Chapter 1
Dimensions and units

A mechanical system undergoing one-dimensional damped vibrations can be
modeled by the equation

mu” +bu’ +ku =0, (1.1)

where m is the mass of the system, b is some damping coefficient, k is a spring
constant, and u(t) is the displacement of the system. This is an equation ex-
pressing the balance of three physical effects: mu'' (mass times acceleration),
bu’ (damping force), and ku (spring force). The different physical quantities,
such as m, u(t), b, and k, all have different dimensions, measured in different
units, but mu”, bu’, and ku must all have the same dimension, otherwise it
would not make sense to add them.

1.1 Fundamental concepts

1.1.1 Base units and dimensions

Base units have the important property that all other units derive from them.
In the SI system, there are seven such base units and corresponding physical
quantities: meter (m) for length, kilogram (kg) for mass, second (s) for time,
kelvin (K) for temperature, ampere (A) for electric current, candela (cd) for
luminous intensity, and mole (mol) for the amount of substance.

We need some suitable mathematical notation to calculate with dimensions
like length, mass, time, and so forth. The dimension of length is written as
[L], the dimension of mass as [M], the dimension of time as [T], and the
dimension of temperature as [©] (the dimensions of the other base units
are simply omitted as we do not make much use of them in this text). The
dimension of a derived unit like velocity, which is distance (length) divided by
time, then becomes [LT™!] in this notation. The dimension of force, another

© The Author(s) 2016 1
H.P. Langtangen and G.K. Pedersen, Scaling of Differential Equations,
Simula SpringerBriefs on Computing 2, DOI 10.1007/978-3-319-32726-6_1

2 1 Dimensions and units

derived unit, is the same as the dimension of mass times acceleration, and
hence the dimension of force is [MLT 2].

Let us find the dimensions of the terms in (1.1). A displacement w(t) has
dimension [L]. The derivative u/(t) is change of displacement, which has di-
mension [L], divided by a time interval, which has dimension [T], implying
that the dimension of «/ is [LT!]. This result coincides with the interpre-
tation of u’ as velocity and the fact that velocity is defined as distance ([L])
per time ([T]).

Looking at (1.1), and interpreting u(t) as displacement, we realize that
the term mu” (mass times acceleration) has dimension [MLT ~2]. The term
bu’ must have the same dimension, and since u’ has dimension [LT'], b
must have dimension [MT™!]. Finally, ku must also have dimension [MLT 2],
implying that % is a parameter with dimension [MT™?].

The unit of a physical quantity follows from the dimension expression. For
example, since velocity has dimension [LT_I} and length is measured in m
while time is measured in s, the unit for velocity becomes m/s. Similarly,
force has dimension [MLT 2] and unit kg m/s®. The k parameter in (1.1) is

measured in kgs™2.

Dimension of derivatives

The easiest way to realize the dimension of a derivative, is to express
the derivative as a finite difference. For a function u(t) we have

du _ u(t+At) —u(t)

dt At ’
where At is a small time interval. If u denotes a velocity, its dimension
is [LT] !, and u(t+ At) —u(t) gets the same dimension. The time in-
terval has dimension [T], and consequently, the finite difference gets the
dimension [LT]fQ. In general, the dimension of the derivative du/dt is
the dimension of u divided by the dimension of .

1.1.2 Dimensions of common physical quantities

Many derived quantities are measured in derived units that have their own
name. Force is one example: Newton (N) is a derived unit for force, equal
to kg m/sz. Another derived unit is Pascal (Pa) for pressure and stress, i.e.,
force per area. The unit of Pa then equals N/ m? or kg/ ms>. Below are more
names for derived quantities, listed with their units.

1.1 Fundamental concepts 3
Name Symbol Physical quantity Unit

radian rad angle 1

hertz Hz frequency st

newton N force, weight kg m/s2

pascal Pa pressure, stress N/ m?

joule J energy, work, heat Nm

watt W power J/s

Some common physical quantities and their dimensions are listed next.

Quantity Relation Unit Dimension

stress force/area N/m? = Pa [MT 2L 1)
pressure force/area N/m? = Pa MT™2L ™}
density mass/volume kg/m> [ML~3]
strain displacement /length 1 1]

Young’s modulus stress/strain N/m? = Pa [MT2L7}]
Poisson’s ratio transverse strain/axial strain 1 1]

Lame’ parameters A and p stress/strain N/m? = Pa [MT 2L 7]
moment (of a force) distance x force Nm [ML2T—2
impulse force x time Ns [MLT 1]
linear momentum mass X velocity kg m/s [MLT_I]
angular momentum distance x mass X velocity kg m?/s [ML2T~ }
work force x distance Nm=1J [ML2T— }
energy work Nm=1J [ML2 }
power work /time Nm/s =W [ML2T~ }
heat work J [ML2T~2]
heat flux heat rate/area Wm ™2 [MT—3]
temperature base unit K 0]

heat capacity heat change/temperature change J/K ML2T 2671

specific heat capacity
thermal conductivity
dynamic viscosity
kinematic viscosity
surface tension

heat capacity /unit mass

heat flux/temperature gradient
shear stress/velocity gradient
dynamic viscosity/density
energy/area

JK kg™t [L2T72071)
Wm K™ [MLT3671)

kgm~ts™t [MLTIT7Y
m?/s 2T~
J/m? [MT~2]

Prefixes for units. Units often have prefixes!

. For example, kilo (k) is a

prefix for 1000, so kg is 1000 g. Similarly, GPa means giga pascal or 10° Pa.

1.1.3 The Buckingham Pi theorem

Almost all texts on scaling has a treatment of the famous Buckingham Pi the-
orem, which can be used to derive physical laws based on unit compatibility

'https://en.wikipedia. org/wiki/Metric_prefix

4 1 Dimensions and units

rather than the underlying physical mechanisms. This booklet has its focus
on models where the physical mechanisms are already expressed through dif-
ferential equations. Nevertheless, the Pi theorem has a remarkable position
in the literature on scaling, and since we will occasionally make references to
it, the theorem is briefly discussed below.

The theorem itself is simply stated in two parts. First, if a problem in-
volves n physical parameters in which m independent unit-types (such as
length, mass etc.) appear, then the parameters can be combined to exactly
n —m independent dimensionless numbers, referred to as Pi’s. Second, any
unit-free relation between the original n parameters can be transformed into
a relation between the n —m dimensionless numbers. Such relations may be
identities or inequalities stating, for instance, whether or not a given effect is
negligible. Moreover, the transformation of an equation set into dimension-
less form corresponds to expressing the coefficients, as well as the free and
dependent variables, in terms of Pi’s.

As an example, think of a body moving at constant speed v. What is the
distance s traveled in time t? The Pi theorem results in one dimensionless
variable m = vt/s and leads to the formula s = Cvt, where C is an undeter-
mined constant. The result is very close to the well-known formula s = vt
arising from the differential equation s’ = v in physics, but with an extra
constant.

At first glance the Pi theorem may appear as bordering on the trivial.
However, it may produce remarkable progress for selected problems, such as
turbulent jets, nuclear blasts, or similarity solutions, without the detailed
knowledge of mathematical or physical models. Hence, to a novice in scaling
it may stand out as something very profound, if not magical. Anyhow, as
one moves on to more complex problems with many parameters, the use of
the theorem yields comparatively less gain as the number of Pi’s becomes
large. Many Pi’s may also be recombined in many ways. Thus, good physical
insight, and/or information conveyed through an equation set, is required
to pick the useful dimensionless numbers or the appropriate scaling of the
said equation set. Sometimes scrutiny of the equations also reveals that some
Pi’s, obtained by applying the theorem, in fact may be removed from the
problem. As a consequence, when modeling a complex physical problem, the
real assessment of scaling and dimensionless numbers will anyhow be included
in the analysis of the governing equations instead of being a separate issue
left with the Pi theorem. In textbooks and articles alike, the discussion of
scaling in the context of the equations are too often missing or presented in a
half-hearted fashion. Hence, the authors’ focus will be on this process, while
we do not provide much in the way of examples on the Pi theorem. We do
not allude that the Pi theorem is of little value. In a number of contexts,
such as in experiments, it may provide valuable and even crucial guidance,
but in this particular textbook we seek to tell the complementary story on
scaling. Moreover, as will be shown in this booklet, the dimensionless numbers
in a problem also arise, in a very natural way, from scaling the differential

1.1 Fundamental concepts 5

equations. Provided one has a model based on differential equations, there is
actually no need for classical dimensional analysis.

1.1.4 Absolute errors, relative errors, and units

Mathematically, it does not matter what units we use for a physical quantity.
However, when we deal with approximations and errors, units are important.
Suppose we work with a geophysical problem where the length scale is typ-
ically measured in km and we have an approximation 12.5 km to the exact
value 12.52 km. The error is then 0.02 km. Switching units to mm leads to
an error of 20,000 mm. A program working in mm would report 2-10° as the
error, while a program working in km would print 0.02. The absolute error
is therefore sensitive to the choice of units. This fact motivates the use of
relative error: (exact - approximate)/exact, since units then cancel. In the
present example, one gets a relative error of 1.6-1073 regardless of whether
the length is measured in km or mm.

Nevertheless, rather than relying solely on relative errors, it is in general
better to scale the problem such that the quantities entering the computations
are of unit size (or at least moderate) instead of being very large or very small.
The techniques of these notes show how this can be done.

1.1.5 Units and computers

Traditional numerical computing involves numbers only and therefore re-
quires dimensionless mathematical expressions. Usually, an implicit trivial
scaling is used. One can, for example, just scale all length quantities by 1
m, all time quantities by 1 s, and all mass quantities by 1 kg, to obtain
the dimensionless numbers needed for calculations. This is the most common
approach, although it is very seldom explicitly stated.

Symbolic computing packages, such as Mathematica and Maple, allow
computations with quantities that have dimension. This is also possible in
popular computer languages used for numerical computing (Section 1.1.8
provides a specific example in Python).

1.1.6 Unit systems

Confusion arises quickly when some physical quantities are expressed in SI
units while others are in US or British units. Density could, for instance, be
given in unit of ounce per teaspoon. Although unit conversion tables are fre-

6 1 Dimensions and units

quently met in school, errors in unit conversion probably rank highest among
all errors committed by scientists and engineers (and when a unit conversion
error makes an airplane’s fuel run out?, it is serious!). Having good soft-
ware tools to assist in unit conversion is therefore paramount, motivating the
treatment of this topic in Sections 1.1.8 and 1.2. Readers who are primarily
interested in the mathematical scaling technique may safely skip this material
and jump right to Section 2.1.

1.1.7 Example on challenges arising from unit systems

A slightly elaborated example on scaling in an actual science/engineering
project may stimulate the reader’s motivation. In its full extent, the study
of tsunamis spans geophysics, geology, history, fluid dynamics, statistics,
geodesy, engineering, and civil protection. This complexity reflects in a diver-
sity of practices concerning the use of units, scales, and concepts. If we narrow
the scope to modeling of tsunami propagation, the scaling aspect, at least,
may seem simple as we are mainly concerned with length and time. Still, even
here the non-uniformity concerning physical units is an encumbrance.

A minor issue is the occasional use of non-SI units such as inches, or in old
charts, even fathoms. More important is the non-uniformity in the magnitude
of the different variables, and the differences in the inherent horizontal and
vertical scales in particular. Typically, surface elevations are in meters or
smaller. For far-field deep water propagation, as well as small tsunamis (which
are still of scientific interest) surface elevations are often given in cm or even
mm. In the deep ocean, the characteristic depth is orders of magnitude larger
than this, typically 5000m. Propagation distances, on the other hand, are
hundreds or thousands of kilometers. Often locations and computational grids
are best described in geographical coordinates (longitude/latitude) which are
related to SI units by 1 latitude minute being roughly one nautical mile
(1852m), and 1 longitude minute being this quantity times the cosine of the
latitude. Wave periods of tsunamis mostly range from minutes to an hour,
hopefully sufficiently short to be well separated from the half-daily period of
the tides. Propagation times are typically hours or maybe the better part of
a day when the Pacific Ocean is traversed.

The scientists, engineers, and bureaucrats in the tsunami community tend
to be particular and non-conform concerning formats and units, as well as
the type of data required. To accommodate these demands, a tsunami mod-
eler must produce a diversity of data which are in units and formats which
cannot be used internally in her models. On the other hand, she must also be
prepared to accept the input data in diversified forms. Some data sets may
be large, implying that unnecessary duplication, with different units or scal-

thtp ://www.nytimes.com/1983/07/30/us/jet-s-fuel-ran-out-after-metric-conversion-errors.html

1.1 Fundamental concepts 7

ing, should be avoided. In addition, tsunami models are often bench-marked
through comparison with experimental data. The lab scale is generally cm
or m, at most, which implies that measured data are provided in different
units (than used in real earth-scale events), or even in volts, with conversion
information, as obtained from the measuring gauges.

All the unit particulars in various file formats is clearly a nuisance and give
rise to a number of misconceptions and errors that may cause loss of precious
time or efforts. To reduce such problems, developers of computational tools
should combine a reasonable flexibility concerning units in input and output
with a clear and consistent convention for scaling within the tools. In fact,
this also applies to academic tools for in-house use.

The discussion above points to some best practices that these notes pro-
motes. First, always compute with scaled differential equation models. This
booklet tells you how to do that. Second, users of software often want to
specify input data with dimension and get output data with dimension. The
software should then apply tools like PhysicalQuantity (Section 1.1.8) or
the more sophisticated Parampool package (Section 1.2) to allow input with
explicit dimensions and convert the dimensions to the right types if necessary.
It is trivial to apply these tools if the computational software is written in
Python, but it is even straightforward if the software is written in compiled
languages like Fortran, C, or C++. In the latter case one just makes an input
reading module in Python that grabs data from a user interface and feeds
them into the computational software, either through files or function calls
(the relevant functions to be called must be wrapped in Python with tools
like f2py>, Cython*, Weave®, SWIGS, Instant”, or similar, see [7, Appendix
C] for basic examples on f2py and Cython wrapping of C and Fortran code).

1.1.8 PhysicalQuantity: a tool for computing with units

These notes contain quite some computer code to illustrate how the theory
maps in detail to running software. Python is the programming language
used, primarily because it is an easy-to-read, powerful, full-fledged language
that allows MATLAB-like code as well as class-based code typically used in
Java, C#, and C++. The Python ecosystem for scientific computing has in
recent years grown fast in popularity and acts as a replacement for more spe-
cialized tools like MATLAB, R, and IDL. The coding examples in this booklet
requires only familiarity with basic procedural programming in Python.

3http://docs.scipy.org/doc/numpy-dev/f2py/

4http://cython.org/
Shttp://docs.scipy.org/doc/scipy/reference/tutorial/weave.html
Shttp://www.swig.org/
"https://bitbucket.org/fenics-project/instant

8 1 Dimensions and units

Readers without knowledge of Python variables, functions, if tests, and
module import should consult, e.g., a brief tutorial on scientific Python?,
the Python Scientific Lecture Notes?, or a full textbook [4] in parallel with
reading about Python code in the present notes.

These notes apply Python 2.7

Python exists in two incompatible versions, numbered 2 and 3. The
differences can be made small, and there are tools to write code that
runs under both versions.

As Python version 2 is still dominating in scientific computing, we
stick to this version, but write code in version 2.7 that is as close as
possible to version 3.4 and later. In most of our programs, only the
print statement differs between version 2 and 3.

Computations with units in Python are well supported by the very use-
ful tool PhysicalQuantity from the ScientificPython package'® by Kon-
rad Hinsen. Unfortunately, ScientificPython does not, at the time of this
writing, work with NumPy version 1.9 or later, so we have isolated the
PhysicalQuantity object in a module PhysicalQuantities!! and made
it publicly available on GitHub. There is also an alternative package Unum'2
for computing with numbers with units, but we shall stick to the former
module here.

Let us demonstrate the usage of the PhysicalQuantity object by com-
puting s = vt, where v is a velocity given in the unit yards per minute and ¢t
is time measured in hours. First we need to know what the units are called
in PhysicalQuantities. To this end, run pydoc PhysicalQuantities, or

Terminal

Terminal> pydoc Scientific.Physics.PhysicalQuantities

if you have the entire ScientificPython package installed. The resulting docu-
mentation shows the names of the units. In particular, yards are specified by
yd, minutes by min, and hours by h. We can now compute s = vt as follows:

>>> # With ScientificPython:
>>> from Scientific.Physics.PhysicalQuantities import \

. PhysicalQuantity as PQ
>>> # With PhysicalQuantities as separate/stand-alone module:
>>> from PhysicalQuantities import PhysicalQuantity as PQ
>>>

Shttp://hplgit.github.io/bumpy/doc/web/index.html
Shttp://scipy-lectures.github.com/
Onttps://bitbucket.org/khinsen/scientificpython
Upttps://github.com/hplgit/physical-quantities
2https://bitbucket . org/kiv/unum/

1.2 Parampool: user interfaces with automatic unit conversion 9

>>> v = PQ(°120 yd/min’) # velocity
>>> t = PQ(’1 h’) # time

>>> 5 = vkt # distance
>>> print s # s is string

120.0 h*yd/min

The odd unit h*yd/min is better converted to a standard SI unit such as
meter:

>>> s.convertToUnit(’m’)
>>> print s
6583.68 m

Note that s is a PhysicalQuantity object with a value and a unit. For
mathematical computations we need to extract the value as a float object.
We can also extract the unit as a string:

>>> print s.getValue() # float
6583.68

>>> print s.getUnitName() # string
m

Here is an example on how to convert the odd velocity unit yards per
minute to something more standard:

>>> v.convertToUnit (’km/h’)
>>> print v

6.58368 km/h

>>> v.convertToUnit(’m/s’)
>>> print v

1.8288 m/s

As another example on unit conversion, say you look up the specific heat
capacity of water to be 1 calg_lK_l. What is the corresponding value in the
standard unit Jg~'K~! where joule replaces calorie?

>>> ¢ = PQC’1 cal/(g*K)’)

>>> c.convertToUnit (’J/(g*K))
>>> print c

4.184 J/K/g

1.2 Parampool: user interfaces with automatic
unit conversion

The Parampool®® package allows creation of user interfaces with support
for units and unit conversion. Values of parameters can be set as a number
with a unit. The parameters can be registered beforehand with a preferred

Bhttps://github.com/hplgit/parampool

10 1 Dimensions and units

unit, and whatever the user prescribes, the value and unit are converted so
the unit becomes the registered unit. Parampool supports various type of
user interfaces: command-line arguments (option-value pairs), text files, and
interactive web pages. All of these are described next.

Example application. As case, we want to make software for computing
with the simple formula s = vt + %atQ. We want vg to be a velocity with unit

m/s, a to be acceleration with unit m/sQ, t to be time measured in s, and
consequently s will be a distance measured in m.

1.2.1 Pool of parameters

First, Parampool requires us to define a pool of all input parameters, which
is here simply represented by list of dictionaries, where each dictionary holds
information about one parameter. It is possible to organize input parameters
in a tree structure with subpools that themselves may have subpools, but
for our simple application we just need a flat structure with three input
parameters: vg, a, and t. These parameters are put in a subpool called “Main”.
The pool is created by the code

def define_input():
pool = [

’Main’, [
dict(name=’initial velocity’, default=1.0, unit=’m/s’),
dict (name=’acceleration’, default=1.0, unit=’m/s**2’),
dict(name=’time’, default=10.0, unit=’s’)
]

1

from parampool.pool.UI import listtree2Pool
pool = listtree2Pool(pool) # convert list to Pool object
return pool

For each parameter we can define a logical name, such as initial velocity,

a default value, and a unit. Additional properties are also allowed, see the

Parampool documentation'4.

Tip: specify default values of numbers as float objects

Note that we do not just write 1, but 1.0 as default. Had 1 been used,
Parampool would have interpreted our parameter as an integer and
would therefore convert input like 2.5 m/s to 2 m/s. To ensure that a
real-valued parameter becomes a float object inside the pool, we must
specify the default value as a real number: 1. or 1.0. (The type of

Mpttp://hplgit.github.io/parampool/doc/web/index . html

1.2 Parampool: user interfaces with automatic unit conversion 11

an input parameter can alternatively be set ezplicitly by the str2type
property, e.g., str2type=float.)

1.2.2 Fetching pool data for computing

We can make a little function for fetching values from the pool and computing
S:
def distance(pool):
v_0 = pool.get_value(’initial velocity’)
a = pool.get_value(’acceleration’)
t = pool.get_value(’time’)
s = v_0xt + 0.bxaxt**x2
return s

The pool.get_value function returns the numerical value of the named pa-
rameter, after the unit has been converted from what the user has specified
to what was registered in the pool. For example, if the user provides the
command-line argument -time ’2 h’, Parampool will convert this quantity
to seconds and pool.get_value(’time’) will return 7200.

1.2.3 Reading command-line options

To run the computations, we define the pool, load values from the command
line, and call distance:

pool = define_input ()
from parampool.menu.UI import set_values_from_command_line
pool = set_values_from_command_line (pool)

s = distance(pool)
print ’s=lg’ % s

Parameter names with whitespace must use an underscore for whitespace
in the command-line option, such as in —-Initial_velocity. We can now
run

Terminal

Terminal> python distance.py --initial_velocity ’10 km/h’ \
--acceleration 0 --time ’1 h
s=10000

Notice from the answer (s) that 10 km/h gets converted to m/s and 1 h to s.
It is also possible to fetch parameter values as PhysicalQuantity objects
from the pool by calling

12 1 Dimensions and units
v_0 = pool.get_value_unit(’Initial velocity’)

The following variant of the distance function computes with values and
units:

def distance_unit(pool):
Compute with units
from parampool.PhysicalQuantities import PhysicalQuantity as PQ
v_0 = pool.get_value_unit(’initial velocity’)
a = pool.get_value_unit(’acceleration’)
t = pool.get_value_unit(’time’)
s = v_0xt + 0.bxaxt**2
return s.getValue(), s.getUnitName()

We can then do

S, s_unit = distance_unit(pool)
print ’s=lg’ % s, s_unit

and get output with the right unit as well.

1.2.4 Setting default values in a file

In large applications with lots of input parameters one will often like to define
a (huge) set of default values specific for a case and then override a few of
them on the command-line. Such sets of default values can be set in a file
using syntax like

subpool Main

initial velocity = 100 ! yd/min

acceleration = 0 ! m/s**2 # drop acceleration

end

The unit can be given after the ! symbol (and before the comment symbol
#).
To read such files we have to add the lines

from parampool.pool.UI import set_defaults_from_file
pool = set_defaults_from_file(pool)

before the call to set_defaults_from_command_line.

If the above commands are stored in a file distance.dat, we give this file
information to the program through the option -poolfile distance.dat.
Running just

Terminal

Terminal> python distance.py —--poolfile distance.dat
s=15.256m

1.2 Parampool: user interfaces with automatic unit conversion 13

first loads the velocity 100 yd/min converted to 1.524 m/s and zero accel-
eration into the pool system and, and then we call distance_unit, which
loads these values from the pool along with the default value for time, set as
10 s. The calculation is then s =1.524-1040 = 15.24 with unit m. We can
override the time and/or the other two parameters on the command line:

Terminal

Terminal> python distance.py —--poolfile distance.dat --time ’2 h’
5=10972.8 m

The resulting calculations are s =1.524-720040 = 10972.8. You are encour-
aged to play around with the distance.py program.

1.2.5 Specifying multiple values of input parameters

Parampool has an interesting feature: multiple values can be assigned to an
input parameter, thereby making it easy for an application to run through all
combinations of all parameters. We can demonstrate this feature by making
a table of vg, a, t, and s values. In the compute function, we need to call
pool.get_values instead of pool.get_value to get a list of all the values
that were specified for the parameter in question. By nesting loops over all
parameters, we visit all combinations of all parameters as specified by the
user:
def distance_table(pool):

"""Grab multiple values of parameters from the pool."""

table = []

for v_0 in pool.get_values(’initial velocity’):

for a in pool.get_values(’acceleration’):
for t in pool.get_values(’time’):
s = v_0*xt + 0.5%a*xtxx2
table.append((v_0, a, t, s))

return table
In case just a single value was specified for a parameter, pool.get_values
returns this value only and there will be only one pass in the associated loop.

After loading command-line arguments into our pool object, we can call

distance_table instead of distance or distance_unit and write out a
nicely formatted table of results:

table = distance_table(pool)
print |- |
print | v_0 | a t s
print ’|-————--——— |
for v_0, a, t, s in table:

print ’1%11.3f | %10.3f | %10.3f | %12.3f |’ % (v_0, a, t, s)
Print ?|--mmmmmmmm

Here is a sample run,

14 1 Dimensions and units

Terminal> python distance.py --time 1 h & 2 h & 3 h’ \
--acceleration ’0 m/s**2 & 1 m/s**2 & 1 yd/s**2° \
--initial_velocity ’1 & 5’

| v_0 | a | t | s |
|--- e - -
1.000	0.000	3600.000	3600.000
1.000	0.000	7200.000	7200.000
1.000	0.000	10800.000	10800.000
1.000	1.000	3600.000	6483600.000
1.000	1.000	7200.000	25927200.000
1.000	1.000	10800.000	58330800.000
1.000	0.914	3600.000	5928912.000
1.000	0.914	7200.000	23708448.000
1.000	0.914	10800.000	53338608.000
5.000	0.000	3600.000	18000.000
5.000	0.000	7200.000	36000.000
5.000	0.000	10800.000	54000.000
5.000	1.000	3600.000	6498000.000
5.000	1.000	7200.000	25956000.000
5.000	1.000	10800.000	58374000.000
5.000	0.914	3600.000	5943312.000
5.000	0.914	7200.000	23737248.000
5.000	0.914	10800.000	

53381808.000

Notice that some of the multiple values have dimensions different from the
registered dimension for that parameter, and the table shows that conversion
to the right dimension has taken place.

1.2.6 Generating a graphical user interface

For the fun of it, we can easily generate a graphical user interface via Param-
pool. We wrap the distance_unit function in a function that returns the
result in some nice-looking HTML code:

def distance_unit2(pool):
Wrap result from distance_unit in HTML
s, s_unit = distance_unit(pool)
return ’Distance: %.2f %s’ % (s, s_unit)

In addition, we must make a file generate_distance_GUI.py with the simple
content

from parampool.generator.flask import generate
from distance import distance_unit2, define_input

generate(distance_unit2, pool_function=define_input, MathJax=True)

1.2 Parampool: user interfaces with automatic unit conversion 15

Running generate_distance_GUI.py creates a Flask-based web interface!®
to our distance_unit function, see Figure 1.1. The text fields in this GUI
allow specification of parameters with numbers and units, e.g., acceleration
with unit yards per minute squared, as shown in the figure. Hovering the
mouse slightly to the left of the text field causes a little black window to pop
up with the registered unit of that parameter.

Input: Result:
open all | close all Distance: 200592.00 m

2 Main

~initial velocity o
acceleration LOya/min—2
time 100h

Compute

Fig. 1.1 Web GUI where parameters can be specified with units.

With examples shown above, the reader should be able to make use of
the PhysicalQuantity object and the Parampool package in programs and
thereby work safely with units. For the coming text, where we discuss the
craft of scaling in detail, we shall just work in standard SI units and avoid unit
conversion so there will be no more use of PhysicalQuantity and Parampool.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
NonCommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/), which permits
any noncommercial use, distribution, and reproduction in any medium, provided the original
author(s) and source are credited.

The images or other third party material in this book are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt, or
reproduce the material.

15You need to have Flask and additional packages installed. This is easy to do with
a few pip install commands, see [5] or [6].

