
Chapter 5
Two-Dimensional Calcium Release

The essence of calcium-induced calcium release is once more illustrated in Fig. 5.1.
This figure is very similar to Fig. 2.1 on page 24 except that the box surrounded
by a thin red line is now slightly extended. This is meant to illustrate that the
model is now extended to account for changes in the calcium concentration of the
junctional sarcoplasmic reticulum (JSR) space (see Fig. 5.1); so we now consider
a two-dimensional (2D) model where the concentration of the dyad (Nx D Nx.t/) and
the JSR (Ny D Ny.t/) vary, recalling that the bar notation indicates stochastic variables.
The concentration of the cytosol and the network sarcoplasmic reticulum (NSR) are
still kept constant and we still ignore L-type calcium currents. An illustration of the
mathematical model under consideration is given in Fig. 5.2.

The basic steps of the analysis of the 2D problem follow the steps of the
analysis of the one-dimensional (1D) problem. We will start our analysis of the 2D
problem by formulating a 2�2 system of stochastic differential equations giving the
dynamics of the calcium concentration of the dyad and of the JSR. This model will
be used as a basis for Monte Carlo simulations. By following the steps above, we
also derive a 2D deterministic equation describing the probability density functions
of the open and closed states. A numerical method for this system will be presented
and, again, we will find that it is reasonable to focus on steady state computations.
The probability density model will be extended to account for open or closed state
blockers and, as above, we will see that we can find very good closed state blockers
for CO-mutations (see page 16).
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Fig. 5.1 As above, this figure illustrates the components involved in calcium-induced calcium
release: the T-tubule, the dyad, the sarcoplasmic reticulum (SR) represented by the JSR and NSR
and the cytosol. In this chapter, we concentrate on the dynamics in the box surrounded by a thin red
line. We assume that the concentrations of the cytosol (c0) and of the NSR (c1) are constants and
we ignore the LCCs. The variables of interest are the calcium concentrations of the dyad (Nx D Nx.t/)
and the JSR (Ny D Ny.t/)

Cytosol, c0 Dyad, x̄(t) JSR, ȳ(t) NSR, c1

Fig. 5.2 Sketch of a release unit. The cytosolic calcium concentration (c0) and NSR calcium
concentration (c1) are assumed to be constant, while the concentrations of the dyad and JSR are
given by Nx D Nx.t/ and Ny D Ny.t/, respectively. Note that c0 � c1

5.1 2D Calcium Release

The process of calcium release illustrated in Fig. 5.2 can be modeled as follows:

Nx0.t/ D N�.t/vr .Ny � Nx/ C vd .c0 � Nx/ ; (5.1)

Ny0.t/ D N�.t/vr .Nx � Ny/ C vs .c1 � Ny/ ; (5.2)

where vr denotes the rate of release from the JSR to the dyad, vd denotes the speed of
calcium diffusion from the dyad to the cytosol, and vs denotes the speed of calcium
diffusion from the NSR to the JSR. Furthermore, N�.t/ is a stochastic variable taking
on two possible values, zero and one, with (as above) zero denoting a closed channel
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and one denoting an open channel. The dynamics of N� are governed by the Markov
model under consideration. Furthermore, we always assume that

c1 � c0 and vr; vd; vs > 0: (5.3)

For the 2D case, we also assume1 that

vdvs � v2
r : (5.4)

5.1.1 The 1D Case Revisited: Invariant Regions
of Concentration

Suppose the speed of diffusion, vs; from the JSR to the NSR becomes very large.
From (5.2), we observe that the limiting case when vs ! 1 yields y D c1 and thus
the problem is in 1D and can be written

Nx0.t/ D N�.t/vr .c1 � Nx/ C vd .c0 � Nx/ ;

which is exactly the problem we discussed in Chap. 2 (page 25). We analyzed this
equation and saw that, when the channel is closed .� D 0/, the solution tends toward
the equilibrium point represented by

x D c0

and, when the channel is open, the equilibrium solution is given by

x D cC D .1 � ˛/ c1 C ˛c0;

where

˛ D vd

vr C vd
:

Based on this, we concluded that if the initial concentration is in the interval
Œc0; cC� ; the solution will always remain in this interval. The reason for this is that
if the channel is closed, the solution will decrease toward c0 and, if the channel
is open, the solution will increase toward cC: For closed channels, c0 is a stable
equilibrium and, similarly, if the channel is open, cC is a stable equilibrium.

1This is a technical assumption needed in an argument below.
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5.1.2 Stability of Linear Systems

Before we consider the 2D case, we need to recall some basic properties of linear
systems of ordinary differential equations. For a system of the form

x0.t/ D Ax;

where A is a matrix and the unknown x is a vector, we know that the equilibrium
solution x D 0 is stable, provided that the real part of all the eigenvalues of A is
negative. However, the systems under consideration here are of the form

x0.t/ D Ax C b; (5.5)

where b is a known vector. In the case of a non-singular matrix A, the equilibrium
solution is given by

x� D �A�1b (5.6)

and we are interested in the stability of this solution. To assess the stability, we
define

e D x � x�

and observe that

e0.t/ D x0.t/ D Ax C b D Ax � Ax� D Ae

and, of course, e D 0 is a stable equilibrium of the system

e0 D Ae;

provided that the real part of all the eigenvalues of A are negative. Therefore, the
equilibrium solution (5.6) of the system (5.5) is stable under the same condition.
With these observations at hand, we are ready to try to understand the dynamics of
the system (5.1) and (5.2).

5.1.3 Convergence Toward Two Equilibrium Solutions

Our aim is now to understand the dynamics of the 2D case and we start by
considering the system when the channel is closed.
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5.1.3.1 Equilibrium Solution for Closed Channels

In this case, the system (5.1) and (5.2) is quite simple, since there is no communi-
cation between the dyad and the JSR. The system is

x0.t/ D vd .c0 � x/ ; (5.7)

y0.t/ D vs .c1 � y/ ; (5.8)

and the stable equilibrium solution of this system is given by

xc D c0;

yc D c1:

5.1.3.2 Equilibrium Solution for Open Channels

The more interesting case is when the channel is open. Then the system reads

x0.t/ D vr .y � x/ C vd .c0 � x/ ; (5.9)

y0.t/ D vr .x � y/ C vs .c1 � y/ ; (5.10)

and the equilibrium solution is given by

xo D ˛c1 C .1 � ˛/ c0;

yo D ˇc1 C .1 � ˇ/ c0;

where

˛ D vrvs

vd .vr C vs/ C vrvs
;

ˇ D vs .vd C vr/

vd .vr C vs/ C vrvs
:

It is useful, but not surprising, to note that

yo � xo D .ˇ � ˛/ .c1 � c0/ D vsvd

vd .vr C vs/ C vrvs
.c1 � c0/ > 0;

since c1 is assumed to be larger than c0 (see (5.3)).
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5.1.3.3 Stability of the Equilibrium Solution

Whether the equilibrium solution for open channels is stable remains to be seen.
As noted above, this can be determined by invoking the eigenvalues of the system
matrix, which, in this case, are given by

A D
�� .vr C vd/ vr

vr � .vr C vs/

�
:

Since the matrix is symmetric, the eigenvalues are real, so it is sufficient to see if
they are always non-positive. The eigenvalues are given by

�� D 1

2

�
�
q

.vd � vs/
2 C 4v2

r � vd � 2vr � vs

�
;

�C D 1

2

�q
.vd � vs/

2 C 4v2
r � vd � 2vr � vs

�
;

where obviously �� < 0 for any vr; vd; vs > 0: Hence, �C < 0 also remains to be
shown. To this end, we start by assuming that �C > 0I so we assume that

0 <
p

u � v;

with

u D .vd � vs/
2 C 4v2

r

and

v D vd C 2vr C vs:

We can safely multiply both sides of this inequality with something positive such asp
u C v and we therefore find that

0 <
�p

u � v
� �p

u C v
�

D u � v2

D �4 .vdvr C vdvs C vrvs/

and, since vr; vd; vs > 0, this is a contradiction and we conclude that �C < 0 for all
vr; vd; vs > 0:
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5.1.4 Properties of the Solution of the Stochastic Release
Model

We have found that when the channel is closed, the equilibrium solution is given by

xc D c0;

yc D c1;

which is stable. Similarly, when the channel is open, the equilibrium solution is
given by

xo D ˛c1 C .1 � ˛/ c0; with ˛ D vrvs

vd .vr C vs/ C vrvs
;

yo D ˇc1 C .1 � ˇ/ c0; with ˇ D vs .vd C vr/

vd .vr C vs/ C vrvs
;

and this solution is also stable. The solution of the model given by the system (5.1)
and (5.2) will therefore tend toward .xc; yc/ whenever the channel is closed and
toward .xo; yo/ whenever the channel is open. This will be illustrated in numerical
simulations below.

5.1.5 Numerical Scheme for the 2D Release Model

To perform 2D stochastic simulations, we use the numerical scheme

xnC1 D xn C �t .�nvr .yn � xn/ C vd .c0 � xn// ; (5.11)

ynC1 D yn C �t .�nvr .xn � yn/ C vs .c1 � yn// ; (5.12)

where � is computed according to the Markov model given by the reaction
scheme

C
koc

�
kco

O (5.13)

(see page 28), where koc and kco are reaction rates that may depend on both the
concentrations represented by x D x.t/ and y D y.t/.
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Table 5.1 Values of
parameters used in 2D
simulations based on the
scheme (5.11) and (5.12)

vd 1 ms�1

vr 0.1 ms�1

vs 0.01 ms�1

c0 0.1 	M

c1 1,000 	M

kco 1 ms�1

koc 1 ms�1
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Fig. 5.3 Results of simulation using the scheme (5.11) and (5.12) with the data given in Table 5.1

5.1.5.1 Simulations Using the 2D Stochastic Model

We use the numerical scheme given by (5.11) and (5.12), where the parameters and
functions involved are described in Table 5.1. The numerical solutions are given in
Figs. 5.3 and 5.4. In the latter figure, we also indicate when the channel is open and
closed (upper panel).

5.1.6 Invariant Region for the 2D Case

We observed in the 1D case that an invariant region for the numerical scheme
used to compute approximate solutions of the stochastic model was useful for the
probability density system, since it defined the interval in which to solve the system.
Similarly, we will derive an invariant region for numerical solutions generated by
the scheme (5.11) and (5.12) and this invariant region will define the geometry we
will use to solve the probability density system.
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Fig. 5.4 A detailed view of the results given in Fig. 5.3. The open/closed state of the channel is
indicated in the upper panel

Let us start by recalling the assumptions (5.3) and (5.4) and let us also assume
that the time step �t > 0 is chosen such that

�t < min

�
1

vr C vd
;

1

vr C vs

�
: (5.14)

Define

x� D c0; (5.15)

xC D vrc1 C vdc0

vr C vd
; (5.16)

y� D c0vr C c1vs

vr C vs
; (5.17)

yC D c1; (5.18)

and observe that

y� � xC D c0vr C c1vs

vr C vs
� vrc1 C vdc0

vr C vd
D .c1 � c0/

vdvs � v2
r

.vr C vs/ .vr C vd/
:

It now follows from the assumptions (5.3) and (5.4) that we have

y� > xC: (5.19)



100 5 Two-Dimensional Calcium Release

Our aim is now to show that � D .x�; xC/ � .y�; yC/ is an invariant region
for solutions of the scheme (5.11) and (5.12). Because of (5.19), this means, in
particular, that under the assumptions (5.3) and (5.4) the lowest possible calcium
concentration of the JSR will always be larger than (or equal to) the highest calcium
concentration of the dyad.

The numerical scheme (5.11, 5.12) can be written in the form

xnC1 D F.xn; yn; �n/;

ynC1 D G.xn; yn; �n/;

where

F.x; y; �/ D x C �t .�vr .y � x/ C vd .c0 � x// ;

G.x; y; �/ D y C �t .�vr .x � y/ C vs .c1 � y// :

We will consider the properties of the functions F and G for x and y in the domain

� D f.x; y/ W x� � x � xC; y� � y � yCg (5.20)

and for 0 � � � 1: Note that

@F.x; y; �/

@x
D 1 � �t .�vr C vd/ � 1 � �t .vr C vd/ > 0

by condition (5.14). In addition, we have

@F.x; y; �/

@y
D �t�vr � 0

and

@F.x; y; �/

@�
D �tvr .y � x/ � 0;

where we use (5.19) and (5.20). Similarly, we have

@G.x; y; �/

@y
D 1 � �t .�vr C vs/ � 1 � �t .vr C vs/ > 0;

which is also positive by condition (5.14). Finally, we have

@G.x; y; �/

@x
D �t�vr � 0
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and

@G.x; y; �/

@�
D �tvr .x � y/ � 0

by (5.19) and (5.20). We now assume that

.xn; yn/ 2 �:

Then,

xnC1 D F.xn; yn; �n/ � F.x�; y�; 0/ D x�

and

xnC1 D F.xn; yn; �n/ � F.xC; yC; 1/ D xC:

So we conclude that

x� � xnC1 � xC:

Similarly,

ynC1 D G.xn; yn; �n/ � G.x�; y�; 1/ D y�

and

ynC1 D G.xn; yn; �n/ � G.xC; yC; 0/ D yCI

so we conclude that

y� � ynC1 � yC:

We have seen that under the assumptions (5.3), (5.4), and (5.14), it follows that,
if

.xn; yn/ 2 �;

then also

.xnC1; ynC1/ 2 �

and we therefore conclude that � is an invariant region for the scheme of (5.11)
and (5.12). This means that the probability density system will be solved in the
domain defined by �:
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5.2 Probability Density Functions in 2D

In the 1D case considered above, we derived a model for the probability density
functions. In the 2D case, we can follow exactly the same steps and arrive at a
system of partial differential equations of the form

@
o

@t
C @

@x

�
ax

o
o
�C @

@y

�
ay

o
o
� D kco
c � koc
o; (5.21)

@
c

@t
C @

@x

�
ax

c
c
�C @

@y

�
ay

c
c
� D koc
o � kco
c; (5.22)

where

ax
o D vr .y � x/ C vd .c0 � x/ ;

ay
o D vr .x � y/ C vs .c1 � y/ ; (5.23)

ax
c D vd .c0 � x/ ;

ay
c D vs .c1 � y/ :

As in 1D, 
o and 
c denote the open and closed probability density functions,
respectively, satisfying the integral condition

Z
�

.
o C 
c/ dx dy D 1: (5.24)

Here the domain can be taken to be

� D f.x; y/ W x� 6 x 6 xC; y� 6 y 6 yCg (5.25)

and the boundary conditions are again defined to ensure that there is no flux of
probability out of the domain (see page 37).

5.2.1 Numerical Method for Computing the Probability
Density Functions in 2D

To solve the system (5.21) and (5.22), we need to define a numerical method. For the
1D model (see page 37), we used an upwind scheme as presented by LeVeque [48].
Here, we use the 2D version of the same numerical method. Consider the partial
differential equation


t C .a
/x C .b
/y D g
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Table 5.2 Discretization
parameters

�t 0.001 ms

�x 0.92 	M

�y 9.3 	M

where a; b, and g are smooth functions of x and y: We let 
n
i;j denote an approxi-

mation of 
 at time t D n�t for .x; y/ 2 Œxi�1=2; xiC1=2/ � Œyj�1=2; yjC1=2/, where
xi D x� C i�x; yj D yC C j�y, and

�x D xC � x�
Mx

; �y D yC � y�
My

:

Here Mx and My denote the number of grid points along the x and y axes,
respectively. The numerical approximation is defined by the scheme


nC1
i;j D 
n

i;j � �t

�x

�
.a
/n

iC1=2;j � .a
/n
i�1=2;j

�

� �t

�y

�
.b
/n

i;jC1=2 � .b
/n
i;j�1=2

�
C �tgi;j


n
i;j; (5.26)

where

.a
/n
iC1=2;j D max.aiC1=2;j; 0/
n

i;j C min.aiC1=2;j; 0/
n
iC1;j; (5.27)

.b
/n
i;jC1=2 D max.bi;jC1=2; 0/
n

i;j C min.bi;jC1=2; 0/
n
i;jC1: (5.28)

In our simulations, this scheme is used for both equations (5.21) and (5.22) above,
where the right-hand sides are given by kco
c �koc
o and koc
o �kco
c, respectively.

As pointed out above, the probability densities integrates to one (see (5.24)), and
the discrete version of this condition reads,

�x�y
X

i;j


i;j D 1; (5.29)

where 
 D 
o C 
c. Note that the initial conditions must be chosen such that
this condition holds. The discretization parameters used throughout this chapter are
given in Table 5.2.

5.2.2 Rapid Decay to Steady State Solutions in 2D

We observed in 1D that the time-dependent probability density functions converge
rapidly toward steady state solutions. This is illustrated in Fig. 2.7 on page 39. In
Fig. 5.5, we show snapshots of the open probability density function at times 1, 2,
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Fig. 5.5 Open probability density function 
o as a function of the dyad (x) and the JSR
concentrations (y) for times t D 1, 2, 3, 5, 10, 20, 40, 70, and 100 ms. Note the convergence
toward an equilibrium solution. In the computations, we use �t D 0:001 ms, �x D 0:92 	M, and
�y D 9:3 	M

3, 5, 10, 20, 40, 70, and 100 ms and we observe that the solution converges toward
an equilibrium solution with time. This is verified in Fig. 5.6, where we plot the
(weighted) norm between the dynamic and stationary solutions for time t ranging
from 0 to 150 ms and we see that the solution is quite close to equilibrium at t D 100

ms. This observation is useful because it implies that when we assess the effect of
various theoretical drugs, it is sufficient to consider steady state solutions.

5.2.3 Comparison of Monte Carlo Simulations and Probability
Density Functions in 2D

As in 1D, we want to compare the probability densities 
o and 
c computed by
solving the probability density system (5.21) and (5.22) using the scheme (5.26)
with Monte Carlo simulations based on the stochastic differential equations (5.1)
and (5.2) solved by the numerical scheme (5.11) and (5.12). The comparison is
undertaken in the same manner as in 1D. We simply run a number of Monte Carlo
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Fig. 5.6 The weighted norm of the difference between the open probability density function 
o at
time t and at time 1;000 ms. This figure shows convergence toward an equilibrium solution
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Fig. 5.7 Steady state open probability density function 
o computed by solving the probability
density system (5.21) and (5.22). The solution is bounded (red curve) by solutions of the
system (5.7) and (5.8) and the system (5.9) and (5.10)

simulations for a long time and count the number of open states in small rectangles.
The procedure is a direct generalization of the method used in 1D (see page 40).

The numerical solution of the probability density system is given in Fig. 5.7 and
the associated solution based on Monte Carlo simulations is given in Fig. 5.8. As in
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Fig. 5.8 Open probability density function 
o computed by Monte Carlo simulations using the
scheme (5.11) and (5.12). The solution is bounded (red curve) by solutions of the system (5.7)
and (5.8) and the system (5.9) and (5.10)

1D, we observe that the solutions are quite similar. In both these figures, we observe
that the solutions stay inside a region bounded by a red curve. The red curve is
computed by solving (5.7) and (5.8) for the closed state and (5.9) and (5.10) for the
open state.

5.2.4 Increasing the Open to Closed Reaction Rate in 2D

In 1D, we observed that if we increased the reaction rate koc from open to closed, the
steady state probability density functions changed considerably (see page 46). We
observed that the open probability decreased and the closed probability increased
significantly. In Fig. 5.9, we study the same effect in 2D and again we observe
that the open probability density function is considerably decreased when koc is
increased from one to three. The statistics of the solutions are given in Table 5.3 and
we note that the total open probability is reduced considerably when koc is increased
from one to three. The expected dyad concentration (x) does not change very much,
but the expected JSR concentration (y) increases significantly and this observation
holds for both open and closed channels.
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Fig. 5.9 The effect of increasing koc from one to three. The open probability density function is
reduced considerably

Table 5.3 Statistical
properties of the probability
density functions for
koc D 1 ms�1 and
koc D 3 ms�1

koc �o Exo Eyo �xo �yo

1 0.430 12.63 202.4 4.948 46.27

3 0.221 13.23 339.2 6.723 56.88

koc �c Exc Eyc �xc �yc

1 0.570 5.12 218.2 4.842 49.90

3 0.779 5.95 348.0 5.563 57.22

5.3 Notes

1. The 2D stochastic model and the associated probability density functions are
taken from Huertas and Smith [35], but some of the parameters are changed.
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