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Abstract Concurrent complex sounds (e.g., two voices speaking at once) are per-
ceptually disentangled into separate “auditory objects”. This neural processing often
occurs in the presence of acoustic-signal distortions from noise and reverberation
(e.g., in a busy restaurant). A difference in periodicity between sounds is a strong
segregation cue under quiet, anechoic conditions. However, noise and reverberation
exert differential effects on speech intelligibility under “cocktail-party” listening
conditions. Previous neurophysiological studies have concentrated on understand-
ing auditory scene analysis under ideal listening conditions. Here, we examine the
effects of noise and reverberation on periodicity-based neural segregation of con-
current vowels /a/ and /i/, in the responses of single units in the guinea-pig ventral
cochlear nucleus (VCN): the first processing station of the auditory brain stem. In
line with human psychoacoustic data, we find reverberation significantly impairs
segregation when vowels have an intonated pitch contour, but not when they are
spoken on a monotone. In contrast, noise impairs segregation independent of into-
nation pattern. These results are informative for models of speech processing under
ecologically valid listening conditions, where noise and reverberation abound.
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1 Introduction

A difference in periodicity between simultaneous complex sounds is a strong seg-
regation cue under quiet, anechoic conditions (Brokx and Nooteboom 1982). How-
ever, noise and reverberation can both degrade speech intelligibility under realistic
“cocktail-party” listening conditions (Nabelek 1993; Culling et al. 1994, 2003).
Neurophysiological studies of concurrent-sound segregation have concentrated on
harmonic complex sounds, with a fundamental-frequency difference (AF0), heard
under idealized (quiet, anechoic) conditions (e.g., Palmer 1990; Keilson et al. 1997,
Larsen et al. 2008). We examine the effects of noise and reverberation, separately,
on periodicity-based neural segregation of AF0 concurrent vowels, with and with-
out simulated intonation, in the ventral cochlear nucleus (VCN)); the first processing
station in the auditory brain stem.

2 Methods

2.1 Animal Model

Experiments were carried out in accordance with the United Kingdom Animals
(Scientific Procedures) Act (1986), with approval of the University of Cambridge
Animal Welfare Ethical Review Board. Details of our recording techniques are
available elsewhere (Sayles and Winter 2008; Sayles et al. 2015). Adult guinea pigs
(Cavia porcellus) were anesthetized with urethane and hypnorm (fentanyl/fluani-
sone). The cochlear nucleus was exposed via a posterior-fossa craniotomy and uni-
lateral cerebellotomy. A glass-insulated tungsten microelectrode was advanced in
the sagittal plane through the VCN, using a hydraulic microdrive. Upon isolation of
a single unit, best frequency (BF) and threshold were determined. Units were clas-
sified on their responses to BF-tones.

2.2 Complex Stimuli

Stimuli were synthetic vowels /a/ and /i/, generated using a MATLAB implementa-
tion of the Klatt formant synthesizer. Formant frequencies were {0.7, 1.0, 2.4, 3.3}
kHz for /a/, and {0.3, 2.2, 3.0, 3.7} kHz for /i/. Stimuli were presented monaurally;
either alone, or as “double vowels” /a, i/ (Fig. 1). FO was either static (125 Hz, or
250 Hz for /a/, and 100 Hz, or 200 Hz for /i/), or sinusoidally modulated at 5 Hz,
by £2 semitones. Reverberation was added by convolution with real-room impulse
responses recorded in a long corridor, at source-receiver distances of 0.32, 2.5, and
10 m (Tony Watkins; University of Reading, UK). We refer to these as “mild”,
“moderate” and “strong” reverberation. For noise-masked vowels, Gaussian noise
(5-kHz bandwidth) was added at signal-to-noise ratios of {10, 3, 0} dB.
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Fig. 1 Synthetic-vowel stimuli. a Magnitude spectra. b Fundamental-frequency contours: solid
lines, static-FO vowels; dashed lines, modulated-FO vowels. ¢, Impulse-response energy-decay
curves

2.3 Analyses

2.3.1 Correlograms

Analyses are based on normalized shuffled inter-spike-interval distributions derived
from the VCN-unit spike trains (Fig. 2; Joris et al. 2006; Sayles et al. 2015). We
computed the across-spike-train shuffled inter-spike-interval distribution in a short
(30-ms duration) rectangular time window, slid in 5-ms steps through the 400-ms
duration response. We refer to these time-varying inter-spike-interval distributions
as correlograms.

2.3.2 Periodic Templates

We applied a “periodicity-sieve” analysis to the correlograms to estimate the domi-
nant period(s) in the inter-spike-interval statistics (e.g., Larsen et al. 2008); yielding
template-contrast functions. To assess the statistical significance of peaks in the
template-contrast function we used a bootstrap technique (permutation analysis;
1000 replications: p<0.01 considered significant). Based on the template-contrast
functions in response to double vowels, we computed the “periodicity-tagged” fir-
ing rate for each vowel of the mixture (similar to that proposed by Keilson et al.
1997); e.g., for the /a/ component:

_ R-C _
R,,, = max ((4) —(0.5-R), o)
Ca+Cy

Where R is the mean firing rate of that single unit to the double vowel /a, i/, and
C,,, and C,;, are template-contrast values for the two double-vowel components,
respectively.
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Fig. 2 Example analyses for a single unit (Primary-like, BF =2.1 kHz), responding to a single
vowel /a/ with FO modulated at 5 Hz (£2 semitones) around a mean FO of 125 Hz. a Spike times
were collected in response to N (typically, 50) repetitions of each stimulus. b Forward inter-spike
intervals were calculated between all non-identical spike-train pairs, in 30-ms time windows. ¢
Intervals were tallied in a histogram, and the analysis window slid in 5-ms steps to give the inter-
val distribution as a function of time d. e Time-varying interval distributions were normalized for
instantaneous stimulus F0, and averaged over time. f Harmonic periodicity sieves were applied to
compute the template-contrast function

3 Results

We recorded responses to single and double vowels, in anechoic and reverberant
conditions, from 129 units with BFs between 0.1 and 6 kHz (36 primary-like [PL/
PN], 47 chopper [CT/CS], 24 onset [OC/OL], 19 low-frequency [LF], 3 unusual
[UN]). From 52 of these, we also recorded responses to vowels in noise. The effects
of noise and reverberation on double-vowel segregation are not equivalent. The
results can be summarized as: (1), There is a strong interaction between FO modula-
tion (simulating intonated speech) and reverberation to reduce template contrast.
(2), There is no interaction between FO modulation and signal-to-noise ratio. (3),
Noise-induced deficits in neural periodicity-based double-vowel segregation are
strongly BF-dependent, due to more total (masking) noise power passed by higher-
BF filters. (4), Reverberation impairs neural segregation of intonated double vowels
independent of BF, but has only marginally detrimental effects on segregation of
double vowels with steady FOs.
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Fig. 3 Template contrast vs. unit BF for responses to the single vowel /a/. Top row, responses
to static-FO vowels; Bottom row, responses to modulated-FO vowels. Different symbols indicate
unit type (legend in F). Red symbols indicate significant values (p<0.01), gray symbols are non-
significant. Dashed line indicates contrast of 1, the expected value for a flat correlogram

Figure 3 shows the template contrast calculated from responses to the single
vowel /a/ under ideal (anechoic, quiet) conditions, in the presence of “strong” re-
verberation, and in the presence of background noise at 0-dB SNR. There is a small
reduction in template contrast due to reverberation alone (Fig. 3a, b), and a similar
small reduction due to FO modulation alone (Fig. 3a, d). However, the major detri-
mental effect on template contrast is an interaction between reverberation and FO
modulation (Fig. 3a, ¢). In the combined presence of reverberation and FO modu-
lation many units do not have a significant representation of the periodicity cor-
responding to this single vowel in their inter-spike-interval distributions; the many
non-significant gray symbols in Fig. 3e. In contrast, the presence of masking noise
reduces template contrast at the FO period independent of FO modulation, but in a
BF-dependent manner with higher-BF units affected most strongly (Fig. 3c, f).

The interaction between reverberation and FO modulation is further illustrated
by plotting template contrast in response to modulated-FO vowels against that in
response to static-FO vowels (Fig. 4). For both single- and double-vowel responses,
the reduction in template contrast in the presence of reverberation is much greater
in the modulated-FO condition relative to the static-FO condition (Fig. 4b, ). In the
presence of noise, the maximum template contrast is reduced equally for modu-
lated- and static-FO vowels (Fig. 4c, f).

Based on template contrast calculated from double-vowel responses, we com-
puted a “periodicity-tagged” discharge rate for each vowel of the concurrent-speech
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Fig. 4 Template contrast: modulated-FO vs. static-FO vowels. Top row, responses to single vowels;
Bottom row, responses to double vowels. Red symbols indicate responses to /a/, and blue symbols
/i/. Horizontal and vertical gray dashed lines indicate template contrast of 1. Diagonal gray dashed
line indicates equality. Solid lines indicate least-squares linear fits to the significant data, with the
fit constrained to (1,1). Text in each panel indicates the linear-regression slope (f3,)+S.E., and the
p-value for a two-tailed #-test with the null hypothesis /: #,=1. For clarity, only those data from
responses with significant contrast (p<0.01) for both static and modulated vowels are displayed

mixture (Fig. 5). In the across-BF profiles of periodicity-tagged rate, there are peaks
and troughs corresponding to the formant structure of each vowel under quiet, an-
echoic listening conditions. This is the case with both static- and modulated-FO
double vowels (Fig. 5a, d). With reverberation, there are no formant related peaks
and troughs remaining in the modulated-FO0 case (Fig. 5¢), although a clear formant-
related pattern of periodicity-tagged discharge rate remains in the static-FO case
in reverberation (Fig. 5b). Information about higher formants is degraded in the
presence of noise; however, formant-related peaks in periodicity-tagged discharge
rate remain in the first-formant region for both static- and modulated-FO vowels
(Fig. 5¢, f).

To quantify the “segregation” of the two vowels of the double-vowel mixture by
the periodicity-tagged firing-rate profile across BF, we computed the normalized
Euclidean distance between the /a/ and /i/ profiles in response to /a, i/ as (Fig. 6),

" (R -Ri,)
Jn

d(/a/,/i/) =
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Fig. 5 Periodicity-tagged firing rate vs. BF. Top row, responses to static-FO vowels; Bottom row,
responses to modulated-FO vowels. Solid lines, lowess smoothing fits; shaded areas, 95 % confi-
dence intervals
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Fig. 6 Euclidean distance between /a/ and /i/ periodicity-tagged spike-rate vs. BF profiles, calcu-
lated from the double-vowel responses

The double-vowel sounds are well segregated on the basis of the periodicity-tagged
discharge rate statistic, except when FO is modulated and the sounds are heard in
“moderate” or “strong” reverberation (Fig. 6a).
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4 Discussion

The physical effects of noise and reverberation have some similarities: small chang-
es to the magnitude and phase of each component of a complex sound. The impulse
response of a room is a linear filter. Therefore, for a steady-state source no new
frequency components are added to a reverberant acoustic signal. Contrast this with
additive noise. Each indirect sound component in a reverberant space adds to the di-
rect sound at the receiver with essentially random phase, reducing the depth of tem-
poral-envelope modulation at the output of cochlear band-pass filters (Sabine 1922;
Sayles and Winter 2008; Sayles et al. 2015; Slama and Delgutte 2015). Perceptu-
ally, noise and reverberation can both decrease speech intelligibility (e.g., Nabelek
1993; Payton et al. 1994), and can be particularly troublesome for cochlear-implant
listeners (e.g., Qin and Oxenham 2005). However, error patterns differ substantially
between noisy and reverberant spaces (Nabelek 1993; Assmann and Summerfield
2004). Moreover, normal-hearing listeners have remarkably good speech under-
standing in moderately reverberant spaces (e.g., Poissant et al. 2000).

Our results can be understood in terms of the effects of reverberation on the acous-
tic temporal envelope. For static-FO vowels, the reduction in envelope modulation due
to reverberant energy is evident in higher-BF units (Fig. 3a, b; Fig. 5a, b). The addition
of frequency modulation to the vowels has a dramatic effect on template contrast in
reverberation, due to spectral smearing: i.e., monaural decorrelation. Noise impairs
neural segregation of concurrent vowels independent of intonation pattern, but in a
BF-dependent manner. Similar to other studies of noise-masked single-vowel coding
(e.g., Delgutte and Kiang 1984; May et al. 1998), this is the consequence of higher-BF
filters passing more total noise power than low-BF filters. The within-band signal-to-
noise ratio is therefore much lower for high-BF units. The negative spectral tilt of the
vowels, masked by flat-spectrum noise, imposes a similar frequency-dependency on
signal-to-noise ratio after cochlear filtering.

The differential effects of noise and reverberation on speech representations in
the early stages of brain-stem neural processing are in clear contrast to noise- and
reverberation-invariant representations of speech in auditory cortex (Mesgarani et al.
2014). Perhaps one clue to the neural underpinnings of robust speech understanding in
challenging acoustic environments is compensation for the effects of reverberation on
coding of temporal-envelope modulation in the inferior colliculus, based on sensitiv-
ity to inter-aural correlation (Slama and Delgutte 2015). What is clear from our data is
that neurophysiological effects of room reverberation cannot simply be assimilated to
those of broadband noise for signal detection and discrimination.
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