
Chapter 4
Advanced partial differential
equation models

This final chapter addresses more complicated PDE models, including linear
elasticity, viscous flow, heat transfer, porous media flow, gas dynamics, and
electrophysiology. A range of classical dimensionless numbers are discussed
in terms of the scaling.

4.1 The equations of linear elasticity

To the best of the authors’ knowledge, it seems that mathematical models in
elasticity and structural analysis are almost never non-dimensionalized. This
is probably due to tradition, but the following sections will demonstrate the
usefulness of scaling also in this scientific field.

We start out with the general, time-dependent elasticity PDE with variable
material properties. Analysis based on scaling is used to determine under
what circumstances the acceleration term can be neglected and we end up
with the widely used stationary elasticity PDE. Scaling of different types
of boundary conditions is also treated. At the end, we scale the equations
of coupled thermo-elasticity. All the models make the assumption of small
displacement gradients and Hooke’s generalized constitutive law such that
linear elasticity theory applies.

4.1.1 The general time-dependent elasticity problem

The following vector PDE governs deformation and stress in purely elastic
materials, under the assumption of small displacement gradients:

�
∂2u

∂t2 = ∇((λ+μ)∇·u)+∇· (μ∇u)+�f . (4.1)
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100 4 Advanced partial differential equation models

Here, u is the displacement vector, � is the density of the material, λ and μ
are the Lame elasticity parameters, and f is a body force (gravity, centrifugal
force, or similar).

We introduce dimensionless variables:

ū = u−1
c u, x̄ = x

L
ȳ = y

L
z̄ = z

L
, t̄ = f

tc
.

Also the elasticity parameters and the density can be scaled, if they are not
constants,

λ̄ = λ

λc
, μ̄ = μ

μc
, �̄ = �

�c
,

where the characteristic quantities are typically spatial maximum values of
the functions:

λc = max
x,y,z

λ, μc = max
x,y,z

μ, �c = max
x,y,z

�.

Finally, we scale f too (if not constant):

f̄ = f−1
c f , fc = max

x,y,z,t
||f || .

Inserting the dimensionless quantities in the governing vector PDE results
in

�cuc

t2
c

∂2ū

∂t̄2 = L−2uc∇̄((λcλ̄+μcμ̄)∇̄ · ū)+L−2ucμc∇̄ · (μ̄∇̄ū)+�cfc�̄f̄ .

Making the terms non-dimensional gives the equation

�̄
∂2ū

∂t̄2 = t2
cλc

L2�c
∇̄(λ̄∇̄ · ū)+ t2

cμc

L2�c
∇̄(μ̄∇̄ · ū)+ t2

cμc

L2�c
∇̄ · (μ̄∇̄ū)+ t2

cfc

uc
�̄f̄ . (4.2)

We may choose tc to make the coefficient in front of any of the spatial deriva-
tive terms equal unity. Here we choose the μ term, which implies

tc = L

√
�c

μc
.

The scale for u can be chosen from an initial displacement or by making the
coefficient in front of the f̄ term unity. The latter means

uc = μ−1
c �cfcL2 .

As discussed later, in Section 4.1.4, this might not be the desired uc in
applications.
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�̄
∂2ū

∂t̄2 = ∇̄((βλ̄+ μ̄)∇̄ · ū)+ ∇̄ · (μ̄∇̄ū)+ �̄f̄ . (4.3)

The only dimensionless parameter is

β = λc

μc
.

If the source term is absent, we must use the initial condition or a known
boundary displacement to determine uc.
Software. Given software for (4.1), we can simulate the dimensionless prob-
lem by setting � = �̄, λ = βλ̄, and μ = μ̄.

4.1.2 Dimensionless stress tensor

The stress tensor σ is a key quantity in elasticity and is given by

σ = λ∇·uI +μ(∇u+(∇u)T ) .

This σ can be computed as soon as the PDE problem for u has been solved.
Inserting dimensionless variables on the right-hand side of the above relation
gives

σ = λcucL−2λ̄∇̄ · ū+μcucL−1μ̄(∇̄ū+(∇̄ū)T )

= μcucL−1
(

βλ̄∇̄ · ū+ μ̄(∇̄ū+(∇̄ū)T )
)

.

The coefficient on the right-hand side, μcucL−1, has dimension of stress,
since (according to the second table in Section 1.1.2) [MT−2L−1)(L)(L−1)] =
[MT−2L−1], which is the dimension of stress. The quantity μcucL−1 is there-
fore the natural scale of the stress tensor:

σ̄ = σ

σc
, σc = μcucL−1,

and we have the dimensionless stress-displacement relation

σ̄ = βλ̄∇̄ · ū+ μ̄(∇̄ū+(∇̄ū)T ) . (4.4)

4.1.3 When can the acceleration term be neglected?

A lot of applications of the elasticity equation involve static or quasi-static
deformations where the acceleration term �utt is neglected. Now we shall see
under which conditions the quasi-static approximation holds.

The resulting dimensionless PDE becomes
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The further discussion will need to look into the time scales of elastic
waves, because it turns out that the chosen tc above is closely linked to the
propagation speed of elastic waves in a homogeneous body without body
forces. A relevant model for such waves has constant �, λ, and μ, and no
force term:

�
∂2u

∂t2 = (λ+μ)∇∇·u+μ∇2u . (4.5)

S waves. Let us take the curl of this PDE and notice that the curl of a
gradient vanishes. The result is

∂2

∂t2 ∇×u = c2
S∇2∇×u,

i.e., a wave equation for ∇×u. The wave velocity is

cS =
√

μ

�
.

The corresponding waves are called S waves1. The curl of a displacement field
is closely related to rotation of continuum elements. S waves are therefore
rotation waves, also sometimes referred to as shear waves.

The divergence of a displacement field can be interpreted as the volume
change of continuum elements. Suppose this volume change vanishes, ∇·u =
0, which means that the material is incompressible. The elasticity equation
then simplifies to

∂2u

∂t2 = c2
S∇2u,

so each component of the displacement field in this case also propagates as
a wave with speed c2

S . The time it takes for such a wave to travel one charac-
teristic length L is L/cS , i.e., L

√
�/μ, which is nothing but our characteristic

time tc.

P waves. We may take the divergence of the PDE instead and notice that
∇·∇ = ∇2 so

∂2

∂t2 ∇·u = c2
P ∇2∇·u,

with wave velocity

cP =

√
λ+2μ

�
.

1https://en.wikipedia.org/wiki/S-wave
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That is, the volume change (expansion/compression) propagates as a wave
with speed cP . These types of waves are called P waves2. Other names are
pressure and expansion/compression waves.

Suppose now that ∇×u = 0, i.e., there is no rotation (“shear”) of contin-
uum elements. Mathematically this condition implies that ∇2u = ∇(∇ · u)
(see any book on vector calculus or Wikipedia3). Our model equation (4.5)
then reduces to

∂2u

∂t2 = c2
P ∇2u,

which is nothing but a wave equation for the expansion component of the
displacement field, just as (4.1.3) is for the shear component.
Time-varying load. Suppose we have some time-varying boundary con-
dition on u or the stress vector (traction), with a time scale 1/ω (some
oscillating movement that goes like sinωt, for instance). We choose tc = 1/ω.
The scaling now leads to

γ
∂2ū

∂t̄2 = ∇̄((βλ̄+ μ̄)∇̄ · ū)+ ∇̄ · (μ̄∇̄ū)+ �̄f̄ .

where we have set

uc = μ−1
c fcL2�c,

as before, and γ is a new dimensionless number,

γ = �cL2ω2

μc
=

(
L

√
�c/μc

1/ω

)2

.

The last rewrite shows that √
γ is the ratio of the time scale for S waves and

the time scale for the forced movement on the boundary. The acceleration
term can therefore be neglected when γ � 1, i.e., when the time scale for
movement on the boundary is much larger than the time it takes for the S
waves to travel through the domain. Since the velocity of S waves in solids is
very large and the time scale correspondingly small, γ � 1 is very often the
case in applications involving structural analysis.

4.1.4 The stationary elasticity problem

Scaling of the PDE. We now look at the stationary version of (4.1) where
the �utt term is removed. The first step in the scaling is just inserting the
dimensionless variables:

2https://en.wikipedia.org/wiki/P-wave
3https://en.wikipedia.org/wiki/Vector_calculus_identities
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0 = L−2uc∇̄((λcλ̄+μcμ̄)∇̄ · ū)+L−2ucμc∇̄ · (μ̄∇̄ū)+�cfc�̄f̄ .

Dividing by L2ucμc gives

0 = ∇̄((βλ̄+ μ̄)∇̄ · ū)+ ∇̄ · (μ̄∇̄ū)+ L2�cfc

ucμc
�̄f̄ .

Choosing uc = �L f /μ2
c c leads to

∇̄((βλ̄+ μ̄)∇̄ · ū)+ ∇̄ · (μ̄∇̄ū)+ �̄f̄ = 0 . (4.6)

A homogeneous material with constant λ, μ, and � is an interesting case
(this corresponds to μc = μ, λc = λ, �c = �, �̄ = λ̄ = μ̄ = 1):

(1+β)∇̄(∇̄ · ū)+ ∇̄2ū)+ f̄ = 0 . (4.7)

Now β is defined as

β = λ

μ
=

(
cp

cs

)2
−2 .

It shows that in standard, stationary elasticity, λ/μ is the only significant
physical parameter.

Scaling of displacement boundary conditions. A typical boundary con-
dition on some part of the boundary is a prescribed displacement. For sim-
plicity, we set u = U0 for a constant vector U0 as boundary condition. With
uc = �L2fc/μ, we get the dimensionless condition

ū = U0
uc

= μU0
�L2fc

.

In the absence of body forces, the expression for uc has no meaning (fc = 0),
so then uc = |U0| is a better choice. This gives the dimensionless boundary
condition

ū = U0
|U0| ,

which is the unit vector in the direction of U0. The new uc changes the

Remark on the characteristic displacement.

The presented scaling may not be valid for problems where the geometry
involves some dimensions that are much smaller than others, such as for
beams, shells, or plates. Then one more length scale must be defined which
gives us non-dimensional geometrical numbers. Global balances of moments
and loads then determine how characteristic displacements depend on these
numbers. As an example, consider a cantilever beam of length L and square-
shaped cross section of width W , deformed under its own weight. From beam
theory one can derive uc = 3

2�gL2δ2/E, where δ = L/W (g is the acceleration
of gravity). If we consider E to be of the same size as λ, this implies that
γ ∼ δ−2. So, it may be wise to prescribe a uc in elasticity problems, perhaps
from formulas as shown, and keep γ in the PDE.
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σ ·n = T0,

where, to make it simple, we take T0 as a constant vector. From Section 4.1.2
we have a stress scale σc = μuc/L, but we may alternatively use |T0| as stress
scale. In that case,

σ̄ ·n = T0
|T0| ,

which is a unit vector in the direction of T0. Many applications involve large
traction free areas on the boundary, on which we simply have σ̄ ·n = 0.

4.1.5 Quasi-static thermo-elasticity

if displacements are constrained. The time scale of temperature changes are
usually much larger than the time scales of elastic waves, so the stationary
equations of elasticity can be used, but a term depends on the temperature,
so the equations must be coupled to a PDE for heat transfer in solids. The
resulting system of PDEs is known as the equations of thermo-elasticity and
reads

∇((λ+μ)∇·u)+∇· (μ∇u) = α∇T −�f , (4.8)

�c
∂T

∂t
= ∇· (κ∇T )+�fT , (4.9)

where T is the temperature, α is a coefficient of thermal expansion, c is a heat
capacity, κ is the heat conduction coefficient, and fT is some heat source.
The density � is strictly speaking a function of T and the stress state, but
a widely used approximation is to consider � as a constant. Most thermo-
elasticity applications have fT = 0, so we drop this term. Most applications
also involve some heating from a temperature level T0 to some level T0 +ΔT .
A suitable scaling for T is therefore

T̄ = T −T0
ΔT

,

so that T̄ ∈ [0,1]. The elasticity equation has already been scaled and so has
the diffusion equation for T . We base the time scale on the diffusion, i.e., the
thermal conduction process:

tc = �cL2/κc .

δ = L2�fc

μ|U0| .

Scaling of traction boundary conditions. The other type of common
boundary condition in elasticity is a prescribed traction (stress vector) on
some part of the boundary:

coefficient in front of the body force term, if that term is present, to the
dimensionless number

Heating solids gives rise to expansion, i.e., strains, which may cause stress
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We imagine that κ is scaled as κ̄ = κ/κc. The dimensionless PDE system then
becomes

∇̄((1+β)μ̄∇̄ · ū)+ ∇̄ · (μ̄∇̄ū) = ∇̄T̄ − ε�̄f̄ , (4.10)
∂T̄

∂t̄
= ∇̄ · (κ̄∇̄T̄ ) . (4.11)

Here we have chosen uc such that the “heating source term” has a unit
coefficient, acknowledging that this thermal expansion balances the stress
terms with ū. The corresponding displacement scale is

uc = αLΔT

μc
.

The dimensionless number in the body force term is therefore

ε = L�cfc

αΔT
,

which measures the ratio of the body force term and the “heating source
term”.

A homogeneous body with constant �, λ, μ, c, and κ is common. The PDE
system reduces in this case to

∇̄((1+β)∇̄ · ū)+ ∇̄2ū) = ∇̄T̄ − εf̄ , (4.12)
∂T̄

∂t̄
= ∇̄2T̄ . (4.13)

In the absence of body forces, β is again the key parameter.
The boundary conditions for thermo-elasticity consist of the conditions

for elasticity and the conditions for diffusion. Scaling of such conditions are
discussed in Section 3.2 and 4.1.4.

4.2 The Navier-Stokes equations

This section shows how to scale various versions of the equations governing
incompressible viscous fluid flow. We start with the plain Navier-Stokes equa-
tions without body forces and progress with adding the gravity force and a
free surface. We also look at scaling low Reynolds number flow and oscillating
flows.
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4.2.1 The momentum equation without body forces

The Navier-Stokes equations for incompressible viscous fluid flow, without
body forces, take the form

�

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u, (4.14)

∇·u = 0 . (4.15)

The primary unknowns are the velocity u and the pressure p. Moreover, � is
the fluid density, and μ is the dynamic viscosity.

Scaling. We start, as usual, by introducing a notation for dimensionless
independent and dependent variables:

x̄ = x

L
, ȳ = y

L
, z̄ = z

L
, t̄ = t

tc
, ū = u

uc
, p̄ = p

pc
,

where L is some characteristic distance, tc is some characteristic time, uc is
a characteristic velocity, while pc is a characteristic pressure. Inserted in the
equations,

�

(
uc

tc

∂ū

∂t̄
+ u2

c

L
ū · ∇̄ū

)
= −pc

L
∇̄p̄+ uc

L2 μ∇̄2ū, (4.16)

uc

L
∇̄ · ū = 0 . (4.17)

For the velocity it is common to just introduce some U for uc. This U is
normally implied by the problem description. For example, in the flow con-
figuration below, with flow over a bump, we have some incoming flow with
a profile v(y) and U can typically be chosen as U = maxy v(y). The height
of the bump influences the wake behind the bump, and is the length scale
that really impacts the flow, so it is natural to set L = D. For numerical
simulations in a domain of finite extent, [0, c + �], c must be large enough
to avoid feedback on the inlet profile, and � must be large enough for the
type of outflow boundary condition used. Ideally, c,� → ∞, so none of these
parameters are useful as length scales.
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v(y)
D

�c

For flow in a channel or tube, we also have some inlet profile, e.g., v(r)
in a tube, where r is the radial coordinate. A natural choice of characteristic
velocity is U = v(0) or to let U be the average flow, i.e.,

U = 1
πR2

∫ R

0
2πv(r)rdr,

if R is the radius of the tube. Other examples may be flow around a body,
where there is some distant constant inlet flow u = U0i, for instance, and
U = U0 is an obvious choice. We therefore assume that the flow problem
itself brings a natural candidate for U .

Having a characteristic distance L and velocity U , an obvious time measure
is L/U so we set tc = L/U . Dividing by the coefficient in front of the time
derivative term, creates a pressure term

pc

�U2 ∇̄p̄ .

The coefficient suggest a choice pc = �U2 if the pressure gradient term is
to have the same size as the acceleration terms. This pc is a very common
pressure scale in fluid mechanics, arising from Bernoulli’s equation

p+ 1
2�u ·u = const

for stationary flow.

Dimensionless PDEs and the Reynolds number. The discussions so far
result in the following dimensionless form of (4.14) and (4.15):

∂ū

∂t̄
+ ū · ∇̄ū = −∇̄p̄+Re−1∇̄2ū, (4.18)

∇̄ · ū = 0, (4.19)

where Re is the famous Reynolds number,

Re = �UL

μ
= UL

ν
.
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The latter expression makes use of the kinematic viscosity ν = μ/�. For vis-
cous fluid flows without body forces there is hence only one dimensionless
number, Re.

The Reynolds number can be interpreted as the ratio of convection and
viscosity:

convection
viscosity = |�u ·∇u|

|μ∇2u| ∼ �U2/L

μU/L2 = UL

ν
= Re .

(We have here used that ∇u goes like U/L and ∇2u goes like U/L2.)

4.2.2 Scaling of time for low Reynolds numbers

As we discussed in Section 3.4 for the convection-diffusion equation, there is
not just one scaling that fits all problems. Above, we used tc = L/U , which
is appropriate if convection is a dominating physical effect. In case the con-
vection term �u · ∇u is much smaller than the viscosity term μ∇2u, i.e.,
the Reynolds number is small, the viscosity term is dominating. However, if
the scaling is right, the other terms are of order unity, and Re−1∇2ū must
then also be of unit size. This fact implies that ∇2ū must be small, but then
the scaling is not right (since a right scaling will lead to ū and its derivatives
around unity). Such reasoning around inconsistent size of terms clearly points
to the need for other scales.

In the low-Reynolds number regime, the diffusion effect of ∇2ū is dominat-
ing, and we should use a time scale based on diffusion rather than convection.
Such a time scale is tc = L2/(μ/�) = L2/ν. With this time scale, the dimen-
sionless Navier-Stokes equations look like

∂ū

∂t̄
+Re ū · ∇̄ū = −∇̄p+ ∇̄2ū, (4.20)

∇̄ · ū = 0 . (4.21)

As stated in the box in Section 3.4, (4.20) is the appropriate PDE for very
low Reynolds number flow and suggests neglecting the convection term. If
the flow is also steady, the time derivative term can be neglected, and we end
up with the so-called Stokes problem for steady, slow, viscous flow:

−∇̄p+ ∇̄2ū = 0, (4.22)
∇̄ · ū = 0 . (4.23)

This flow regime is also known as Stokes’ flow or creeping flow.
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4.2.3 Shear stress as pressure scale

Instead of using the kinetic energy �U2 as pressure scale, one can use the
shear stress μU/L (U/L reflects the spatial derivative of the velocity, which
enters the shear stress expression μ∂u/∂y). Using U as velocity scale, L/U
as time scale, and μU/L as pressure scale, results in

Re
(

∂ū

∂t̄
+ ū · ∇̄ū

)
= −∇̄p̄+ ∇̄2ū . (4.24)

Low Reynolds number flow now suggests neglecting both acceleration terms.

4.2.4 Gravity force and the Froude number

We now add a gravity force to the momentum equation (4.14):

�

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u−�gk, (4.25)

where g is the acceleration of gravity, and k is a unit vector in the oppo-
site direction of gravity. The new term takes the following form after non-
dimensionalization:

tc

�uc
�gk = Lg

U2 k = Fr−2k,

where Fr is the dimensionless Froude number,

Fr = U√
Lg

.

This quantity reflects the ratio of inertia and gravity forces:

|u ·∇u|
|�g| ∼ �U2/L

�g
= Fr2 .

4.2.5 Oscillating boundary conditions and the Strouhal
number

Many flows have an oscillating nature, often arising from some oscillating
boundary condition. Suppose such a condition, at some boundary x = const,
takes the specific form

u = U sin(ωt)i .
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The dimensionless counterpart becomes

U ū = U sin(ω L

U
t̄)i,

if tc = L/U is the appropriate time scale. This condition can be written

ū = sin(St t̄), (4.26)

where St is the Strouhal number,

St = ωL

U
. (4.27)

The two important dimensionless parameters in oscillating flows are then the
Reynolds and Strouhal numbers.

Even if the boundary conditions are of steady type, as for flow around a
sphere or cylinder, the flow may at certain Reynolds numbers get unsteady
and oscillating. For 102 < Re < 107, steady inflow towards a cylinder will
cause vortex shedding: an array of vortices are periodically shedded from the
cylinder, producing an oscillating flow pattern and force on the cylinder. The
Strouhal number is used to characterize the frequency of oscillations. The
phenomenon, known as von Karman vortex street, is particularly important
if the frequency of the force on the cylinder hits the free vibration frequency of
the cylinder such that resonance occurs. The result can be large displacements
of the cylinder and structural failure. A famous case in engineering is the
failure of the Tacoma Narrows suspension bridge4 in 1940, when wind-induced
vortex shedding caused resonance with the free torsional vibrations of the
bridge.

4.2.6 Cavitation and the Euler number

The dimensionless pressure in (4.18) made use of the pressure scale pc = �U2.
This is an appropriate scale if the pressure level is not of importance, which is
very often the case since only the pressure gradient enters the flow equation
and drives the flow. However, there are circumstances where the pressure
level is of importance. For example, in some flows the pressure may become
so low that the vapor pressure of the liquid is reached and that vapor cavities
form (a phenomenon known as cavitation). A more appropriate pressure scale
is then pc = p∞ − pv, where p∞ is a characteristic pressure level far from
vapor cavities and pv is the vapor pressure. The coefficient in front of the
dimensionless pressure gradient is then

4https://en.wikipedia.org/wiki/Tacoma_Narrows_Bridge_(1940)
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p∞ −pv

�U2 .

Inspired by Bernoulli’s equation p+ 1
2�u ·u = const in fluid mechanics, a fac-

tor 1
2 is often inserted in the denominator. The corresponding dimensionless

number,

Eu = p∞ −pv
1
2�U2 , (4.28)

is called the Euler number. The pressure gradient term now reads 1
2Eu∇̄p̄.

The Euler number expresses the ratio of pressure differences and the kinetic
energy of the flow.

4.2.7 Free surface conditions and the Weber number

At a free surface, z = η(x,y, t), the boundary conditions are

w = ∂η

∂t
+u ·∇η, (4.29)

p−p0 ≈ −σ

(
∂2η

∂x2 + ∂2η

∂y2

)
, (4.30)

where w is the velocity component in the z direction, p0 is the atmospheric
air pressure at the surface, and σ represents the surface tension. The approx-
imation in (4.30) is valid under small deformations of the surface.

The dimensionless form of these conditions starts with inserting the di-
mensionless quantities in the equations:

ucw̄ = L

tc

∂η̄

∂t̄
+ucū · ∇̄η̄,

pcp̄ ≈ − 1
L

σ

(
∂2η̄

∂x̄2 + ∂2η̄

∂ȳ2

)
.

The characteristic length L is usually taken as the depth of the fluid when
the surface is flat. We have used p̄ = (p − p0)/pc for making the pressure
dimensionless. Using uc = U , tc = L/U , and pc = �U2, results in

w̄ = ∂η̄

∂t̄
+ ū · ∇̄η̄, (4.31)

p̄ ≈ −We−1
(

∂2η̄

∂x̄2 + ∂2η̄

∂ȳ2

)
, (4.32)
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where We is the Weber number,

We = �U2L

σ
. (4.33)

The Weber number measures the importance of surface tension effects and
is the ratio of the pressure scale �U2 and the surface tension force per area,
typically σ/Rx in a 2D problem, which has size σ/L.

4.3 Thermal convection

Temperature differences in fluid flow cause density differences, and since cold
fluid is heavier than hot fluid, the gravity force will induce flow due to den-
sity differences. This effect is called free thermal convection and is key to our
weather and heating of rooms. Forced convection refers to the case where
there is no feedback from the temperature field to the motion, i.e., tempera-
ture differences do not create motion. This fact decouples the energy equation
from the mass and momentum equations.

4.3.1 Forced convection

The model governing forced convection consists of the Navier-Stokes equa-
tions and the energy equation for the temperature:

�

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u−�gk, (4.34)

∇·u = 0, (4.35)

�c

(
∂T

∂t
+u ·∇T

)
= κ∇2T . (4.36)

The symbol T is the temperature, c is a heat capacity, and κ is the heat
conduction coefficient for the fluid. The PDE system applies primarily for
liquids. For gases one may need a term −p∇ · u for the pressure work in
(4.36) as well as a modified equation of continuity (4.35).

Despite the fact that � depends on T , we treat � as a constant �0. The ma-
jor effect of the �(T ) dependence is through the buoyancy effect caused by the
gravity term −�(T )gk. It is common to drop this term in forced convection,
and assume the momentum and continuity equations to be independent of
the temperature. The flow is driven by boundary conditions (rather than den-
sity variations as in free convection), from which we can find a characteristic
velocity U .
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Dimensionless parameters are introduced as follows:

x̄ = x

L
, tc = L

U
, ū = u

U
, p̄ = p

�0U2 , T̄ = T −T0
Tc

.

Other coordinates are also scaled by L. The characteristic temperature Tc is
chosen as some range ΔT , which depends on the problem and is often given by
the thermal initial and/or boundary conditions. The reference temperature
T0 is also implied by prescribed conditions. Inserted in the equations, we get

�0
U2

L

∂ū

∂t̄
+�0

U2

L
ū · ∇̄ū = −�0U2

L
∇̄p̄+ μU

L2 ∇̄2ū,

U

L
∇̄ · ū = 0,

�0c

(
TcU

L

∂T̄

∂t̄
+ UTc

L
ū · ∇̄T̄

)
= κTc

L2 ∇̄2T̄ .

Making each term in each equation dimensionless reduces the system to

∂ū

∂t̄
+ ū · ∇̄ū = −∇̄p̄+Re−1∇̄2ū, (4.37)

∇̄ · ū = 0, (4.38)
∂T̄

∂t̄
+ ū · ∇̄T̄ = Pe−1∇̄2T̄ . (4.39)

The two dimensionless numbers in this system are given by

Pe = �0cUL

κ
, Re = UL

ν
(ν = μ

�0
) .

The Peclet number is here defined as the ratio of the convection term for
heat �0cUΔT/L and the heat conduction term κU/L2. The fraction κ/(�0c)
is known as the thermal diffusivity, and if this quantity is given a symbol α,
we realize the relation to the Peclet number defined in Section 3.4.

4.3.2 Free convection

Governing equations. The mathematical model for free thermal convec-
tion consists of the Navier-Stokes equations coupled to an energy equation
governing the temperature:
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�

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u−�gk, (4.40)

∂ρ

∂t
+∇· (�u) = 0, (4.41)

�c

(
∂T

∂t
+u ·∇T

)
= κ∇2T +2μεijεij , (4.42)

symbol T is the temperature, c is a heat capacity, κ is the heat conduction
coefficient for the fluid. In free convection, the gravity term −�(T )gk is es-
sential since the flow is driven by temperature differences and the fact that
hot fluid rises while cold fluid falls.

For slightly compressible gas flow a term −p∇·u may be needed in (4.42).

Heating by viscous effects. We have also included heating of the fluid
due to the work of viscous forces, represented by the term 2μεijεij , where
εij is the strain-rate tensor in the flow, defined by

εij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
= 1

2(∇u+(∇u)T ),

where ui is the velocity in direction of xi (i = 1,2,3 measures the space
directions). The term 2μεijεij is actually much more relevant for forced con-
vection, but was left out in Section 4.3.2 for mathematical simplicity. Heating
by the work of viscous forces is often a very small effect and can be neglected,
although it plays a major role in forging and extrusion of metals where the
viscosity is very large (such processes require large external forces to drive
the flow). The reason for including the work by viscous forces under the
heading of free convection, is that we want to scale a more complete, gen-
eral mathematical model for mixed force and free convection, and arrive at
dimensionless numbers that can tell if this extra term is important or not.

Relation between density and temperature.
been made dimensionless in the previous section. The major difference is now
that � is no longer a constant, but a function of T . The relationship between
� and T is often taken as linear,

� = �0 −�0β(T −T0),

where

β = −1
�

(
∂�

∂t

)
p

,

is known as the thermal expansion coefficient of the fluid, and �0 is a reference
density when the temperature is at T0.

where Einstein’s summation convention is implied for the εijεij term. The

Equations (4.40) has already
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The Boussinesq approximation. A very common approximation, called
the Boussinesq approximation, is to neglect the density variations in all terms
except the gravity term. This is a good approximation unless the change in
� is large. With the linear �(T ) formula and the Boussinesq approximation,
(4.40)-(4.42) take the form

�0

(
∂u

∂t
+u ·∇u

)
= −∇p+μ∇2u− (�0 −�0β(T −T0))gk, (4.43)

∇·u = 0, (4.44)

�0c

(
∂T

∂t
+u ·∇T

)
= κ∇2T +2μεijεij . (4.45)

A good justification of the Boussinesq approximation is provided by Tritton
[9, Ch. 13].

Scaling. Dimensionless variables are introduced as

x̄ = x

L
, tc = L

U
, ū = u

U
, p̄ = p

�U2 , T̄ = T −T0
ΔT

.

The dimensionless y and z coordinates also make use of L as scale. As in
forced convection, we assume the characteristic temperature level T0 and the
scale ΔT are given by thermal boundary and/or initial conditions. Contrary
to Sections 4.2 and 4.3.2, U is now not given by the problem description, but
implied by ΔT .

Replacing quantities with dimensions by their dimensionless counterparts
results in

�0
U2

L

∂ū

∂t̄
+�0

U2

L
ū · ∇̄ū = −pc

L
∇̄p̄+ μU

L2 ∇̄2ū−�0gk +�0βTcT̄ gk,

U

L
∇̄ · ū = 0,

�0c

(
TcU

L

∂T̄

∂t̄
+ UTc

L
ū · ∇̄T̄

)
= κTc

L2 ∇̄2T̄ +2μU

L
ε̄ij ε̄ij .

These equations reduce to

∂ū

∂t̄
+ ū · ∇̄ū = −∇̄p̄+Re−1∇̄2ū−Fr−2k +γT̄k, (4.46)

∇̄ · ū = 0, (4.47)
∂T̄

∂t̄
+ ū · ∇̄T̄ = Pe−1∇̄2T̄ +2δε̄ij ε̄ij . (4.48)

The dimensionless numbers, in addition to Re and Fr, are



4.3 Thermal convection 117

γ = gβLΔT

U2 , Pe−1 = κ

�0cUL
, δ = μU

L�0cΔT
.

γ = �0gβΔT

�0U2/L
= gβLΔT

U2 .

The Pe parameter is the fraction of the convection term and the thermal
diffusion term:

|�0u ·∇T |
|κ∇2T | ∼ �0cUΔTL−1

κL−2ΔT
= �cUL

κ
= Pe .

The δ parameter is the ratio of the viscous dissipation term and the convection
term:

|μ∇2u|
|�0cu ·∇T | ∼ μU2/L2

�0cUΔT/L
= μU

L�0cΔT
= δ .

4.3.3 The Grashof, Prandtl, and Eckert numbers

The problem with the above dimensionless numbers is that they involve U ,
but U is implied by ΔT . Assuming that the convection term is much bigger
than the viscous diffusion term, the momentum equation features a balance
between the buoyancy term and the convection term:

|�0u ·∇u| ∼ �0gβΔT .

Translating this similarity to scales,

�0U2/L ∼ �0gβΔT,

gives an U in terms of ΔT :

U =
√

βLΔT .

The Reynolds number with this U now becomes

ReT = UL

ν
=

√
gβL3ΔT

ν2 = Gr1/2,

where Gr is the Grashof number in free thermal convection:

Gr = Re2
T = gβL3ΔT

ν2 .

The γ number measures the ratio of thermal buoyancy and the convection
term:
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The Grashof number replaces the Reynolds number in the scaled equations
of free thermal convection. We shall soon look at its interpretations, which
are not as straightforward as for the Reynolds and Peclet numbers.

The above choice of U in terms of ΔT results in γ equal to unity:

γ = gβLΔT

U2 = gβLΔT

gβLΔT
= 1 .

The Peclet number can also be rewritten as

Pe = �cUL

κ
= μc

κ

�UL

μ
= PrRe−1 = PrRe−1

T ,

where Pr is the Prandtl number, defined as

Pr = μc

κ
.

The Prandtl number is the ratio of the momentum diffusivity (kinematic
viscosity) and the thermal diffusivity. Actually, more detailed analysis shows
that Pr reflects the ratio of the thickness of the thermal and velocity boundary
layers: when Pr = 1, these layers coincide, while Pr � 1 implies that the
thermal layer is much thicker than the velocity boundary layer, and vice
versa for Pr � 1.

The δ parameter is in free convection replaced by a combination of the
Eckert number (Ec) and the Reynolds number. We have that

Ec = U2

cΔT
= δReT ,

and consequently

δ = EcRe−1
T = EcGr−1/2 .

Writing

Ec = �0U2

�0cΔT
,

shows that the Eckert number can be interpreted as the ratio of the kinetic
energy of the flow and the thermal energy.

We use Gr instead of ReT in the momentum equations and also instead
of Pe in the energy equation (recall that Pe = PrRe = PrReT = PrGr−1/2).
The resulting scaled system becomes
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∂ū

∂t̄
+ ū · ∇̄ū = −∇̄p̄+Gr−1/2∇̄2ū−Fr−2k + T̄k, (4.49)

∇̄ · ū = 0, (4.50)

Gr1/2
(

∂T̄

∂t̄
+ ū · ∇̄T̄

)
= Pr−1∇̄2T̄ +2EcGr−1/2ε̄ij ε̄ij . (4.51)

The Grashof number plays the same role as the Reynolds number in the
momentum equation in free convection. In particular, it turns out that Gr
governs the transition between laminar and turbulent flow. For example, the
transition to turbulence occurs in the range 108 < Gr < 109 for free convection
from vertical flat plates. Gr is normally interpreted as a dimensionless number
expressing the ratio of buoyancy forces and viscous forces.

Interpretations of the Grashof number. Recall that the scaling leading
to the Grashof number is based on an estimate of U from a balance of the
convective and the buoyancy terms. When the viscous term dominates over
convection, we need a different estimate of U , since in this case, the viscous
force balances the buoyancy force:

μ∇2u ∼ �0gβΔT ⇒ μU/L2 ∼ �0gβΔT,

This similarity suggests the scale

U = gβL2ΔT

ν
.

Now,

|�0u ·∇u|
|μ∇2u| ∼ UL

ν
= gβL3ΔT

ν
= Gr .

The result means that Gr1/2 measures the ratio of convection and viscous
forces when convection dominates, whereas Gr measures this ratio when vis-
cous forces dominate.

The product of Gr and Pr is the Rayleigh number,

Ra = gβL3ΔT�0c

νκ
,

since

GrPr = Re2
T Pr = gβL3ΔT

ν2
μc

κ
= gβL3ΔT�0c

νκ
= Ra .

The Rayleigh number is the preferred dimensionless number when studying
free convection in horizontal layers [2, 9]. Otherwise, Gr and Pr are used.
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4.3.4 Heat transfer at boundaries and the Nusselt and
Biot numbers

A common boundary condition, modeling heat transfer to/from the surround-
ings, is

−κ
∂T

∂n
= h(T −Ts), (4.52)

where ∂/∂n means the derivative in the normal direction (n · ∇), h is an
experimentally determined heat transfer coefficient, and Ts is the temperature
of the surroundings. Scaling (4.52) leads to

−κΔt

L

∂T̄

∂n̄
= h(ΔTT̄ +T0 −Ts),

and further to

∂T̄

∂n̄
= hL

κ
(T̄ + Ts −T0

ΔT
) = δ(T̄ − T̄s),

where the dimensionless number δ is defined by

δ = hL

κ
,

and T̄s is simply the dimensionless surrounding temperature,

T̄s = Ts −T0
ΔT

.

When studying heat transfer in a fluid, with solid surroundings, δ is known
as the Nusselt number5 Nu. The left-hand side of (4.52) represents in this case
heat conduction, while the right-hand side models convective heat transfer
at a boundary. The Nusselt number can then be interpreted as the ratio of
convective and conductive heat transfer at a solid boundary:

|h(T −Ts)|
κT/L

∼ h

κ/L
= Nu .

The case with heat transfer in a solid with a fluid as surroundings gives the
same dimensionless δ, but the number is now known as the Biot number6. It
describes the ratio of heat loss/gain with the surroundings at the solid body’s
boundary and conduction inside the body. A small Biot number indicates
that conduction is a fast process and one can use Newton’s law of cooling
(see Section 2.1.7) instead of a detailed calculation of the spatio-temporal
temperature variation in the body.

5https://en.wikipedia.org/wiki/Nusselt_number
6https://en.wikipedia.org/wiki/Biot_number
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Heat transfer is a huge engineering field with lots of experimental investiga-
tions that are summarized by curves relating various dimensionless numbers
such as Gr, Pr, Nu, and Bi.

4.4 Compressible gas dynamics

4.4.1 The Euler equations of gas dynamics

The fundamental equations for a compressible fluid are based on balance of
mass, momentum, and energy. When molecular diffusion effects are negligible,
the PDE system, known as the Euler equations of gas dynamics, can be
written as

∂�

∂t
+∇· (�u) = 0, (4.53)

∂(�u)
∂t

+∇· (�uuT ) = −∇p+�f , (4.54)

∂E

∂t
+∇· (u(E +p)) = 0, (4.55)

with E being

E = �e+ 1
2�u ·u . (4.56)

In these equations, u is the fluid velocity, � is the density, p is the pressure,
E is the total energy per unit volume, composed of the kinetic energy per
unit volume, 1

2�u ·u, and the internal energy per unit volume, �e.
Assuming the fluid to be an ideal gas implies the following additional

relations:

e = cvT, (4.57)

p = �RT = R

cv
(E − 1

2�u ·u), (4.58)

where cv is the specific heat capacity at constant volume (for dry air cv =
717.5Jkg−1K−1), R is the specific ideal gas constant (R = 287.14Jkg−1K−1),
and T is the temperature.

The common way to solve these equations is to propagate �, �u, and E
by an explicit numerical method in time for (4.53)-(4.55), using (4.58) for p.

We introduce dimensionless independent variables,
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x̄ = x

L
, ȳ = y

L
, z̄ = z

L
, t̄ = t

tc
,

and dimensionless dependent variables,

ū = u

U
, �̄ = �

�c
, p̄ = p

pc
, Ē = E

Ec
.

Inserting these expressions in the governing equations gives

∂�̄

∂t̄
+ tcU

L
∇̄ · (�̄ū) = 0,

∂(�̄ū)
∂t̄

+ tcU

L
∇̄ · (�̄ūūT ) = − tcpc

UL�c
∇p̄+ tcfc

U
�̄f̄ ,

∂Ē

∂t̄
+ tcU

LEc
∇̄ · (ū(EcĒ +pcp̄)) = 0,

p̄ = R

cvpc
(EcĒ − 1

2�cuc�̄ū · ū) .

A natural choice of time scale is tc = L/U . A common choice of pressure scale
is pc = �cU2. The energy equation simplifies if we choose Ec = pc = �cU2.
With these scales we get

∂�̄

∂t̄
+ ∇̄ · (�̄ū) = 0,

∂(�̄ū)
∂t̄

+ ∇̄ · (�̄ūūT ) = −∇p̄+α�̄f̄ ,

∂Ē

∂t̄
+ ∇̄ · (ū(Ē + p̄)) = 0,

p̄ = R

cv
(Ē − 1

2 �̄ū · ū),

where α is a dimensionless number:

α = Lfc

U2 .

We realize that the scaled Euler equations look like the ones with dimension,
apart from the α coefficient.
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4.4.2 General isentropic flow

Heat transfer can be neglected in isentropic flow7, and there is hence an
equation of state involving only � and p:

p = F (�) .

The energy equation is now not needed and the Euler equations simplify to

∂�

∂t
+∇· (u�) = 0, (4.59)

�
∂u

∂t
+�u ·∇u+∇p = 0 . (4.60)

Elimination of the pressure. A common equation of state is

F (�) = p0

(
�

�0

)γ

,

where γ = 5/3 for air. The first step is to eliminate p in favor of � so we get
a system for � and u. To this end, we must calculate ∇p:

∇p = F ′(�)∇�, F ′(�) = c2
0

(
�

�0

)γ−1
,

where

c0 =
√

γp0
�0

is the speed of sound within the fluid in the equilibrium state (see the sub-
sequent section). Equation (4.60) with eliminated pressure p reads

�
∂u

∂t
+�u ·∇u+ c2

0

(
�

�0

)γ−1
∇� = 0 . (4.61)

The governing equations are now (4.59) and (4.61). Space and time are
scaled in the usual way as

x̄ = x

L
, ȳ = y

L
, z̄ = z

L
, t̄ = t

tc
.

The scaled dependent variables are

�̄ = �

�c
, ū = u

U
.

Then F ′(�) = c2
0�̄γ−1.

7https://en.wikipedia.org/wiki/Isentropic_process
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Inserting the dimensionless variables in the two governing PDEs leads to

�c

tc

∂�̄

∂t̄
+ �cU

L
∇̄ · (�̄ū) = 0,

�cU

tc
�̄

∂ū

∂t̄
+ �cU2

L
�̄ū · ∇̄ū+ �c

L

(
�c

�0

)γ−1
c2

0�̄γ−1∇̄�̄ = 0 .

The characteristic flow velocity is U so a natural time scale is tc = L/U . This
choice leads to the scaled PDEs

∂�̄

∂t̄
+ ∇̄ · (�̄ū) = 0, (4.62)

�̄
∂ū

∂t̄
+ �̄ū · ∇̄ū+M−2

(
�c

�0

)γ−1
�̄γ−1∇̄�̄ = 0, (4.63)

where the dimensionless number

M = U

c0
,

is known as the Mach number. The boundary conditions specify the character-
istic velocity U and thereby the Mach number. Observe that (4.63) simplifies
if �c = �0 is an appropriate choice.

4.4.3 The acoustic approximation for sound waves

Wave nature of isentropic flow with small perturbations. A model
for sound waves can be based on (4.59) and (4.61), but in this case there
are small pressure, velocity, and density perturbations from a ground state at
rest where u = 0, � = �0, and p = p0 = F (�0). Introducing the perturbations
�̂ = �−�0 and û, (4.59) and (4.61) take the form

∂�̂

∂t
+∇· (û(�0 + �̂) = 0,

(�0 + �̂)∂û

∂t
+(�0 + �̂)û ·∇û+ c2

0

(
1+ �̂

�0

)γ−1
∇�̂ = 0 .

For small perturbations we can linearize this PDE system by neglecting all
products of �̂ and û. Also, 1 + �̂/�0 ≈ 1. This leaves us with the simplified
system
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∂�̂

∂t
+�0∇· û = 0,

�0
∂û

∂t
+ c2

0∇�̂ = 0 .

Eliminating û by differentiating the first PDE with respect to t and taking
the divergence of the second PDE gives a standard wave equation for the
density perturbations:

∂2�̂

∂t2 = c2
0∇2�̂ .

Similarly, �̂ can be eliminated and one gets a wave equation for û, also with
wave velocity c0. This means that the sound perturbations travel with velocity
c0.

Basic scaling for small wave perturbations. Let �c and uc be charac-
teristic sizes of the perturbations in density and velocity. The density will
then vary in [�0 −�c,�0 +�c]. An appropriate scaling is

�̄ = �−�0
�c

such that �̄ ∈ [−1,1]. Consequently,

� = �0 +�c�̄ = �0(1+α�̄), α = �c

�0
.

Note that the dimensionless α is expected to be a very small number since
�c � �0. The velocity, space, and time are scaled as in the previous section.
Also note that �0 and p0 are known values, but the scales �c and U are
not known. Usually these can be estimated from perturbations (i.e., sound
generation) applied at the boundary.

Inserting the scaled variables in (4.59) and (4.61) results in

α
�0
tc

∂�̄

∂t̄
+ �0U

L
∇̄ · ((1+α�̄)ū) = 0,

�0U

tc
(1+α�̄)∂ū

∂t̄
+ �0U2

L
(1+α�̄)ū · ∇̄ū+α

�0
L

c2
0 (1+α�̄)γ−1 ∇̄�̄ = 0 .

Since we now model sound waves, the relevant time scale is not L/U but
the time it takes a wave to travel through the domain: tc = L/c0. This is a
much smaller time scale than in the previous section because c0 � U (think
of humans speaking: the sound travels very fast but one cannot feel the
corresponding very small flow perturbation in the air!). Using tc = L/u0 we
get
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α
∂�̄

∂t̄
+M∇̄ · ((1+α�̄)ū) = 0,

(1+α�̄)∂ū

∂t̄
+M(1+α�̄)ū · ∇̄ū+αM−1 (1+α�̄)γ−1 ∇̄�̄ = 0 .

For small perturbations the linear terms in these equations must balance.
This points to M and α being of the same order and we may choose α = M
(implying �c = �0M) to obtain

∂�̄

∂t̄
+ ∇̄ · ((1+M�̄)ū) = 0,

∂ū

∂t̄
+Mū · ∇̄ū+(1+M�̄)γ−2 ∇̄�̄ = 0 .

Now the Mach number, M, appears in the nonlinear terms only. Letting
M → 0 we arrive at the following linearized system of PDEs

∂�̄

∂t̄
+ ∇̄ · ū = 0, (4.64)

∂ū

∂t̄
+ ∇̄�̄ = 0, (4.65)

The velocity u can be eliminated by taking the time derivative of (4.64)

∂2�̄

∂t̄2 = ∇̄2�̄, (4.66)

which is nothing but a standard dimensionless wave equation with unit wave
velocity. Similarly, we can eliminate � by taking the divergence of (4.64) and
the time derivative of (4.65):

∂2ū

∂t̄2 = ∇̄2ū . (4.67)

We also observe that there are no physical parameters in the scaled wave
equations.

4.5 Water surface waves driven by gravity

4.5.1 The mathematical model

Provided the Weber number (see section 4.2.7) is sufficiently small, capillary
effects may be omitted and water surface waves are governed by gravity.

and the divergence of (4.65):
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For large Reynolds numbers, viscous effects may also be ignored (except in
boundary layers close to the bottom or the surface of the fluid). The flow of
an incompressible homogeneous fluid under these assumptions is governed by
the Euler equations of motion on the form

∇·u = 0, (4.68)
∂u

∂t
+u ·∇u+ 1

ρ
∇p+gk = 0 . (4.69)

When the free surface position is described as z = η(x,y, t), with z as the
vertical coordinate, the boundary conditions at the surface read

p = ps, (4.70)
∂η

∂t
+u ·∇η = w, (4.71)

where ps is the external pressure applied to the surface. At the bottom,
z = −h(x,y), there is the no-flux condition

∂h

∂x
u+ ∂h

∂y
v = −w.

In addition to ρ and g we assume that a typical depth hc, a typical wavelength
λc, and a typical surface elevation A, which then by definition is a scale
for η, are the given parameters. From these we must derive scales for the
coordinates, the velocity components, and the pressure.

4.5.2 Scaling

First, it is instructive to define a typical wave celerity, cc, which must be linked
to the length and time scale according to cc = λc/tc. Since there is no other
given parameter that matches the mass dimension of ρ, we express cc in terms
of A, λc, hc, and g. Most of the work on waves in any discipline of physics is
devoted to linear or weakly nonlinear waves, and the wave celerity must be
presumed to remain finite as A goes to zero (see, for instance, Section 4.4.3).
Hence, we may assume that cc must depend on g and either hc or λc. Next,
the two horizontal directions are equivalent with regard to scaling, implying
that we have a common velocity scale, U , for u and v, a common length scale
L for x and y. The obvious choice for L is λc, while the “vertical quantities” w
and z have scales W and Z, respectively, which may differ from the horizontal
counterparts. However, we assume that also the length scale Z remains finite
as A → 0 and hence is independent of A. This is less obvious for Z than for cc
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and tc, but may eventually be confirmed by the existence of linear solutions
when solving the equation set. From the linear part of (4.71) and (4.68) we
obtain two relations between velocity and coordinate scales by demanding
the non-dimensionalized terms to be of order unity

A

tc
= W,

U

L
= W

Z
. (4.72)

These relations are indeed useful, but they do not suffice to establish the
scaling.

The pressure may be regarded as the sum of a large equilibrium part, bal-
ancing gravity, and a much smaller dynamic part associated with the presence
of waves. To make the latter appear in the equations we define the dynamic
pressure, pd, according to

p = ps −ρgz +pd,

and the pressure scale pc = ρgA for pd then follows directly from the surface
condition (4.70).

The equation set will be scaled according to

t̄ = t

tc
, x̄ = x

L
, ȳ = y

L
, z̄ = z

Z
, η̄ = η

A
, ū = u

U
, v̄ = v

U
, w̄ = w

W
, p̄d = pd

pc
.

In the further development of the scaling we focus on two limiting cases,
namely deep and shallow water.

4.5.3 Waves in deep water

Deep water means that hc � λc. Presumably the waves will not feel the
bottom, and h as well as hc are removed from our equations. The bottom
boundary condition is replaced by a requirement of vanishing velocity as
z → −∞. Consequently, cc must depend upon λc and g, leaving us with
cc =

√
gλc and Z = λc = L as the only options. Then, tc =

√
λc/g and (4.72)

implies U = W = c0
A
λc

= εc0, where we have introduced the non-dimensional
number

ε = A

λc
,

which is the wave steepness. The equality of the horizontal and the vertical
scale is consistent with the common knowledge that the particle orbits in
deep water surface waves are circular.

The scaled equations are now expressed with ε as sole dimensionless num-
ber
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∇̄ · ū = 0, (4.73)
∂ū

∂t̄
+ εū · ∇̄ū+ ∇̄p̄d = 0 . (4.74)

The surface conditions, at z = εη, become

p̄d = η̄, (4.75)
∂η̄

∂t̄
+ εū · ∇̄η̄ = w̄, (4.76)

while the bottom condition is replaced by

ū → 0, (4.77)

as z̄ → −∞.

4.5.4 Long waves in shallow water

Long waves imply that the wavelength is large compared to the depth: λc �
hc. In analogy with the reasoning above, we presume that the speed of the
waves remains finite as λc → ∞. Then, cc must be based on g and hc, which
leads to cc =

√
ghc and tc = λc/

√
ghc. The natural choice for the vertical

length scale is now the depth; Z = hc. Application of (4.72) then leads to
W = ccA/λc and U = ccA/hc.

Introducing the dimensionless numbers

α = A

hc
, μ = hc

λc
,

we rewrite the velocity scales as

W = μαcc, U = αcc .

We observe that W � U for shallow water and that particle orbits must be
elongated in the horizontal direction.

The equation set is now most transparently written by introducing the
horizontal velocity ūh = ūi+ v̄j and the corresponding horizontal components
of the gradient operator, ∇̄h:
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∇̄ · ūh + ∂w̄

∂z̄
= 0, (4.78)

∂ūh

∂t̄
+αūh · ∇̄hūh +αw̄

∂ūh

∂z̄
+ ∇̄hp̄d = 0, (4.79)

μ2
(

∂w̄

∂t̄
+αūh · ∇̄hw̄ +αw̄

∂w̄

∂z̄

)
+ ∂p̄d

∂z̄
= 0. . (4.80)

Surface conditions, at z = αη, now become

p̄d = η̄, (4.81)
∂η̄

∂t̄
+αūh · ∇̄hη̄ = w̄, (4.82)

while the bottom condition is invariant with respect to the present scaling

∇̄h · h = −w̄ . (4.83)

An immediate consequence is that p̄d remains equal to η̄ throughout the water
column when μ2 → 0, which implies that the pressure is hydrostatic. The
above set of equations is a common starting point for perturbation expansions
in ε and μ2 that lead to shallow water, KdV, and Boussinesq type equations.

4.6 Two-phase porous media flow

We consider the flow of two incompressible, immiscible fluids in a porous
medium with porosity φ(x). The two fluids are referred to as the wetting8

and non-wetting fluid. In an oil-water mixture, water is usually the wetting
fluid. The fraction of the pore volume occupied by the wetting fluid is denoted
by S(x, t). The non-wetting fluid then occupies 1−S of the pore volume (or
(1 − S)φ of the total volume). The variable P (x, t) represents the pressure
in the non-wetting fluid. It is related to the pressure Pn in the non-wetting
fluid through the capillary pressure pc = Pn − P , which is an empirically
determined function of S.

From mass conservation of the two fluids and from Darcy’s law for each
fluid, one can derive the following system of PDEs and algebraic relations
that govern the two primary unknowns S and P :

8https://en.wikipedia.org/wiki/Wetting

ū
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∇·v = −(Qn +Qw), (4.84)
v = −λt∇P +λwp′

c(S)∇S +(λw�w +λn�n)gk, (4.85)

φ
∂S

∂t
+f ′

w(S)v ·∇S = ∇· (hw(S)p′
c(S)∇S)+

g
∂Gw

∂z
+fw(Qn +Qw)−Qw, (4.86)

Qw = qw

�w
, (4.87)

Qn = qn

�n
, (4.88)

λw(S) = K

μw
krw(S), (4.89)

λn(S) = K

μn
krn(S), (4.90)

λt(S) = λw(S)+λn(S), (4.91)

krw(S) = Kwm

[
S −Swr

1−Snr −Swr

]a

, (4.92)

krn(S) = Knm

[
1−S −Snr

1−Snr −Swr

]b

, (4.93)

fw(S) = λw

λt
, (4.94)

Gw(S) = hw(S)(�n −�w), (4.95)
hw(S) = −λn(S)fw(S) . (4.96)

The permeability of the porous medium is K (usually a tensor, but here
taken as a scalar for simplicity); μw and μn are the dynamic viscosities of the
wetting and non-wetting fluid, respectively; �w and �n are the densities of
the wetting and non-wetting fluid, respectively; qw and qn are the injection
rates of the wetting and non-wetting fluid through wells, respectively; Swr

is the irreducible saturation of the wetting fluid (i.e., S ≥ Swr); Snr is the
corresponding irreducible saturation of the non-wetting fluid (i.e., (1− S) ≥
Snr), Kwn and Knr are the maximum values of the relative permeabilities
krw and krn, respectively, and a and b are given (Corey) exponents in the
expressions for the relative permeabilities.

The two PDEs are of elliptic and hyperbolic/parabolic nature: (4.84) is
elliptic since it is the divergence of a vector field, while (4.86) is parabolic
(hw ≥ 0 because p′

c(S) ≥ 0 and λn as well as fw are positive since krn > 0
and krw > 0). Very often, p′

c is small so (4.86) is of hyperbolic nature, and
S features very steep gradients that become shocks in the limit p′

c → 0 and
(4.86) is purely hyperbolic. A popular solution technique is based on operator
splitting at each time level in a numerical scheme: (4.84) is solved with respect
to P , given S, and (4.86) is solved with respect to S, given P .
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The saturation S is a non-dimensional quantity, and so are φ, krw, krn,
Kwm, Knm, fw, and f ′

w. The quantity v is the total filtration velocity, i.e.,
the sum of the velocities of the wetting and non-wetting fluid. An associated
velocity scale vc is convenient to define. It is also convenient to introduce
dimensionless fractions of wetting and non-wetting fluid properties:

� ≡ �w,

�n = �α, α = �n

�w
,

μ ≡ μw,

μn = μβ, β = μn

μw
,

Q ≡ Qw = qw

�
,

Qn = Q
γ

α
, γ = qn

qw
.

We will benefit from making λw, λn, and λt dimensionless:

λw(S) = K

μ
krw(S) = λcλ̄w, λc = K

μ
, λ̄w = krw,

λn(S) = K

μ
β−1krn(S) = λcβ−1λ̄n, λ̄n = krn,

λt(S) = λw(S)+λn(S) = λcλ̄t, λ̄t = λ̄w +β−1λ̄n .

As we see, λc is the characteristic size of any “lambda” quantity, and a bar
indicates as always a dimensionless variable. The above formulas imply

hw(S) = −λcβ−1λ̄n(S)fw(S), Gw(S) = hw(S)�(α −1) .

Furthermore, we introduce dimensionless quantities by

x̄ = x

L
, v̄ = v

vc
, P̄ = P

Pc
, p̄c = pc

Pc
.

Inserting the above scaled quantities in the governing PDEs results in
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∇̄ · v̄ = −LQ

vc
(1+α−1γ), (4.97)

v̄ = −Pcλc

vcL
λ̄t∇̄P̄ + λcPc

vcL
λ̄wp̄′

c(S)∇̄S+

gλc�

vc
(λ̄w +αβ−1λ̄n)k, (4.98)

φ
∂S

∂t̄
+ tcvc

L
f ′

w(S)v̄ · ∇̄S = tcPcλc

L2 ∇̄ · (−β−1λ̄n(S)fw(S)p̄′
c(S)∇̄S)+

tcg

L

∂Gw

∂z̄
+ tcfwQ(1+α−1γ)− tcQ. (4.99)

As usual, L is taken as the characteristic length of the spatial domain. Since
vc is a velocity scale, a natural time scale is the time it takes to transport a
signal with velocity vc through the domain: tc = L/vc. The diffusion term in
the equation (4.102) then gets a dimensionless fraction

LPcλc

vcL2 .

Forcing this fraction to be unity gives

vc = λc
Pc

L
.

We realize that this is indeed a natural velocity scale if the velocity is given
by the pressure term in Darcy’s law. This term is K/μ times the pressure
gradient:

K

μ
|∇P | ∼ K

μ

Pc

L
= λc

Pc

L
= vc .

We have here dropped the impact of the relative permeabilities λ̄w or λ̄n

since these are quantities that are less than or equal to unity.
The other term in Darcy’s law is the gravity term that goes like λc�g

(again dropping relative permeabilities). The ratio of the gravity term and
the pressure gradient term in Darcy’s law is an interesting dimensionless
number:

δ = λc�g

λcPc/L
= L�g

Pc
.

This number naturally arises when we discuss the term

tcg

L

∂Gw

∂z̄
= −(α −1)β−1δ(λ̄′

n(S)fw(S)+ λ̄n(S)f ′
w(S))∂S

∂z̄

Introducing another dimensionless variable,

ε = tcQ = L2Q

λcPc
,
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we can write (4.97)-(4.99) in the final dimensionless form as

∇̄ · v̄ = −ε(1+α−1γ), (4.100)
v̄ = −λ̄t∇̄P̄ + λ̄wp̄′

c(S)∇̄S + δ(λ̄w +αβ−1λ̄n)k, (4.101)

φ
∂S

∂t̄
+f ′

w(S)v̄ · ∇̄S = −∇̄ · (−β−1λ̄n(S)fw(S)p̄′
c(S)∇̄S)−

(α −1)β−1δ(λ̄′
n(S)fw(S)+ λ̄n(S)f ′

w(S))∂S

∂z̄
+

εfw(1+α−1γ)− ε . (4.102)

The eight input parameters L, qw, qn, μw, μn, �w, �n, and K are reduced
to five dimensionless parameters α, β, γ, δ, and ε. There are six remaining
dimensionless numbers to be set: Kwm, Knm, Swr, Snr, a, and b.
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