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Abstract Accurate long-term prediction of time series data (TSD) is a very use-

ful research challenge in diversified fields. As financial TSD are highly volatile,

multi-step prediction of financial TSD is a major research problem in TSD min-

ing. The two challenges encountered are, maintaining high prediction accuracy

and preserving the data trend across the forecast horizon. The linear traditional

models such as autoregressive integrated moving average (ARIMA) and gener-

alized autoregressive conditional heteroscedastic (GARCH) preserve data trend

to some extent, at the cost of prediction accuracy. Non-linear models like ANN

maintain prediction accuracy by sacrificing data trend. In this paper, a linear

hybrid model, which maintains prediction accuracy while preserving data trend,

is proposed. A quantitative reasoning analysis justifying the accuracy of

proposed model is also presented. A moving-average (MA) filter based pre-

processing, partitioning and interpolation (PI) technique are incorporated by

the proposed model. Some existing models and the proposed model are applied

on selected NSE India stock market data. Performance results show that for
.
3.0/).
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multi-step ahead prediction, the proposed model outperforms the others in terms

of both prediction accuracy and preserving data trend.

ª 2014 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud

University. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Financial TSD mining provides useful information for the investors, banks and
insurance companies to channel their funds properly for better returns. This deci-
sion making is the primary motivation for prediction of financial TSD. Accurate
multi-step ahead prediction of financial TSD becomes more difficult, as the finan-
cial TSD is highly volatile. If prediction is one-step ahead preserving data trend is
irrelevant. However, as the forecast horizon increases, preserving data trend
becomes significant. In either case, prediction accuracy should remain high.
Hence, the two basic requirements for multi-step ahead prediction model are
maintaining high prediction accuracy and preserving the data trend across the pre-
diction horizon.

Traditional models like ARIMA, GARCH or ANN cannot meet both the
requirements simultaneously. However, a hybrid model may provide scope for
preserving data trend across the forecast horizon while maintaining good predic-
tion accuracy, which motivates the research work of this paper. Most of the tra-
ditional models such as ARIMA, GARCH and ANN are applied for one-step
ahead forecasting in many works of the literature, where prediction accuracy is
of major concern. However, in the present paper, we target multi-step ahead pre-
diction, which requires preserving data trend in addition to high prediction accu-
racy. Such a model should account for the nature of TSD at every stage in the
model.

Rest of the paper is organized as follows. Section 2 presents a literature survey
of different prediction models existing in the literature. The proposed PI based
hybrid ARIMA–GARCH model is detailed in Section 3. A quantitative analysis
of the proposed model is discussed in 4. The proposed and the traditional models
are applied on selected NSE India data and the performance is compared in Sec-
tion 6. The paper ends with conclusion in 7.

2. Related work

ARIMA models are popularized after Box and Jenkins, who developed a coher-
ent, versatile three-stage iterative cycle for time series identification, estimation,
and verification. This method is also known as the BoxJenkins approach [1]. In
[2] quarterly automobile insurance paid claim costs are forecasted using economet-
ric and ARIMA models. In [3] the performance of ARIMA model is compared
with extended Wiener filtering for short term load forecasting in electric power

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
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systems. In [4] ARIMA is used to perform one-day-ahead forecasts of tomorrow’s
federal funds rate. ARIMA with a wavelet based decomposition is used in one-
step ahead forecasting of average global temperature in [5]. ARIMA model is suit-
able for short term forecasting, if this model is applied for long term prediction the
prediction accuracy may not very accurate which can observed from [6], where
employment information of Chinese computer industry is forecasted.

Engle in 1982 introduced ARCH model [7] which is known for forecasting high-
ly volatile TSD. An improved version of ARCH model called generalized ARCH
also known as GARCH model [8] was introduced by Bollerslev, Engle, and Nel-
son in 1994. Several extensions of GARCH model are found in the literature.
Some of the extensions are extensively surveyed in [9]. In [10] a simple (linear)
GARCH(1,1) model is applied on Swiss market index and the results show that
the model provides a good parametrization for the daily returns. GARCH model
is further explored and studied in [11] and showed that the presence of outliers has
an impact on the forecast results. In [12] GARCH models are used to forecast
hourly prices in the deregulated electricity markets of Spain and California and
the results outperform ARIMAmodel when volatility and price spikes are present.
Some times GARCH models are inappropriate to model as they assume Gaussian
distribution. In such cases student-T distribution can be assumed. This fact is fur-
ther investigated in [13].

Many Hybrid models are derived in the literature for time series forecasting.
The hybrid models combine strengths of few individual models to render better
prediction accuracy. A composite ARIMA–GARCH model for forecasting rain-
fall data is presented in [14]. ARIMA is used with GARCH model for forecasting
daily load and maximum electricity demand estimation as seen in [15], which pro-
vides a better long term forecasting. In [16], traffic modeling and prediction using
ARIMA and GARCH models are proposed. A MA filter based hybrid ARIMA–
ANN model is proposed in [17]. Other techniques like spectral analysis to forecast
real time traffic flow [18], Grey–Markov model to forecast Chaina electric-power
demand [19] also exist in the literature.

3. PI based hybrid ARIMA–GARCH prediction model

Details of modeling TSD using ARIMA, GARCH, ANN, and wavelet-ARIMA
are all present in the literature mentioned in Section 2. Here, the proposed hybrid
ARIMA–GARCH prediction model is discussed.

Financial data are highly volatile in nature. If this volatility nature is character-
ized and accounted at every stage in a prediction model, both the data trend and
accuracy requirements can be met simultaneously. General characteristics of high-
ly volatile TSD are changing variance as a function of time, volatility clustering
(VC) and fat tail distribution (FTD) [20]. These are mathematically characterized
using conditional standard deviation, autocorrelation plot of absolute or squared
returns, Quartile–Quartile plot respectively [20]. Using these characteristics a MA
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filter decomposition technique is developed. Along with this, a unique PI
technique is used to build the PI-based hybrid ARIMA–GARCH model. The
two techniques are detailed as follows.

3.1. MA filter based decomposition technique

Given TSD is decomposed into two components, one of which is smooth, called
the trend component and the other named as noise component. This decomposi-
tion is shown in Fig. 1. The MA filter is given in (1), where m indicates length of
the filter, smt is the smoothened trend component and ert is the noise component.
It is adjusted such that one of the decomposed components is highly volatile with
predominant VC and FTD, but the other is low volatile with relatively very less
VC and no FTD.
smt ¼
1

m

Xt

k¼t�mþ1
yk

ert ¼ yt � smt

ð1Þ
To decide on m, the TSD should be mathematically characterized for volatility,
VC and FTD.

3.1.1. Volatility

Volatility is termed as the continuous changing of variance as a function of time
[21] or variability of prices or returns of a given TSD [22]. The popular measure of
volatility is the conditional standard deviation, rt, given in (2), which is the vari-
ance of TSD available till the time lag t. In (2), rt represents the returns data. If rt

changes slowly with time, the TSD is identified as low volatile, else it is highly
volatile.
Low volatile component 
with less/no VC  and no 

FTD

MA Filter  of length m

Check for 
volatility,

VC & FTD

Time Series Data

Adjust m

Highly volatile component 
with prominent VC and  

FTD

Decomposition  Using MA 
Filter

Series 2Series 1
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Figure 1 Time series decomposition using MA filter.
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rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ðrt � EfrtgÞ2
n or

ð2Þ
3.1.2. Volatility clustering

According to [23], some TSD can be characterized by VC, which means large
changes are more likely to be followed by large changes and small changes more
likely follow small changes, in the given TSD. VC implies, though the time samples
appear uncorrelated across time, they are actually dependent across time. VC can
be quantified using the autocorrelation plot of absolute returns data [23], or using
autocorrelation plot of squared returns [20]. If these plots slowly decay as a func-
tion of time lag, then the data are said to exhibit VC. If the decay is relatively slow,
the effect of VC is high, else it is low. The autocorrelation sequence can be calcu-
lated using (3), where, s represents the time lag.
C rt; rtþsð Þ ¼ E rt � E rtf gð Þ rtþs � E rtþsf gð Þf gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E rt � E rtf gð Þ2
n o

E rtþs � E rtþsf gð Þ2
n or ð3Þ
3.1.3. Fat tail distribution

If the distribution of given TSD deviates from that of Gaussian (Normal), then the
data are fat tail distributed. This means the data exhibit peaked nature at the cen-
ter and the tails are fatter than that of Gaussian distribution. To quantify FTD,
Jarque–Bera normality test can be used. According to this test, if the kurtosis of
TSD is 3, it is Gaussian distributed and if kurtosis is not equal to 3, it exhibits
FTD. Note that if the data are highly outlier prone, kurtosis is greater than 3
and if it is less prone to outliers, the kurtosis is less than 3 [24]. Kurtosis is com-
puted using (4). Another way of identifying FTD is the Q–Q plot on returns data
[20]. If this Q–Q plot deviates substantially from the standard normal Q–Q plot,
the data have FTD.
k ¼
E ðrt � EfrtgÞ4
n o

E ðrt � EfrtgÞ2
n o� �2 ð4Þ
Note that in [20], it is shown that log returns on the data are same as the relative
returns on the data, by using Taylor expansion. So the relative returns data given
by rt ¼ yt�yt�1

yt�1
are referred to as returns data in this paper.
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3.2. Partitioning and interpolation

Let the original TSD be represented as x1; x2;x3; x4;x5 . . .xTrf g, where Tr repre-
sents the last sample data point in the series. These data are then split into P par-
titions as shown in (6).
x1; xPþ1; x2Pþ1; . . .f g; x2;xPþ2;x2Pþ2; . . .f g; . . . ; xP;x2P;x3P; x4P; . . .f g ð5Þ
Consider any one of the partitions in (6). Each partition is a TSD with less than Tr
sample data points. On this data, a linear interpolation is done to obtain Tr data
points. This process is repeated on each of the partitions and P different TSD are
obtained, each consisting of Tr sample data points. Thus interpolated TSD parti-
tions are notated as TP1;TP2;TP3; . . . ;TPP.
3.3. Steps in proposed model

The steps involved in the proposed model are described below.

1. The given TSD are decomposed into two series using a MA filter given in (1). m
is chosen such that one of these decompositions is highly volatile with pre-
dominant VC, FTD (notated as S1), while the other which is low volatile with
relatively less VC, FTD (notated as S2).

2. The S2 series with En data values is given as training data, and an ARIMA
model is fit. Correspondingly predictions are made over the prediction horizon.

3. The S1 series is split into M partitions. If original S1 is considered as
x1; x2; x3; x4; x5 . . . xEnf g, the M partitions are indicated in (6).
x1; xMþ1;x2Mþ1; . . .f g; x2; xMþ2;x2Mþ2; . . .f g; . . . ; xM; x2M;x3M;x4M; . . .f g
ð6Þ
Then each partition is linearly interpolated to obtain same number of data
points En, as in S1 series. Let these M interpolated partitions be
P1;P2;P3; . . . ;PM.

4. Consider one partition P1 with first Er data values, where Er < En. Using Er
values as training data a GARCH model is fit, validated and En� Er forecasts
are obtained. The mean absolute percentage error (MAPE) with En� Er pre-
dicted and actual data values is obtained. This process is repeated on all P2
to PM partitions. The best GARCH model is finalized as the one with mini-
mum error. The best partition which gives this best GARCH model is used
to forecast over the complete prediction horizon.

5. The predictions from step 2 and step 4 are added to form the final predictions.

The above proposed hybrid model is shown in Fig. 2.
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Figure 2 The proposed hybrid ARIMA–GARCH model.
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4. Simulated TSD: Analysis of decomposition and PI techniques

The proposed PI based hybrid ARIMA–GARCH model has improved prediction
accuracy than individual models. The success of this technique lies in the success of
the decomposition and PI techniques. On a simulated highly volatile TSD, these
two techniques are applied and analyzed. Later, the improved prediction accuracy
of the proposed method is justified and its other advantages and limitations are
discussed.

4.1. Analysis of MA filter based decomposition technique

In particular MA-filter should be able to provide series S1 and S2 properly, with a
suitable m. A highly volatile TSD is simulated. It is verified for volatility, VC and
FTD as follows:

� The presence of volatility is verified using conditional standard deviation plot.
� The prominence of VC is verified using autocorrelation plot of absolute returns.
� The presence of FTD is verified using Q–Q plot and also using value of kurtosis,
k.

For a filter length, m ¼ 35, the results of the analysis are shown in Fig. 3. The
figure shows from left to right, the two decompositions, their conditional standard
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Figure 3 MA filter length m ¼ 35; k ¼ 1:93 for series 1; k ¼ 2:87 for series 2.
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deviation plots, the autocorrelation of absolute returns plots and the Q–Q plots. It
can be observed that the series S1 is highly volatile with predominant VC and
FTD, and the other is series S2, is low volatile with less VC and no FTD. Thus
it is indeed possible to obtain the required two series by selecting a proper value
of m. Note that the value of m is not unique. For example in this case, we observed
that for values of m ranging in 25 6 m 6 35, the required two series can be prop-
erly obtained (Results are not presented).

4.2. Analysis of PI technique

Let a TSD, referred as raw data here, have 500 data points. If 10 partitions are
done, each partition will have 50 points. In this case, the first partition has the data
points 1; 11; 21; . . . ; 491, second partition has data points 2; 12; 22; . . . ; 492, and
the last partition has data points 10; 20; 30; . . . ; 500. To have the same number
of data points as the original data in each partition, each partition is interpolated,
to obtain 500 data points. On series 1 of Fig. (3), the PI technique is applied with
10 partitions. It is observed that all the interpolated partitions retain volatility; and
VC, FTD change only slightly than that of the series 1. If the number of partitions
made 30, this change is more. However, in both the cases, the partitions have
volatility, VC and FTD. From this observation we can conclude the following.
When the PI step is performed with 10 partitions, the partitioning did not violate
Nyquist sampling theorem [25]; and after interpolation, each partition still has
same frequency content as the initial series. In this case kurtosis of all the
partitions is nearly same as the kurtosis of initial series. When PI with 30 partitions
is performed, it violates Nyquist sampling rate, which implies that some high
frequency components are being removed from the partitions. In this case,
kurtosis of different partitions is different.
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5. Performance of the proposed model

The proposed model renders better prediction accuracy for a long term prediction
on a highly volatile TSD. In this section, quantitative reasoning as to why the pro-
posed method is better, is illustrated.

5.1. Application of the right model

From Fig. 2, on the low volatile decomposition with less VC and no FTD,
ARIMA model is applied. This is apt because ARIMA model assumes a Gaussian
distribution (i.e. no FTD), no VC and constant variance [1]. Similarly on the high-
ly volatile decomposition, which has VC, and FTD, GARCH model is being
applied. This is apt because, GARCH model relaxes the constraint of constant
variance [26], and is suitable for data with VC [23]. The proposed hybrid model
is hence applying apt individual models based on the nature of decompositions.
Note that in general decomposition improves prediction accuracy [24], and in this
case, due to the application of right model to each of the decomposition accuracy
further improves.

Instead of directly applying GARCH model on S1, if PI technique is applied, P
different data series result. On each of the series, GARCH is suitable because, the
volatility, VC and FTD still prevail as discussed in Section 4.2, irrespective of the
number of partitions P. Now out of the P different GARCH models, the best
model can be chosen. Let this best model be obtained due to the Bth partition. This
means that some of the data points, which do not really play any role in prediction
(for example, outliers) are not present in this Bth partition and so this partition
gave the best prediction accuracy.

5.2. Advantages and limitations of the proposed model

The advantages of the proposed model are that, it is well suited for long term pre-
diction. Also, being a linear model, the data dynamics i.e. data trend is preserved
and the prediction accuracy is high, better than the popular ANN. The ANN on
the other hand uses the training data and learns from the data before prediction.
It blindly tries to maximize the overall prediction accuracy. In this process, the
data dynamics are sacrificed. This reasoning supports the fact that the proposed
prediction model is better than the ANN model. The proposed model is clearly
better than ARIMA, GARCH and Wavelet ARIMA models also, because the
nature of the given time series data is clearly accounted at every stage in the
model.

The limitation of the proposed model is that, the number of partitions P is
decided based on trial and error. If the estimation of P for a given data set is
possible, it will improve the model, though complexity increases. Also, in this
paper, the covariates are not considered. The proposed model is shown to work
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well for univariate data. If the covariates are considered, the prediction accuracy
still further improves because taking the effect of covariates, implies the dependen-
cies of the data are completely being accounted. The drawback will be the model
complexity and tuning of the increased number of model parameters [22]. So this
study is not included in this paper.
6. Experimental results and discussion

In this section, on selected financial TSD originating from NSE India data, the
proposed model, ARIMA, GARCH, wavelet-ARIMA and ANN are applied.
The performance measures used for comparison, are the error measures, MAPE,
Maximum Absolute Percentage Error (MaxAPE), MAE and Root Mean Square
Error (RMSE) which are given in (7)–(10) respectively. In these equations, pi and
pf are the start and end time instants of the prediction interval. yi;actual is the actual

value of TSD at time instant i; yi;predicted is the predicted value of TSD at time

instant i.
MAPE ¼ 1

pf� piþ 1

Xpf
i¼pi

yi;actual � yi;predicted
yi;actual

����
����

 !
� 100 ð7Þ

MaxAPE ¼ max
yi;actual � yi;predicted

yi;actual

����
����

 !
� 100 ð8Þ
where i 2 ½pi; pf�
MAE ¼ 1

pf� piþ 1

Xpf
i¼pi

yi;actual � yi;predicted
�� �� !

ð9Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

pf� piþ 1

Xpf

i¼pi
yi;actual � yi;predicted
� �2� �s

ð10Þ
The highly volatile NSE India data [27] selected are close price stock data of SBI,
number of trades data of Tata Steel. A 20-step ahead prediction is performed in
both the cases. This implies using the data values available till yesterday, the data
values from today till another 20 days are predicted. In both these TSD cases, the
proposed method outperformed other models in terms of prediction accuracy and
also in preserving data trend.
6.1. TSD1

The close price values of SBI shares from January 2010 to December 2011 are con-
sidered as TSD1 for the study. On this highly volatile TSD, the proposed model is
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applied. Accordingle, S1 and S2 are obtained. On S2, ARIMA is applied and fore-
casts are obtained. On S1 PI is applied to result in twelve partitions. The VC, FTD
and Q–Q plot of all the partitions are similar to those all S1 indicating that all the
partitions retained the same nature as S1. The corresponding error measures,
MAPE, MaxAPE, MAE, and RMSE are tabulated in Table 1 along with the error
measures of ARIMA, GARCH, ANN and wavelet ARIMA. The actual and the
predicted TSD values over the forecast horizon are shown in Fig. 4. It is inferred
from the table that the proposed model outperforms all the others. From Fig. 4, it
is clear that the proposed model follows the data trend better than the other mod-
els. Unfortunately, this fact is not evident from MAPE, but from MAE and
RMSE, it is very much evident.
Table 1 Performance measures of SBI close price data. The bold values highlight the performance obtained

from proposed model.

Method MAPE MaxAPE MAE RMSE

ARIMA 6.5 12.11 144.25 157.71

Wavelet ARIMA 3.56 8.11 76.08 95.51

GARCH 5.77 12.6 126.11 150.14

ANN 2.72 7.82 61.2 81.53

Proposed method 2.15 4.53 47.47 56.2
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Figure 4 Forecast results for SBI close price data.
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6.2. TSD2

The number of trades of Tata Steel from January 2011 to December 2011 is con-
sidered as TSD2 for the study. On this highly volatile TSD, the ARIMA,
GARCH, wavelet ARIMA, ANN and the proposed model are applied. The
results of MAPE, Max APE, MAE, and RMSE for these models are given in
Table 2. The proposed model outperformed others as in the previous case. The
corresponding actual and the predicted values in the prediction horizon are shown
in Fig. 5. The figure shows that ANN failed to follow the data trend, whereas the
proposed method preserved the data trend more accurately. In this case the pro-
posed model used 11 partitions, where 6 of them had almost same VC, FTD and
Q–Q nature as the S1 series while the other 5 showed very different nature. The
Table 2 Performance measures of number of trades of data of Tata Steel. The bold values highlight the

performance obtained from proposed model.

Method MAPE (a100%) MaxAPE (a100%) MAE RMSE (a1000)

ARIMA 1.50 5.36 3.95 47.38

Wavelet ARIMA 0.21 0.60 0.63 7.91

GARCH 0.39 1.17 1.02 131.94

ANN 0.23 0.82 0.97 9.23

Proposed method 0.19 0.48 0.59 6.12

a The values shown in fractions instead of percentages.
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Figure 5 Forecast results for number of trades of Tata Steel.



Table 3 Results for various data sets (Performance measures: MAPE). The bold values highlight the

performance obtained from proposed model.

Data set Basic ARIMA Wavelet ARIMA GARCH ANN Proposed method

L&T 7.12 5.08 6.51 3.11 3.23

Cipla 9.10 7.75 8.12 4.01 4.12

Reliance Ind. 12.30 9.87 12.01 6.25 7.10

ONGC ltd 14.73 12.15 12.72 5.63 9.12

Bharti Airtel 18.21 15.12 17.01 13.51 11.99

NTPC Ltd 26.75 20.9 22.9 17.45 18.01

ICICI Bank 27.24 23.18 25.19 22.15 21.96

Infosys 25.32 22.81 23.10 19.73 19.42

TCS 19.56 15.8 16.85 13.25 14.05

BHEL 16.82 13.56 16.12 13.11 12.18
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best partition is one of these 5 partitions. As the results for this TSD2 given in
Table 2 and Fig. 5 showed that the proposed model has improved performance,
it is enough evidence for the quantitative justification given in Section 4.

For ten other NSE data sets, the results of MAPE are tabulated in Table 3. The
table shows that in all the cases, the proposed method is better than all the other
methods discussed in this paper.

7. Conclusion

In this paper, for highly volatile financial TSD, a hybrid ARIMA–GARCH model
is proposed, which is suitable for multi-step ahead forecasting. The technique
involves a MA filter based decomposition as a pre-processing step on given
TSD. The proposed model is applied on selected NSE India data sets to get mul-
ti-step ahead prediction. The obtained results are evaluated using error perfor-
mance measures MAPE, MaxAPE, RMSE, whose values confirm the improved
prediction accuracy compared to traditional models ARIMA, GARCH and
ANN. The proposed model also preserved the data trend over the prediction hori-
zon better than the others. The prediction performance can be studied by the
inclusion of covariates, which forms the future scope of this paper.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online ver-
sion, at http://dx.doi.org/10.1016/j.aci.2014.09.002.
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