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Abstract In the Region Growing Algorithm (RGA) results of segmentation are totally dependent

on the selection of seed point, as an inappropriate seed point may lead to poor segmentation. How-

ever, the majority of MRA (Magnetic Resonance Angiography) datasets do not contain required

region (vessels) in starting slices. An Enhanced Region Growing Algorithm (ERGA) is proposed

for blood vessel segmentation. The ERGA automatically calculates the threshold value on the basis

of maximum intensity values of all the slices and selects an appropriate starting slice of the image

which has a appropriate seed point. We applied our proposed technique on different patients of

MRA datasets of different resolutions and have got improved segmented images with reduction

of noise as compared to tradition RGA.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the field of medical imaging blood vessels segmentation is
an important task for diagnosis of different diseases. Seg-

mented blood vessels provide meaningful information about
the structure and position of the vessels which plays a critical
role in many medical applications such as diagnosis, surgery

planning and radiation treatment planning.
Medical image segmentation is considered as a difficult task

due to variable shapes of objects and different qualities of
images causing noise. Although a bundle of segmentation tech-
niques have been developed [1–5] still there is no single
segmentation technique that is applicable for all imaging appli-
cations. The most common region segmentation method is

based on threshold value, which is most often used as an initial
step in the majority of image processing applications.

A lot of research has been done in this area but region

growing technique has got more attention due to its simplicity,
noise suppression, automation and whole tree detection of ves-
sels. In region growing algorithm results of segmentation are

totally dependent on the selection of seed point. An inappro-
priate seed point leads toward poor segmentation. The major-
ity of MRA datasets do not contain required region (vessels) in

start of slices. We have been studying and published papers in
MRI enhancement [6,7].

The paper is organized as follows: In Section 2, we give a
brief literature survey, the details of proposed ERGA is pre-

sented in Section 3, while Section 4 demonstrates the measured
results and conclusion is given in Section 5.
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2. Related work

In MRA, the blood vessels show a wide range of intensity val-
ues due to the amount of blood flow. This is similar to the

region growing technique where the rate of growth is also
based upon the range of intensity values. Therefore, the con-
ventional region growing technique fails to extract whole ves-

sels tree. In order to solve the intensity range problem for the
segmentation of blood vessels, a range of strategies based upon
region growing have been proposed by various authors. Pau-
lina et al. [1] implemented the idea of both global thresholding

and local thresholding. Global thresholding is applied to the
selection of seed points and local thresholding serves as a cri-
terion to put a stop to region growing. Average intensity values

of images are calculated and applied to the formula of quadra-
tic polynomial, which gives a global threshold value. Seed
points are obtained after applying global thresholding.

Abdel-Dayem and El-Sakka [8] recommended the fuzzy region
growing technique for the segmentation of carotid artery ultra-
sound images. Ultrasound images usually have problems of

noise and low contrast. To overcome these problems, two pre-
processing steps are performed. Histogram equalization is
applied in order to increase the dynamic range of the image
gray levels. For noise removal, a median filter was applied

on the histogram equalized image. Dokladal et al. [9] proposed
a branch-based region growing technique for the segmentation
of blood vessels of MRA. According to this technique, seg-

mentation is performed individually branch by branch. Ini-
tially a single seed point is selected manually and then it
begins the search for a branch.

Another region growing based technique for the extraction
of liver blood vessels from X-ray images is applied by Passat
et al. [10]. Their proposed algorithm maintains hierarchical

priority lists based upon ‘‘first in first out’’ where the priority
to each list was assigned according to the value of luminosity.
For the insertion of new points, lists are accessed randomly.
Kim et al. [11] proposed an atlas based automatic approach

for region-growing segmentation of brain vessels. They have
implemented the concept of two threshold values: a higher
and lower value respectively to cover all the vessels in tree.

Multiple seed points are chosen with the help of a higher
threshold value.

Kim and Park [12] have proposed a local adaptive thresh-

olding based technique for the segmentation of carotid artery
using MRA slices. This technique automatically computes
the threshold value by considering a midpoint of maximum
and minimum gray levels of only first slice. In addition, the

application of the threshold value filters the first slice. Taking
into account the anatomical structure of the left and right car-
otid arteries, the filtered slice is divided into two subregions.

Seed points of each subregion are calculated and their eight
connecting neighbors are labeled in order to get the region
of interest.

Almi’ani and Barkana [13] proposed a modified region
growing algorithm to extract cerebral vessels of MRA images.
The image segmentation, pre-processing step, gamma correc-

tion and spatial operations were the components of proposed
techniques. The proposed technique shows performance
improvement in terms of noise attenuation, vessel enhance-
ment and segmentation.
Priyadharshini and Anitha [14] applied region growing
algorithm to diagnose glaucoma in eye. The pre-processing
imaging technique and morphological operations such as dila-

tion and erosion were incorporated and median filter was
applied in the proposed technique. The technique shows per-
formance improvement in terms of image quality and image

edges compared to the thresholding techniques.
Wen et al. proposed [15] cerebrovascular segmentation

algorithm to obtain accurate vessel. The finite mixture model,

Gaussian distribution function and Rayleigh distribution func-
tion were used. The proposed have two limitations that are, (i)
proposed algorithm iteration runs sequentially to achieve a
stable state and (ii) proposed algorithm does not consider

the neighborhood relationships between the voxels.
In this paper, we proposed few enhancements in region

growing algorithm. Our main contribution is to determine

appropriate threshold value of slice, seed point and starting
slice number. We also developed a two pass algorithm for
grayscale 8-connected neighbors. We applied all these compo-

nents in RGA and evaluate the performance in terms of image
enhancement. The region growing algorithm that applies in
our proposed system is driven from [16].

3. Enhanced Region Growing Algorithm (ERGA)

In the traditional region growing algorithm, results of segmen-

tation are totally dependent on the selection of seed point. An
appropriate seed point results in quality segmentation. How-
ever, in the majority of MRA datasets, the start of the slices
does not contain any required information. As a result of this,

we have not applied region growing algorithm directly on the
first slice. In order to begin from the required region, we have
developed an automatic threshold value. To calculate the

threshold, the maximum intensity value of each slice is
obtained and stored in an array denoted as max_list. From this
max_list, we then find the maximum and minimum intensity

values, i.e. m1 and m2 respectively. Finally the difference
between m1 and m2 is gained.

T ¼ m1 �m2 ð1Þ

The maximum intensity of each slice is compared with

threshold T given in Eq. (1). Slices are checked in a sequence
in ascending order. Any slice with an intensity value greater
or equal to the threshold value is selected as a first slice F1.
Region growing algorithm is then applied to F1 and onward

slices only. In this way, the starting slice F1 is different for
each dataset and is selected automatically according to max-
imum intensity values. The steps for ERGA are given as

follows:

3.1. Steps for slice selection algorithm

1. Initialize n with total number of slices in a dataset

2. Read all MRA slices of sequence images

3. Find maximum intensity value of each slice and store in an
array, i.e. max_list, in ascending order.

4. Find maximum intensity value from max_list, i.e. m1

5. Find minimum intensity value from max_list, i.e. m2

6. Find threshold T by taking the difference of m1 and m2 values
7. Start loop from j = 1 to n
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i. If max_list (j) P T

a. The jth slice will be selected as a starting slice for
region growing

b. Assign value of j to F1 (first slice)

c. Break

8. Pass selected slices to region growing algorithm, i.e. F1 to n.
9. Apply RGA for segmentation of vessels [16].

3.2. Grayscale 8-connected neighbors for region growing

algorithm

Region growing algorithm is based on the idea of neighbor’s
connectivity. We have used 8-connected neighbors’ criterion
for region growing. The algorithm used for labeling of 8-

connected neighbors is called ‘‘two pass algorithm’’, which
makes two passes over the image. One pass records the equiv-
alences and assigns temporary labels. During second pass, each
temporary label is replaced by the label of its equivalence class.

In order to apply two pass algorithms on grayscale images
threshold value is required. We have selected two threshold
values, i.e. higher and lower. Higher threshold is assigned with

the value of homogeneity criterion, i.e. the average of current
segmented slice region and next un-segmented slice region. For
lower threshold value we subtracted a constant value 10 from

higher threshold value. The pseudo code of pass 1 and pass 2 is
listed below.

Pass 1:

� Assign the value of calculated homogeneity criterion to higher

threshold value, T1

� Find lower threshold value, T2= T1 � 10

� for seed point (current pixel) to the end of an image

1. if the current pixel is greater than or equal to T2 & less than or

equal to T1

i. if 4 of neighbors (above/left) have lesser intensity values

than T2

(a) Create a new label and label it

ii. else if 4 of neighbors (above/left) have same labels

(a) Assign pixel with same label

iii. else if any one of 4 neighbors (above/left) has label

(a) Assign that label to the pixel

iv. else if neighbors have different labels

(a) Assign pixel with the largest label

(b) Mark the smaller label as a parent of larger one.

Pass 2:

� Divide all labels into equivalence classes.

� Replace each label with the number of its equivalence class.
Table 1 MRA datasets used in the experiment.

Data

set#

Dataset type

(MRA)

Dataset

dimensions

Total no. of

slices

Maximum intensit

value of 1st slice

1 Head 576 · 576 118 356

2 Head 576 · 448 120 476

3 Renal

arteries

576 · 448 72 99

4 Head 576 · 448 110 367
4. Experiment setup and measurement results

Details of datasets used in the experiment are given in
Table 1, the investigated images are ToF with T1 relaxation

and 16 bit. From Table 1, the obtained value of starting slice
for the enhancement and maximum intensity value of starting
slice will be used for enhancement. The vessels segmentation

of head MRA for dataset 1, using a region growing algorithm
without any enhancement, is shown in Fig. 1. The maximum
intensity value of the first slice is 356, which is very low com-
pared to the maximum intensity value of the entire dataset,

i.e. 988. The first slice does not give the required information
(vessels) as shown in Fig. 1a. The threshold is selected by
taking an average of the difference between maximum and

minimum intensity values, i.e. T = 178. After applying T
on the first slice grayscale image, a binary image is con-
structed. This is presented in Fig. 1b. The segmented noisy

result of the first slice image following region growing is
described in Fig. 1c, which does not contain any required
vessel. The region growing technique is totally dependent

on the selection of seed point. An inappropriate seed point
results in poor segmentation, shown in Fig. 1d. In the first
slice, there is no appropriate seed point. So the region is
grown according to the noise (unwanted region) leading to

poor segmentation.
Fig. 2a shows the grayscale (slice 27) image that is maxi-

mum and minimum intensity values are 644 and 0 respectively.

The threshold value for the starting slice is 322. Fig. 2b is the
threshold binary image of the starting slice. The segmentation
result of the starting slice is described by Fig. 2c. As soon as

an appropriate starting point is selected, head vessels are
extracted correctly (see Fig. 2d).

As in the first slice (Figs. 1a and 2a), there is no appropri-

ate seed point, so the region grows according to the noise
(unwanted region) which results in poor segmentation. This
is one of the main reasons that, in order to find the correct seed
point, we have proposed this very algorithm based on thresh-

olding. The maximum intensity value of each of the 118 slices
is obtained and stored in an array, i.e. max_list. Once again, to
obtain the maximum value from max_list, i.e. 988, and mini-

mum value from max_list, i.e. 356, the difference between
the maximum and minimum values is calculated, which is
632. The result is selected as the threshold. The maximum

intensity value of each slice is compared with the threshold.
Slice 27 is the first slice with a maximum intensity value greater
than 632, so it is selected as a starting slice for the proposed
region growing algorithm.

Like datasets 1 and 2 the results obtained by using datasets
3 and 4 are not listed as listed in Figs. 1 and 2. This is due to
y Starting slice for

enhancement

Maximum intensity value of starting

slice for enhancement

27 644

53 732

9 163

36 610



(a) (b)

(c) (d)

Figure 2 Segmentation of head vessels of dataset 1 using region growing after enhancement, (a) selected starting slice (27) image of head

dataset. (b) Thresholded image of starting slice. (c) Result of starting slice after region growing. (d) Final result of segmentation after

region growing of 92 slices (27–118).

(a) (b) 

(c) (d)

Figure 1 Segmentation of head vessels for dataset 1 using region growing before enhancement. (a) First slice image of head dataset. (b)

Threshold image of first slice. (c) Result of first slice after region growing. (d) Final result of segmentation after region growing of all (118)

slices.
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similarity of and to save the space. For datasets 3 and 4 the
enhancement start by slice 36 and 8 respectively as listed in

Table 1. By viewing Fig. 3 for each dataset it is observed that
the image obtained after applying ERGA has better results in
terms of contract, better visibility of vessels including the thin

vessels and unwanted noise is eliminated.



Data set 1: Before Enhancement (RGA) Data set 1: After Enhancement (ERGA)

Data set 2: Before Enhancement (RGA) Data set 2: After Enhancement (ERGA)

Data set 3: Before Enhancement (RGA) Data set 3: After Enhancement (ERGA)

Data set 4: Before Enhancement (RGA) Data set 4: After Enhancement (ERGA)

Figure 3 Comparison of obtained images by applying RGA and with ERGA.
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5. Conclusion

The segmentation of blood vessels is an active research area
which plays a significant role in many medical applications
including diagnosis, surgery planning and radiation treatment.

The quality of segmentation in the case of the region growing
algorithm completely relies on the selection of seed point. In
cases where the selected seed point does not belong to the
region of interest (vessels), the whole region will be grown

incorrectly. MRA, which is used specifically for images of
blood vessels, does not contain the required region in start
of slices. Applying a region growing algorithm directly from

the first slice will result in an inappropriate seed point, thereby
leading to poor segmentation. In order to overcome this prob-
lem, an ERGA has been proposed. The vessel images gener-

ated by ERGA are improved quality as compared to generic
RGA.
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