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Abstract Circadian clocks are biologic oscillators present in all photosensitive

species that produce 24-h cycles in the transcription of rate-limiting metabolic

enzymes in anticipation of the light–dark cycle. In mammals, the clock drives

energetic cycles to maintain physiologic constancy during the daily switch in

behavioral (sleep/wake) and nutritional (fasting/feeding) states. A molecular con-

nection between circadian clocks and tissue metabolism was first established with

the discovery that 24-h transcriptional rhythms are cell-autonomous and self-

sustained in cultured fibroblasts, and that clocks are present in most tissues and

comprise a robust temporal network throughout the body. A central question

remains: how do circadian transcriptional programs integrate physiologic systems

within individual cells of the intact animal and how does the ensemble of local

clocks align temporal harmonics in the organism with the environment? Our

approach to studies of metabolic regulation by the molecular clock began with

analyses of metabolic pathologies in circadian mutant animals, experiments that

first became possible with the cloning of the clock genes in the late 1990s. A

paradox in our early studies was that the effects of circadian clock disruption were

both nutrient- and time-dependent, so that, under fed conditions, animals exhibited

diabetes whereas during fasting, they decompensated and died. Application of a

broad range of tissue-specific genetic and biochemical approaches has now begun

to provide mechanistic insight into the circadian control of metabolism.
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Genetic Approaches to Dissecting Circadian Physiology

Glucose homeostasis is a dynamic process that is subjected to rhythmic variation

throughout the daily light–dark cycle. Impaired glucose regulation arises from

desynchrony in the integration of anabolic, catabolic, and incretin hormones across

the circadian cycle and leads to metabolic syndrome and diabetes mellitus, disor-

ders that are associated with over-nutrition, sedentary lifestyle, and sleep-wake

disruption common in industrialized society. Individuals with diabetes must adjust

their insulin levels differently every day and night even independently of how much

they eat; however, the molecular underpinnings of circadian glucose regulation

were previously not well understood. Genome-wide association and deep-

sequencing studies have shown that variants of the melatonin receptor 1b and

cryptochrome 2 genes correlate with glucose variation in humans, suggesting a

genetic linkage between the circadian system and glucoregulatory processes in man

(Bouatia-Naji et al. 2009; Mulder et al. 2009; Dupuis et al. 2010). Against this

backdrop, work from our laboratory using circadian clock mutant mice first

revealed an essential role for the intrinsic beta cell clock in insulin secretion, beta

cell development, and diabetes mellitus (Marcheva et al. 2010). Subsequent studies

in three other groups have corroborated our observation that local function of the

clock transcription factor in islets is crucial for normal glucose homeostasis

(Sadacca et al. 2011; Lee et al. 2013; Pulimeno et al. 2013). Importantly, work

from the Dibner laboratory has been the first to manipulate and monitor clock

function in isolated human islet cells, raising the possibility that future investigation

into circadian cell physiology will yield new understanding of beta cell failure in

man (Pulimeno et al. 2013). In recently published work, we have developed

tamoxifen-inducible Cre-LoxP technology to conditionally eliminate clock gene

function in pancreas (PMID 26542580). Remarkably, our results establish that

acute pancreatic clock ablation in the adult is sufficient to cause diabetes mellitus

in the whole animal. These new genetic studies are the first to demonstrate an

essential role for the adult circadian system in beta cell glucose regulation, although

a gap remains in our understanding of the cell and molecular bases for clock

function in the beta cell. Using conditional gene targeting and next-generation

sequencing described in the following sections, we are presently poised to dissect

the genomic, biochemical, and physiologic mechanism of the clock in beta cell

failure. Moreover, since clock transcription factors impact both islet cell growth

and stress response, we also seek to understand the role of the islet cell clock in

susceptibility to beta cell apoptosis in type 1 diabetes, in islet regenerative capacity,

and in islet cell survival in insulin resistant obesity.

Our analysis of the beta cell clock also opens broader insight into the role of

transcription factor deregulation in beta cell failure and the unifying and distinct

molecular events between tissues that culminate in diabetes mellitus. In this regard,

positional cloning of genes causing Maturity Onset Diabetes of the Young (MODY)

in humans has revealed that the hepatic nuclear factor (HNF) network of forkhead

transcription factors plays a critical role in beta cell development and function,
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although knowledge of the cell-context specific determinants of HNF action in liver

and pancreas remains incomplete. By analogy, an important goal in understanding

how beta cell transcription defects related to the clock pathway give rise to diabetes

will be to elucidate differences in the clock-controlled enhancer network in liver

and pancreas and to compare the cistromes and transcriptomes for these factors in

each tissue. Interestingly, there is coincidence of CLOCK/BMAL1 binding sites in

liver at loci marked by monomethylated H3K4 in pancreas, although it is not known

whether the enhancer state (poised, H3K4me1 vs active, H3K4me1 with H3K27Ac)

in pancreas varies over the 24-h cycle. In the long term it will be necessary to

evaluate the cistromes and localization of clock factors with established transcrip-

tion factors involved in beta cell function over the full circadian cycle in both liver

and pancreas. Such studies will further elucidate the mechanism by which the clock

controls gene transcription networks involved in insulin release, namely by deter-

mining the extent to which CLOCK/BMAL1 directly binds to promoters and/or

enhancers or regulates epigenetic chromatin modifiers that determine accessibility

to transcription factors and RNA polymerase genome-wide. Overall, studies of the

beta cell molecular clock will elucidate how glucose homeostasis is coupled to the

light/dark cycle and the transcriptional determinants of circadian physiology.

Clock-NAD+-Sirtuin Pathway in Bioenergetics

Amajor step in understanding how the clock-NAD+ cycle impacts physiology came

from the observations that circadian mutant mice become hypoglycemic and die

when subject to a prolonged fast (PMID 24051248, unpublished data) and also

exhibit muscle and heart failure (PMID 20956306, 21452915), all hallmarks of

mitochondrial disease, which prompted us to dissect the mechanisms of clock

regulation of mitochondrial function. We began our investigation into the effect

of NAD+ deficiency on mitochondrial function in circadian mutant animals using a

multi-faceted approach, including unbiased proteomics, which led to the identifi-

cation of abnormal acetylation of enzymes involved in lipid oxidation, amino acid

catabolism, tricarboxylic acid (TCA) cycle, electron transport chain (ETC), and

superoxide dismutase pathways. Importantly, loss-of-function mutations in several

of these oxidative enzymes have also been identified in the human metabolic

myopathy syndrome and in both glioblastoma and renal cell carcinoma, indicating

a broader effect of the clock-NAD+ pathway on mitochondrial metabolism in both

normal and transformed cells. Using tissue- and cell-based bioenergetics assays, we

discovered that abrogation of the clock impairs electron transfer from lipid to the

TCA cycle, in addition to increased mitochondrial production of superoxide free

radical, increasing sensitivity to genotoxic stress. Our work also showed that cells

exhibit an autonomous rhythm of oxygen consumption, glucose oxidation, and

mitochondrial lipid catabolism. Importantly, the oxygen consumption cycle in

muscle is directly linked to metabolism of NAD+ and activity of the mitochondrial

NAD+-dependent deacetylase SIRT3 (Peek et al. 2013).
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Although the aforementioned work has pinpointed specific defects in clock

control of mitochondrial function, several unanswered questions remain in

dissecting the effect of clock-NAD+ rhythms on physiology and cell biology.

First, it is not yet known how NAD+ deficiency locally within skeletal muscle

contributes to respiration or exercise tolerance in circadian mutant mice or in

animals subjected to environmental circadian disruption. Though skeletal muscle

ablation of the clock has been achieved in our group and others, the biochemical

pathways through which clock abrogation impairs oxidative capacity remain

largely unknown (Dyar et al. 2014).

Second, we still do not know whether clock abrogation and NAD+ deficiency in

liver or skeletal muscle impacts overall energy balance and alters the capacity to

utilize carbohydrate and lipid as a fuel source. New pharmacologic (Wang

et al. 2014) and genetic means to raise NAD+ both globally in the whole animal

and selectively within either liver or skeletal muscle are now available and will be

powerful tools in evaluating the potential to boost NAD+ as a therapeutic strategy in

myopathy and liver defects of circadian mutant animals. Finally, in addition to its

function as a cofactor for the class III histone deacetylases, NAD+ is a cofactor for

the poly-ADP-ribosylases, critical factors in DNA repair and stress response,

though the possible interaction between rhythmic regulation of NAD+ and PARP

activity is not known. Lastly, NAD+ functions as an electron transport molecule

and, as such, it is a direct marker of cellular redox state and the balance between

glycolytic and oxidative metabolism. Whether NAD+ might participate in the

bidirectional communication between metabolism and the clock system remains

an area of intensive investigation. In summary, discovery of the clock as an

upstream regulator of NAD+ provides a wealth of opportunity to dissect the

interrelationship between circadian rhythms, physiology, and epigenetics.

Reciprocal Control of the Clock by Nutrient

Circadian clocks are biologic oscillators that produce 24-h cycles in the transcrip-

tion of rate-limiting metabolic enzymes in anticipation of the solar cycle. The

molecular clock is programmed by a transcription-translation feedback loop that

is comprised of activators (CLOCK/BMAL1) that induce the expression of their

own repressors (CRYs/PERs) in a cycle that repeats itself every 24 h. The

REV-ERB and ROR proteins form an ancillary loop that modulates Bmal1 tran-

scription. In animals, clocks are organized hierarchically, with brain pacemaker

cells synchronizing peripheral tissue clocks, leading to a classical view of the

central clock as the main driver of metabolism. However, circadian oscillations

within both brain and peripheral tissues have recently been shown to be sensitive to

timing of nutrient availability and can become uncoupled from the light–dark cycle,

as demonstrated by experimentally restricting food access to the light cycle when

mice are normally resting (Damiola et al. 2000; Stokkan et al. 2001). Further,

simply substituting regular with high fat chow in mice fed ad libitum lengthens
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periodicity of locomotor activity and alters peripheral metabolic rhythms, providing

further evidence for a bidirectional relationship between clock function and metab-

olism (Kohsaka et al. 2007). Our discovery that diet-induced obesity reprograms

both the cellular molecular clock and behavior revealed for the first time that a

controlled change in nutritional environment leads to altered circadian rhythms.

This idea, that circadian and metabolic systems reciprocally interact and that

perturbation of the metabolic environment alters the homeostatic relationship

between these systems, has been widely confirmed but still remains poorly under-

stood at the mechanistic level. Human analyses, including genome-wide associa-

tion studies, population based case–control investigation, and clinical research,

have cumulatively indicated a strong interrelationship between circadian disrup-

tion, obesity, diabetes mellitus, and metabolic syndrome. Moreover, certain inflam-

matory and cardiovascular events, including thrombosis and nocturnal asthma,

exhibit pronounced circadian variation. Surprisingly, dietary macronutrient directly

impacts behavioral and molecular clock function, and circadian disruption itself

exacerbates the progression of diet-induced obesity, exerting distinct effects within

local metabolic organs. Moreover, limiting high-fat food to the incorrect circadian

phase accelerates weight gain, whereas limiting high-fat feeding to the correct

phase ameliorates hepatic steatosis, a hallmark of metabolic syndrome (Maury

et al. 2010). While we previously demonstrated that diet-induced obesity repro-

grams the cellular molecular clock and circadian behavior, we have more recently

sought to identify the macronutrient disruptor of circadian behavior by providing

mice an isocaloric diet high in either saturated or unsaturated fats (SFD and UFD).

Our goal is to identify the mechanism by which a macronutrient directly alters

behavior and neuronal circadian pacemaker function. We propose that nutrient

signaling plays a central role in inter-organ circadian communication and that

circadian disruption induced by high saturated fat contributes to the rate of pro-

gression of metabolic syndrome.

Summary and Future Directions

A major window to understanding how the clock is coupled to metabolism was

opened with discovery of metabolic syndrome pathologies in multi-tissue circadian

mutant mice, including susceptibility to diet-induced obesity, mis-timed feeding

rhythms, hypoinsulinemia, and energetic collapse upon fasting. Using Cre-LoxP

conditional transgenesis and dynamic endocrine testing, we have pinpointed the

tissue-specific role of the clock in energy and glucose homeostasis, with our most

detailed understanding of this process in liver, muscle, and endocrine pancreas. In

the post-prandial condition, the beta cell clock is essential for nutrient and adenyl

cyclase-induced insulin exocytosis. In contrast, the hepatocyte and myocyte clocks

are required for oxidative metabolism. Circadian mutant mice die upon prolonged

fasting due to mitochondrial failure, a defect that we have tied to the bioavailability

of NAD+, a cofactor of the class III histone deacetylases and poly-ADP ribosylase
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enzymes involved in adjusting metabolic and gene regulation in response to

environmental change, including glucose deprivation, oxidative damage, and cell

stress. Indeed, we have found that liver and myoblasts exhibit an autonomous

rhythm of oxygen consumption, glucose oxidation, and mitochondrial lipid catab-

olism that is directly linked to an autonomous rhythm of NAD+ metabolism and,

consequently, to cyclic activity of the mitochondrial NAD+-dependent deacetylase

SIRT3. NAD+ supplementation using the pro-drug NMN improves respiration in

live animals, indicating that circadian control of NAD+ metabolism plays a key role

in cellular and organismal respiration. A future challenge will be to determine the

cell and molecular basis for the interplay between nutritional and circadian pro-

cesses important in metabolic health and disease states.
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