
Applied Computing and Informatics (2015) 11, 47–59
Saudi Computer Society, King Saud University

Applied Computing and Informatics

(http://computer.org.sa)
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
An optimization approach for the

satisfiability problem
E-mail address: Soufiane@psu.edu.sa

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.aci.2011.11.002
2210-8327 ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University.
S. Noureddine

Prince Sultan University, Riyadh, P.O. Box 66833, Saudi Arabia

Available online 9 January 2012
KEYWORDS

Satisfiability;

NP-complete

problem;

Optimization;

Geometric

programming
Abstract We describe a new approach for solving the satisfiability problem by

geometric programming. We focus on the theoretical background and give

details of the algorithmic procedure. The algorithm is provably efficient as geo-

metric programming is in essence a polynomial problem. The correctness of the

algorithm is discussed. The version of the satisfiability problem we study is exact

satisfiability with only positive variables, which is known to be NP-complete.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

The satisfiability problem is still the most important open problem in computer
science. Many scientific disciplines highly depend on efficient solutions of this core
problem. These span computer science itself, mathematical logic, pure and applied
mathematics, physics, chemistry, economics, and engineering, just to mention
some. Approximations and heuristics are more than welcome in applications, since

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2011.11.002&domain=pdf
mailto:Soufiane@psu.edu.sa
http://dx.doi.org/10.1016/j.aci.2011.11.002
http://dx.doi.org/10.1016/j.aci.2011.11.002
http://www.sciencedirect.com/science/journal/22108327
http://dx.doi.org/10.1016/j.aci.2011.11.002


48 S. Noureddine
they oftentimes provide efficient solutions for special cases. Theoretically, how-
ever, the computer science community is still lacking a good understanding of
the computational difficulties of this problem though many facts about it are
already known. Complexity theory tells us that the actual problem is related to
the P= NP? question. Indeed, this question is now becoming a complex offered
to us by complexity theory. Much effort to solve it has been in vain so far. Regret-
tably, no real progress in the discipline of computer science can be made until the
problem is solved. Most (senior) computer scientists today rather believe that P is
not equal to NP. That is, no matter how much we try, the satisfiability problem, as
a prominent NP-complete problem, will persist as a challenging problem with
exponential known deterministic worst-case complexity.

It is also disappointing that the NP-complete problems are too many and essen-
tial in real applications. It is rather simple to find a new NP-complete problem:
just try to solve one of them and describe the main difficulty you encounter as a
new problem if possible. So, adding a new problem to the list is relatively easy,
but removing one from the list seems to be very hard. The reason is that the list
of NP-complete problems degenerates to the empty list as soon as one of the prob-
lems is discovered to be outside the list, that is, as soon as one of the problems is
proved to be P-complete. This very fact is the main achievement of the theory of
NP-completeness.

Prevalent approaches for the satisfiability problem have concentrated so far on:
logical manipulation of formulas, graph-theoretic algorithms, probabilistic algo-
rithms, and mathematical optimization. Two methods based on logical manipula-
tions are worth mentioning: the Davis Putnam (DPLL) procedure and the method
of resolution and reduction. DPLL (Bacchus, 2002) proved extremely efficient for
most SAT instances arising in practice. Propositional resolution (Robinson, 1965)
is a well-understood powerful method. Propositional reduction (Noureddine,
submitted for publication) is also powerful and works well in conjunction with res-
olution. Graph-theoretic algorithms (Aspvall et al., 1979) are extremely helpful for
analyzing special algorithms (e.g. algorithms for 2SAT). Probabilistic algorithms
(Schoening, 1999) are also of extreme importance in practice and might deliver
the best results for complex instances. Finally, the method of mathematical opti-
mization (Fletcher, 1987) treats the satisfiability problem as an optimization prob-
lem and not as a decision problem. The method is very promising in a real setting
though implementing reliable optimization code is a very challenging task.

We favor in this paper the method of mathematical optimization. In another
paper, we focused on formulating the satisfiability problem as non-convex, exact,
exterior, penalty-based problem with a coercive objective function. The method
focused on exact satisfiability (XSAT), which is NP-complete. The method falls
into the category of approximation schemes for solving the satisfiability problem
and is sub-optimal and partially heuristic in nature. In this paper, we treat the
problem by way of geometric programming. We still focus on XSAT or more pre-
cisely on 3XSAT, which has the following properties:



An optimization approach for the satisfiability problem 49
1. Each clause includes exactly three literals.
2. Each satisfying assignment satisfies exactly one literal in each clause.
3. No variable in the formula is negated, that is, all literals are positive.

The third property simplifies the formulation of the problem via geometric pro-
gramming and preserves NP-completeness (Schaefer, 1978).

To the knowledge of the author, geometric programming has not been used to
attack the satisfiability problem yet. Certainly, other optimization schemes are
well-known, but geometric programming theory is very promising in the context
of satisfiability as we shall see. The method we provide is new and, thus, interesting
by its own means. The characteristic feature of geometric programming is that it
helps overcome the non-convex nature of the optimization problem under study.
This property is of extreme utility in our setting, since direct optimization methods
for the satisfiability problem tend to be non-convex. Knowing that general non-
convex optimization problems are (still) not tractable, the method of geometric
programming offers new perspectives for attacking the problem.

We will need to briefly review the basic theory of geometric programming in
Section 2. The focus will be on the refined theory based on strong duality theorems
as described by the inventors of geometric programming in Duffin et al. (1967).
Strong duality optimization is not the standard way of geometric programming.
However, we shall see that the weak duality theory is not sufficient in our case.
Applications of the strong duality theory are rare, if any, in the literature. This
is why the algorithm we shall outline in Section 3 is of importance only if the the-
ory behind it is proved to be efficient in practice. We shall not focus on experi-
menting with the algorithm in this paper. The aim is rather to outline the
abstract approach and underpin it by known theoretical results. As any other opti-
mization algorithm, the implementation of our algorithm is not straightforward.
This is even more complicated in the case of the satisfiability problem, inasmuch
as testing the algorithm for small instances can be very well misleading and is by
no means sufficient to draw sound conclusions. Sufficient evidence will be given,
however, that the algorithm we present is always of polynomial complexity in
worst case and correct in most cases. Section 4 discusses the approach, its limita-
tions, and highlights related to research perspectives.

2. Theoretical background

This section is devoted to the introduction of the needed theory of optimization
and to fixing our notation. Vector quantities are written in bold if not obvious
from the context (e.g. x). Vector components are indexed accordingly (e.g. xi).
Unless stated differently, we assume throughout the paper continuity and differ-
entiability of used functions. This assumption is not restrictive in our context
and is beneficial computationally. An optimization problem (P) is to find the min-
imum (or maximum) of a real-valued function f(x), so-called objective function,



50 S. Noureddine
satisfying a set inequality constraints gi(x) 6 0 for i 2 I and a set of equality con-
straints hj(x) = 0 for j 2 E, where I and E are possibly empty index sets. Formally:
ðPÞ minimize fðxÞ
subject to

giðxÞ 6 0 for i 2 I

hjðxÞ ¼ 0 for j 2 E:
The feasibility set IðPÞ of the problem (P) is the set of vectors satisfying the con-
straints, that is:
IðPÞ ¼ fx 2 Rn : giðxÞ 6 0 8j 2 E and hjðxÞ ¼ 0 8i 2 Ig:

A solution of (P) is any vector x* 2 R

n such that:
fðx�Þ ¼ minffðxÞ;x 2 Ig:

In our context, we will focus on a special type of optimization problems, namely,
geometric programs. In geometric programs only positive polynomials, so-called
posynomials, are permissible as objective functions. Posynomials have the form:
fðxÞ ¼
X
k2K

ukðxÞ

where ukðxÞ ¼ ck
Y
l2Lk

xal
l

ck P 0:
The terms uk(x) are called monomials. As an example, the function defined by:
fðxÞ ¼ 2x2
1x
�5
2 xe

3 þ x2 þ px�21 x3
2

is a posynomial and, therefore, permissible as an objective function for (P). In geo-
metric programs, an inequality constraint has the form gi(x) 6 1 and any such
function gi(x) must be a posynomial. The equality constraints are of the form
hj(x) = 1 and the functions hj(x) have to be monomials. Finally, in any geometric
program all mentioned variables xk have to be positive. Thus, a geometric pro-
gram (P) has the form:
ðPÞ minimize fðxÞ
subject to

giðxÞ 6 1 8i 2 I

hjðxÞ ¼ 1 8j 2 E

xk > 0 8k 2 f1; . . . ; ng
where

fðxÞ and giðxÞ are posynomials and the hjðxÞ are monomials:



An optimization approach for the satisfiability problem 51
The original theory of geometric programming lies essentially on the simple
Arithmetic-Geometric-Mean inequality (AG). Though other inequalities can also
be used to develop the same theory, we focus here on the AG inequality due to
its simplicity and widespread use. The AG inequality says:

(AG) Let 2n numbers xi > 0 and di > 0 for i 2 {1, . . . ,n} be given with:Pn
i¼1di ¼ 1

Then:
Qn

i¼1x
di
i 6

Pn
i¼1dixi

with equality iff x1 = � � �= xn.
A related inequality (necessary for the constrained case) is the General Arithmetic-
Geometric-Mean inequality (GAG). The GAG inequality is:

(GAG) Let 2n numbers xi > 0 and di for i 2 {1, . . . ,n}, where the di are all
positive or all zero, be given with:Pn

i¼1di ¼ k
Then:

kk Qn
i¼1

xi
di

� �di
� �

6
Pn

i¼1xi
� �k

with 00 ¼ ðxi=0Þ0 � 1 and equality iff d1 ¼ � � � ¼ dn ¼ 0 or xi ¼ di
k

Pn
j¼1xj.
With the two inequalities in hand, a duality theory can be easily developed. The
process is sketched (see e.g. Duffin et al., 1967; Peressini et al., 1988 for more
details) in the proof of the following main theorem of geometric programming.

Theorem 2.1. For every geometric program (P) with E ¼£, called primal
program, there exists a dual program (D) of the form:
ðDÞ maximize vðdÞ ¼
Yn
i¼1

ci
di

� �di

 !Y
i2I

kiðdÞkiðdÞ

subject toX
k2I0

dk ¼ 1 ðaÞ
X
k2D

aijdk ¼ 0 8j 2 f1; . . . ; ng ðbÞ

dk P 0 8k 2 D

where

kiðdÞ ¼
X
k2Ii

dk 8i 2 I and D ¼ [kP0Ik:
Moreover, f(x) P v(d) for any two feasible vectors x 2 IðPÞ and d 2 IðDÞ. h



52 S. Noureddine
Proof. First, the requirement E ¼£ can be omitted. We will focus on inequality
constraints only. The index sets Ik follow from the structure of the used posyno-
mials. We will prove the theorem in the case of a single inequality constraint
g1(x) 6 1. The case of multiple constraints follows in the same manner. By
(AG), we have:
fðxÞP
Yn0
i¼1

ci
di

� �di
 !Y

i2I0

xLi
i : ð2:1Þ
On the other hand, a lower bound for the function g1(x)
k (for k > 0) is obtained

by (GAG):
g1ðxÞ
k P kk

Yn1
i¼n0þ1

ci
di

� �di
 !Y

i2I1

xLi
i : ð2:2Þ
Here, the index sets I0 and I1 capture the indexes of the different variable xi men-
tioned in f(x) and g1(x), respectively, and each Li is a linear combination of the
form (a).

Since g1(x) 6 1, it follows that:
fðxÞP fðxÞg1ðxÞ
k P

Yn0
i¼1

ci
di

� �di
 !Y

i2I0

xLi
i kk

Yn1
i¼n0þ1

ci
di

� �di
 !Y

i2I1

xLi
i : ð2:3Þ
By requiring that each Li = 0 as in (a), the right-hand side of (2.3) becomes a func-
tion of the variables dk. Calling this function v(d), (2.3) becomes:
fðxÞP vðdÞ:

Obviously, the above derivation is valid only if x and d are feasible as
required. h

The above theorem is the corner stone of the computational procedure for solv-
ing geometric problems. The main facts in this respect are summarized in the fol-
lowing theorem, which we state without proof (see e.g. Duffin et al., 1967).

Theorem 2.2

(i) The logarithm of dual objective function ln(v(d)) is concave.
(ii) If the interior of IðPÞ is not empty and (P) has a (finite) solution x

*, then (D)
also has a solution d*. Moreover:
fðx�Þ ¼ vðd�Þ:
h



An optimization approach for the satisfiability problem 53
In other words, fact (i) says (as ln(x) is monotone-increasing) that the dual pro-
gram (D) is efficiently solvable, since it is in essence a (simple) convex program.
Polynomial algorithms for convex programs are known (e.g. interior point meth-
ods (Forsgren et al., 2002)). Fact (ii) is saying that once we have solved the dual
problem (D), the primal problem (P) is practically solved, too. Although only the
minimum of f(x*) is determined by solving the dual problem, a method for deter-
mining a minimizer x* is known to be equivalent to a linear program and, there-
fore, the problem of determining x

* is solvable in polynomial time.
The theory outlined above is called weak duality theory. It is weak in the sense

that fact (ii) requires the feasible set IðPÞ to have a non-empty interior. Such pro-
grams are called super-consistent. On the other hand, if IðPÞ is non-empty the pro-
gram is called consistent. However, under further mild requirements, the super-
consistency assumption can be omitted. This leads to the so-called strong duality
theory. The following theorem is the main theorem of strong duality.

Theorem 2.3. If the primal program (P) is consistent, then its dual (D) is consistent
the its infimum, if it exists, coincides with the supremum of (D). h

This theorem relaxes the requirement of super-consistency: it only requires that
the primal is consistent. The price of this relaxation is reflected in the conclusion
that just the primal infimum and the dual supremum coincide (if existent). Com-
pared with Theorem 2.2 this is a weaker conclusion, since there the primal mini-
mum and dual maximum coincide if they exist. However, Theorem 2.3 is only
theoretically weaker. In practice, the conclusion is sufficient for devising an algo-
rithmic procedure to approximate the minimum of the primal problem and/or the
maximum of the dual problem.

Theorem 2.3 opens a new way for geometric programming if used effectively.
The idea we now introduce shall try to attack the open problem of solving geomet-
ric programs with equality constraints for posynomials. So far, we have allowed
equality constraints for monomials only. This requirement is related to the effi-
cient solvability of the problem via convex techniques. Theorem 2.3 tells us, how-
ever, that consistency of the primal program is sufficient for the mentioned
infimum–supremum correspondence if a suitable dual program is defined. As a
matter of fact, we are facing the question: Is there a dual program for geometric
programs with posynomial equality constraints? The answer to this question is yes
as seen in the following theorem.

Theorem 2.4. Let (P) be a primal program with posynomial equality constraints.
Then (D) as defined above is the dual program of (P). Moreover, Theorem 2.1
applies for (P) and (D), in particular for feasible x and d we have:
f(x) P v(d). h



54 S. Noureddine
Proof. The proof of Theorem 2.1 can be reused here without modification for
posynomial inequality constraints. For posynomial equality constraints, we just
point out that line (2.3) of that proof should include the equality symbol instead
of the leftmost inequality symbol. However, this does not impair the validity of
other inequalities. Thus, the main conclusion of the theorem, namely, that
f(x) P v(d) for suitable x and d, remains true here, too. h

The following theorem connects the preceding theorem to the task of finding the
infimum of the primal program.

Theorem 2.5. Let (P) be a consistent primal program with posynomial equality
constraints and (D) be its dual program. Then (D) is consistent and the infimum of
(P) coincides with supremum of (D). h

Proof. Since per Theorem 2.4 the dual program (D) is well-defined, Theorem 2.3
can be used to infer the infimum–supremum correspondence as required. h

Observe that the requirement of consistency is crucial in Theorem 2.5. Just
super-consistency would not suffice here, since the primal program is allowed to
have posynomial equalities.

Corollary 2.6. Let (P) be as in Theorem 2.5, then its infimum coincides with the
constrained maximum of (D).

Proof. As (D) is equivalent to a convex program, its supremum is actually its max-
imum, whence the desired proposition. h

The last claim is of no theoretical importance but useful in practice. It helps deal
with the maximization algorithm of the dual (concave) program in the classical
(efficient) way.

One remark is here in order. Paradoxically, the preceding theorems show that
equality constraints are dealt with as inequality constraints if only the primal is
consistent and the optimization is changed so as to find the infimum instead of
the minimum. This is so, since Theorem 2.4 shows that the same lower bound is
used for equality and inequality constraints. This is rather strange, as the dual
program would lose information about the constraint types of the primal pro-
gram. This is why the new introduced theorems are rather in the status of con-
junctures until more theoretical and/or experimental evidence about them is
demonstrated. One way of accepting this paradox, however, is to imagine that
proving consistency of the primal program with posynomial equalities is by
itself a serious difficulty in practice, so as to make the conclusions of the last
theorems of theoretical interest only save perhaps for special (non-)interesting
cases.



An optimization approach for the satisfiability problem 55
3. The algorithm

We finally come back to the original problem of the paper, the satisfiability prob-
lem. In the last section, we proved that equality constraints act theoretically like
inequality constraints, if the original primal program is consistent. Algorithms
for handling equality constraints are known. Actually, one of the inventors of geo-
metric programming, Duffin pointed out (Duffin, 1970) that the method of posy-
nomial condensation could be of great use in practice to approximate geometric
programs by linear ones. This method is useful in our setting, too. The idea is
to replace any posynomial equality constraint, e.g. g(x) = 1, by the (in)equalities:
g0ðxÞ ¼ 1;
where g0(x) is the monomial obtained by direct use of (AG) for g(x) i.e.:
g0(x) 6 g(x).

It is clear that the method of condensation only approximates the original prob-
lem. However, good sub-optimal solutions can be achieved by this method.

The method of condensation does not rely on the strong duality theory. It cir-
cumvents the difficulty of equalities by direct approximation. We will not use it in
this paper. We rather intend to apply the strong duality results of the last section.
However, to really benefit from these results, we need to require that the consis-
tency problem is (efficiently) solvable by some means. Though this requirement
seems to be unachievable in general, there are special cases where it is easily
achieved. A noteworthy case is when all constraints are posynomial equality con-
straints where each term is a simple term (i.e. consists of a single variable with 1 as
exponent). We call such a function a linear posynomial. In this case, the consis-
tency problem boils down to a linear programming problem, which is efficiently
solvable by conventional techniques. With the help of the strong duality theory,
an efficient method for minimization is also at hand. Though, this scheme only
delivers infimum information, in applications this information does not differ
much from minimum information, as optimization algorithms are approximative
in nature. This is the way we are going to go for solving the satisfiability problem.

Formally, let the primal optimization problem (P) to be solved be of the form:
ðPÞ minimize fðxÞ
subject to

giðxÞ ¼ 1 8i 2 E

xk > 0 8k 2 f1; . . . ; ng
where

fðxÞ is a posynomial and the giðxÞ are linear posynomials:
An algorithm for finding the infimum of the problem is as follows:



56 S. Noureddine
Algorithm 3.1
Input : Problem ðPÞ
Output : Infimum of ðPÞ if it exists:
Step1: Consistency Check
Solve the linear programming problem (LP):
giðxÞ ¼ 1 8i 2 E

xk > 0 8k 2 1; . . . ; n:
If (LP) is not solvable then (P) is not solvable; stop.
Step 2: Solve the consistent (P) by its dual (D)
Get M: = constrained maximum of (D);
Return M;

Claim 3.1. The algorithm is of polynomial complexity. h

Proof. Step 1 is essentially a perturbed linear programming problem (due to the
existence of strict inequalities). So, it is solvable in polynomial time. Step 2 is a
convex problem, which is harder to solve, but is still of polynomial
complexity. h

Claim 3.2. The algorithm is correct. h

Proof. The correctness of the algorithm relies directly on the results of Section 2.
We need to emphasize, however, that only the infimum is approximated by the
method and to refer to the remarks at the end of last section. h

The presented algorithm is of use for the exact satisfiability problem (XSAT), if
we can convert (XSAT) into an optimization problem of the form (P). With Claim
3.1, we are guaranteed to have a polynomial-time algorithm then. In view of the
remarks of the last section, Claim 3.2 is still to be justified experimentally. In
any case, a conversion of (XSAT) to (P) is of great importance in our setting.
To this end, we first recall that our XSAT instances are required to be positive
(i.e. without negated literals). Let C1 = x1 + x2 + x3 be a clause of such an
XSAT formula F. We first notice that the following system of equations:
x1 þ x2 þ x3 ¼ 1

x1x2 ¼ 0

x1x3 ¼ 0

x2x3 ¼ 0

8>>><
>>>:



An optimization approach for the satisfiability problem 57
has S= {(1,0,0), (0,1,0), (0,0,1)} as a solution set. Remarkably, this is exactly the
solution set of a permissible 3XSAT clause in a satisfiable formula F. We might
better see the previous system of equations as an optimization problem (PC1

)
for clause C1, where (PC1

) is:
Minimize x1x2 þ x1x3 þ x2x3

subject to

x1 þ x2 þ x3 ¼ 1

x1 P 0

x2 P 0

x3 P 0:

8>>>>>>>><
>>>>>>>>:
Let the above objective function of clause C1 be called f1(x) and the equality
constraint function be called g1(x). Obviously, the same procedure can be used
for any clause Ci(1 < �i 6 m) if the formula F includes m clauses, and for each
clause Ci functions fi(x) and gi(x) can be defined accordingly. To solve the XSAT
problem, we need to combine the equations of the different programs (PCi

)’s. This
yields to the following formulation of the XSAT problem as an optimization
problem
ðXSATÞ minimize
Xm
i¼1

fiðxÞ

subject to

giðxÞ ¼ 1 8i 2 f1; . . . ;mg
xk P 0 8k 2 f1; . . . ; ng:
By construction of fi(x) and gi(x), we evidently see that these are posynomials
and linear posynomials, respectively. Also, the positivity constraints of the vari-
ables can be easily perturbed to strict positivity constraints. Thus, in fact, we need
to solve (XSAT) for positive xk only. But now all assumptions of aforementioned
algorithm are satisfied, whence the following claim.

Claim 3.3. The optimization problem (XSAT) with strict positivity constraints is
solvable in polynomial time. h

We emphasize that by ‘‘solvable’’ we mean that the solution can be approximated
to any desired degree of accuracy. This so because our algorithm delivers the inf-
imum and (XSAT) needs to be perturbed numerically.

Claim 3.4. The 3XSAT with positive literals is solvable in polynomial time. h

Proof. A procedure for solving positive XSAT is straightforward:



58 S. Noureddine
1. Solve the corresponding geometric programming problem (XSAT)
by Algorithm 3.1 and get its infimum M.

2. If M � 0 then

print satisfiable
else print unsatisfiable.
h

The previous procedure is a decision procedure. To obtain a solution vector,
bisection in variables’ vector space is the immediate approach. Thus, if F is satis-
fiable, the procedure in the previous proof needs to be called O(n) times, where n is
the number of variables mentioned in F. We cannot rely here on the approach of
geometric programming for determining minimizers (via linear programming),
since this method relies on the super-consistency assumption of the problem to
be minimized, which is not allowed in our setting.

4. Conclusion

This paper has two main contributions:
We revived the theory of strong duality in geometric programming. We easily

extended the theory to handle posynomial equality constraints. At this seemed
to be only of theoretical interest, but we argued that in special cases (linear posy-
nomials) the theory extremely useful in practice and we outlined a polynomial-
time algorithm for solving this sort of problems.

The second main contribution is related to satisfiability research. We proposed
a new format of the (positive) 3XSAT problem as a geometric program. We then
proved that our format adheres to the requirement of linear posynomial equalities.
Thus, we were able to apply the proposed optimization algorithm for XSAT.

There is no doubt that both Algorithm 3.1 and the procedure outlined in the
proof of Claim 3.4 are polynomial-time algorithms. However, the issue that still
needs further investigation is the (practical) correctness of these procedures. We
intend to verify correctness experimentally. The main drawback of this approach
is that faults in the implementation of mentioned optimization algorithms inevita-
bly lead to erroneous conclusions. The paper shows, however, that the theory
behind the algorithms is sound and that it predicts polynomial-time performance
(with exact upper bounds). Despite this fact, a warning is here in order. Experience
with other optimization methods has shown that theoretical investigation is not
the whole story in this domain. One need only consider the Ellipsoid Method of
optimization, which is provably of polynomial-time complexity, and which, how-
ever, has poor performance in practice compared to the theoretically inferior Sim-
plex Method with its exponential worst-case complexity.

We finally want to point out that the optimization problem for XSAT as
defined in this paper calls for another totally different way of solution. We could,



An optimization approach for the satisfiability problem 59
namely, try to attack the problem via quasi-convex programming. Quasi-convex-
ity of constraint functions is sufficient for minimization algorithms based on the
Karush–Kuhn–Tucker theory and may be implemented efficiently, if the objective
function is convex or at least pseudo-convex. The performance and reliability (i.e.
performability) of this approach will be part of our future research.

References

Aspvall, B. et al., 1979. A linear-time algorithm for testing the truth of certain quantified Boolean formulas.

Information Processing Letters 8 (3), 121–123.

Bacchus, F., 2002. Enhancing Davis Putnam with extended binary clause reasoning. In: 18th National

Conference on Artificial Intelligence.

Duffin, R.J., 1970. Linearizing geometric programs. SIAM Review 12 (2), 211–227.

Duffin, R.J. et al., 1967. Geometric Programming: Theory and Applications. Wiley, New York.

Fletcher, S.R., 1987. Practical Methods of Optimization, second ed. Wiley.

Forsgren, A. et al., 2002. Interior methods for nonlinear optimization. SIAM Review 44 (4), 925–997.

Noureddine, S., submitted for publication. An approach for the satisfiability problem via exterior penalty

optimization, Journal of Computer Science.

Peressini, A.L. et al., 1988. The Mathematics of Nonlinear Programming. Springer-Verlag, New York.

Robinson, J.A., 1965. A machine-oriented logic based on the resolution principle. Journal of the Association for

Computing Machinery 12, 23–41.

Schaefer, T.J., 1978. The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM

Symposium on Theory of Computing, San Diego, California, USA, pp. 216–226.

Schoening, U., 1999. A probabilistic algorithm for k-SAT and constraint satisfaction problems. In: Proceedings

of the 40th Annual IEEE Symposium on Foundations of Computer Science, FOCS’99, pp. 410–414.

http://refhub.elsevier.com/S2210-8327(11)00049-4/h0005
http://refhub.elsevier.com/S2210-8327(11)00049-4/h0005
http://refhub.elsevier.com/S2210-8327(11)00049-4/h0010
http://refhub.elsevier.com/S2210-8327(11)00049-4/h0015
http://refhub.elsevier.com/S2210-8327(11)00049-4/h0020
http://refhub.elsevier.com/S2210-8327(11)00049-4/h0025
http://refhub.elsevier.com/S2210-8327(11)00049-4/h0030
http://refhub.elsevier.com/S2210-8327(11)00049-4/h0035
http://refhub.elsevier.com/S2210-8327(11)00049-4/h0035

	An optimization approach for the satisfiability problem
	1 Introduction
	2 Theoretical background
	3 The algorithm
	4 Conclusion
	References


