
Chapter 11
Inactivated Ion Channels: Extending
the Prototype Model

Experimental evidence suggests that some ion channels can take on three main
states: open (O), closed (C), or inactivated (I). Here both C and I mean that the
channel is non-conducting, but when the channel is inactivated, it is harder to open
again than when the channel is in the closed state. This feature is useful in modeling
an action potential. In the action potential of a cardiac cell, the upstroke is driven
mainly by the sodium current. When the upstroke is completed, the sodium channels
are inactivated to avoid spurious new upstrokes before the cell has undergone a
restitution period. Certain mutations impair the ability of the channel to deactivate,
which may lead to arrhythmias. We will return to this topic below. Here, it suffices to
state that we need to introduce an inactivated state in the prototype model discussed
above.

The stochastic model considered in this chapter is the same as in Chap. 10

Cv0 D �gL .v � VL/ � gi.v � Vi/; (11.1)

with the parameters given in Table 10.1 on page 154.

11.1 Three-State Markov Model

The reaction scheme of an ion channel taking on the three states O, C, and I is given
in Fig. 11.1. To model the properties of the action potential in the way we described
above, we need to introduce reaction rates that depend on the transmembrane
potential v. At this point, we just want to derive a prototypical model and we
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Fig. 11.1 Markov model
including three possible
states: open (O), closed (C),
and inactivated (I)
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therefore, admittedly somewhat arbitrarily, define the following rates:
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�co
; koc D 1�k1
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;

koi D 1; kio D kcokoikic
kockci

;

kic D e�30v; kci D 1
100

;

(11.2)

where

k1
co D 1

1 C e6�16v

and

�co D 1

10
:

By the definition of kio; these rates satisfy the principle of detailed balance (see
page 10 and the notes of Chap. 1).

11.1.1 Equilibrium Probabilities

We saw above (see page 8) that the equilibrium state of the reaction shown in
Fig. 11.1 is given by

o D 1

1 C koc
kco

C koi
kio

;

c D
koc
kco

1 C koc
kco

C koi
kio

;

i D
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kio

1 C koc
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C koi
kio

:
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Fig. 11.2 Equilibrium probabilities of the open, closed, and inactivated states as functions of the
transmembrane potential v

These probabilities are graphed as functions of the transmembrane potential in
Fig. 11.2. Note that the open probability in equilibrium is quite small; the channel
is basically closed for v close to zero and it is inactivated for large values of v.

11.2 Probability Density Functions in the Presence
of the Inactivated State

When the inactivated state is included in the model, as indicated in Fig. 11.1, the
system governing the associated probability density functions is given by

@
o

@t
C @

@v
.ao
o/ D kco
c � .koc C koi/
o C kio
i; (11.3)
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C @

@v
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c/ D koc
o � .kco C kci/
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i; (11.4)
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o � .kio C kic/
i C kci
c; (11.5)
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Fig. 11.3 Probability density functions of the open, closed, and inactivated states (red lines)
computed as numerical solutions of the system (11.3)–(11.5) and histograms based on Monte Carlo
simulations using the stochastic differential equation (11.1)

where

ao D �gL .v � VL/ � .v � Vi/ D 11

10
.1 � v/ ; (11.6)

ac D �gL .v � VL/ D � 1

10
v:

11.2.1 Numerical Simulations

Again, we want to compare the solution computed by Monte Carlo simulations
based on the stochastic differential equation given in (11.1) and the probability
density functions defined by the system (11.3)–(11.5). The numerical results are
given in their usual form in Fig. 11.3. As expected, the histograms computed using
Monte Carlo simulations and the numerical solution of the system (11.3)–(11.5)
are quite similar. In these computations, the stochastic simulation ran for 100 s,
with �t D 0:01 ms, and we used the mesh size �v D 0:01 in the numerical
solution of the system (11.3)–(11.5). It is particularly interesting to see that the tiny
boundary layer close to v D 0 for the probability density function of the inactivated
state is captured using both the Monte Carlo and the probability density function
approaches.

11.3 Mutations Affecting the Inactivated State of the Ion
Channel

Certain mutations of the sodium channel are known to impair the channel’s ability to
deactivate. We introduce a mutation severity index � and assume that the reaction
rates of the mutant are changed such that both the probabilities of moving from
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Fig. 11.4 Probability density functions of the open, closed, and inactivated states for the wild
type and for three values of the mutation severity index: � D 1:5; 3; 10: Larger values of � give
solutions farther away from the wild type solution (solid line). The probability density of the closed
state is only shown for v between 0 and 0.1 to magnify very small differences

the inactivated to the closed state and from the inactivated to the open state are
increased. The effect of these changes will clearly be to lower the probability of the
channel being in the inactivated state.

In mathematical terms, we define

Nkic D �kic; (11.7)

Nkio D �kio;

where � > 1 and where kic and kio are the wild type reaction rates given by (11.2).
It should be noted that the new reaction rates still satisfy the principle of detailed
balance. In Fig. 11.4, we show the equilibrium probability density functions of the
open, closed, and inactivated states for the wild type and for three values of the
mutation severity index �:

11.4 A Theoretical Drug for Mutations Affecting
the Inactivation

We want to derive a theoretical drug repairing the effect of the mutation described
in (11.7). In the Markov model illustrated in Fig. 11.5, we have introduced a blocked
state associated with the open, closed, and inactivated state and we now want to
figure out what the best choice might be. The equilibrium solution of the reaction
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Fig. 11.5 The model
represented in Fig. 11.1
extended to account for
blockers associated with the
closed state (BC), the open
state (BO), and inactivated
state (BI)
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represented in Fig. 11.5 is characterized by the equations

kcoc D koco; kcic D kici;

koio D kioi; kbcbc D kcbc;

kbobo D kobo; kbibi D kibi:

It is useful to define

rxy D kxy

kyx

and to note that

rxy D 1

ryx
:

With this notation, the principle of detailed balance stating that

kcokoikic

kockiokci
D 1

can be written as

rcoroiric D rocriorci D 1:

The equations above can now be written as

c D roco; c D rici;

o D rioi; bc D rcbc;

bo D robo; bi D ribi:
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It is convenient to express all probabilities in terms of the open probability:

c D roco;

i D roio;

bc D rcbc D rcbroco;

bo D robo;

bi D ribi D ribroio:

Since c C i C o C bc C bo C bi D 1; we have

o D p�1;

where

p D 1 C roc .1 C rcb/ C roi .1 C rib/ C rob:

We refer to p as the inverse open probability and we note that for the wild type it is
given by

p D 1 C roc C roi:

11.4.1 Open Probability in the Mutant Case

As discussed above, we are interested in understanding how to define a theoretical
drug for mutations affecting the inactivation of the ion channel. We assume that the
mutation affects the inactivation in a way that reduces the probability of being in
the inactivated state. As mentioned above, this can be modeled by increasing the
reaction rates from the inactivated state to both the closed and the open states. We
assume that

Nkic D �kic; Nkio D �kio;

where � > 1 is the mutation severity index. This gives

Nric D
Nkic

kci
D �ric

and

Nrio D Nkio

koi
D �rio:
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We assume that the reaction rates between the closed and open states are unaffected
by the mutation and therefore

Nroc D roc:

Detailed balance dictates that we should have

.�kic/kcokoi D .�kio/kockci;

which holds regardless of the choice of �, since the wild type rates satisfy the
principle of detailed balance.

The inverse open probability in the presence of the mutations is given by

Np D 1 C roc C Nroi D 1 C roc C 1=Nrio D 1 C roc C 1

�rio
D 1 C roc C roi

�
:

11.4.2 The Open Probability in the Presence of the Theoretical
Drug

When the drug given in Fig. 11.5 is applied, the inverse open probability is

pb D 1 C roc .1 C rcb/ C roi

�
.1 C rib/ C rob

where rcb; rib, and rob are used to characterize the drug. Our aim is to now use these
parameters to tune the drug such that

pb � p;

where p is the inverse open probability of the wild type. More precisely, we want to
determine the constants rcb; rib, and rob such that

1 C roc .1 C rcb/ C roi

�
.1 C rib/ C rob � 1 C roc C roi

holds for all relevant values of the transmembrane potential v: We observe that if
we put rcb D rob D 0; we obtain the condition

roi

�
.1 C rib/ � roi

and therefore we set

rib D � � 1:



11.5 PDFs: Blocked Inactivated State 173

We conclude that we can repair the equilibrium state of the mutation completely by
applying a drug consisting of a blocker of the inactivated state, provided that the
reaction rates of the drug satisfy

kib

kbi
D � � 1;

where � is the severity index of the mutation. This means that we have reduced the
problem of finding a drug to a single parameter given by kbi: This remaining degree
of freedom will be addressed below.

11.5 Probability Density Functions Using the Blocker
of the Inactivated State

In Sect. 11.2 above, we derived a system governing the probability density functions
of the open, closed, and inactivated states. Here, we want to extend the system to
account for the theoretical drug represented by a blocker of the inactivated state. The
Markov model of the drug is given in Fig. 11.6. The drug will completely repair the
equilibrium state of the Markov model, provided that

kib D .� � 1/ kbi; (11.8)

where � is the mutation severity index of the mutation (see (11.7)). The stationary
probability density functions of the states in the Markov model of Fig. 11.6 are
governed by the system

@

@v
.ao
o/ D kco
c � .koc C koi/ 
o C �kio
i; (11.9)

@

@v
.ac
c/ D koc
o � .kco C kci/ 
c C �kic
i; (11.10)

Fig. 11.6 Markov model of
the prototype ion channel
with a blocker associated
with the inactivated state
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@

@v
.ac
i/ D koi
o � .�kio C �kic C .� � 1/ kbi/
i C kci
c C kbi
b; (11.11)

@

@v
.ac
b/ D .� � 1/ kbi
i � kbi
b; (11.12)

where 
o; 
c; 
i; and 
b denote the probability density functions of the open, closed,
inactivated, and blocked states, respectively, and where the flux terms are given by

ao D �gL .v � VL/ � .v � Vi/ D 11

10
.1 � v/ ;

ac D �gL .v � VL/ D � 1

10
v:

The associated model of the wild type is given by

@

@v
.ao
o/ D kco
c � .koc C koi/ 
o C kio
i; (11.13)

@

@v
.ac
c/ D koc
o � .kco C kci/ 
c C kic
i; (11.14)

@

@v
.ac
i/ D koi
o � .kio C kic/
i C kci
c: (11.15)

All the reactions rates used in the computations are given in (11.2); the computa-
tional domain is given by � D Œ0; 1� and we used 201 mesh points. In Fig. 11.7,
we show the difference between the open state probability density function of the
wild type, denoted by 
o; computed by solving the system (11.13)–(11.15), and the
mutant where the drug is applied, computed by solving (11.9)–(11.12), denoted by

�

o : The difference is defined by the norm

k
o � 
�
o k D

��
o � 
�
o

��
L2.�/

k
okL2.�/ C ��
�
o

��
L2.�/

; (11.16)

where, as usual,

k
kL2.�/ D
�Z

�


2dv

�1=2

:

We observe that, as kbi increases, the drug defined by (11.8) completely repairs the
effect of the mutation.
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Fig. 11.7 The difference between the open probability density function of the wild type (
) and the
open probability density function (
�) of the mutant using the drug defined by (11.8), measured by
the norm k
o �
�

o k defined in (11.16). The difference goes to zero as the parameter kbi is increased
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