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Change Detection in Auditory Textures
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Abstract  Many natural sounds have spectrotemporal signatures only on a statisti-
cal level, e.g. wind, fire or rain. While their local structure is highly variable, the 
spectrotemporal statistics of these auditory textures can be used for recognition. 
This suggests the existence of a neural representation of these statistics. To explore 
their encoding, we investigated the detectability of changes in the spectral statistics 
in relation to the properties of the change.

To achieve precise parameter control, we designed a minimal sound texture—a 
modified cloud of tones—which retains the central property of auditory textures: 
solely statistical predictability. Listeners had to rapidly detect a change in the fre-
quency marginal probability of the tone cloud occurring at a random time.

The size of change as well as the time available to sample the original statistics 
were found to correlate positively with performance and negatively with reaction 
time, suggesting the accumulation of noisy evidence. In summary we quantified 
dynamic aspects of change detection in statistically defined contexts, and found 
evidence of integration of statistical information.
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1 � Introduction

For many natural sounds, such as wind, fire, rain, water or bubbling, integration of 
statistical information under continuous conditions is critical to assess the predict-
ability of changes. While their spectrogram is dominated by small, recognizable 
elements (e.g. gust, crackles, drops), their occurrence is not predictable exactly, 
but they occur randomly in time and frequency, yet constrained by certain prob-
abilities. As shown previously, these probabilities/statistics define the identity of 
such sounds, so called auditory textures (McDermott et al. 2013). McDermott and 
others could demonstrate this point directly, by recreating auditory textures from 
samples, using only the spectrotemporal statistics of those sounds (e.g. McDermott 
and Simoncelli 2011).

Detecting relevant changes in auditory textures is hence complicated due to the 
lack of deterministic spectrotemporal predictability, and instead relies on the pre-
diction of stimulus statistics (and their dynamics). The aim of this study is to deter-
mine how changes in stimulus statistics are detected under continuous presentation 
of stimulus. Concretely, we assessed how first-order non-uniform sound statistics 
are integrated and how listeners disentangle a change in these from the intrinsic 
stochastic variations of the stimulus.

We designed a broadband stimulus, composed of tone-pips, whose occurrence is 
only constrained by a frequency marginal probability. While the central ‘textural’ 
property of solely statistical predictability is maintained, it is devoid of most other 
systematic properties, such as frequency modulation, across channel or temporal 
correlations. A change is introduced by modifying the marginal distribution at a 
random time during the stimulus presentation, which subjects are asked to report.

This change detection task allows us to explicitly address the integration of sta-
tistical information under continuous conditions, which models more closely the 
real-world challenge of detecting changes in complex ongoing auditory scenes. In 
this context, we studied the dependence of detection on the time and size of the 
change. We found evidence for integration of statistical information to predict a 
change in stimulus statistics, both based on hit rate as well as on reaction times. The 
main predictors appear to be the time available for integration of evidence.

2 � Methods

2.1 � Participants

Fifteen subjects (mean age 24.8, 8 females, higher education: undergraduate and 
above) participated in the main study in return for monetary compensation. All sub-
jects reported normal hearing, and no history of psychiatric disorders.
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2.2 � Experimental Setup

Subjects were seated in front of a screen with access to a response box in sound-
attenuated booth (Industrial Acoustics Company GmbH). Acoustic stimulus pre-
sentation and behavioural control were performed using custom software pack-
age written in MATLAB (BAPHY, NSL, University of Maryland). The acoustic 
stimulus was sampled at 100 kHz, and converted to an analog signal using an IO 
board (National Instruments NI PCIe-6353) before being sent to diotic presentation 
using headphones (Sennheiser HD380, calibrated flat, i.e. ± 5 dB within 100 Hz–
20,000 Hz). Reaction times were measured via a custom-built response box and 
collected by the same IO card with a sampling rate of 1 kHz.

2.3 � Stimulus Design

We used a simplified sound texture model, which retained the property of being 
predictable only from the statistical properties of its complex spectrotemporal struc-
ture (Fig.  1a). The texture was a tone cloud consisting of a sequence of 30-ms, 
temporally overlapping pure tones whose frequency covered a range of 2.2 octaves 
(400–1840 Hz) divided in 8 frequency bins. The frequency resolution of the tone 
distribution was 12 semitones per octave, starting at 400 Hz. This allowed 26 tone 
frequencies in total with 3–4 frequency values in each frequency bin.

The minimal temporal unit of the stimulus was a 30-ms chord in which the num-
ber of tones in a particular frequency range was drawn according to a marginal 
distribution for that frequency range. On average, for each chord duration the mean 
number of tones per octave was 2. The marginal distribution of occurrence prob-
ability was obtained by modifying a uniform distribution in each frequency bin. 
The probability in each of these is called Puniform =  18  = 0.125. To generate differ-
ent initial frequency marginals, we perturbed the marginals randomly by adding/
subtracting fixed value Δ corresponding to 50 % of the probability (which would be 
observed for a uniform distribution (Δ = Puniform/2 = 0.0625)). The resulting marginal 
distribution was thus pseudo-random with 3 bins at Puniform + Δ, 3 bins at Puniform − Δ 
and 2 bins left intact at Puniform. This implies that the average initial probability in 2 
bins can take 5 different values, namely Δ, 3Δ/2, 2Δ, 5Δ/2, and 3Δ.

The change consisted in an increment of the marginal distribution in the selected 
frequency bins at a random point in time (referred to as change time) during stimu-
lus presentation. We chose to use an increment of the marginal distribution in two 
adjacent frequency bins on the basis that an appearance is more salient than its op-
posite in a complex acoustic stimulus (Constantino et al. 2012). After the change, 
the second stimulus continued for up to 2 s or until the subject made an earlier deci-
sion, whichever happened first.

The increment size, referred to as change size, was drawn from a set of dis-
crete values [50, 80, 110, 140] %, relative to the single bin probability in a uniform 
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Fig. 1   Detection of change in statistics requires integration over time. a Subjects listened to an 
acoustic textural stimulus, whose sole predictability was governed by its marginal frequency distri-
bution ( grey curve, left). Tones in individual frequency bins were all drawn independent consistent 
with the marginal ( middle). Listeners were instructed to report changes by a button press. The 
frequency marginal was modified after a randomly chosen point in time (‘change time’, red bars 
on the right). The probability in two frequency bins separated by a random distance was modi-
fied at a time. All other bins were slightly reduced in probability to maintain the overall loudness 
constant. b Distribution of change times across all subjects ( n = 10). Change times were drawn 
from an exponential distribution. c Response times occurred before (false alarms) and after the 
change time (hits). Subjects usually responded only after an initial time of listening, allowing them 
to acquire the acoustic statistics. d Hit rate of change detection depended significantly on change 
time (x-axis) and change size (colour). e Four different change sizes were used (colour-coded). f 
The dynamics of the hit rate curve also varied with change size, indicated by the fitted parameter 
τ of a cumulative Erlang distribution (see Methods). g To control for false alarms, d’ was also 
computed as a function of time into the trial (see Methods for details), where within each trial the 
statistics change where the gray area starts. h Similar to hit rate, d’ increased significantly over 
time into the trial, and with change size. Errorbars indicate confidence bounds two SEM based on 
a bootstrap across subjects
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distribution (for 8 bins, the single bin uniform probability is 1/8th, and thus a 50 % 
change size would be 1/16th). In order to maintain the overall number of tones per 
chord before and after the change, the occurrence probability in the six remaining 
frequency bins was decreased accordingly.

The time at which the change occurred ( change time) was drawn randomly from 
an exponential distribution (mean: 3.2 s) limited to the interval [0, 8] s. This choice 
of distribution prevents subjects from developing a timing strategy, as the instanta-
neous probability of a change in the next time step is constant.

2.4 � Procedure

The experiment was separated into three phases: instruction, training, and main 
experiment. After reading the instructions, subjects went through 10 min of training 
(60 trials), where they were required to obtain at least 40 % performance. The train-
ing comprised only stimuli of the two greatest change sizes (110 %, 140 %). Three 
subjects did not attain the criterion level of performance and were not tested further.

The main experiment was composed of two sessions of about 70 min each, com-
prising a total of 930 trials, corresponding to 60 repetitions of each condition. The 
two sessions were never more than 2 days apart. After reading the instructions, 
subjects were aware that the change could arise at any moment on each trial and that 
their task was to detect it within the 2 s window.

Visual feedback was always displayed on the screen in front of them; either a red 
square was displayed when the button was pressed before the change (false alarm), 
or when the button was not pressed within the 2 s time window after the change 
(miss). A green square was displayed when the button was pressed after the change 
but within the 2 s window.

In addition, sound level was roved from trial to trial; it was chosen randomly 
between 60 and 80 dB SPL (sound pressure level). This procedure is classically ap-
plied to prevent subjects from adopting any absolute level strategy. The inter-trial 
interval was ~ 1 s with a small, random jitter (< 0.1 s) depending on computer load.

2.5 � Data Analysis

We quantified the ability of the subjects to detect the change in stimulus statistics 
using two measures, hit rate and d-prime (d’). We also found reaction times to de-
pend on the difficulty.

These measures were computed as a function of change size and change time. 
Since change times were distributed continuously but with an exponential distribu-
tion, the set of change times was binned with approximately exponentially increas-
ing bin size (in order to achieve comparable numbers of trials in each bin).
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To control for inattentive subjects, we set a 35 % threshold for the total false 
alarm rate. Two subjects were discarded according to this criterion leaving a total of 
10 subjects for the data analysis, with false alarm rates around 25 %.

2.5.1 � Hit Rate and Reaction Times

We computed a subject’s hit rate as the fraction between successful detection (hits) 
out of the total trials for which the change occurred before the subject’s response 
(hits + misses). False alarms were excluded from the hit rate computation, since 
they occurred before the subject was exposed to the change (see d’ below for an in-
clusion of false alarms). We obtained reaction times by subtracting the change time 
from the response time in each trial.

2.5.2 � d’ Analysis

We computed d’ values to assess the ability to detect changes, while taking their 
false alarm rate into account. Due to the present task structure, d’ was computed as 
a function of time from stimulus onset (see Fig. 1e for an illustration), approximated 
as d’(t) = Z(HR(t)) − Z(FAR(t)), where Z(p) is the inverse of the cumulative Gauss-
ian distribution. HR(t) is the hit rate as a function of time t since stimulus onset. Hit 
rate was computed as the fraction of correct change detections, in relation to the 
number of trials with changes occurring at t. Similarly, the false alarm rate FAR(t) 
was computed as the number of false alarms that occurred over all 2 s windows 
(starting at t), in which no change in statistics occurred. The window of 2 s was 
chosen to be compatible with the hit rates in the 2 s decision window. d’ was com-
puted separately for different times and change sizes, yielding only a limited num-
ber of trials per condition. To avoid degenerate cases (i.e. d’ would be infinite for 
perfect scores), the analysis was not performed separately by subject, but over the 
pooled data. Confidence bounds (95 %) were then estimated by grouping data from 
all subjects. The analysis was verified on surrogate data from a random responder 
(binomial with very low p at each point in time), providing d’ very close to 0 on a 
comparable number of trials.

2.5.3 � Hit rate Dynamics

In order to compare the hit rate dynamics for different change sizes, we fitted (least-
square non-linear minimization) a cumulative Erlang distribution to the data ac-
cording to:

0( , ) ( ) ( ) ( , / ( )) / ( 1)!*c c c max c c cP t P P k t kγ τ∆ = ∆ + ∆ ∆ −
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where P0 is the minimal hit-rate, Pmax is the maximal hit rate, tc is change time, Δc 
the change size, γ the incomplete gamma function, τ the function rate, and k controls 
the function shape. k was kept constant across subjects and change sizes, assuming 
the shape of the hit rate curves is invariant, which appeared to be the case in our 
sample.

2.6 � Statistical Analysis

In the statistical analysis only non-parametric tests were used. One-way analysis 
of variance were computed with Kruskal-Wallis’ test, the two-way were computed 
using Friedman’s test. Unless is indicated otherwise, error bars correspond to twice 
the standard error of the mean (SEM). All statistical analyses were performed using 
Matlab (The Mathworks, Natick).

3 � Results

Human listeners ( n = 15, 10 performed to criterion level) were presented with a 
continuous acoustic texture and required to detect a change in stimulus statistics, 
which could occur at a random time, after which they had 2 s to respond. Changes 
occurred in the probability of occurrence of tones in randomly chosen spectral re-
gions (Fig. 1a).

Several parameters of the change could determine its salience, such as its size, 
timing. These parameters were tested in a single experiment with ~ 1000 trials over 
two sessions per subject.

3.1 � Detection of Changes in Statistics is Consistent with 
Integration

The ability of subjects to detect a change in stimulus statistics (Fig. 1a) improved 
with the time they were allowed to listen to the initial statistics of the texture (Fig. 1d, 
progression along ordinate, performance measured as hit rate, p < 10−6, Friedman 
test). Hit rate increased monotonically to an asymptotic level for all change sizes 
(4 levels, [50, 80, 110, 140] %). Asymptotic hit rate depended on the change size, 
with bigger changes in marginal probability leading to greater asymptotic hit rate 
(Fig. 1d, different colours). Although asymptotic hit rate was above chance (26.6 %) 
for all change sizes, the increase with change size was large and significant (from 50 
to 95 %, p < 10−7, Friedman test).

Change size also influenced the shape of the dependence on change time, such 
that greater change sizes lead to improved hit rate already for shorter change times 



236 Y. Boubenec et al.

(Fig. 1d). This translates to a combined steepening and leftward shift of the hit rate 
curves with change size. Significance of this effect was assessed by fitting sigmoi-
dal hit rate curves of individual subjects with a parametric function (see Methods) 
in order to extract the change size-dependent time constant (Fig. 1f). Hit rate time 
constants τ significantly decreased with respect to change sizes ( p < 10−6, Friedman 
test).

The results above stay true if false alarms are taken into account (Fig. 1h). For 
this purpose, we computed a time-dependent d’ measure (see Fig. 1g for an illus-
tration, and Methods). Classical d’ analysis does not apply in the present dynamic 
decision paradigm, since the eventual outcome of a trial is not accessible at early 
times (i.e. when computing d’(0.5 s), a trial with a hit at 5 s should not be counted as 
a hit, but as a ‘correct reject up to 0.5 s; but when computing d’(4 s), the same trial 
will be counted as a hit). In accordance with the perceived difficulty of the detec-
tion task, d’ values are significantly positive (Fig. 1h, based on the 95 % confidence 
bounds) and increase with change time (Friedman test, p < 0.01), but stay relatively 
low especially for 110 % and below, indicates how challenging the task was, leading 
to a substantial number of false alarms.

The above results are consistent with predictions from statistical integration of 
information. First, unsurprisingly, change detection should improve with greater 
change sizes. Second, change detection should improve, but saturate, as the estima-
tion of the statistics of the first stimulus converges, i.e. if longer observation time is 
available. Third, change detection of bigger changes should require less precision 
in the estimation, translating to higher hit rate already for shorter observation times.

3.2 � Reaction Times are Consistent with Integration

The dependence of performance on change time suggests a dynamical integration 
mechanism to play a role in the decision process. While the dependence on change 
time indicates an ongoing estimation of the initial statistics, it does not provide 
much insight into the estimation of the post-change statistics. We hypothesized 
that reaction times here could be informative. Reaction times had previously been 
demonstrated to depend on task difficulty (Kiani et al. 2014), and difficulty in the 
present paradigm correlates inversely with the availability of a greater difference in 
change size, i.e. statistics (Fig. 2a).

Reaction time distributions changed both in time and shape as a function of 
change size (Fig. 2b). Median reaction time correlated negatively with change sizes 
( p < 0.001; Fig. 2c), in a manner that corresponded to the inverse of the increase 
in hit rate with larger change sizes. In addition, the onset time of the distributions 
decreased with change size, together suggesting that certainty was reached earlier 
for bigger step-sizes.

As a function of change time, the reaction time distribution changed in a quali-
tatively similar manner, however, less pronounced (Fig. 2e). Median reaction times 
correlated negatively with change times, mirroring dependence of hit rate on change 
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times ( p < 0.001; Fig.  2f). This dependence can already be seen in the raw data 
(Fig. 1c), where hit trials (black) for longer change times exhibit shorter reaction 
times. Again the onset time decreased correspondingly with longer change time, 
suggesting more accurate estimation of the initial statistics.

4 � Discussion

In the present study we used a simplified acoustic texture to study detecting changes 
in the statistics of complex acoustic stimuli. The results suggest that humans are 
able to integrate stimulus statistics, as expressed in their performance and reaction 
times depending on the parameters of the task.
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Fig. 2   Reaction times reflect task difficulty and temporal integration. a–c If reaction times are 
separated by change size (a), one observes a progression in the shape (b) as well as median 
response time (c). The shape of the reaction time distribution sharpens with increasing step-size 
and the median response time decreases significantly ( p = 1.51e-05, Kruskal-Wallis). d–f If reac-
tion times are separated by the duration of the change time before the change in statistics occurred 
(d), the distribution of reaction times again sharpens with longer change times (e) and the median 
reaction time (f) decreases significantly ( p = 5.46e-06, Kruskal-Wallis)
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4.1 � Dynamic Representation of Spectral Statistics

The stimulus of the present paradigm can be considered a stochastic version of 
the appearance or increase in loudness of a sound source within a natural audi-
tory scene. Its design is a compromise between complexity of the spectrotemporal 
structure and simplicity in specification since the parameter-space is reduced to a 
minimum and parameters are straightforward to interpret.

The present paradigm builds on research from the spectral and the temporal 
domain, e.g. profile analysis (Green and Berg 1991) or some paradigms in mis-
match negativity. For example in profile analysis subjects assess the spectral shape 
of stimuli. In this context it has also been demonstrated that subjects can compare 
spectra, however, the results were not interpretable in a statistical sense, due to 
several reasons. First, the time scale of presentation is much longer in the present 
paradigm than typically in profile analysis, where the stimulus is presented for mul-
tiple seconds rather than subsecond presentations. Second, in the present context the 
stimulus is composed of randomly timed occurrences of tones in certain frequency 
bins (which defines the spectral profile over time), rather than static profiles from 
constantly presented tones or filtered noise. Third, the comparison between differ-
ent profiles is performed dynamically, rather than in a two stimulus comparison 
task. As described above this allowed us to study the dynamic integration of sto-
chastic information, and enables the collection of reaction times as another indicator 
of the underlying processes.

4.2 � Future Directions

The present study lays some groundwork for future studies, by investigating some 
of the basic, previously unaddressed questions related to the integration of statistics 
in complex auditory stimuli, such as auditory textures. Further studies are required 
to address variations of the present paradigm, such as reductions in probability and 
continuous stimulus presentation. Attention was not controlled for in the present 
setting, although subjects were instructed to attend to the stimulus. Some subjects 
reported improved detection of change, when not attending to the stimulus, suggest-
ing that a dual-task paradigm would be interesting where attention can be assessed 
and controlled.
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