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Abstract Many works have shown strong connections between learning and

regularization techniques for ill-posed inverse problems. A careful analysis shows

that a rigorous connection between learning and regularization for inverse prob-

lem is not straightforward. In this study, pattern recognition will be viewed as an

ill-posed inverse problem and applications of methods from the theory of inverse

problems to pattern recognition are studied. A new learning algorithm derived

from a well-known regularization model is generated and applied to the task

of reconstruction of an inhomogeneous object as pattern recognition. Particu-

larly, it is demonstrated that pattern recognition can be reformulated in terms

of inverse problems defined by a Riesz-type kernel. This reformulation can be

employed to design a learning algorithm based on a numerical solution of a sys-

tem of linear equations. Finally, numerical experiments have been carried out

with synthetic experimental data considering a reasonable level of noise. Good

recoveries have been achieved with this methodology, and the results of these

simulations are compatible with the existing methods. The comparison results

show that the Regularization-based learning algorithm (RBA) obtains a promis-

ing performance on the majority of the test problems. In prospects, this method

can be used for the creation of automated systems for diagnostics, testing, and
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control in various fields of scientific and applied research, as well as in industry.

ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

No patterns can be derived solely from empirical data (Yee and Haykin, 1993).
Some hypotheses about patterns have to be chosen and, from among patterns
satisfying these hypotheses, a pattern with a good fit to the data must be
sought.

Neurocomputing brought a new terminology to data analysis: searching for
parameters of their input/output functions is called learning, and samples of data
training sets and a capability to satisfactorily process new data that have not been
used for learning is called generalization.

The capability of generalization depends upon the choice of a hypothesis set of
input/output functions, in which one searches for a pattern (a functional relation-
ship) that matches the empirical data. So a restriction of the hypothesis set to only
physically meaningful functions can improve generalization.

Inverse problems frequently arise in experimental situations when one is inter-
ested in the description of the internal structure of a system and is given indirect,
noisy data. Estimating the response of a system given a complete specification of
the internal structure, on the other hand, is the forward problem.

The modeling problem arises when one is given noisy data, observed over irreg-
ular intervals of space and time, and is asked to develop a reasonable model to fit
those observed data (Vapnik, 1998).

With the advent of high-speed computers and artificial intelligence techniques,
this modeling problem underwent a metamorphosis and emerged as a machine
learning problem (Bauer et al., 2007; Gdawiec and Domanska, 2011). Tikhonov
and Lanweber regularized that learning algorithms have recently received an
increasing interest due to both theoretical and computational motivations (Abru-
kov et al., 2006; Kurkova, 2012; Tiknonov and Arsenin, 1977). Fractal, optimiza-
tion, and a two-dimensional functional relational model have been used as a
feature in several pattern recognition methods (Chang et al., 2010; Lo Gerfo
et al., 2008; Noureddine, in press). Considerable attention is currently being de-
voted to new possibilities of using artificial neural networks (ANN) in view of their
increasing importance for solving the problem of automated reconstruction of the
inner structure of an object. Accompanying algorithms that effectively quantify
uncertainties, deal with ill-posedness, and fully take the nonlinear model into
account are needed Therefore, it is necessary to both look for possible ways to
improve the classical learning algorithms already existent in the literature, and
to identify new methods which can compete with the traditional ones in speed,
robustness, and quality of results.
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Inverse problems are often formulated by assuming that the underlying phe-
nomenon is a dynamic system characterized by mathematical equations, although
no such assumption is always essential. Often the goal is to build an algorithmic
model of the underlying phenomena. In some contexts a model is only a means
to an end. The ultimate goal in such cases is to test the validity of a hypothesis.
In these cases, the model is used as a classifier (e.g., neural nets and decision trees),
and it matters little whether the model is parametric or non-parametric; the clas-
sification accuracy becomes more important. From this point of view the entire
field of Machine Learning can be treated as an exercise in solving inverse problems
(Bauer et al., 2007; Prato et al., 2007). By their very nature, inverse problems are
difficult to solve. Sometimes they are ill-posed. A well-posed mathematical prob-
lem must satisfy the following requirements: existence, uniqueness and stability.
The existence problem is really a non-issue in many realistic situations because
the physical reality must be a solution. However, due to noisy and/or insufficient
measurement data, an accurate solution may not exist. More often, the major
difficulty is to find a unique solution; this especially when solving a parameter
identification problem. Different combinations of parameter values (including
boundaries and boundary conditions) may lead to similar observations. One
useful strategy to handle the non-uniqueness issue is to utilize a priori information
as additional constraints. These constraints generally involve the imposition of
requirements such as smoothness on the unknown solution or its derivatives, or
positivity, or maximum entropy or some other very general mathematical prop-
erty. A more aggressive approach would be the use of regularization. Given an
observed data set, genetic algorithms and genetic programming can be used to
search a hypothesis space.

In this paper, starting from a reformulation of the pattern recognition as an in-
verse problem, we introduce an alternative learning algorithm derived by a well-
known regularization method. We use a Riesz-type kernel to solve classification
tasks by transforming the geometry of input space by embedding them into higher
dimensional, inner product spaces, and introducing a regularization method which
adds to the derived integral equation a new term, called stabilizer, which penalizes
undesired input/output functions. We split the problem into a simpler, ill-posed
problem (an integral equation with a Riesz-type kernel) and a well-posed problem.
In this way, we isolate and better control the propagation of errors due to the
ill-posedness (Noureddine, in press). Then we show that this reformulation can
be employed to design a learning algorithm based upon a numerical solution of
a system of linear equations.

The rest of the paper is organized as follows: The next Section describes our
model and justifies its use. In Section 3, we formulate the proposed regularized
learning algorithm. Section IV presents main simulation results. We compare
our Regularization-based Algorithm (RBA) with the Support Vector Machine
(SVM) and Semanteme-based Support Vector Machine (SSVM) in Section 5.
Finally, we conclude the paper with a summary of the work in Section VI.
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2. Generalization model as Regularization

Let us formulate the generalized problem as regularization in the following way:
Find a function r1 2 L1ðXÞ;X 2 Rn, given the function B(xk) = w(xk), xk 2 Ok,

Ok 2 Rn. Therefore, we have the following integral equation of the first kind
Ar1ðxÞ ¼ BðxÞ; x 2 Xk ð2:1Þ

where Ar1(x) = �X k(x, y)r1(y)dy and k(x, y) = (1/2p)2|x � y|�2 and A is consid-
ered as an operator from L1(O) into L1(Ok). This integral equation is the Fred-
holm integral equation of the first kind with a Riesz-type kernel.

First we need to show that Eq. (2.1) represents a severely ill-posed problem.
Then we have to prove that a solution r1(a) to the Eq. (2.2) exists and is unique.

Theorem 1. Let us assume that O and Ok are nonintersecting domains in R3. Then
the integral Eq. (2.1) with the Riesz-type kernel represents an ill-posed problem.

Proof. We should notice that there are no singularities in the Riesz-type kernel
with the domains defined above. We then claim that whether r1 2 L2(O) is contin-
uous or not, (Ar1)(x) is continuous in the usual sense. In fact,
Ar1ðx1Þ � Ar1ðx2Þj j ¼
Z

X
jx1 � yj�2r1ðyÞdy�

Z
X
jx2 � yj�2r1ðyÞdy

����
����

6 jr1ðyÞjjjx1 � yj�2 � jx2 � yj�2jdy

6 kr1k2:
Z

X
jjx1 � yjr � jx2 � yjaj2:dy
Since the integrand ||x1 � y|r � |x2 � y|a| is uniformly continuous, we have if
|x1 � x2| < d,
jjx1 � yjr � jx2 � yjaj2 < e for 8 y 2 X:
Therefore,
jAr1ðx1Þ � Ar1ðx2Þj 6 kr1k2:e:jXj;

|X| stands for a certain measure of X for any given e > 0.

Now it is clear that if we take any B(x) eL2(Xk) which is continuous, then there
is no r1 eL2(X) such that Ar1 = B. So the existence requirement of the well-
posedness is violated. Therefore the Eq. (2.1) is ill-posed.

For the integral Eq. (2.1), with a Riesz-type kernel and non-intersecting do-
mains X and Xk, there is uniqueness in L2(X) Prato and Zanni, 2008. Djatlov’s
work shows a logarithmic type of stability estimate (Kress, 1989).

We use the Tikhonov regularization method (Kress, 1989; Sever, 1999) to solve
the ill-posed problem in Eq. (2.1). In this method, instead of Eq. (2.1), we solve the
following regularized equation:
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ðA�Aþ aIÞr1ðxÞ ¼ A�BðxÞ ð2:2Þ

where I is the identity operator, and a is a regularization parameter. Now we will
show the solution r1(a) and its convergence to the solution B when afi0, provided
r1 exists and the uniqueness for the original Eq. (2.1). Now we need to prove the
existence of the solution r1(a) and its convergence to the solution f when afi0,
provided r1 exists and is unique.

Theorem 2. A solution r1(a) to the Eq. (2.2) exists and is unique. Also Ray defined
as r1(a) is a regularizer to the Eq. (2.1) on X= XM, provided that the equation
Ar1 = 0 has only zero solution.

Proof. First we assume that A is compact, so is A*A, but A*A is also self-adjoint.
Thus A*A has a complete eigenfunction system denoted by {ek} with the corre-
sponding eigenvalues {kk}.

Then, we have r1(a) =
P

kr1k(a)ek, A
*y =

P
kBAkek using equation, we get
ðkk þ aÞr1kðaÞ ¼ BAk
which implies r1k(a) = BAk/(kk + a) is uniquely determined. Uniqueness can be
obtained without using the expression of the solution. In fact, since A*A is posi-
tive, we have
ððA�Aþ aÞx;xÞ ¼ ðAx;AxÞ þ aðx;xÞ > 0 for 8 x–0:
Therefore it cannot happen that there is some r*1 „ 0 such that
ðA�Aþ aÞr�1 ¼ 0
which means
kernelðA�Aþ aIÞ ¼ f0g:

Now we show that r1(a) is actually a regularizer. To this end, we may assume now
Ar1 = B where r1 eXM. Noticing that A*A + aI is also self-adjoint, we have
ððA�Aþ aÞÞr1ðaÞ; ekÞ ¼ ðA�B; ekÞðA�Ar1; ekÞ

or
ðr1ðaÞ; ððA�Aþ aÞekÞ ¼ ðr1;A
�AekÞ

ððkk þ aÞðr1ðaÞ; ekÞ ¼ kkðr1; ekÞ

with r1(a) =

P
kr1k(a)ek,r1 =

P
krkek, therefore, we get
r1kðaÞ ¼ ðkk=kk þ aÞr1
and
r1kðaÞ � r1k ¼ ðkk=kk þ aÞr1k � r1k ¼ �ða=kk þ aÞr1k:
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Therefore
jjr1kðaÞ � r1kjj2 ¼
X
k

jr1kðaÞ � r1kj2 ¼
X
k

ða2=ðkk þ aÞ2Þr2
1kðkk > 0Þ

< a
X
k6

KKðkk þ aÞ�2jr1kj2 þ
X
k>K

jr1kj2
Here we assume that kk P kk+1 P . . .
For all e > 0 since x 2 L2,

P
k|r1k|

2 converges. We first choose K such thatP
k|r1k|

2 < e2/2.
Then, for the fixed K, we may chose d such that
a
X
k6K

ðkk þ aÞ�2jr1kj2 < e2=2:
Consequently,
jjr1kðaÞ � r1kjj 6 e
It remains to prove that Ra, i.e., r1 is continuous. By observing that
r1kðaÞ � r1kða0Þ ¼ ðða0 � aÞkkÞ=ðkk þ aÞðkk þ a0Þr1k
And using a similar argument to what we had above, we get the continuity of r1k.
Spectral representation of self-adjoint operators in Hilbert space gives the gen-

eral case. Assumption Ar1 = 0 if and only if r1 = 0 guarantees that the limit of
r1(a) is unique.

3. Regularized learning algorithm

In this section we formulate a regularized learning algorithm based upon the
Tikhonov regularization algorithm. For computational reasons, let O and Ok be
the domain in R2 and we will regard the integral operator
Ar1ðxÞ ¼
Z

X
r1ðyÞ=jx� yj2dy
as defined from L2(O) into L2(Ok). By using the definition of an adjoint operator in
L2, we have A*: L2(Ok) fi L2(O) defined by
A�BðyÞ ¼
Z

Xk

BðxÞ=jx� yj2dx y 2 X ð2:3Þ
and A*Ar1 (y) becomes
A�Ar1ðyÞ ¼
Z

Xk

Z
X

r1ðy0Þjx� yj2jx� y0j2dy0dx ð2:4Þ
where x 2 Ok, and y, y0 2 O. By discretizing Eq. (2.4), we have
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A�Ar1ðyiÞ ¼
Xn
k;j¼1

wjwkr1ðy0jÞ=jxk � yij
2jxk � y0jj

2
yi; y

0
j 2 X

ffi
Xn
j¼1

HI;jr1ðy0jÞ
ð2:5Þ
where
HI;j ffi
Xn
k;j¼1

wjwk=jxk � yij
2jxk � y0jj

2

and wj, and wk are the weight functions. By discretizing (2.3), we have
A�BðyiÞ ffi
Xn
k¼1

wkBðxkÞ=jxk � yij
2 ð2:6Þ
From (2.3)–(2.6) we have the discretized matrix equation in the form of
ðaIþHÞr1ðyÞ ¼ A�B ð2:7Þ

for some regularization parameters, a > 0. Now the problem is reduced to solving
systems of linear equations.

4. Simulation results

In this section we want to investigate the effectiveness of the regularized learning
algorithm introduced in Section 3.

Let us denote ‘real object’ by rt, and ‘computed object’ by rc. To test the meth-
od numerically, it is necessary to generate ‘B(x)’ in the integral Eq. (2.1). We do
this by specifying r and evaluating the integral numerically. Once we have the
numerical values of B(x), we use these as our data and recover the pattern inside
the required region. The steps of test calculation are:

(1) specify rt,
(2) calculate the integral (2.1),
(3) use (2.7) to find rc,
(4) compare rt with rc.

Our test calculation used

(i) smooth surface (Fig. 1)
(ii) rt = r0 + x1r1 + x2r2 (two objects)

where xi’s are characteristic functions of unknown objects, and r0 =½ and
rI = 1 (Fig. 3). In the case of smooth surface (i), the numerical calculations have
shown that when rt is a smooth polynomial, the reconstruction is a very good
approximation of rc (Fig. 2).



Figure 1 Smooth surface rt = x + y.

Figure 2 Reconstruction of surface in Fig. 1.
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In case (ii), we used two different regularization parameters for our reconstruc-
tion: simply, a = 10�7 and a = 10�10. We provided the cross sections of rt and rc.
The proposed model was able to distinguish the objects. We observed that the
computed rc was always smoothed. The location of the objects was well produced
by rc, and also the shape of the rc was a fair indication of the objects (Figs. 4 and 5
and Table 1).

Equation (2.7) involves main parameters that must be adjusted for greatest effi-
ciency: the regularization parameter and the number of grid points. Looking at the
reconstructions, the numerical experiments described above have shown that the
reconstructed surface is smooth and close to the true surface. The reconstruction
was usually a fair representation of the shape of the r.

Summarizing, the simplicity and the reconstruction accuracy make the
proposed regularized learning model well suited for the considered application.



Figure 3 Test domain with two objects.

Figure 4 Cross-section from the reconstruction of rt = r0 + x1r1 + x2r2 where xi’s are characteristic

functions of unknown objects, and r0 =½ and rI = 1, and a = 10�7.
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5. Results and discussion

In this section, misclassification rate (Li and Wang, 2009) is used to evaluate the
efficiency of our algorithm. Misclassification rate refers to the ratio of the number
of misclassified exemplars to the total number of exemplars in the dataset. The
ratio is computed using the Formulation (5.3). Correspondingly, the classification
accuracy is determined by the Formulation (5.2).



Table 1 Experimental datasets.

Cross-sectional points r0 = 1/2 and r1 = 1

�1 �0.5 0 0.5 1

rs – True value 0.5 1 0.5 1 0.5

a = 10�7 0.507 0.982 0.53 0.982 0.507

a = 10�10 0.582 0.973 0.532 0.973 0.591

Absolute error for a = 10�7 (%) 1 2 6 2 1

Absolute error for a = 10�10 (%) 16 3 6 3 18

Figure 5 Cross-section from the reconstruction of rt = r0 + x1r1 + x2r2 where xi’s are characteristic

functions of unknown objects, and r0 = ½ and rI = 1, and a = 10�10.
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cerror ¼
X
i¼1;�1

numberi=n ð5:1Þ

cerror ¼ 1� cðerrorÞ ð5:2Þ

where numberi refers to the number of misclassified exemplars in the positive and
negative classes, and n is the total number of X. A smaller cerror value indicates
higher classification accuracy and better classification efficiency. Conversely, a big-
ger cerror value indicates worse classification efficiency.

Experiments are performed on the purely syntactic datasets from the UCI ma-
chine learning repository (UCI, 1998). We compare our Regularization-based
Algorithm (RBA) with the Support Vector Machine (SVM) and Semanteme-based
Support Vector Machine (SSVM) in the Table 2. In each test, all patterns with
missing attribute values are initially removed. Continuous Dataset (CDS), Discon-
tinuous Dataset I (DDS-I), and Discontinuous Dataset II (DDS-II) have their
fixed real and computed pattern sets. The 9% outliers existing in DDS-II’s training
patterns are identified, and the dataset is classified as unbalanced. The continuous



Table 2 Misclassification ratio of different algorithms.

Dataset SVM (%) SSVM (%) RBA (%)

CDS 2.9 3.1 5.32

DDS-1 16.3 9.1 4.95

DDS-2 15.5 9.42 9.45

Average 11.5 7.2 6.57
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attributes in datasets are preprocessed using the Formulation (5.3) Li and Wang,
2009.
xij ¼ ðxij �min
i
fxijgÞÞðmax

i
fxijg �min

i
fxijgÞ ð5:3Þ
A number of classification algorithms depend on the similarity or dissimilarity of
exemplars, such as Euclidean distance and inner production, among others. How-
ever, majority of these algorithms only process continuous-attributed data, not
discontinuous data. Discontinuous data (surface in our examples) are extreme,
having disordered and unbalanced distribution.

For parameter selection and optimization, regularized learning algorithm faces
the problem of selecting parameter a. In many algorithms, the standardization of
the selection method for a is rarely performed (Han and Zhao, 2009). The heuristic
method or some optimization algorithm is used to select a. In this study, the
heuristic method is used in each experiment to standardize datasets. Table 1 shows
the relationship between classification accuracy and the value a in the RBA
algorithm.

6. Concluding remarks and future work

In this section, we briefly discuss several results obtained and issues related to the
proposed RBA learning and recognition technique. Some of these issues may be
viewed as merits while others as limitations leading to open research problems
for the future.

The implementation of the proposed algorithm shows that the method is
reasonably accurate for the reconstruction of two objects, using artificially gener-
ated data whose distributions are known. We have seen, both theoretically and
experimentally, that pattern classification can be viewed as an ill-posed, inverse
problem to which a method of regularization may be applied. As shown in Table 2,
our proposed regularized learning algorithm has already shown promising perfor-
mance in comparison with the state-of-the-art approaches, such as Support Vector
Machines (SVMs), on benchmark datasets and real-life test problems.

The information obtained from a preliminary analysis is by no means
exhaustive of the method discussed here and suggests several areas of additional
investigation. We recognize the clear connection between regularization theory
for inverse problems, and pattern recognition as learning, and this allow us to
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introduce a new learning algorithm. On one front, improvements have to be done
both on the algorithm (different regularizer properties must be investigated) and
the applications (non-homogeneous 3-D object recognition). More detailed work
is needed to improve the effectiveness of the numerics in general. In addition, the
answer to exactly how sensitive the method is to moderate amounts of noise is an
open question.

References

Abrukov, V.S., et al., 2006. Artificial Neural Networks and Optical Diagnostics. In: Sixth International

Conference on Intelligence Systems Design and Applications.

Bauer, F., Preverzev, S., Rosasco, L., 2007. On regularization algorithms in learning theory. J. Complexity 35,

52–72.

Chang, Y.F., Lee, J.C., Mohd Rijal, O., Syed Abu Bakar, S.A.R., 2010. Efficient online handwritten Chinese

character recognition system using a two-dimensional functional relationship model. Int. J. Appl. Math.

Comput. Sci. 20 (4), 727–738. http://dx.doi.org/10.2478/v10006-010-0055-x.

Gdawiec, K., Domanska, D., 2011. Partitioned iterated function systems with division and a fractal dependence

graph in recognition of 2D shapes. Int. J. Appl. Math. Comput. Sci. 21 (4), 757–767. http://dx.doi.org/

10.2478/v10006-011-0060-8, ISSN (Print) 1641-876X.

Han, Xian-Pei, Zhao, Jun, 2009. The creation of semantic metadata based on Wikipedia. J. Chin. Inform.

Process. 23 (2), 108–114.

Kress, R., 1989. Linear integral equation. In: Applied Math. Sciences. Springer-Verlag, Berlin, New York.

Kurkova, V., 2012. Complexity estimates based on integral transforms induced by computational units. Nueral

Netw. 33, 160–167.

Li, Zhi-Hua, Wang, Shi-Tong, 2009. Clustering with outliers-based anomalous intrusion detection[J]. Syst. Eng.

Electron. 31 (5), 1227–1230.

Lo Gerfo, L., Rosasco, L., Odone, F., De Vito, E., Verri, A., 2008. Spectral algorithms for supervised learning.

Neural Comput. 20 (7), 1873–1897.

Noureddine, S., in press. An optimization approach for the satisfiability problem, Appl. Comput. Inform. http://

dx.doi.org/10.1016/j.aci.2011.11.002.

Prato, M., Zanni, L., 2008. Inverse problems in machine learning: an application to brain activity interpretation.

J. Phys. 135.

Prato, M., Zanni, L., Zanghirati, G., 2007. On recent machine learning algorithms for brain activity

interpretation. In: 23rd Annual Review of Progress in Applied Computational Electromagnetics, March 19–

23, 2007, Verona, Italy, pp. 1939–1946.

Sever, A., 1999. On uniqueness in the inverse conductivity problem. Math. Methods Appl. Sci. 22 (12), 953–966.

Tiknonov, A.N., Arsenin, V., 1977. Solutions of Ill-posed Problems Transl from Russian. John Wiley Sons, New

York, Toronto.

UCI repository of machine learning database [EB/OL], 1998. Available from: <http://www.ics.UCI.edu/

~mlearn/MLRepository.html>.

Vapnik, V.N., 1998. Statistical Learning Theory. John Wiley and Sons, New York.

Yee, P., Haykin, S., 1993. Pattern classification as an ill-posed, inverse problem: a regularization approach. In:

ICASSP’93 Proceedings of the 1993 IEEE International Conference on Acoustics, Speech, and Signal

Processing: Plenary, Special, Audio, Underwater Acoustics, VLSI, Neural Networks, vol. I.

http://refhub.elsevier.com/S2210-8327(14)00006-4/h0010
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0010
http://dx.doi.org/10.2478/v10006-010-0055-x
http://dx.doi.org/10.2478/v10006-011-0060-8
http://dx.doi.org/10.2478/v10006-011-0060-8
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0075
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0075
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0100
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0105
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0105
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0110
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0110
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0115
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0115
http://dx.doi.org/10.1016/j.aci.2011.11.002
http://dx.doi.org/10.1016/j.aci.2011.11.002
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0050
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0050
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0055
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0060
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0060
http://www.ics.UCI.edu/~mlearn/MLRepository.html
http://www.ics.UCI.edu/~mlearn/MLRepository.html
http://refhub.elsevier.com/S2210-8327(14)00006-4/h0065

	An inverse problem approach to pattern  recognition in industry
	1 Introduction
	2 Generalization model as Regularization
	3 Regularized learning algorithm
	4 Simulation results
	5 Results and discussion
	6 Concluding remarks and future work
	References


