Chapter 10
A Prototypical Model of an Ion Channel

So far we have been concerned with calcium-induced calcium release (CICR) as
illustrated in Fig. 8.2 (page 126). To study CICR, we started by studying the
development of the concentration of calcium ions in the dyad and kept everything
else constant. The interesting part was then to see how the release mechanism of
the ryanodine receptor RyR changes the dynamics of the dyad concentration. In
particular, we were interested in RyR mutations and their theoretical effect on the
dyad concentration through changes in the open probability of the RyR channel.
We saw how theoretical blockers could be defined in order to repair the effect
of the mutations, in the sense that we were able to restore essential properties
of the process. We also introduced the effect of allowing the concentration of
the junctional sarcoplasmic reticulum to change and we studied how the overall
processes were affected by introducing the transmembrane potential and allowing
the L-type calcium channel (LCC) to open and close.

Now we leave the RyR and Markov models based on concentrations of calcium
ions and focus on voltage-gated channels. We touched upon this topic earlier, since
the LCC is voltage gated, but now we will dynamically update the voltage and focus
solely on how voltage develops and how it affects the transitions of the Markov
model.

We will start by studying a very simple channel to explain the basics steps as
carefully as possible. This channel does not have a name and probably does not
exist in nature, but it provides a good example to get a handle on the steps involved
in understanding much more complex (and more realistic) ion channels.

In the study of CICR, we examined what was going on in a very small part of
the cell based on the tacit assumption that if we can repair what is going on in
every tiny part of the cell, we will probably also do a decent job in repairing all of
the cell. We will follow the same strategy in studying voltage-gated channels: We
will study a single channel and see how mutations may affect the function of the
channel and thereby how the transmembrane potential is changed. Again, we will
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derive theoretical drugs and see how they should be defined in order to repair the
effect of the mutations. However, the assumption that small domains can be studied
independently is less reliable for voltage-gated channels than for the CICR process
in the vicinity of the dyad. The reason for this is that electrical diffusion waves travel
much faster than concentration waves.

10.1 Stochastic Model of the Transmembrane Potential

The transmembrane potential is defined to be the difference between the intracellular
potential v; and the extracellular potential v,:

V=V — V. (10.1)

Let us consider a membrane consisting of a leakage current with conductance
given by g; and an ion channel with conductance given by g;. The transmembrane
potential of such a membrane is governed by the differential equation

CU/ = —4L (U — VL) — gi(v — Vi), (102)

where C is the capacitance of the membrane, V; is the resting potential of
the leakage current, and V; is the resting potential of the ion channel. In our
computations, we will consider an example' with the parameters listed in Table 10.1.
We assume that the ion channel can be either open (O), with g; = 1 mS/cm?, or
closed (C), with g; = 0 mS/cm?. The state of the stochastic ion channel is governed
by a Markov model of the form

kUC
C 5o, (10.3)
k('U
Table 10.1 Valqes of the c |1 pFem?
parameters used in the 3
model (10.2) gr | 1/10 mS/cm
Ve |0OmV
Vi | 11/10 mV

Here, the choice of the parameter V; may seem a bit strange, but we will see below that it will lead
to a very simple computational domain for the probability density functions.
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where the reactions rates will be specified below. With these definitions, the
stochastic equation takes the form

1 11
LI P 10.4
T R (v 10) (10.4)

where y is zero (closed) or one (open) depending on the state of the Markov
model (10.3).

10.1.1 A Numerical Scheme

We compute numerical solutions of the model (10.4) using the scheme

1 11
n - n_At “~Un n n— T~ N 105
Upt1 =V (mv +v (U 10)) (10.5)

where At denotes the time step and Yy, takes on values based on the state of
the Markov model. Based on the Markov model, the value of y, is computed as
described on page 28. We assume that the time step (in ms) satisfies the condition

10
At < —. (10.6)
11

10.1.2 An Invariant Region

We discussed above that it is useful to derive an invariant region for the stochastic
model since such a region can be used to define the computational domain of the
probability density equation. We claim that, under the condition (10.6) for the time
step, the solutions generated by scheme (10.5) will always remain in the interval
given by

Q=(0,1),

provided that the initial condition is in this region. To show that € is an invariant
region for solutions generated by scheme (10.5), we write the scheme in the form

Upt1 = H(Vp, V),

1 11
H =v—Ar| — -—1).
(v,y)=v (IOU + vy (v 10))

where
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Since

0H(v,y) 1
WY A= 0
9 ASTRES A

because of (10.6) and

MW y) = At E—v >0
ay 10

for any v € 2, we have

Unt1 = H(v, yn) S H(1,1) =1
and

Unt+1 = H(vn, yn) = H(0,0) = 0.

So, by induction, we have v, € Q2 for all n.
10.2 Probability Density Functions for the Voltage-Gated
Channel

We can now follow exactly the same steps as in Sect. 2.2 (see page 30) to derive
a model of the probability density functions of the open state and the closed state.
The probability of the channel being in the open state for voltages between v and
v + Av is given by

v+Av
P,{v< V() <v+ Av} = / Po(w, t)dw,
where p, is the probability density function of the open state. Similarly, we have
v+Av
P {v< V() <v+ Av} = / pe(w, Hdw

where p, is the probability density function of the closed state. By the arguments
given in Sect. 2.2, we find that the probability density functions must be solutions
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of the system

P,
ot

Ipe
ot

ad
+ 8_1) (a()po) = kcopc - kocpos (10.7)

0
+ a_ (acpc) = kocpo — KcoPcs
v

where the flux terms are given by
11
a, = —gL(U—VL)—(U—Vi) = E(l—v), (108)

1
a.=—-gL(v—-Vy) = IOU
As usual, the boundary conditions are set up to avoid a probability leak across
the boundary. Hence we need the fluxes a,p, and a.p. to be zero for v = 0 and
v = 1. Note that a,(1) = a.(0) = 0; so we require p,(0) = 0 and p.(1) = 0. In the
numerical simulations presented below, we use the scheme described in Sect. 2.3.
Stationary solutions of the numerical scheme are computed as described on page 44.

10.3 Analytical Solution of the Stationary Case

We showed in Sect. 2.6 how an analytical solution can be derived for a stationary
system of the form (10.7). Here we shall repeat this derivation for a voltage-gated
channel. For simplicity we shall consider a channel where the reaction scheme of
the Markov model is independent of the voltage; we choose

koe = 1 ms™" and k., =  ms™.

So, we will again focus on CO-mutations. Here p, referred to as the mutation
severity index, will be specified in the computations below. In all computations,
u = 1 will be referred to as the wild type case. Increased values of k., will
increase the open probability of the ion channel in (10.2) and therefore bring the
transmembrane potential closer to the maximum value (given by V4 = 1 mV).

The first step in the derivation of the analytical solution is to observe that, in the
steady state, the sum of the equations of (10.7) results in the equation

d
o (a,,,o,, + acpc) =0.
v
The second step is to observe that the boundary conditions imply that

AoPo + Acpe = 0.
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Therefore, for the present model, we find that

a, 11
pe=——p,=—(1—-v)p,
ac v

and, from (10.7), we have

d 1—v
P (aopo) = Upe — po = (11u - 1) Po-
v v

By differentiation, we obtain

d (1 1—v 1 d
a”avp”_ # v 8va” Po

and thus

P, = a(v)po, (10.9)

_ (1ou !
a(v)_( v +11(1—v))‘

The solution of (10.9) is given by

where

UIOM

Po =

and then
pe = 11c (1 — v)'VH ylon=1,

Here the constant ¢ must be chosen such that
/ (po + pe)dv = 1.
Q

It is interesting to note here that, even if both p, and p, depend heavily on the
mutation severity index u, the relation between these functions is independent of
since

Po U
pe  11(1—v)’
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10.4 Comparison of Monte Carlo Simulations and
Probability Density Functions

In previous chapters we gave many examples showing that the probability density
functions faithfully represent the frequency distributions that can be computed using
Monte Carlo simulations. We will briefly show that this also holds for the ion
channel model considered here. In Fig. 10.1, we compare the open probability
density function given by (10.10) and a histogram computed using Monte Carlo
simulations based on the numerical scheme given by (10.5). We observe again—and
by now we are starting to get used to it—that the probability density functions more
or less coincide with the histograms computed using Monte Carlo simulations.?
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Fig. 10.1 Comparison of the results of Monte Carlo simulations (histogram) and analytical
solutions of the system governing the probability density functions for four values of the mutation
severity index p. The unit interval is divided into 100 sub-intervals where the number of
occurrences is counted in the Monte Carlo simulations. The analytical solutions are evaluated in
the center of these sub-intervals. Each case was simulated for 10 s, with Ar = 0.01 ms

2 At this point it feels appropriate to remind the reader of one of the many great quotes by John von
Neumann: “In mathematics you don’t understand things. You just get used to them.”
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10.5 Mutations and Theoretical Drugs

In our analysis of the RyR, we studied the effect of mutations increasing the open
probability of the channel. In addition, for voltage-gated ion channels, mutations
may affect the open probability of the channel and thereby change the dynamics
of the transmembrane potential. We will study specific examples of this below,
where we present actual mutations and their effect on actual ion channels, such
as the sodium channel. However, for the time being, we will stick to our not so
realistic but rather cute model. We will assume that the stochastic dynamics of
the transmembrane potential are governed by (10.2), that the probability density
functions are governed by (10.7), and that the Markov model is given by

koc
C$5o0, (10.11)
kC(l

where k,, = 1ms™! and k., = wms~ . As usual, u is the mutation severity
index and i = 1 denotes the wild type case. Motivated by the results for the RyR
mutations, we will try to repair the effect of the mutation using an open or a closed
state blocker. This will prove to be quite efficient, since we are dealing with a CO-
mutation.

10.5.1 Theoretical Open State Blocker

The Markov model of the theoretical open state blocker is

koc kbo
CS 0SB, (10.12)
keo kob

where the parameters kp, and k,, need to be determined. The associated steady state
version of the probability density system is given by

d
% (@opo) = keope — (koe + kob) Po ~+ kpops,

ad

. (acpc) = kocpo - kcopc, (10.13)
ov

d
™ (@cpp) = kobPo — kpoPps
v

where p,, p., and p, denote the probability density functions of the open (O),
closed (C), and blocked (B) states, respectively. We compute optimal values of
the parameters k;, and k,, using the Fminsearch function in Matlab applied
to the difference between the open probability density function computed by
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solving (10.13) and the wild type solution given by system (10.7), with u = 1.
The function used in the minimization is given by

\/f |po,ml+d - po,wllzdv

v f piwldv

where p,w: is the wild type open probability density function and p,m¢+4 1S the
mutant open probability density function where the theoretical drug is applied.

10.5.2 Theoretical Closed State Blocker

The Markov model of the theoretical closed state blocker is

keb koc
BS CS o, (10.14)
kpe keo

where the parameters k., and k;. must be computed. Following the arguments on
page 58, we find that these parameters must be related as

kep = (= 1) ke (10.15)

and thus we are left with the task of finding a proper value for only one parameter:
kpc. Of course, based on what we learned for the RyR channel, we suspect that k,
should be as large as possible. The computations reported below will verify this
suspicion.

The steady state version of the probability density system associated with the
Markov model (10.14) is given by

ad
a_ (aopo) = kcopc - kocpoa
v
0
% (acpe) = kocpo — (keo + (1t — 1) kpe) pe + kie b, (10.16)

0
™ (acpp) = (0 — 1) kpepe — kpepy,

where, again, p,, p., and p, denote the probability density functions of the open (O),
closed (C), and blocked (B) states, respectively. Here, the value of k. characterizing
the drug remains to be determined and will be discussed below.
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10.5.3 Numerical Computations Using the Theoretical
Blockers

Let us start by showing that the closed state blocker is improved by increasing
values of k.. In Fig. 10.2, we show the numerical solutions of system (10.16) with
increasing values of k. for four values of the mutation severity index . We observe,
as expected, that the drug is improved as k. is increased.

In Fig. 10.3, we compare a good theoretical closed state blocker (using k. =
100 ms™') and the best open state blocker for four values of the mutation severity
index w. This figure does not reveal much difference between the two alternative
blockers, but we will see below that the statistical properties of the solutions show
that there is a significant difference.

10.5.4 Statistical Properties of the Theoretical Drugs

To further compare the properties of the drugs, it is useful to use the statistical
properties introduced above. We recall that the probability of being in state i is

: 0 —
0.7 0.8 0.9 1 0.7 0.8 0.9

—_

Fig. 10.2 The open probability density functions of the wild type (WT), mutants (MT) and
mutants in the presence of the closed state blocker (CB) for four values of the mutation severity
index 1. We use k. = 0.1, 1, 10, 100 ms™' and observe that, for the largest value of k., the
drugged solutions are virtually indistinguishable from the wild type solution
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Fig. 10.3 Comparison of the best closed and open state blockers for four values of the mutation
severity index. For the case u = 0.5 the optimization did not find any open state blockers that
helped (the solution for the mutant in the presence of the open state blocker (OB) is superimposed
on the solution for the mutant (MT) in the lower trace.) We found the following specifications of
the open state blockers to be optimal: For u = 2, we used k;, = 0.37 ms~! and k,, = 0.21 ms™!
and, for u = 3, we used ky, = 0.45 ms™! and k,, = 0.35 ms™!. In all cases, we used the closed
state blocker characterized by k;,. = 100 ms~ ! and k, = (n—1) kpe

given by

= / pidv,
Q

where i = o, ¢, or b for the open, closed, or blocked state, respectively. The expected
value of the transmembrane potential under the condition that the channel is open,
closed, or blocked is given by

1
E; = —/ vp;idv,
i Jo

for i = o, c, or b, respectively. Finally, for i = o, ¢, or b, the standard deviations are
given by

1
o’ = —/ v pidv — E2.
i Jo
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Table 10.2 Statistics of the open probability density functions in the case of u = 3. The closed
state blocker is given by k. = 100 ms~! and k;, = (u — 1) ky. and the open state blocker is
given by ky, = 0.45 ms™! and k,, = 0.35 ms™!

WT MT CB OB
T, 0.500 0.750 0.500 0.478
E, 0.922 0.969 0.922 0.919
O, 0.076 0.031 0.076 0.088

In Table 10.2, we compare the statistical properties of the solutions based on
different theoretical blockers. We see that the mutation significantly increases the
open probability but leaves the expected value of the transmembrane potential more
or less unchanged. The standard deviation, however, is significantly reduced by the
mutation.

Both the open and closed state blockers are able to significantly reduce the effect
of the mutations, as illustrated in Fig. 10.3. However, the closed state blocker is
slightly better at this than the optimal open state blocker.

10.6 Notes

1. The equation
Cv' =—gL(v—V)—gi(v—V) (10.17)

(see (10.2)) underpins this chapter and most of the rest of these lecture notes. It
is a classical equation and derivations are found in numerous places. A thorough
discussion is given in the classical text by Plonsey and Barr [66]. The basic idea
of the derivation is to equate the flux of ions through the membrane with the
associated change of the charge in the extracellular and intracellular domains.
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