite family of strongly
commuting positive Rockland operators.

5.6.3 Properties of amplitude classes and kernels

One can readily prove properties for the amplitudes similar to the ones already
established for symbols. Here we note that although the subsequent properties
would follow also from Theorem 5.6.14 in the sequel and from the correspond-
ing properties of symbols in Section 5.2.5, we now indicate what can be shown
concerning amplitudes and their classes by a simple adaptation of proofs of the
corresponding properties for symbols.

Proceeding as in Section 5.2.5, we also have the following properties for the
amplitude classes:

Proposition 5.6.10. Let 1> p> 6§ >0 and 6 # 1.
(i) Let A € AS]"s have kernel iy,. Then we have the following properties.

1. For every x,y € G and v € R, (jaXleg“’mm,y € Ky pla]—m—5[81+B2]+
where we recall the notation g, (x) = qo (271

2. If 1,082 € N then the amplitude {X51X52A(x,y,ﬂ),(x,y,ﬂ) € G x
G x G} is in ASZ?(;rg[ﬁﬁBQ] with kernel X' X0k, and

||X51X52A($a Y, 7T)||ASZ';5[ﬁl+ﬁ2]7a,b,c S OHA(:E’ Y, 7T)||AS;’?5,a,b+[,81+Bz]7ca

with C' = Cb,ﬁl,ﬁz'
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3. If a, € NI then the amplitude {A A(z,y,7), (z,y,7) € G x G x G} is
mn AS’ZLEP[Q"] with kernel §o,kzy, and

1A% A, T gt 4o < Cacao MA@l st e

4. The symbol {A(z,y,7)*, (z,7) € G x G x G} is in AST's with kernel
— Ry

Ky, given by K% (2) = Ry.(271), and

||A(£C, Y, 71—)* ||AS;’)‘5,a,b,c =
_a plal—m—35([B1]+[B2D)+~
sup |Iw(I+R) ™7 X1 X2 A Az, y, m)m (I+R) v 23,
v|<c
[a]<a, [B1],[82]<b

(it) Let Ay € AS]'5 and Ay € AS]'S have kernels k1,5, and Koz y, respectively.
Then
.A(ZL’, Y, 7T) = Al (.’E, Y, ,/T)AZ(I'7 Y, ﬂ—)

defines the amplitude A in 2?5, m = my +mo, with kernel Ko ;4 * K1 2,y With
the convolution in the sense of Definition 5.1.19. Furthermore,

[A(z,y, )]

spyabe < CIlALUE Y T sm1 0.t partimal+onll A2 (@ 4, T [ 572 0 8

where the constant C = Cyp.. > 0 does not depend on Ay, As.

A direct consequence of Part (ii) of Proposition 5.6.10 is that the amplitudes
in the introduced amplitude classes form an algebra:

Corollary 5.6.11. Let 1 > p > § > 0 and § # 1. The collection of symbols
Upner AS,s forms an algebra.

Furthermore, if Ag € AS™> is smoothing and A € AS]; is of order m € R,
then AgA and AAq are also in AS™°.

Another consequence of Part (ii) together with Lemma 5.2.17 gives the fol-
lowing property:

Corollary 5.6.12. Let 1> p>6 >0 and d # 1. Let A € AS]'s have kernel kg, y. If
B and B are in NG, then

(r(X)PAr(X), (2,7) € G x G} € AgT D

with kernel XZBXZB,%H,(Z) Furthermore, for any a,b,c there exists C = Cop,c
independent of A such that

17 (X)P Am(X)? | asrmabe < C||A||Asggé,a,b,c+pa+[ﬂ]+[3]+5b'



5.6. Amplitudes and amplitude operators 383

Proceeding as in Section 5.4.1, taking into account the dependence in z and
Y, we obtain

Proposition 5.6.13. Let A = {A(z,y, )} be in AS]"; with1>p >8> 0. Let kg y
denote ils associated kernel.

1. If a, 1, B2, Bo, B, € N are such that
m — plo] + [B1] + [B2] + 0([Bo] + [Bo]) < —Q/2,

then the distribution X1 X 52 (Xf“ngcja(z)n$7y(z)) is square integrable and
for every x € G we have

~ ’ 2
[z e X ey ()] s < Csup e m sy e
TeG

where a =[], b = [B.] + [B,], ¢ = pla] + [Bi] + [B2] + 0([Bo] + [55]) and
C = Cm,ap.62...5, > 0 is a constant independent of A and x,y.

2. For any «, B1, B2, Bo, B, € N satisfying
m — pla] + [B1] + [B2] +([B] + [B5]) < —Q,

the distribution z +— X51X52X50X5°qa(z)nm7y(z) is continuous on G for
every (z,y) € G x G and we have

Slelg XzﬁlX'fZ {Xgngoqa(z)liz,y(z)H <C sup ”A(xv7T)HAS,T,;,[O&],[BO]+[Q’,],[52]’
Z TeG

where C' = Ciy a5, 6,.8..6, > 0 is a constant independent of A and z,y.

We now assume p > 0. Then the map k : (x,y,2) — Kygy(2) is smooth
on G x G x (G \{0}). Fizing a homogeneous quasi-norm | - | on G, we have the
following more precise estimates:

at infinity: For any M € R and any «, 1, B2, Bo, B, € N there exist C > 0 and
a,b,c € N independent of A such that for all x € G and z € G satisfying
|z| > 1, we have

XE B (X X4 (2 (2))] < C sup A, o) a2l
TelG

at the origin: For any «, b1, B2, Bo, B, € N§ with Q-+m~+46([Bo]+[5L]) —pla]+[61]+
[B2] > O there exist a constant C' > 0 and computable integers a,b,c € Ny
independent of A such that for all x € G and z € G\{0}, we have, if

Q +m +6([Bo] + [B,]) — pla] + [B1] + [Ba] > 0,
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then
XX (XD X o ()i (2))
_ Q+m+435([Bol+[B5]) —plal+[B81]+[82]
< Csup Az, 7)[|asm, a.b.cl ] ° :
71'6@ Y
and if
Q+m+6([Bo] + [B;]) — pla] + [B1] + [B2] =0

then

X R (XD XD Gu(2)hay (2))] < O sup A, ) asr e In 2.
TeG
5.6.4 Link between symbols and amplitudes

Symbols can be viewed as amplitudes which do not depend on the second variable
of the group. Then S5 C AS”% and, by Remark 5.6.4, we have the inclusion

= Op(S},’5) C AOp(AS)s).

The next theorem shows the converse, namely, that the class of operators
AOp(AS)s) is included in W75, Therefore this will show that the amplitude quan-
tization of AS]s coincides with the symbol quantization of

Theorem 5.6. 14 Let A € AS)s with 1> p>62>0,0 # 1. Then AOp(A) is in
that is, there exists a (umque) symbol o € S5 such that

AOp(A) = Op(0).

p5’

Furthermore, for any M € Ny, the map

m m—(p—98)(M+1
A ™ — Sp,é (p=8)(M+1) 7
A oz, m) = X em A XGA(T, Y, T |y=o

is continuous. If p > §, we have the asymptotic expansion
o(x,m) ~ ZAO‘XyO‘.A(I, Y, T)|y=a-
«@

The proof of Theorem 5.6.14 is in essence close to the proofs of product and
adjoint of operators in Uy,erW¥)'s, see Theorems 5.5.12 and 5.5.3. As for these
theorems, it is helpful to understand formally the steps of the rigorous proof.

From the amplitude quantization in (5.66), we see that if AOp(A) can be
written as Op(c), then, denoting by ks, the symbol kernel and by k4., the
amplitude kernel, we have

AOp /¢ KJAm,y Yy “lz dy—/ ¢ HAxxz 1(Z)d2



5.7. Calderon-Vaillancourt theorem 385

whereas
Op()(@)@) = | owrn sty ey = [ olaz ()
Therefore, formally we must have

KAz zz-1(2) = Kgu(2) (or equivalently /{A,Ly(y*lz) = /ic,’m(y*l:v)) .

Using the Taylor expansion in y = zz7! for k.4, at z, we have (again formally)
ow(2) = Ka gz (2) % ) da(2) Xy KAz y()ly=r- (5.70)

Note that the group Fourier transform in z of each term in the sum above is

]:zeG{(joc(Z)X;:a:"fA@,y(z)}(W) = AaX;:xfzeG{’@A,z,y(z»(W)
= A"X)_ Az,y,m).

Taking the group Fourier transform in z on both sides of (5.70), we obtain still
formally that

o(w,m) ~ Y A“X A, y,7)|y=a-

As in the proofs of Theorems 5.5.12 and 5.5.3, the crucial point is to control the
remainder while using Taylor’s expansion. The method is similar as in the proof
of Theorem 5.5.12 and the adaptation is easy and left to the reader.

Note that Theorem 5.6.14 together with Proposition 5.6.6 give another proof
of Theorem 5.5.12. This is not surprising given the similarity between the proof
of Theorems 5.6.14 and 5.5.12.

5.7 Calderon-Vaillancourt theorem

In this section, we prove the analogue of the Calderén-Vaillancourt theorem, now
in the setting of graded Lie groups. This extends the L?-boundedness of operators
in the class ¥ ; given in Theorem 5.4.17 to the classes \11275.

Theorem 5.7.1. Let T € \11275 with1>p>0>0andd #1. Then T extends to a
bounded operator on L*(G).

Moreover, there exist a constant C' > 0 and a seminorm || - [[go 44 with
0 5sasD,
computable integers a,b, c € Ny independent of T such that

Vo € S(G) 1T¢l L2y < C||T||\I/?)15,a,b,c||¢||L2(G)-

Before showing Theorem 5.7.1, let us mention that together with the pseudo-
differential calculus, it implies the following boundedness on Sobolev spaces L2.
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Corollary 5.7.2. Let T € W75 with 1> p >6 >0 and 6 # 1. Then for any s € R,
the operator T extends to a continuous operator from L2(GQ) to L%_,,(G):

Vo € S(G) TGz () < Comp sl Tllwm, apclldlliz),

with some (computable) integers a,b,c depending on s,m, p,d.

Proof of Corollary 5.7.2. Let R be a positive Rockland operator. By the compo-
sition theorem (e.g. Theorem 5.5.3), we have

—m+s

I+R)"v T(I+R) > €W,

Therefore, by Theorem 5.7.1, we have

—m+s s —m+s _ s
[T+R)" T+ R) ¥ dlzure < [T+R)" TA+R)¥[lag a1 b1
S T Uis,a2,b2,¢25
by Theorem 5.5.3. d

Remark 5.7.3. Combining the results obtained so far, for each (p,d) with 1 > p >
0 > 0 and § # 1, we have therefore obtained an operator calculus, in the sense that
the set (J,,cp W75 forms an algebra of operators, stable under taking the adjoint,
and acting on the Sobolev spaces in such a way that the loss of derivatives in L?
is controlled by the order of the operator.

Note that the L2-boundedness in the case (p,d) = (1,0) was already proved
by different methods, see Theorem 5.4.17 and its proof. With the same proof as in
the corollary above, one obtains easily boundedness for LP-Sobolev spaces in this
case:

Corollary 5.7.4. Let T' € WTy. Then for any s € R and p € (1,00) the operator T
extends to a continuous operator from LP(G) to LY_, (G):

VoeS(G)  Toler_ (@) < CsmpslTllwn; apeldl

LY (G)>»

with some (computable) integers a,b,c depending on s, m,p,d.

—m-+s

Proof of Corollary 5.7.4. As above, (I1+R)™ v T(I+R)"+ € ¥° therefore, by
Corollary 5.4.20 we have

—m-+s

1T+ R) =TI+ R) ™7 ¢l e wrc))

+s

I1+R)~—>

HT”‘PO,a‘z,bz,Cz’

5 T(I+R)_§H‘1’O,a1,b1701
<

by Theorem 5.5.3. g

The rest of this section is devoted to the proof of the Calderén-Vaillancourt
Theorem, that is, Theorem 5.7.1. In Section 5.7.2, we prove the result for p = § = 0.
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The proof will rely on an analogue on G of the familiar decomposition of R™ into
unit cubes presented in Section 5.7.1. The case p = § € (0,1) will be proved in
Section 5.7.4 and its proof relies on the case p = § = 0 and on a bilinear estimate
proved in Section 5.7.3. The case of p = § € [0,1) will then be proved and this will
imply Theorem 5.7.1 thanks to the continuous inclusions between symbol classes
(see (5.31)).

5.7.1 Analogue of the decomposition into unit cubes

In this section, we present an analogue of the dyadic cubes, more precisely we con-
struct a useful covering of the general homogeneous Lie group G by unit balls and
the corresponding partition of unity with a number of advantageous properties.
The proof is an adaptation of [FS82, Lemma 7.14].

Lemma 5.7.5. Let |- | be a fized homogeneous quasi-norm on the homogeneous Lie
group G. We denote by C, > 1 a constant for the triangle inequality

Ve,ye Gyl < Colz| + [y)). (5.71)
Denoting by B(x, R) the | - |-ball centred at point x with radius R,

B(z,R):={y€G : |z 'y| < R},
there exists a maximal family {B(x;, ﬁ) e, of disjoint balls of radius ﬁ, and
we choose one such family. Then the following properties hold:

1. The balls {B(x;,1)}52, cover G.

2. For any C > 1, no point of G belongs to more than [(4C2C)?] of the balls
{B(zi, C)}2,.

3. There exists a sequence of functions x; € D(G), i € N, such that each x; is
supported in B(x;,2) and satisfies 0 < x; < 1 while we have > 2, x; = 1.
Moreover, for any 3 € NI, XPx; is uniformly bounded in i € N.

4. For any p1 > Q + 1, we have

ACpy >0 Vige N > (14 |z a]) 7 < G, < o

i=1

Remark 5.7.6. The conclusion of Part (4) is rough but will be sufficient for our
purposes. We note, however, that if the quasi-norm in Lemma 5.7.5 is actually a
norm, i.e. if the constant C, in (5.71) is equal to one, C, = 1, then the conclusion
of Part (4) of Lemma 5.7.5 holds true for all p; > Q. This will be proved together
with the lemma.
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Proof of Lemma 5.7.5 and of Remark 5.7.6. If x € G then by maximality there
exists 4 such that the distance from x to B(z;, ﬁ) is < 1/(2C,). Denoting by y

a point in B(z;, ﬁ) which realises the distance, we have

ol < ol ol ) < Co (5 + 562 ) =1
This proves Part (1).
If « is in all the balls B(x;,,C), £ =1,...,4,, then
Yy € Uy, B(wi,,C) e 1,l] |ayl < Colla ay,| + |27, yl) < Co2C.
This shows that B(x,2C,C') contains Uf,"le(zil, (') and, therefore, it must contain
the disjoint balls Ug":lB (24, ﬁ) Taking the Haar measure and denoting c¢; :=

|B(0,1)], we have

Q
1 1
Uy Bl )l = foer (567 ) < 1B(.26,0) = (26,0

This proves Part (2).

Let us fix x € D(G) satisfying 0 < x < 1 with x =1 on B(0,1) and x =0
on B(0,2). The sum Y57 | x(z;;' -) is locally finite by Part (2); it is a smooth
function with values between 1 and [(4C2 x 2)?]. We define

x(z; tx)

Xl(x) = Z;)/o:1 X(x;lx) .

This gives Part (3).

To prove Part (4), we fix a point z;, and observe that if z € G is in one of
the balls B(z;, ﬁ) with \J;;lxz| € [¢,£+1) for some £ € N, let us say B(z;,, 2—50),

then
1

2C,

|x;1:r\ < CO(\a:;llx| + |x;1x“|) < Cof +Ll+1).

This yields the inclusion

1 1
l—l\ac;lwﬂe[é,f—i-l)B(xi’TC«O) - B($i°’C°(TQ +E+1)).

The measure of the left hand side is ¢ (2C,) @card{i : |x;1xi\ € [¢,£+1)} and
the measure of the right hand side is cl(Co(ﬁ + £+ 1))9. Therefore,

card{i : |x;1x¢\ €, 0+1)) <.
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Now we decompose

o0 oS
Z(l + oy )7 = Z (14| )7 + Z Z (14 oy g ) 772
=1 lz; e, <1 =1 |27 Ve, |€[0,041)

By Part (2) the first sum on the right hand side is < [(4C2)?] whereas from the
observation just above, the second sum is < >, (1 + £)7P1¢/(1 4 ¢)9. This last
sum being convergent whenever —p; + @ < —1, Part (4) is proved.

Let us finally prove Remark 5.7.6, that is, Part (4) of the lemma for p; > @
provided that C, = 1. This will follow by the same argument as above if we can
show a refined estimate

card{i : |x;1xl| e[, 04+1)) <@l
We claim that this estimate holds true. Since C, = 1, we can estimate

1 1
20, _é_i'

|x;1x\ > |xi_ola:i1| — |x;1x| >0 —
We also have Cy (54~ + £ + 1) = £ + 3. Consequently, we have the inclusion

1
it wileleern B2

L R
io 2C,

3 1
) © Bl 0+ \Bwi, 0~ 3),

with the measure on the right hand side being ¢; (¢ + 2)9 — ¢; (¢ — 1)%. Therefore,
card{i : |x;1x1| €, 0+1)} <7t

so that the required claim is proved. O

5.7.2  Proof of the case S

This section is devoted to the proof of the following result which is a particular case
of Theorem 5.7.1. We also give an explicit estimate on the number of derivatives
and differences of the symbol needed for the L2-boundedness.

Proposition 5.7.7. Let T € \118’0. Then T extends to a bounded operator on L*(G).
Furthermore, if we fix a positive Rockland operator R (in order to define the semi-
norms on W75 ) then

Vo eS(G)  IT¢l2e) < ClTlwg ab.clldllL2c)

where C' > 0 and a,b,c € Ny are independent of T. In particular, this estimate
holds with a = rp,, b =rv + [%1, ¢ =rv, where v is the degree of R, p,/2 is the
smallest positive integer divisible by v1,...,v,, and r € Ny is the smallest integer
such that rp, > Q + 1.
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Throughout Section 5.7.2, we fix the homogeneous norm |- | = |- |, given
by (3.21), where p,/2 is the smallest positive integer divisible by v1,...,v,. We
fix a maximal family {B(z;, ﬁ) o2, of disjoint balls and a sequence of functions
(xi)$2; so that the properties of Lemma 5.7.5 hold. We also fix 1o, 91 € D(R)

supported in [—1,1] and [1/2, 2], respectively, such that 0 < 1,1 < 1 and
0 .
VAZ0 ) () =1 with ¢;(A) := 1 (27U7N), jEN.
§=0

Let us start the proof of Proposition 5.7.7. Let o € S§ ;.
For each I = (i,7) € N x Ny, we define

or(z,m) = xi(z)o(z, m)h;(r(R)).
We denote by T7 and k; the corresponding operator and kernel.

Roughly speaking, the parameters ¢ and j correspond to localising in space
and frequency, respectively. The localisation in space corresponds to the covering
of G by the balls centred at the z;’s, while the localisation in frequency is deter-
mined by the spectral projection of R to the L?(G)-eigenspaces corresponding to
eigenvalues close to each 27.

It is not difficult to see that each Ty is bounded on L?(G):
Lemma 5.7.8. Each operator Ty is bounded on L*(G).

Since oy is localised both in space and in frequency, we may use one of the
two localisations.

Proof of Lemma 5.7.8 using frequency localisation. Let o, 8 € Nij. By the Leibniz
formulae for difference operators (see Proposition 5.2.10) and for vector fields, we
have

XPACo(x,7) = Z XPryi(2) XP2AM g (x, ) A% (7(R)).
[B1]+([B2]=[8]
[a1]+[az]=[a]
Therefore,
[a]+~ o
[rI+R) 7 XEA%(z,m)n(I+R)™ |l 2m.)
<C Y |r@I+R) XA () A2 (n(R)) I+ R) ™ [l 2,
[82]<[8]
[a1]+[az2]=([qa]
<C Y In1+R) T XEAN a1+ R) T |

[82]<[B]
[a1]+[ez2]=[c]
o]+

I T+ R) ™o A%y (m(R))w(L+R) ™7 [| (o, -
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Therefore, by Lemma 5.4.7, we obtain

||UI||S(1)‘0,a,b,c < ||U||Sgyo,a,b,c+a2ja/y'
This shows that the operator 77 is in ¥ and is therefore bounded on L?(G) by
Theorem 5.4.17. O

Proof of Lemma 5.7.8 using space localisation. Another proof is to apply the fol-
lowing lemma since the symbol o (z, 7) has compact support in z. O

Lemma 5.7.9. Let o(x,m) be a symbol (in the sense of Definition 5.1.33) supported
inx €S, and assume that S is compact. Then the operator norm of the associated
operator on L*(G) is

10p(0) | 2(z2(cy) < CISI'? sgp IXFo (@, m) @)
CINES

Proof of Lemma 5.7.9. Let T = Op(o) and let x, be the associated kernel. We
have by the Sobolev inequality in Theorem 4.4.25,

To@)> = |¢*ka(2) < Slépclaﬁ*mo(x)F
2
< C Z |¢*X Ka, ( )HLQ(dwo)'

(B1<[$1

Hence
IT¢l72) < C Z //I(b*XB K, (2)|?drodz
BI<[$1
SJCID DRy NTZS X s
BI<[$1
B 2
< C‘S| Sup ||¢ * Xﬂtoﬂxo(z)H[g(dw) .

2o€G,[B1<[§]
Now by Plancherel’s Theorem,
6% X2 ks (@) 2 amy < 19012y 1X2, 0 @0 )| 1
This implies that the L?-operator norm of T is

<CISI? sup XD o(wo,m)

”Loo ay
2, €G,[B]<T 2] @

and concludes the proof of Lemma 5.7.9. O
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Let us go back to the proof of Proposition 5.7.7. The approach is to apply
the following version of Cotlar’s lemma:

Lemma 5.7.10 (Cotlar’s lemma here). Suppose that r € Ny is such that rp, > Q+1
and that there exists A, > 0 satisfying for all (I,1') € N x Ny:

max (”TITI*’HE(LZ(G))a HTI*TI’”Z(LQ(G))) S Ar27|j7j ‘T(l —+ |£C;1£Ui|)7rp".

Then T = Op(o) is L?-bounded with operator norm < C\/A,.

Lemma 5.7.10 can be easily shown, adapting for instance the proof given in
[Ste93, ch. VII §2] using Part (4) of Lemma 5.7.5. Indeed, the numbering of the
sequence of operators to which the Cotlar-Stein lemma (see Theorem A.5.2) is
applied is not important, and the condition rp, > @ + 1 is motivated by Lemma
5.7.5, Part (4). This is left to the reader.

Lemma 5.7.11 which follows gives the operator norm for 1777}, and 17T} .
Combining Lemmata 5.7.10 and 5.7.11 gives the proof of Proposition 5.7.7.

Lemma 5.7.11. 1. For any r € Ny, the operator norm of TyT} on L*(G) is

IT1T7 | 22y < Crljj—jr<i(1+ \$§1$i|)_rp°||‘7”?sgO,rpo,(%],O'

2. For any r € Ny, the operator norm of Ty Ty, on L*(Q) is

o
1T Toll 2226 < Crlsin<ac, 2 7 o lsy | 0 rmr g

0,0’

In the proof of Lemma 5.7.11, we will also use the symbols o;, i € N, given
by
oi(x,m) = xi(x) oz, 7),
and the corresponding operators T; = Op(o;) and kernels ;. We observe that o; is

compactly supported in x, therefore by Lemma 5.7.9, the operator T; is bounded
on L*(G).

Proof of Lemma 5.7.11 Part (1). We have (see the end of Lemma 5.5.4)
Ty = Op(or) = T; ¥;(R),

thus
TiTy = Tih; (R)vy (R) T
Since 1 (R)¢;(R) = (¢;1/)(R), thisis 0 if [j—4"| > 1. Let us assume |j—j'| < 1.
We set
Tyvjrj =T 0 (315 )(R) = Op (03 o (Y15:) (7(R)))
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see again the end of Lemma 5.5.4. Therefore 171}, = T;T},/;, and we have by the
Sobolev inequality in Theorem 4.4.25,

|TiTy o(x)| = '/ i@ 2) Kig(2 1 x)dz
< swp / Ty s6(2) i, (=~ )2 | Loenon
< ¢ Z HX Tz’]’j ()’%ixo(zilm)dz 1zEB($¢,2)~
<[ ] L2(dx,)
Hence,
||TITI’¢||L2 < C Z 7,]_] Klalo( _1l')d2 IZL’EB(CEi,Q) .
L2 (dz,dx)

(BI<TST

The idea of the proof is to use a quantity which will help the space localisa-
tion; so we introduce this quantity 1+ |2~1z|"Pe and its inverse, where the integer
r € N is to be chosen suitably. Notice that for the inverse we have

(14 |27 te|™Po) " < CL (1 + |27 2]) 7P < Cp (1 + |xi_,1xi\)7rp",

for any z € suppyy and x € B(z;,2). Therefore, we obtain

H/ T;f],j X Kiz, (2 “lr)dz loeB(as,2)
L2 (dzodx)

1+ |z~ 1a|Po _
H/ 7T |z=Tz|rPo T X i, (7 10)d% Laepo,2)

L2(dz,,dx)
< C( + ‘LL‘; $i|)—'rpo TZ*J 'j zl)HLQ(dzl)

11+ |23 2l ) XE kio, (23 '2) 1

r€B(z,2) HL2(dz2,da:O7dw)

by the observation just above and the Cauchy-Schwartz inequality. The last term
can be estimated as

H(l + |22_1x|rpo)X5 Kiz, (29 1x) 1ZEB(Ii72)HL2(sz,dx,,,dz)

< |B(%;,2)| sup ||(1+ |Z'|rp")XfO/£i%(z')HLz(dz,)
z,€C

TPo

< C sup Z HXB A% (z, ™

onG[a] 0 )HLoo(é)

by the Plancherel theorem and Theorem 5.2.22, since |z/|"Pe can be written as a
linear combination of G,(z), [a] = 7p,. Combining the estimates above, we have
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obtained

Ty T7 ¢l < O+ oy a) ™ ||T,

” ngHL2 A“Xfoa(:co,w)H

(B1<[$1.lel<rpo

sup .
z,€G Lo (G)

oo [27.0° So we now want to study the operator

norm of 77 ;, which is equal to the operator norm of 7;;;. Since the symbol of
Tyrjrj is locahsed in space we may apply Lemma 5.7.9 and obtain

The supremum is equal to ||o|| S8

1Tl 22y = Tojeillzw ) = 10p (i (¥it0) (x(R))) [ 2(12(c))
< O|B(i,2)|'* sup 1XZ {xi(@)o (@, m) (¥505) (H(R)} | )

re
(B1<[Q/2]
<C su X7 ()| || X 2o (2, 7)) | (¢j3050) (m(R)) ||
> P 5 ZL(Hr) 1% L(Hx)
zed, re@
[5]<!'Q/2'| [B1]+[B2]=[A]
<C sup || XPPo(z,m)l|2m) = Cllollsg ,0,r/21,0
zeG, meG
[B2]<[Q/2]

since the X?2y,’s are uniformly bounded on G and over i.
Thus, we have obtained

T Ty llee < COLA+ |a ail) P lollsy 070210 6]l 22 lolls9 , rpo.r 27,0

and this concludes the proof of the first part of Lemma 5.7.11. g

Proof of Lemma 5.7.11 Part (2). Recall that each xkr,(y) is supported, with re-
spect to z, in the ball B(z;,2). We compute easily that the kernel of T;7 T} is

HI*I’(x»w):/ ’{I’:vz_l(wz_l)/iszfl(z)dz'
G

Therefore, i1, is identically 0 if there is no z such that xz=1 € B(x;,2)NB(zy,2).
So if |z}, x| > 4C, (which implies B(w;,2) N B(z;,2) = ) then T3 T = 0. So we
may assume |z, z;| < 4C,.

The idea of the proof is to use a quantity which will help the frequency
localisation; so we introduce this quantity (I + R)" and its inverse, where the
integer r € N is to be chosen suitably. We can write

TiTy = Ti Ty (R) = TiTy (14 R)” (1+R) "4y (R).

By the functional calculus (see Corollary 4.1.16),

[T+ R)"" (R)2r2(a) = iglg(l NP (N) < G270
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Thus we need to study 77T (I +R)". We see that its kernel is

Ke(w) = /G(I—|—R)T/fl-/mq(wz_l)nﬁm,l(z)dz

B / (I+R)T'%i’xw*IZ(Z)H;mwflz(zilw)dz'
G

We introduce (I+R)"(I+ R)~" on the first term of the integrand acting on the
variable of K;/,,,-1,, and then integrate by parts to obtain

’%I(w) = Z XzBll z(I+R)7T(I+7~?’)Tﬁi’ww_1z1(z)
[B1)+ (8] +[Ba)=rv * @
Xi? zngg zﬂIac'w 122(Z?jlw)dz

Z / XzBll zw—lz I+ R)_T(I—i_,ﬁ')r‘%i’zl (Z)

[B1]+[B2]+[Bs]=rv
xP (X P kp,) (2 w)de.

Zo=xW

Re-interpreting this in terms of operators, we obtain

TiTy(I+R)" = > Op(n(X%)XP0s(e,m)"
[B1]+[B2]+[B3]=rv
Op (w(I+ R) " XProy (z, m)m(1 + R)").
By Lemma 5.7.9,

10p (x(1+R) ™" X[ oy (w, ))m(L+ R)") | 2(2(c)
<C sup I+ R) XX 0w (@, I+ R) | g
B<[1
< HUHsOOp Brl+[L7],rvo
and
|0p (m(XP) X201 (2, 7)) | 2(22(c))

< sup (X XEX 0w, ) (r(R)) | e )
[BI<[$1
B3]

< sup [[7(XP)r(I+R)T g
(BI<[ %]

x || (T + R)
x || (T+ R)

<Cp Jf“”“sgo, [B2]+11.185]

H X0y (o, w1+ R) T | ) ¥

0y (1 (R)
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by Lemma 5.4.7. Hence we have obtained

* —j'r 2 ;B3]
17Tl 2z < G277 3L ol omargrm?
[B1]+[B2]+([Bs]=rv

Crg(jfj’)T”J”zO

O,O,U,TVJrl(%“ v’

IN

This shows Part 2 of Lemma 5.7.11 up to the fact that we should have —|j — j/|
instead of (j — j') but this can be deduced easily by reversing the role of I and I’,

and using || T|| 2 2(a)) = 1T* | 22(@))- s

This concludes the proof of Lemma 5.7.11. Therefore, by Lemma 5.7.10,
Proposition 5.7.7 is also proved.

5.7.3 A bilinear estimate

In this section, we prove a bilinear estimate which will be the major ingredient in
the proof of the L2-boundedness for operators of orders 0 in the case p = § € (0,1)
in Section 5.7.4.

Note that if f,g € S(G) and if v € Ny then the Leibniz properties to-
gether with the properties of the Sobolev spaces (cf. Theorem 4.4.28, especially
the Sobolev embeddings in Part (5)) imply

I+ R (D) & Do X X¥glre

[B1]+[B2]<vy

< S IX flle ) IX gl
[B1]+([B2]<vy

S > IX a1 X9l 2 o)
[B]+([B2]<vy

S N fllastor@llgllze @y,

where s > /2. As usual, R is a positive Rockland operator of homogeneous degree
v; we denote by FE its spectral decomposition, see Corollary 4.1.16. Consequently,
if f, g are localised in the spectrum of R in the sense that f = E(L;) f, g = E(I;)g,
where I;, I; are the dyadic intervals given via

I;:=(207227), jeN, and Iy:=][0,1), (5.72)
we obtain easily
[T+ R)"(fo)llrzc) < Hf”L?(G)Hg||L2(G)2(H%)max(i’j)- (5.73)

Our aim in this section is to prove a similar result but for v < 0:
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Proposition 5.7.12. Let R be a positive Rockland operator of homogeneous degree
v. As usual, we denote by E its spectral decomposition. There exists a constant
C > 0 such that for any v € R with v + Q/(2v) < 0, for any i,j € Ny with
li — 3] > 3, we have
Vf,ge L*(G)  f=E(L)f and g=E(l)g
2y max(i,j
= [T+ R) (f9)llz26) < Cllfllz2llgllp220Fz0) max@d),

The intervals I;, I; were defined via (5.72). The proof of Proposition 5.7.12
relies on the following lemma:

Lemma 5.7.13. Let R be a positive Rockland operator. As in Corollary 4.1.16, for
any strongly continuous unitary representation m1 on G, Er, denotes the spectral
decomposition of m1(R). There exists a ‘gap’ constant a € N such that for any
1,5,k € Ng with k < j—a andv < j—4, we have

¥r,m€G  Ergn(L)(E:(Ij) ® Ex(I})) = 0.
and R
vVr,me G (B-(I;) ® Ex(It)) Ergr(I;) = 0.

Proof of Lemma 5.7.13. We keep the notation of the statement. We also set
Hﬂ'hj = E7T1(Ij)7 J € Ny,
for any strongly continuous unitary representation m; on GG. We can write R as a

linear combination
R = Z Ca X,
[a]=v

for some complex coefficients c,. For any strongly continuous unitary representa-
tion 71, we have

m(R) =Y cam(X)™.

[a]=v

Let 7,7 € G. We consider the strongly continuous unitary representation
m =7 ®7. For any X € g, its infinitesimal representation is given via 71 (X) =
Xz—o{m(z)}, see Section 1.7. Consequently, we have for any u € H,,v € H,

m(X)(u,v) = Xp—om(z)(u,v)

Xp—o7(z)u @ m(x)v
= 71(X)u®@v+u®r(X)v.

In other words,
(rem)(X)= T(X) @Iy, + 1y ®7T(X).
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We obtain iteratively

remX)* =7(X)* @Iy, +I, @n(X)*+ > 7(X)" @r(X)%,
[81]+[Bz]=lc]
0<[B1],[B2]<[e]
where > denotes a linear combination which depends only on o € N and on the
structure of G but not on 7,7 € G. This easily implies

(rem(R) =) calr@m)(X)"

[a]=v

=7(R) @Iy, +In, ®7(R) + > (X)) @n(X)?,

[B1]+[B2]=V
0<[B1],[B2]<v

where Y denotes a linear combination which depends only on R and on the
structure of G but not on 7, 7. Hence there exists a constant C' > 0 independent
of m, 7 such that for any v € H,, v € H,, we have

(T @m)(R)(uw@v)n,e. = IT(R)ulla, llvlla, — lullw, [7(R)vl,

—C Y ImX) e 7 (X) P20 4,
[B1]+[B2]=v
0<[B1],[B=]<v

If w € H, ; then from the properties of the functional calculus of 7(R), we have
I (R)ull3, € llulla, I

Furthermore, the properties of the functional calculus of R and 7(R) yield
() ullae, < 17X B (1) 2 e, »

51

and, as XA R is bounded on L2 (G) by Theorem 4.4.16, we have

17X E (L)l 2.y < IXPE)|2@a)
181 181
< NXPRTV g IR 7 EU) |l 2w o))
S 2j[ﬁy1]_

We have similar inequalities for v € Hr . For any unit vectors u € H,; and
v € Hr i with j, k € N, we then have

H(T ® W)(R)(U ® U)”HT@W > 2]’72 _ 2k _ Cl Z 2]’[ﬁ1]-f}—k[ﬁ2]’

[B1]+[B2]=V
0<[B1],[B2]<v
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where the constant C7 depends only on R and on the structure of G. We notice
that

Z 2j[ﬁ1]tk[ﬂ2] _ 2] Z 2[5U2](k_j) S 2]-0/2_(“)1’
[B1]+[B2]=v [B1]+[B2]=v
0<[B1],[B2]<v 0<[B1],[B2]<v

if k— j < —a. Here C’ is a constant which depends on the structure of G and on
v. We choose a € N the smallest integer such that

CC'27* 2 <1/2 and 27T < 1/2.

Note that a depends only on the structure of G and on R. When k — j < —a, we
have obtained

[(r@m)(R)(u@v)|n,y, > 2072-2F—C2iC27
=2/72(1 — CC'2avi+2) 9k
> i3 _gima 5 9i—4

This implies that u ® v can not be in H,gx » for i € Ny such that 2¢ < 274, This
shows the first equality of the statement when i, j,k € N. The case of £k = 0 or
1 = 0 requires to modify slightly some constants above and is left to the reader.
This shows the first equality of the statement and the second follows by taking
the adjoint. This concludes the proof of Lemma 5.7.13. O

Proof of Proposition 5.7.12. We keep the notation of Proposition 5.7.12 and Lem-
ma 5.7.13. We notice that it suffices to prove the statement for large enough
max(4, j) and that the rdles of i and j are symmetric. Hence we may assume that
i1 < j — 4 and that j > a where a is the ‘gap’ constant of Lemma 5.7.13

Let f,g € L*(G) such that f = E(I;)f and g = E(I;)g. The inverse formula
for g yields

(1+R)(fg)(x) = /@ﬂ(w(g)a T+ R f@)m(@)})dpu().

We also have w(g) = E.(I;)m(g). By the Cauchy-Schwartz inequality and the
Plancherel formula, we obtain

[T+ R)(f9) (@) < llglZ2(c /@ 1Ex(1;) (1 + R)Z{f (x)7(2) } [zsdpa(m).

Integrating on both side over = € G, we have

0+ Ry o)y < ol [ [ 1B+ RIS @ye(a) ().
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For each 7 € 67 we fix an orthonormal basis of H,, so that we can write the
Hilbert-Schmidt norm as the square of the coefficients of a (possibly infinite di-
mensional) matrix. The Plancherel formula then yields

where
FE(1;)(I14+R)" frl],, ()
=/< R {F @) [Ex(I)m(@) ]} ()"

— 71+ R) /G @) Ea (L) 7(2)]aa 7(x)" da
_ [Eﬂuj) 71+ R) [ S0 0 7))

ki,

Here the notation []x;,. means considering the (kl)-coefficients in H, in the tensor
product over H, ® H.. We recognise

/G f(@)(r © ) (@)de = (x* @ 7)(f)
thus
Z IF[Ex (L) (1 +R)Y flia (T) s cau

=1 (Bx(Ij) @ 7L+ R)) (7" @ 7)(f)) s, o,

So far, we have obtained

/ / | En (1)1 + R)2{f (@) ()} Bsdledpa(m)
- / / | (Bx(L;) 71+ R)Y) (7" © 7)) s, dit(7) ()

GJG
= I (Ex(I;) © T(T+ R)7) (7" @ 7)(f)) s rer 07 |72 (dpu(r) s ()
We fix a dyadic decomposition, that is, we fix 1)g,1; € D(R) supported in
(—=1,1) and (1/2,2), respectively, valued in [0, 1] and such that

YAZ0 Y (N =1 with (X)) =1 (2-*DN) if k€ N.
k=0
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The series >, ¥, (7(R)) converges to Iy, in the strong operator topology and we
can apply the following general property:

(B © C)Allus(r. @)

oo

Z (L) Cllz ) (B @ Yr(T(R))) Allas (., 09, )

to B=E.(I;),C=1(I+R)", and

A= (" ©7)(f).

We keep momentarily this notation for A and C. As ||E-(I,)C|| 23,y S 27%, we
have obtained

I (Ex(1;) @ T(L+R)) Allas (2, 0 |2 (dpa(r),du(r))

<ZWIIH 7) © Ur(T(R))) Allss(rxwm,) |22 (ap(r) dpa(x)) -

Now
A= ((r"&7)(f)) = Exro- (L) (7" @ 7)(f)),

thus we can apply Lemma 5.7.13 and the sum over k above is in fact from k > j—a.
We claim that

I (Bx (1) ® ¥ (T(R))) Allss(re. a2 aucryducey S 1225, (5.74)

Collecting the equalities and estimates above, (5.74) would then imply

- I
1T+ R (fDlF2i) S N9zl 72 Y 2802,

k=j—a

and would conclude the proof of Proposition 5.7.12.
Hence it just remains to prove (5.74). Natural properties of tensor product
and functional calculus yield

1 (Ex (1) @ ¥r(T(R))) Allas (e3¢,

(L
<N E-I) 2 | T, @ Y(T(R))) Allas(r, om,)
< || Iz, @ Yr(T(R))) Allas (0, )-

We notice that

am®wvmmA=Lﬂww®mwmmﬂmm,
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and introducing an orthonormal basis on H.,,

(e, © U(r(R)) A] o = /G £ (@) [ (r (R ]y 7(2)de
= FUr R (1) = F{S k(R (1)} (7).

Therefore we have

I (T3, @ Yr(T(R))) AHHS(’H o) T2 (), ()
/ 3 / I F e (R (5 Bs e dia(m)ds(7)

k'l

/ZH fwk l’k’ '_1 ||L2(G d/.L(T),

KU
having applied the Plancherel formula in 7. Simple manipulations yield

S @i D niey = MR e

k'l k'l

-y /\f [ (r(R) o

kv

/ | f ()] de| (V1 (T(R)) ]y |2

k'l

= /122 ) 19 (7 (R)) s ae. ) -

Integrating over 7 € CA?, we can apply the Plancherel formula and obtain
LS M0 R) (Dl i) = U Bl RIs
k'l
Using the properties of dilations, we have for any k € N:

Qk

l¥k(R)dollL2(c) = 272

(R)dollz2(c)

Collecting the equalities and inequalities above yields that the left-hand side of
(5.74) is

I (Ex (L) @ ¥r(T(R))) Allas (@) |22 (dp(r) du(r))
Q-1
< fllzz@22  [[¥1(R)doll2(q)-

By Hulanicki’s theorem, see Corollary 4.5.2, [[1)1(R)dol/z2(¢) is a finite constant.
This shows (5.74) and concludes the proof of Proposition 5.7.12. O
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5.7.4 Proof of the case Sg’p

In this section, we prove the L?-boundedness of operators in \Ilg)p with p € (0,1):

Proposition 5.7.14. Let o € S) , with p € (0,1). Then Op(o) is bounded on L*(G)
and the operator norm is, up to a constant, less than a seminorm of o € Sgp;
the parameters of the seminorm depend on p but not on o and could be computed

explicitly.

The rest of this section is devoted to the proof of Proposition 5.7.14. The
strategy is broadly similar to the one in [Ste93, ch VII §2.5] for the Euclidean case.
Technically, this means using analogous rescaling arguments but also replacing
certain integrations by parts on the (Euclidean) Fourier side with the bilinear
estimate obtained in Proposition 5.7.12.

Strategy of the proof

We fix a dyadic decomposition, that is, we fix 19,91 € D(R) supported in (—1,1)
and (1/2,2), respectively, valued in [0, 1] and such that

YAZ0 ) (A =1 with ¢;(A) =41 (27U if j €N

Let 0 € ngp. We define

oj(z,m) =o(z,m)Y;(r(R)) and T, :=Op(o;)=Tv;(R),

where T'= Op(0o).

It is clear that T;T; = T'(1j9;)(R)T* is zero if |j —i| > 1 and the strategy
of the proof is to apply the crude version of the Cotlar-Stein Lemma, see Propo-
sition A.5.3. We will first prove that the operator norms of the 7}’s are uniformly
bounded in j by a S9 » p-Seminorm, see Lemma 5.7.15. Then we w111 show that there
exist a constant C > 0 and a SO p-seminorm such that

> T Tz @) < OHUHZSSYP,a,b,c' (5.75)
[i—3]>3

These two claims together with Proposition A.5.3 and Remark A.5.4 imply that the
series ), Tj € Z(L*(G)) converges in the strong operator topology of Z(L?*(G))
and that the operator norm of the sum is < [|o][so a.b,c- As Op(o) = 32, T in
the strong operator topology, this will conclude the proof of Proposition 5.7.14.

Step 1

Let us show that the operator norms of the 7j’s are uniformly bounded with
respect to j:
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Lemma 5.7.15. The operator T; = Op(o;) is bounded on L*(G) with operator norm
< C||0||53 abe With a,b, ¢ as in Proposition 5.7.7.

The proof of Lemma 5.7.15 uses the following result which is of interest on
its own. In particular, it describes the action of the dilations on G.

Lemma 5.7.16. Let o be a symbol with kernel k, and operator T = Op(o). Let
r > 0. We define the operator

T, :8(G) 2 ¢ — (To(r-) (r™ ).
Then (with operator norm possibly infinite)
ITl2z2c) = 1Tr 226y

Furthermore, the symbol of T, is
o, :=0p YT,) given by o.(z,7):=0 (Tﬁlz,ﬂ'(r)> ,
where the representation 7™ is defined by
7 (y) i= m(ry).
The kernel of o, is 1~ 9k,—1,(r=1). Moreover, we have
Fa(r)@) = Fo(r%(r")) (x),
AP} = A Fe () (),
f@E(R) = frm(R)),

for any a € Nij, any positive Rockland operator R of homogeneous degree v, and
any reasonable functions f and k (for instance f measurable bounded and K in
some Ko p).

Proof of Lemma 5.7.16. We keep the notation of the statement. The property
ITll2(z2(cy) = IITr ]l 2(22(cy) follows easily from [|¢(r-)[|2 = 7~/%[[¢]|2. We com-
pute

(To(r ) (ra) = / B(ry) orro (™ r ) dy
G

/qb(z) K1, (r Lz e la)rQdz
G
¢ * (riQf@rflz(rfL)) ().

Therefore, the kernel of the operator 7). is 7=k, —1,(r~!-). The computation of
its symbol follows from

Fe (r=9n(r=t)) (m)

/GT_QK(T_lx)W(x)*dx

/ K(yg)r(ry)de = Fo(r)(x),
G
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The difference operator applied to the above expression is
A {Fam))} = A {Fa (%) (7))
= Fc (Ga() r™ ( 1) (m)
= NFe (r @) (1) (m)}
= rll{AYFg(k)} (D).
The kernels of the operators f(R) and f(rYR) are respectively f(R)d, and
r=@f(R)d,(r~1) (see (4.3) in Corollary 4.1.16, and Example 3.1.20 for the ho-

mogeneity of d,). Since the group Fourier transform of the former is f(7(R)), the
group Fourier transform of the latter is f(r*n(R)) = f(x("(R)). O

We can now show Lemma 5.7.15 using the rescaling arguments (together with
the lemma above) and the case p =6 = 0.

Proof of Lemma 5.7.15. Using the Leibniz formula in Proposition 5.2.10, we first
estimate

lr(+R)» XPeA%oj(z, m)n(I+R) ™7 | 2.
plag]— [50])77

<Co Y, In@+R)P XA (2, m)n(1+R) 2
o+ [az] =[]

([a1]=[Bo]) =~

gquad  [[w(I+R)™ T A%y (r(R) T (I + R) 7 | 2o
»u[azHP([al] [Bo])
< Caullolise, anl ot >, 277
(o] + [z ] =[]
< Callolisy, faol g, 277 (@D, (5.76)

by Lemma 5.4.7.
For each j € Ny, we define the symbol 0’;» given by setting

oi(x,m) =0 (Q*jp:c,w(sz)) :
By Lemma 5.7.16, the corresponding operator 7 := Op(o7;) satisfies
(Ti¢)(x) = (T;6(2°-)) (277°x).
Lemma 5.7.16 and Proposition 5.7.7 imply that
IT5ll 212y = 1Tl 2x2c) < Cllojllsg g ab,e (5.77)

with a,b, ¢ as in Proposition 5.7.7. So we are led to compute ||J§||Sgo’a’b’c. By
Lemma 5.7.16, we have '

XPo ACeg! (2, m) = 29BNl B Ao

T,=2"dPg .,ro_ﬁ(zﬂp)

- 2]p([o‘o]_[ﬂo])ﬂ-( +2IPR)"%
( o(1 —|—R) _2 iog Aa"aj(aro,ﬂo)Wo(I—FR)*%

IPT\ %
)wo:w(ij) (+2 R)
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so that

(14 R)¥ X o Ao, m)m(l+R) ™V | 230,
< giplleol=1BD || r(1 + R) ¥ (1 + 29PR) ™% (PR
I (7ol RYE XD, 0 A% (w0 o) o1+ R) )

o=2"7Jrg

|l 23

7‘.0:71.(23‘0)

7@+ 27PR) ¥ m(L+R) ™ || o (n,)-

By the functional calculus (Corollary 4.1.16),

5 . 5 1+ A v ip
I+ R)vr(I+ 20PR)"% < — 2 ) <2
[r(I+R)»m(I+ ) lzee < igp()(lJrQ]P)\) - ’
_ 1+27P0\" :
I+ 2°R)E (14 R) Fllgpy < sup( —on2) < C2ird,
T A>0 1+ A

for any j € Ny. Thus, we have obtained

|l (I + R)%X50A“°U§(x, m)m(I+ R)_% |22

< ¢2irlleo]=1Bo]) sup ||ﬂ-o(1+R)%xf:Aaoaj(xo’%)%(I_i_R)—%”g(HW)
z,€G, ‘n'oeé

< Cllollsy , faol 181,171

because of (5.76). Taking the supremum over 7 € G, x € G, [a,] < a, [8,] < b and
|v] < ¢ yields

5153 p.a0.c < Cllollsg,.abe-

With (5.77), we conclude that [T} #(r2(c)) < Cllollsg, ab.e- O

Step 2

Now let us prove Claim (5.75). This relies on the bilinear estimate obtained in
Proposition 5.7.12.

Proof of Claim (5.75). For each i € Ny, we denote by k; , the kernel associated
with ¢;. Then one computes easily the integral kernel Kj;(x,y) of the operator
T}T;, that is,

(TIT) f(z) = /G Ki(x.y)f(w)dy, | €S0,

with
Kji(x,y):/ /%jﬁz(x_lz)m,z(y_lz)dz.
G
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By Schur’s lemma [Ste93, §2.4.1], we have

HTfTin(m(G)) < max (SUP/ ‘Kji(mayﬂdyu SUP/ |Kji($,y)|d$),
zeG JG yeG J G
5 HT;TZ'H\IIgyp,a’b’c + |yI}}3|X§1 |K]7(z7y)|7

since the estimates at infinity for the kernels of a pseudo-differential operator
obtained in Theorem 5.4.1 for p # 0 yield

|Kji(, y)| S ||T;Ti‘|\11/2)m,a1,b1,c1|y_11'|_N

for any N € Ny. (We have assumed that a quasi-norm |- | has been fixed on
G.) The properties of composition and of taking the adjoint of pseudo-differential
operators (see Theorems 5.5.3 and 5.5.12) together with Lemma 5.4.7 yield

itj

||,17jikn||‘1/gﬁp,al,b1,c1 rg ||Uj||szﬁp,a2,b2,czHJZ-”S;’p,as,b:;,C(; SJ ||U||%B,p,a4,b4,c42 Yo

We now analyse max|,—1,<1 |Kj;(2,y)|. So let 2,y € G with |y~ 'z| < 1. We
fix a function x € D(G) which is a smooth version of the indicatrix function of the
ball B(0,10) = {z € G : |x~'2| < 10} about 0 with radius 10, that is, we assume
that x = 1 on B(0,10) and x = 0 on B(0,11). Let us assume that the quasi-
norm is in fact a norm, that is, it satisfies the triangle inequality ‘with constant
1’ (although we could give a proof without this restriction, it simplifies the choice
of constants and therefore avoids dwelling on unimportant technical points). We
can always decompose

Kilen) = [ Raale iy (o ™2) + (1= (o™ 12) ds
= L+ Is.
We first estimate the second integral via
LR P N e el e
’ ’ |z—1z|>10

having used the estimates at infinity for the kernels of a pseudo-differential op-
erator obtained in Theorem 5.4.1 for p # 0. As |[y~'z| < 1, the last integral is
just a finite constant if we choose Ny = @ + 1 for instance. We estimate the
S;y p-seminorms with Lemma 5.4.7 and we obtain then

itJ

27

|I2| S HJH%S,IJ,UJ,ZH#W

We now estimate the integral I;:

I :/ Rjo (o7 )k L (y 1 2)x (27 2)dz.
G
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It is of the form fG f(z,2)dz for a given function f on G x G. Simple formal
manipulations yield for any N € Ny

/ f(z,z)dz = /( T\’,)Z2 Z( +R)z_2Nf( ’22)
G G 4 dz
/G(I )21 Z(I R)ZQ Zf(Z1,Zz)dz7

having used integration by parts or equivalently R! = R, since R is essentially
self-adjoint. Hence, we obtain formally in our case

L :/(I+R)z1 z(I+R zo= Z{K:];zl Z‘_lzg)fii,zl(y_1Z2)X(Jj_1Zl)}dZ,
G

where N € Nj is to be fixed later. Note that the expression in z; is supported in
B(z1,11), hence so is the integrand in z. This produces the following estimate

|Il| § / S(ZQ)dZQ
|z— 122 <11

where S(z2) is the supremum

S(z) = su%| (I+7R) (I—|—R {/1] 2 (T 122)}-@,'721(yilzg)x(xflzl)ﬂ
z1€

S

(I +R) ( +R)Z2 Kja (™ 122)”1}21(y_IZQ)X(x_lzl)‘

L2(dz1)

5 Z H( +R) {X5101KJ721( _122) X,gloz“{i,h(y_le)}HLz(B(m’n),dzl)a

[Bo1]+[Boz]
<vN+sp

by the properties of the Sobolev spaces, see Theorem 4.4.28, especially the Sobolev
embedding in Part (5). Here so € vN denotes the smallest integer multiple of v

such that *¢ > @/2. By the Cauchy-Schwartz inequality, as B(z,11) has finite
volume independent of x, we obtain

FEYREDS Z [T+ R)NAXL R 2 (27 20) XDk, (y 122)}’|L2(B(;r711)27dz1d22)
[Bo1]+[Boz]
<vN+sg
< sup H(I + R)Z_zN{X’BOlIiJ (7 ) Xfof%,zl (Y~ 29
z1€B(z,11)
[Bo1]+[Bo2] <vN+so

Mz

Choosing N > we can apply Proposition 5.7.12 to the L?-norm above, so that

2u7

[T+ RYAXE Rz, (27 22) X220z, (0 220} 2y

< HXZl KJ 1 Z2 HL2(dZ2) HX *Ki 121 Z2 HL2(dz) ( N+ )max(zﬂ)
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By Corollary 5.4.3, we have

||X§1()1ijzl (ZQ)HLQ(dzz) ~ ”XBO O-J”Sm ,a7,bz,c7?
where m' is a number such that m’ < —Q/2, for instance m’ := —1 — Q/2. By
Lemma 5.4.7, we have (with p = 9)

.m'—8[Bo1]
v .

| X500,

S’"’p,a7,b7,07 ~ || ||Sg,paa87b8708

We have similar estimates for HXf Ki 2 (22 HL2 dz2)’ thus

Bo1 z . Boz2
o (X R (#2)l| oy (1K R ()
<vN+so
m/—8[8o1] .m’—5[Bga]
<o max 2777 v 27—
|| ||Spp,a9,b9,09 [B ] [502]
<VN+S()
< ||g||SO b gmax(i,j)(—2m’+8(N+s0))
P 9,09,C9

The estimates above show that the first formal manipulations on I; are justified
and we obtain

1] S 0120y 0,270 (0N =2 b0+ ).

0,0209,bo,Co

Consequently, we have

max ‘Kji(l‘,y”s HUH%O b (2_1 +2max(lj)( (1=8)N—2m/+s0+5> ))
z|<1 ooP

thus

1T Tl waan S oWy, ape (27F +2mmnCaON=2nltat )

As 6 = p € (0,1), we can choose N such that —(1 — §)N — 2m’ + s¢ + % < —1.
Summing over ¢ > j + 3 and using the symmetry of the role played by ¢ and j
vield (5.75). O

Hence we have shown Proposition 5.7.14 and this concludes the proof of
Theorem 5.7.1.

5.8 Parametrices, ellipticity and hypoellipticity

In this section, we obtain statements regarding ellipticity and hypoellipticity which
are similar to the compact case presented in Section 2.2.3 where the Laplacian has
the role of the positive Rockland operator. However, on nilpotent Lie groups, since
G is not discrete and the representations are often not (and can be almost never)
finite dimensional, the precise hypotheses become more technical to present.
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5.8.1 Ellipticity

Roughly speaking, we define the ellipticity by requiring that the symbol is invert-
ible for ‘high frequencies’. These ‘high frequencies’ are determined with respect to
the spectral projection F of a positive Rockland operator R, and its group Fourier
transform E, see Corollary 4.1.16.

We will use the following shorthand notation:

%)= En(A, +00)H. (5.78)

Since E (A, 00) = Fg(1(a,00)(R)do) yields a symbol acting on smooth vectors (see
Examples 5.1.27 and 5.1.38), M3y s a subspace of H7e.
We can now define our notion of ellipticity:

Definition 5.8.1. Let R be a positive Rockland operator of homogeneous degree
v. Let o be a symbol given by fields of operators acting on smooth vectors, i.e.
o(z,)) ={o(z,") : H? — HF,m € G} is in some L5 (G) for each z € G.

The symbol o is said to be elliptic with respect to R of elliptic_order m,
if there is A € R such that for any v € R, z € G, p-almost all # € G, and any
u € H®y we have

ol
v

VyeR v+ R)¥o(z, m)ully, > Cyllrd+R)nd+R) *ullp,. (5.79)
with C, = Cy = .m, A~ independent of (z,7) € G x Gandu e HN-

We will say that the symbol o or the corresponding operator Op(o) is
(R, A, m,)-elliptic, or elliptic of elliptic order m,, or just elliptic.

The notation H3°) was defined in (5.78). As H:°, is a subspace of H3° and
since 7(I4+ R)¥ and o(z,-) are fields of operators acting on smooth vectors, the
expression in the norm of the left-hand side of (5.79) makes sense.

In our elliptic condition in Definition 5.8.1, ¢ is a symbol in the sense of
Definition 5.1.33 which is given by fields of operators acting on smooth vectors. It
will be natural to consider symbols in the classes S:,’;; to construct parametrices,
see Proposition 5.8.5 and Theorem 5.8.7.

Our definition of ellipticity requires a property of ‘z-uniform partial injectiv-
ity’. Of course, we note that 7(I1+ R)v7(I+R) = n(I+ R)WTD

Naturally, we will see shortly in Corollary 5.8.4 that it suffices to check (5.79)
for a sequence of real numbers {7, £ € Z} which tends to oo as ¢ — +o0.

Our first examples of elliptic operators are provided by positive Rockland
operators:

Proposition 5.8.2. Let R be a positive Rockland operator of homogeneous degree
v. Then we have the following properties.

1. The operator (I + R)%, for any m, € R, is elliptic with respect to R of
elliptic order m,.
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If f1 and fo are complex-valued (smooth) functions on G such that

|f1(z) + fa(z) ]

A>
ey T >0 for some A >0,

then the differential operator fi(x) + fa(z)R is (R, A, v)-elliptic.
The operator E(A,00)R, for any A > 0, is (R, A, v)-elliptic.

More generally, if f is a complez-valued function on G such that infg | f]
> 0, then f(z)E(A,00)R is (R, A, v)-elliptic.

Let i € C*°(R) be such that
Y)(—o0,0] =0 and  Pjja,,00) = 1,

for some real numbers A1, Ay satisfying 0 < Ay < Ao, Then the operator
PY(R)R is (R, Aa,v)-elliptic.

More generally, if f is a complex-valued function on G such that infg | f|
> 0, then f(x)Y(R)R is (R, As,v)-elliptic.

Proof. The symbols involved in the statement are multipliers in R. By Example
5.1.27 and Corollary 5.1.30, the corresponding symbols are symbols in the sense of
Definition 5.1.33 which are given by fields of operators acting on smooth vectors.
Hence it remains just to check the condition in (5.79).

Part (1) is easy to check using the functional calculus of 7(R).

Let us prove Part (2). Let A, f1, f2, and m be as in the statement. The

properties of the functional calculus for 7(R) yield that, for each x € G fixed and
u € HZ®) we have

1+ R)*a(I+ R)u = ¢o(n(R)m(I+ R)? (fi(x) + f2(z)7(R))u,

where ¢, € L™[0, 00) is given by

1+A

9N = L+ B

1>\ZA'

Our assumption implies that ¢, is bounded on [0, co) with

| f1(z) +f2($))‘|>1 < .

¢:= 228 19zlloe = <m€G,)\>A 14X

The property of the functional calculus for 7(R) yields

Ve € G ||¢(m(R))l. 2,y < C.
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Thus we have

ol
v

T(L+ R)ulls, = [[62(m(R)m(L+R)¥ (fi(x) + fo(x)m(R))ull,
< Olln(L+ R)¥ (1) + fa(@)m(R))ulla, -

ITI+R)

This proves Part (2).

Let us prove Part (3). The properties of the functional calculus for 7(R) yield
I+ R)u= ¢(n(R))Er(A, 00)7(R)u,

where ¢ € L>°[0, 00) is given by

Moreover,

6(m(R))7(I+R) ¥ Ex(A, 00)m(R)ull
6]l oc |7 (I + R) ¥ Er (A, 00)m(R)ull3e,,-

(T +R) |,

™

IA

Since C' = ||¢||>} is a finite positive constant, we have obtained
Cllr(L+ R ully, < |71+ R)¥ Ex(A, co)m(R)ull,

This shows that E(A, c0)R, is elliptic.
If f is as in the statement, we proceed as above, replacing ¢ by

1+ A
Pe(N) = ml(A,oo)(/\)a

and C such that C~! is equal to the right-hand side of the estimate

14 =C L

sup

1
[ pzl it /] S

This shows Part (3).

For Part (4), we proceed as in Part (3) replacing 1(a o) by ¥()\) and A by
As. O

The next lemma is technical. It states that we can construct a partial inverse
of an elliptic symbol. The analogue for scalar-valued symbols would be obvious: if
la(z,&)| does not vanish for || > A then we can consider 15> 21/a(z,§). However,
in the context of operator-valued symbols, we need to proceed with caution.
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Lemma 5.8.3. Let o be a symbol (R, A, m,)-elliptic as in Definition 5.8.1.

For any v € Hy°, if there is a vector u € H°y such that o(x,m)u = v then
this u is necessarily unique. In this sense o(z, ) is invertible on H3°y and we can
set

1 Ju ifv=o(x,mu, ue M
E (A, 00)o(z,m)" " (v) := { 0 ifHE 30 L ole,mHZ,. (5.80)
This yields the symbol (in the sense of Definition 5.1.33) given by fields of operators
acting on smooth vectors

{Ex (N, 00)0(z, )" s HP — HZ, (z,7) € G x G} (5.81)
Furthermore, for every v,

1Ex(A, 00)o (2, m) ™ | oo

¥y t+mo

@ <0, (5.82)

where C. is the constant appearing in (5.79) of Definition 5.8.1.

If o is continuous in the sense of Definition 5.1.84, then the symbol in (5.81)
is continuous in the sense of Definition 5.1.34. If o is smooth, then the symbol
in (5.81) is continuous and depends smoothly on x € G in the sense of Remark
1.8.16.

Proof. Recall that (A, 00) = Fg(1(a,00)(R)d0) yields a symbol acting on smooth
vectors, see Examples 5.1.27 and 5.1.38.
If v = o(x, 7)u where u € H3°), then, using (5.79), we have

mo+vy

eI+ R) ™5 ulla, < O w1+ R) o, m)ulla, = O (L +R) ¥ vl -

It is now easy to check {E.(A,c0)o(z,m)~L, (z,7) € G x G} is a symbol in the
sense of Definition 5.1.33 and that the estimates in (5.82) hold.
If o is continuous, then one checks easily that the map
G >a— Br(A 00)o(z,m) e L2 . (G)
is continuous. Consequently {E, (A, o0)o(z, 7)~L, (z,7) € G x G} is continuous.
If o is smooth, then {E, (A, 00)o(x, m)~ 1, (x,7) € G x G} depends smoothly
in z € G, see Remark 1.8.16. O

Corollary 5.8.4. Let R be a positive Rockland operator of homogeneous degree v.
The symbol o satisfies (5.79) for each v € R if and only if o satisfies (5.79) for a
sequence of real numbers {yg, £ € Z} which tends to oo as { — too.

We may choose the constants C., such that max| <. C, in (5.79) is finite for
any ¢ > 0.
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Proof. From the proof of Lemma 5.8.3, we see that o satisfies (5.79) for v if and
only if

1 .
21é11G)||Eﬂ-(A, oo)o(z,m)” ||L3°w+mo(G) <00

is finite. The conclusion follows from Corollary 4.4.10. 0

The next statement says that if a symbol in some S7’ is elliptic and if the
elliptic order is equal to the order m of the symbol, then We can define a symbol
in S §" using the operator Er(A,c0)o(z, 7)~! defined via (5.80). This will be the

main ingredient in the construction of a parametrix, see the proof of Theorem
5.8.7.

Proposition 5.8.5. Assume 1 > p > § > 0. Let 0 € S5 be a symbol which is
(R, A, m)-elliptic with respect to a positive Rockland opemtor R. Ifp € C*(R) is
such that

P)(—o0,h) =0 and  Yjjp,,00) = 1,

for some real numbers A1, Ao satisfying A < Ay < Ao, then the symbol
{Y(x(R)o (w,7) , (z,7) € G x G},

given by
Y(n(R))o ™ (2, 7) = ¢(n(R)) Ex (A1, 00)o (w, ) 7,

is in S 5. Moreover, for any a,,b, € No, we have

(7 (R))o ™" (x, W)Hs*g",ao,bo,o

’ / ’ /
aj+bi+1 a5 +by
<C Z Chonr 0@ Mg 2 b, mi>
- \'y\<pao+6b p,8770 70
at,a%<a,
b} ,b5<b,

where C' > 0 is a positive constant depending on a,,b,, 1, and where the constant
Cy.0.n, was given in (5.79).

The following lemma is helpful in the proof of Proposition 5.8.5. Indeed, in
the case of R™, if a cut-off function ¢ (§) on the Fourier side is constant for [£] > A
(A large enough), then its derivatives are 9gy () = 0if [{] > A. In our case, we can
not say anything in general. If we use (7w (R)) as ‘a cut-off in frequency’ with 1) as
in Proposition 5.8.5 for example, it is not true in general that its (A®-)derivatives
will vanish on E (A, 00) or will be of the form ), (m(R)). However, we can show
that these derivatives are smoothing:

Lemma 5.8.6. Let 1) € C*°(R) satisfy Y|ja 1) = 1 for some A € R. Then for any
a € NJ\{0}, the symbol given by A*)(m(R)) is smoothing, i.e. is in S™°.
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Proof of Lemma 5.8.6. Let o € N§\{0}. Then A®I =0 by Example 5.2.8. There-
fore

A%p(r(R)) = —A%(1 = ¢)(7(R))-

As 1—1) is a smooth function such that supp(1—1)N[0, co) is compact, the symbol
(1 —)(m(R)) is smoothing. Hence so is A%(1 —¢)(m(R)) and A%Y(n(R)). O

Proof of Proposition 5.8.5. Recall that by the Leibniz formula (Proposition 5.2.10),
we have
A% (o109) = Z Coy,as A% 01 A0,
[ ]+ [az]=[ao]

1 ifa; =a, 1 ifag =a,
Cay,0 = y €000 =

with
0 otherwise 0 otherwise

It is also easy to see that

XPo(fifs) = Z C%h&Xﬁl f1 XP2fy
[B1]+[B=2]1=[8o]

with

s 6= . ch g = .
$1,0 0 otherwise ’@ 052 0 otherwise

’ {1 ifBIZOZO ’ {1 ifﬂZZﬂo

Let 0 = o(z,m) € S5 and ¢ € C*°(R) as in the statement. By Lemma 5.8.3,
the continuous symbol

{E(A, 00)o(z,m) "' : HE — HZ, (z,7) € G x GY,
depends smoothly on x € G. Hence so does the continuous symbol o, defined via
0o(x,m) 1= P(m(R))o ™" (z, ).
Since ¥ (w(R)) commutes with powers of 7(I+ R) and

[P RD20tn) < 1Pl

we have

lm(X+R) ¥ oo(a, M)l 2(.)
< Wlloollm(T+R)Y {Ex(A, 00)a(z,m) "'} | ()
= [¥llCq
where by Lemma 5.8.3, C is the finite constant intervening in the ellipticity

condition for v = 0 in (5.79). More generally, in this proof, C,, denotes the constant
depending on v in (5.79), see also Corollary 5.8.4.
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By Proposition 5.3.4, ¢(m(R)) € S°. We also see that
Y(r(R)) = ooz, m)o(x, ). (5.83)
Hence for any left-invariant vector field X we have

= X,oo(z,7) o(z,7) 4+ 0p(x, ) Xpo(x,m).
Thus
Xyoo(x,m)o(x,m) = —0,(x, m) Xyo(z,7),

and since o(z,7) is invertible on E (A1, 00)HS®,
X,o0(x,7) = —0,(x,7) {Xpo(z,7)} E(A1,00)0 (z, 7).

Assuming that X is homogeneous of degree d, we can take the operator norm and
estimate

m—

(1 +R) 7™ Xaoo(@, )| 2 )
< Jla@+R)*F ooz, ma(T+ R) ¥ | 20,
(1 + R) ™ Xoo(x, m)m(1+R)™ % || (a,)
(1 +R)% {Ex(Ar, 00)o (. m) "} |lzae,)

< Wl C34Ca o, )5 0,1 —ml-

Recursively on d=[f,], we can show similar properties for X7 {¢(7(R))o(z, 7)1},
and obtain

(R 1) sz 04,0

— (b +1) b’
< o, olle D Jmax Gyl (@ s, 0,6 gl
Blby<b, 0 ’

We can proceed in a parallel way for difference operators. Indeed, for any
a, € Ni with |a,| = 1, we apply A% to both sides of (5.83) and obtain

A% {p(r(R)} = A%o4(x,7) o(x,m) + oo(z,7) A% {0 (z,7)},
thus

A%g,(x,m) = A{p(n(R))}E(A1,00)0 (z,T)
—0o(x, ) {A%0(x,m)} E(A1,00) 0z, 7).

Then
plaol+m

||7T(I + R) v A(XOUO(I',’]T)HLP(HW) < N; + Ny,
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with
plaol+m —

N = |7I+R)" 7 A%{p(r(R))}E(A1,00)0 (@, )|l 2(3.),
plaogl+m —

Ny = |Ir(I+R) 5 oo(x, ) {A%0(x,m)} E(A1,00) 0 (2, m)] 23t

For the first norm, we see that

plaoltm _m
Ni < ln@+R) v A% {p(@(R) (I +R)™ | 24,
Im(T+R) ¥ E(A1,00)0 ™ (2, m)|| 2(3.)
S Cl/)CO_17

since A% {¢(m(R))} € S~ by Lemma 5.8.6. For the second norm, we see that

plaoc]ltm pla

No < |I#(I+R) v ooz, m)mr(I+R)~ vU]Hg(HW)
Ie(I+R) 5 A% oz, m)w (T + R) ™% | (at)
Im(1+R)¥ E(A1,00) 0~ (@, m)l| 2(3,)
< WlleCrh 1 Co o llsm, fao).0,lml-

Recursively on [a,], we can show similar properties for A% {4 (7(R))o(z, 7)1},
and obtain

lloo(@ ) s a, 0.0

< Caw 3o max O V(e m,

<pa, ,57‘10707|m|'
o ab<a yI<p
More generally, we have
XfoAao {¥(r(R))} = Z Clﬁl,ﬁzcath XflAalgo(xvﬂ')
[on ]+ [az]=]ov]
[B1]4[B2]=(Bo]

XP2A20(z, ).

Because of the very first remark of this proof, we obtain X#°A%g, in terms of
X7 A% g, with [B'] < [Bo] and [a'] < [,] and of some derivatives of ¢ (7(R)) and
o. If we assume that we can control all the seminorms HO-OHS’;.” abe With a < [a],

o5 20D,
b < [B,] and any ¢ € R, then we can proceed as above introducing powers of T+ R
to obtain the estimate for the seminorms of ¥ (m(R))o(z, 7). Recursively this

shows Proposition 5.8.5. O

5.8.2 Parametrix

In the next theorem, we show that our notion of ellipticity implies the construction
of a parametrix.
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Theorem 5.8.7. Let 0 € S;Té be elliptic of elliptic order m with 1 > p > § > 0.
We can construct a left parametriz B € \I/;g” for the operator A = Op(o), that is,
there exists B € \I/;g"’ such that

BA-1e U™,

Comparing with two-sided parametrices in the case of compact Lie groups
(Theorem 2.2.17), this parametrix is one-sided. It was also the case in [CGGP92].

Proof. We can adapt the proof in [Tay81, §0.4] to our setting. Let ¢» € C°°(R) be
such that 1(_so.a,] = 0 and ¥)[a,,00) = 1 for some Ay, Ay € R with A < Ay < As.
By Proposition 5.8.5,

d(n(R)o™ (z,m) € S, 5"
Since ¥(m(R)) = ¢¥(m(R))o " (z, 7)o (x, 7), by Corollary 5.5.8,

Op(4(r(R))o~ (z.m)) A= o(R) mod¥, "™ ;

n}(l)w PY(R)=1-(1—-4¢)(R)and (1 —1) € D([0,00)) so (1 —¢)(R) € ¥~°°. This
Op(¢(n(R)o~(z,m)) A =1mod¥, " "

So we have
Op(¢(m(R))o ' (z,m)) A =1-U with UE€ \P;gpfﬁ).

By Theorem 5.5.1, there exists T' € W) ; such that

T~I+U+U 4.+ U7+
By Theorem 5.5.3,
B:=T Op(¥(n(R))o™") € Ly
Therefore, we obtain
BA=T(I-U)=1mod¥ >,
completing the proof. O

It is not difficult to construct the following examples of elliptic operators
satisfying Theorem 5.8.7 out of any Rockland operator. Indeed, combining Propo-
sition 5.3.4 or Corollary 5.3.8 together with Proposition 5.8.2 yield

Ezxample 5.8.8. Let R be a positive Rockland operator of homogeneous degree v.

m

1. For any m € R, the operator (I+R)+ € U™ is elliptic with respect to R of
elliptic order m.
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2. If f1 and f5 are complex-valued smooth functions on G such that
|f1(2) + fa(z) ]
z€GA>A 1+ A

and such that X<t f;, X2 fy are bounded for each o;, s € Nf, then the
differential operator

>0 for some A > 0,

fi(x) + fa(x)R € ¥
is (R, A, v)-elliptic.
3. Let p € C*°(R) be such that

w|(7w7A1] =0 and wl[Az,OO) = 17

for some real numbers A, Ay satisfying 0 < A; < Ay, Then the operator
PY(R)R € U is (R, As, v)-elliptic.

More generally, if f is a smooth complex-valued function on G such that
infg |f| > 0 and that X f is bounded on G for every a € Ny, then

f@)Y(R)R € O~
is elliptic with respect to R of elliptic order v.
Hence all the operators in Example 5.8.8 admit a left parametrix.

We will see other concrete examples of elliptic differential operators on the
Heisenberg group in Section 6.6.1, see Example 6.6.2.

In fact we can prove the existence of left parametrices for symbols which are
elliptic with an elliptic order lower than their order. Indeed, we can modify the
hypothesis of the ellipticity in Section 5.8.1 to obtain the analogue of Hormander’s
theorem about hypoellipticity involving lower order terms, similar to Theorem
2.2.18 in the compact case.

Theorem 5.8.9. Let o € S;’f(; with 1> p > 4§ > 0. We assume that o is elliptic with
respect to a positive Rockland operator R in the sense of Definition 5.8.1, and that
its elliptic order is my, < m.

We also assume that the following hypothesis on the lower order terms holds:
there is A € R such that for any v € R, x € G, p-almost all 7 € G, and any
u € H), we have

—5[Bl+~
v

w1+ R)“ {A“XPo(z,m)} w1+ R) " Fulla,

< Chpallo(@ mulla,, (5.84)

with C’ By = c’

! B0 Roma A independent of (z,7) € G x G and u € HN-

Then we can construct a left parametric B € \I/;g"" for the operator A =
Op(o), that is, there exists B € \I/;:;"O such that

BA-1ec U™,
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Proceeding as in Corollary 5.8.4, we can show easily that it suffices to assume
(5.79) and (5.84) for a countable sequence  which goes to +oo and —oc.

Proof. Let ¢ € C*°(R) be such that ¢|_s,a,) = 0 and )|, o) = 1 for some
A1, Ay € R with A < A; < As. Proceeding as in the proof of Proposition 5.8.5, we
see that

oo(z,7) == P(r(R))o ™ (z,7) € S;gn",

with similar estimates for the seminorms of o, and o.

With similar ideas, using (5.84), we claim that, for any multi-index 5, € Nj,

we have
XPog(x,7) og(x,7) € S‘sw“ .

Indeed, from the proof of Proposition 5.8.5, we know that
Xo,=—0, Xo E(A,00)0
hence

X (X’B”a(x,w) oo(z,m)) = XXPoog(x,m) oo(x,m) + XPoo(x,7) Xoo(z,m)
= XXPo(x,7) ooz, m) — XPoo(2,7) 0, Xo E(A,00)0 L,
and we can use the hypothesis (5.84) on each term to control the S7";-seminorms

of the expression on the right-hand side. For the difference operators from the
proof of Proposition 5.8.5, we know with |a,| = 1, that

A% g, = A%)(n(R)) E(A,00)0™ ! — 0, A% 0 E(A,00)0 !
Hence

A%e {Xﬁua(x,w) oo(z,m)}
— XPoA¥ s (z,7) ooz, 7) + + XPog (
= XPe A% g (x,70) op(z,7) — XPoo(x, )U A(’Oa E(A o0)o !
+X%0(z,m) A%P(m(R)) ¢o(m(R))o™

where 1, € C*(R) is a fixed smooth function such that 1,s, ) = 1 and
Yo|(—o0,A,s2) = 0. While we can use the hypothesis (5.84) on the first two terms,
we use Lemma 5.8.6 for the last term which is then smoothing. Proceeding recur-
sively as in the proof of Proposition 5.8.5, we obtain the estimates for the sum on
the right-hand side.

We now define recursively

oz, m) = Z A%, “clo,, n=12,...
0<[e
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It is easy to check that each symbol o, (z, 7) is in S’ . n(P=%) and that as in the
compact case,
Op(c,)Op(0) — I — Op(01)Op(o) — ... — Op(0,,)Op(0) € U5 ™07".

Therefore, the operator B € \Il;’g“’ whose symbol is given by the asymptotic sum
O — Z;‘;l o; is a left parametrix for A = Op(0). O

We will see a concrete example of hypoelliptic differential operators on the
Heisenberg group in Section 6.6.2, see Example 6.6.4.

We now note the following generalisation of Proposition 5.8.5 that we have
already used in the proof of Theorem 5.8.9.

Proposition 5.8.10. Assume 1 > p > § > 0. Let 0 € Spts be a symbol which is
(R, A, m,)-elliptic with respect to a positive Rockland opemtor R. If v € C*(R)
is such that

w‘(fooJ\l] =0 and w‘[AQ,OO) = 17
for some real numbers A1, Ao satisfying A < A1 < A, then the symbol
{¥(x(R)o~ (@, 7) , (z,7) € G x G},

given by
Y(n(R))o(z,m)~" = ¢(n(R)) Ex (A1, 00)o ™" (2, m),

s in S;g"", Moreover, for any a,,b, € Ny, we have

||¢(7T(R))U_l(mv7")”5*’"0 J@o,bo,0

’ ’ ’ ’
ai+bi+1 an+by
<c Y o, MG
e \’y\<pa +5b p,8270T0s
a’,ab<a,
b’l,b <b,

where C' > 0 is a positive constant depending on a,,b,, 1, and where the constant
C,.0.n, was given in (5.79).

Here the elliptic order m, and the symbol order m are different but the same
results holds: one can construct a symbol ¥(7(R))o = (x,7) € S, 5. The proof is
easily obtained by generalising the proof of Proposition 5.8.5.

We now show that Theorem 5.8.7 has a partial inverse.

Proposition 5.8.11. Suppose that the operator A = Op(o) € W5, with 1 > p >

0 >0, admits a left parametric B € \I/p ,i.e. BA—1€ U=, Then o is elliptic
of order m, that is, there exist a positive Rockland operator R of homogeneous
degree v, and A € R such that for any v € R, x € G, p-almost all m € G, and any
u € HZ\ we have

X X
v v

|71+ R)> oz, m)ully, > Cyllr(T+R)>7(I+R) ¥ ulls, .
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Moreover, if this property holds for one positive Rockland operator then it holds
for any Rockland operator.

Proof. Let A and B be as in the statement. Let ¢ and 7 be their respective
symbols. Then the symbol

e = 10—1

= (10— Op~'(BA)) - (I-Op~'(BA)),

& .
is in S (p ) and we can write

I+ R)“ 1o =11+ R)"" +er(I+R)™F n(I+R)""

where
-5 m-M

co=7m(I+R)" > “en(I4+R)% SO

For any u € HX°, (z 771') € G x G, we thus have
I (1+R) ™ 7 (, 7)o (, m)ul g,
= | (71 +R) ™ + e, myn(T 4 R)~55

We can bound the left hand side by

M+7

m+
R4 R) )

e+ R) ™ 7 (2, m)o (@, m)ul|,
< lr(@+R) 7z, m)m(L+ R) ™ || o lm(T+ R)

< rllgey, 7+ R)F o, mul,.

ol
v

o (@, m)ull,

and the right hand side below by

| (=14 R)™ Jreo(x m)r(l+R)~ ﬁ(un)”‘ﬁ)uum
> ||7(1+R) % ullae, — leo(a, mm(I+R) ™7 w1+ R)“F ull,
> w4 R ulla,
~lleo @, )| e I T+ R) - m(L+ R)*F ulan,

Hence if u € E(A, 00)H2° where A > 0 then

7l I+ R)F oo, myull,

maty
> lw(T+R) "+ ullu,
_p=9% m+ty
—lleo(; )Lz (L + M)+ [[r(I+R) ™ ulla...
Clearly 7 # 0 and ||7—||S—m,‘ | # 0. Furthermore
0,0,|~

lleo(2, ™)Lz < lléollss ;000 < 00,
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hence we can choose A > 0 such that

I\D\H

leo (. ™) (a0, (1 + A) 7 < ||€0||505000(1+A) * <

in view of p > §. We have therefore obtained for u € E(A, 0c0)HS® with the chosen
A, that

(1 + R)¥ o, m) 71+ R)“ ull,

ulle, 25—
Arllsyp

which is the required statement. ]

5.8.3 Subelliptic estimates and hypoellipticity

The existence of a parametrix yields subelliptic estimates:

Corollary 5.8.12. Let m € R and 1 > p > 6 > 0. If A € Vs is elliptic of order
m, then A satisfies the following subelliptic estimates

Vs€R YNER 3C>0 VfeSG) I, < (1SN + Iz, )-

If A € U5 is elliptic of order m, and satisfies the hypotheses of Theorem 5.8.9,
then A satzsﬁes the subelliptic estimates

Vs€eR YNeR 3C>0 VFeSG) |l

s+mo

< (ISl + 172 ).

In the case (p,d) = (1,0), assume that A € U™ is either elliptic of order mg =m
or is elliptic of some order mg and satisfies the hypotheses of Theorem 5.8.9. Then
A satisfies the subelliptic estimates

VseR VNeR Vpe(l,o0) IC >0 VfeSG)

1flez,,.. < C(1AF e + £l ).
In the estimates above, || - || » denotes any (fixed) Sobolev norm, for example

obtained from a (fixed) positive Rockland operator.

Proof. By Theorem 5.8.7 or Theorem 5.8.9, A admits a left parametrix B, i.e.
BA—1= R € U~>. By using the boundedness on Sobolev spaces from Corollary
5.7.2, we get

I fllcz, < |[BAf]|

s+mgo

+Rf]

<O 2+ [1fllz= )

In the case (p,d) = (1,0), the last statement follows from Corollary 5.7.4 with
Sobolev LP-boundedness instead. g

2 2
Ls+m Ls+m
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Local hypoelliptic properties
Our construction of parametrices implies the following local property:

Proposition 5.8.13. Let A € \I/;’f(; withm € R, 1> p>4§>0. We assume that the
operator A is elliptic of order mqg and that

e either m = my,
e orm > myg and in this case A satisfies the hypotheses of Theorem 5.8.9.

Then the singular support of any f € S'(G) is contained the singular support of
Af,

sing supp f C singsupp Af,
that is, if Af coincides with a smooth function on any open subset of G, then f is

also smooth there.
Consequently, if A is a differential operator, then it is hypoelliptic.

The notion of hypoellipticity for a differential operator with smooth coefli-
cients is explained in Appendix A.1.
Proposition 5.8.13 follows easily from the following property:

Lemma 5.8.14. Let A € ¥ withm € R, 1 > p > 6 > 0. We assume that there
exists an open set ) such that the symbol of A satisfies the elliptic condition in
(5.79) for any x € Q only. We also assume that

e either m = my,

e orm > mg and in this case A satisfies the hypotheses of Theorem 5.8.9 with
x € Q.

If f € S'(G) and if Q' is an open subset of Q where Af is smooth, i.e
Af € C®(Q), then f € C(Q).

The proof requires to revisit the construction of parametrices ‘to make it
local’.

Proof of Lemma 5.8.14. We keep the hypotheses and notation of the statement.
As the properties are essentially local, we may assume that the open subsets €, )/
are open bounded and that there exists an open subset € such that Q' C Q4
and Q; C Q. Let x € D(G) be such that y = 1 on ' and x = 0 outside Q. The
symbol of the operator A" := x(x)A is given via x(z)o(x, 7). An easy modification
of the proof of Proposition 5.8.5 implies that the symbol given by

X(@)¢(r(R))o(z, =)~

is in S;g”g (here 1) is a function as in Proposition 5.8.5). Adapting the proof of
Theorem 5.8.7 or Theorem 5.8.9, we construct an operator B € \I/;?“ such that
BA" = x(z) + R with R € U—°°.
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Let x1 € D(G) be such that x1 = 1 on ©; and x; = 0 outside Q. Let
f € S8(G). As A admits a singular integral representation, see Lemma 5.4.15
and its proof, the function = — x(x) A{(1 — x1)f}(z) is smooth and compactly
supported. Let us assume that Af is smooth on Q. Since we have for any z € G

A{afHe) = x(@) Af(z) = x(@) A1 = x1)f}H),

the function A’{x;f} is necessarily smooth and compactly supported on G, i.e.
A{x1f} € D(G). Applying B, we have BA'{x1f} € S(G) by Theorem 5.2.15. By
Corollary 5.5.13. R{x1f} € S(G) since the distribution x1f € £(G) has compact
support. Hence x1f = BA'{x1f} — R{x1f} must be in S(G). This shows that f
is smooth on §V'. O

Global hypoelliptic-type properties
Our construction of parametrix is global. Hence we also obtain the following global
property:

Proposition 5.8.15. Let A € Uls withmeR, 1 >p> 0 > 0. We assume that the
operator A is elliptic of order mg and that

e cither m = my,
e orm > mg and in this case A satisfies the hypotheses of Theorem 5.8.9.

If f € S'(G) and Af € S(G), then f is smooth and all its left-derivatives
(hence also right-derivatives and abelian derivatives) have polynomial growth. More
precisely, for any multi-index 5 € Ny, there exists a constant C' > 0, an integer

M € Ng and seminorms || - ||s/(c),n.» |- |s(@),n. such that for any f € S'(G) with
Af € S(G), we have
(X (@) < C (A +|zDM I fllseym + 1Aflls@yv.) s  z€G

Proof. We keep the hypotheses and notation of the statement. By Theorem 5.8.7
or Theorem 5.8.9, A admits a left parametrix B, i.e. BA—1¢& ¥~°°. By Corollary
5.4.10, (BA —I)f is smooth with polynomial growth. As Af € S(G), B(Af) €
S(G) by Theorem 5.2.15. Thus

f=—-(BA-1)f+B(Af)
is smooth with polynomial growth. The estimate follows easily from the ones in
Corollary 5.4.10 and Theorem 5.2.15. d
Examples

Hence we have obtained hypoellipticity and subelliptic estimates for the operators
in Examples 5.8.8.
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Corollary 5.8.16. Let R be a positive Rockland operator of homogeneous degree v
and let p € (1,00).

1. If f1 and fo are complez-valued smooth functions on G such that
|f1(z) + f2(2)A|
z€GA>A 1+ A

and such that X' fi, X*?fy are bounded for each aq,as € Nf, then the
differential operator

>0 for some A >0,

fi(z) + fa(z)R

satisfies the following subelliptic estimates
Vpe(l,0) VseR VNeR 3C>0 VeeSG)
<c(Ith + LRl + Ielr ).

and is (locally) hypoelliptic. It is also globally hypoelliptic in the sense of
Proposition 5.8.15.

2. Let ip € C*°(R) be such that

el

s+v

Y)(—o0,0] =0 and  Pjja,,00) = 1,

for some real numbers Ay, Ay satisfying 0 < Ay < As. Let also f1 be a smooth
complez-valued function on G such that

inf
1 [f1l >0
and that X f1 is bounded on G for each oo € Nij. Then the operator
H(@)Y(R)R € ¥

satisfies the following subelliptic estimates
Vpe (l,o0) VseR 3IC >0 VNeR VyeSG)
Il < C(lAvRIRY

and 1is (locally) hypoelliptic. It is also globally hypoelliptic in the sense of
Proposition 5.8.15.
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