
Applied Computing and Informatics 14 (2018) 73–87
Contents lists available at ScienceDirect

Applied Computing and Informatics

journal homepage: www.sciencedirect .com
Original Article
Enabling distributed intelligence assisted Future Internet of Things
Controller (FITC)
http://dx.doi.org/10.1016/j.aci.2017.05.001
2210-8327/� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: hasibur@dsv.su.se (H. Rahman), rahim@dsv.su.se (R. Rahmani).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Hasibur Rahman ⇑, Rahim Rahmani
Department of Computer and Systems Sciences (DSV), Stockholm University, Nod Building, SE-164 55 Kista, Sweden

a r t i c l e i n f o a b s t r a c t
Article history:
Received 25 January 2017
Revised 1 May 2017
Accepted 2 May 2017
Available online 8 May 2017

Keywords:
Future Internet
Internet of Things
Edge computing
Distributed intelligence
Belief-network
The unprecedented prevalence of ubiquitous sensing will revolutionise the Future Internet where state-
of-the-art Internet-of-Things (IoT) is believed to play the pivotal role. In the fast forwarding IoT paradigm,
hundreds of billions of things are estimated to be deployed which would give rise to an enormous
amount of data. Cloud computing has been the prevailing choice for controlling the connected things
and the data, and providing intelligence based on the data. But response time and network load are on
the higher side for cloud based solutions. Recently, edge computing is gaining growing attention to over-
come this by employing rule-based intelligence. However, requirements of rules do not scale well with
the proliferation of things. At the same time, rules fail in uncertain events and only offer pre-assumed
intelligence. To counter this, this paper proposes a novel idea of leveraging the belief-network with
the edge computing to utilize as an IoT edge-controller the aim of which is to offer low-level intelligence
for IoT applications. This low-level intelligence along with cloud-based intelligence form the distributed
intelligence in the IoT realm. Furthermore, a learning approach similar to reinforcement learning has
been proposed. The approach, i.e. enabling a Future IoT Controller (FITC) has been verified with a simu-
lated SmartHome scenario which proves the feasibility of the low-level intelligence in terms of reducing
rules domination, faster response time and prediction through learning experiences at the edge.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Future Internet is expected to be driven by the prevalence of
Internet of Things (IoT) where it is envisioned that anything can
be connected [1]. The hype around IoT is that it is the next techno-
logical revolution of the current world [2] where hundreds of bil-
lions of things will be interconnected. IoT has started to shape
into reality from its hype by and large due to recent advancements
in ubiquitous technologies such as Radio Frequency Identification
(RFID)/Near Field Communication (NFC), Wireless Personal Area
Network (WPAN), high speed communication (4G/5G), Bluetooth
Low Energy (BLE), etc. Advanced developments in the sensing
and actuating technologies also contribute to the rise of the IoT
popularity. This rise in connected things has already taken its
number beyond current world’s population and expected to impact
every aspect of human life. Currently, there are almost two con-
nected things for every human. The ratio is expected only to accel-
erate in the coming days. The challenge of collecting and sharing
the context information (ConIn) from these connected things has
been addressed in earlier research [3–8]. The challenge has been
addressed by architecting IoT platforms via mostly middleware
solutions. Each middleware solution addresses different IoT chal-
lenges; for example, device management, context information col-
lection and sharing, context-awareness, interoperability, etc. [4].
However, there is no single middleware solution or IoT platform
that solves all these IoT challenges. An ideal IoT platform capable
of providing solutions to all IoT aspects has not yet been designed
[4]. Furthermore, most of the IoT platforms solutions are cloud cen-
tric [3–5,8]; recently Cisco coined the term fog computing, i.e. edge
computing closer to the actual devices [9].

Lately resource constrained devices such as SmartDevices and
raspberry pi have enriched in computational capabilities and at
the same time price has become more affordable. These devices
have the potential to be exploited as IoT gateways and have
already been demonstrated in earlier research [10,11]. Emergence
of these devices paves the way for computing at the edge of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aci.2017.05.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.aci.2017.05.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hasibur@dsv.su.se
mailto:rahim@dsv.su.se
http://dx.doi.org/10.1016/j.aci.2017.05.001
http://www.sciencedirect.com/science/journal/22108327
http://www.sciencedirect.com

74 H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87
connected things, for example, raspberry pi (Raspberry Pi 3 is a credit
card-sized computer with 1.2 GHz quad-core CPU, 1 GB RAM,
built-in support for BLE and Wireless LAN, and priced at US $35
[12]) can be employed as an IoT gateway for smart home, mHealth,
smart farming, factory automation, shipping, etc. Most of earlier
research more or less agree on the typical three-layer IoT architec-
ture as depicted in Fig. 1 [3–5,13]. It shows IoT application where
things are connected to a gateway locally and gateway then col-
lects and forwards data to the cloud for further processing which
is also shown in the industry for example by AWS IoT [14]. This
brings high latency and bandwidth requirements. However, IoT
necessitates latency, i.e. response time as low as possible. When
IoT was first coined by Kevin Ashton back in 1999, it was proposed
in the context of supply chain management [15]. Due to the tech-
nological advancements and progressions in the research within
IoT have evolved its vision and transformed the way Internet-
enabled things are being utilized. IoT vision has been expanded
to many other application domains. Such expansion of scopes
drives IoT on the verge of experiencing a paradigm shift towards
enabling Internet of Everything (IoE) [16]. The focus of which is
the integration of people, things, services, context information as
seen in Fig. 2. To counter this paradigm shift, new approaches
are mandated to research into. Most of the IoT applications require
real-time and quick decision making; hence, edge computing pro-
posal is gaining growing attention from researchers recently [9,17–
20]. At the same time, cloud computing cannot be ignored since
edge computing can only offer solutions for limited data locally
[18]- this data is also known as small data [21]-and a future IoT
solution need to cater for both small data locally and big data glob-
ally [18]. Hence, an IoT solution is mandated to offer both edge and
cloud solution. Therefore, this paper proposes a novel IoT solution
offering both edge and cloud computing; thus, enabling a Future
Internet of Things Controller (FITC).

Properties of future IoT, i.e., IoE, correspond to a cycle as seen
from Fig. 2. This cycle can be compared with the vision of auto-
nomic computing loop [16]. The autonomic loop executes self-X
algorithms in order to make an autonomous entity. Execution of
self-X algorithms depend on the policies embedded into a con-
troller by a human-administrator. Whenever a policy needs to be
modified or added or removed, human-administrator usually is
consulted. This can also be seen from AWS IoT’s rule-engines
where rules (policies) are added whenever required and further
in XpertRule [22]. However, in the IoT scenario where each con-
troller might control thousands of things, updating rules or policies
Fig. 1. A typical simplified thr
should be done automatically (as to reduce time and complexity)
preferably by learning from the past experiences. Recently big
players in the industry like IBM, Amazon, and Microsoft have
started to tie up machine learning with IoT. This tying up is
expected to offer unprecedented impact on IoT. In future, IoT and
Artificial Intelligence (AI) -thereby, machine learning- will be
inseparable. The reason is that up until now IoT only focused on
collecting and sharing raw-data, it did not focus on providing
insight to the raw-data. Existing approaches for edge intelligence
are heavily reliant on predefined rules and are time consuming
where in order to define new rules a person is reliant on cloud-
based intelligence. Therefore, to counter the shortcomings of the
current and previous approaches, this paper proposes to provide
intelligence at the edge where IoT controller would learn from
the past experiences. The proposal proposes an IoT controller to
provide three important operations: Decision making, Action, and
Prediction (DAP) for the connected things at the edge. The idea is
to provide low-level intelligence to the small data at the edge
before providing high-level intelligence for the so-called big data
at the cloud; thus, enabling distributed intelligence. The need for
two-level intelligence was also highlighted earlier in [4,18]. Provid-
ing intelligence at edge implies reaping value from the collected
raw-data by the gateway, i.e. an IoT controller (this paper regards
a device as gateway which only collects and forwards raw-data,
and in addition to this when a device provides the portrayed
low-level intelligence is regarded as controller). However, raw-
data collected from IoT applications do not actually provide any
usefulness unless insight is harvested [23]. To reap value from
the raw-data, the data need to put into context to provide intelli-
gence for converting into knowledge [3,23]. Currently, only rules
are employed to provide edge-intelligence. However, as the num-
ber of connected things escalate the required number of rules also
rockets. Depending only on rules could break the intelligence if
new or uncertain events occur. Furthermore, pre-defined rules’
domination would only provide pre-assumed intelligence. In order
to provide further intelligence to improve the performance of an
IoT controller mandates the controller to learn from the experi-
ences by employing machine learning algorithms. In light of the
above, the followings can be considered as vital challenges to pro-
vide edge-intelligence: contextualization of the raw-data; mini-
mizing dependency only on rules for executing tasks; improving
performance of tasks through experiences, i.e. learning; predicting
an outcome in the event of uncertainties; efficient routing of the
data; self-organization of the things, i.e. sensors and actuators;
ee-layer IoT architecture.

Fig. 2. Properties of Internet-of-Everything.

H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87 75
etc. With regard to such challenges, this paper further proposes a
novel approach of employing belief-network (also popularly
known as Bayesian network) to reduce dependency on the rules
and learning algorithm similar to the reinforcement learning for
IoT edge controller. Usefulness of such belief-network, i.e. proba-
bilistic approach to learn from experiences was earlier discussed
in [23].

The paper does not propose to get rid of employing cloud-
intelligence altogether, rather it proposes the novel idea of reaping
value from both edge and cloud, thus enabling distributed intelli-
gence (see Fig. 3). This implies providing intelligence of things by
reaping the information of things closer to the devices. In order to
demonstrate the feasibility of the proposed approach, two IoT
applications namely SmartHome and SmartFarming have been
used for references and further, SmartHome application was
exploited for verifying the algorithms for providing intelligence
at the edge. In order to execute the DAP; the controller necessitates
having algorithms that can help in executing these operations. The
paper proposes and develops new algorithms with regard to
providing intelligence at the edge. Further, the advantage of
belief-network over rule-based is investigated followed by results
of prediction for simulated SmartHome data.
2. Related work

Making sense of IoT data, that is, to reap value from the IoT data
is the current topic and challenge of IoT research. IoT started with
Fig. 3. Distributed (two-lev
the vision of connecting any physical objects to the Internet and
collecting data from these physical objects. Therefore, the earlier
proposals [5–8,24] of analysing and taking decisions at the cloud
made sense since initial objective was to collect data from the
physical objects about real world by employing things rather than
relying only on human-entered data on the Internet. The objective
was simple: to collect data and let computers or higher-level
devices take decisions by analysing data. Today the objective lies
in harvesting value from the collected data. However, cloud centric
solutions fail to provide low-latency which is one of the IoT
requirements [9,13,18,19]. IoT further requires computing to be
done as closer to the things as possible. Both cloud and edge com-
puting provide advantages that are useful and solve many chal-
lenges in IoT paradigm. For example, cloud computing can offer
large storage, complex processing [3,11]; analytics and visualiza-
tion tools [3,11,24]; anywhere access [3], contextualization/perso
nalization [25]; publish/subscribe [7]; and edge computing can
offer faster processing [9,10]; better sustainability and energy effi-
ciency [10,13,20]; distributed computing [18]; data pre-processing
and filtering [13,19]; mobility support [18]; heterogeneity and
interoperability [18]; computing closer to the actual things
[13,18], etc. Besides these, edge computing reduces burden on
cloud computing in terms of data storage, bandwidth, geographic
coverage, analytical dependency, communication overhead, etc.
[8,18,19]. Earlier papers showed advantages of edge computing
over cloud computing in IoT in terms of: efficiency in energy, data
filtering, providing notifications in a SmartHealth application [13];
el) intelligence for IoT.

76 H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87
latency improvement [17]; synchronization and upload delay,
communication overhead improvement [19]; better dynamic scal-
ing and communication cost via mobile fog computing [26]; but
none of the papers focused on providing intelligence for decision
making and actions, and learning for prediction based on collected
raw-data. To counter the challenge of intelligence at the edge, a
parallel work in [13] demonstrated reinforcing gateways with sys-
tem intelligence specific to the e-health scenario. However, that
work did not focus on providing intelligence and learning based
on collected data which this paper has demonstrated. Some of
the solutions such as AWS IoT [14] and XpertRule [22] provide
intelligence by employing predefined rules. Both solutions allow
new rules to be defined aided by human. A person can define
new rules based on analysed data from cloud-centric intelligence
by employing AI techniques. Analysed data could be a classification
or prediction problem, extract meaningful information from the
raw-data [27], etc. However, these approaches are heavily reliant
on predefined rules and are time consuming where in order to
define new rules a person is reliant on analysed cloud-based intel-
ligence. Moreover, rules fail to scale well with the increase in con-
nected things. Furthermore, to overcome pre-assumed intelligence
and in order to provide further intelligence to improve the perfor-
mance, IoT controller mandates to learn from the experiences by
employing machine learning algorithms. Belief-network can be
used to learn from experiences as earlier discussed in [23]. How-
ever, most of the machine learning algorithms take time to learn,
and additionally it requires training data meaning data needs to
be readily available prior to applying the learning techniques
[23]. Belief-network is gaining attention lately in AI research for
prediction, learning, decision-making, etc. It is conceptually simple
yet emerging as principal approach to learn through experiences
[23]. On the other hand, reinforcement learning allows an agent
(decision-maker and learner) to learn by giving reward for each
action perceived from the environment [28]. This kind of learning
can be applied to both low-level and high-level decision making
and prior data is not needed for learning which makes it a compe-
tent technique for the IoT realm. Even though a lot of research has
been conducted within IoT; research towards assisting IoT with
distributed intelligence, employing belief-network in the edge
computing to overcome dependency on rules, and learning have
not yet been conducted.
3. Proposed approach

Internet-of-Things (IoT) is a network of things where things can
be anything from a physical object to a virtual object. The primary
objective of IoT is to connect anything anytime and anywhere.
However, once things get connected via any path, challenge is to
reap value from things’ data, i.e. information. That corresponds to
catering the information-of-things. Earlier many argued that things’
capability of providing this information in the IoT domain makes
the things smart; however, recently others argue that this capabil-
ity only makes the things connected- not necessarily smart. In
order to make things smart or make sense of information-of-
things, providing intelligence is a prerequisite. Thus, it necessitates
to provide intelligence-of-things. As inefficiency of cloud computing
leads to edge computing; therefore, it is necessary to look into
other solutions to counter data closer to the things which some
researchers have started calling small data. Question is ‘‘How can
a solution be employed that can provide intelligence by utilizing
the small data?”. This also corresponds to the earlier vision of
two level intelligence in IoT [4]. Fig. 3 shows a resemblance of
information-knowledge pyramid hierarchy. The hierarchy shows
relation of the raw-data to ultimately providing wisdom based
on the raw-data. In the middle of hierarchy lies the knowledge.
Knowledge also corresponds to the question of how. Therefore,
the proposal in this paper would look into answering some of the
questions related to this ‘‘how” the goal of which is to alleviate
the intelligence-of-things. The IoT edge controller specifically
would look at answering the questions based on the raw-data col-
lected from the things at the edge. The edge controller, apart from
answering the ‘‘how” questions, would also control other actions
such as collecting raw-data from the connected things and con-
verting the collected raw-data into information by answering the
questions of who, what, where, when, etc. prior to converting into
knowledge. The later action is also known as contextualization,
i.e. each connected thing is contextualized by answering those
questions. Based on this context information (ConIn), controller
would provide knowledge to the connected things. For instance,
in a SmartFarming scenario, the controller would collect raw-
data from sensing devices, for example, about water condition
and controller would first contextualize the raw-data into ConIn,
and based on the knowledge about the ConIn, controller would
take actions; an action could be determining when and how long
to sprinkle water. Context information is further processed to exe-
cute the DAP. This is what edge controller has been proposed as to
provide the low-level intelligence. Now based on the knowledge
hierarchy, from raw-data to wisdom, below each of the steps cor-
responding to low-level intelligence is discussed.

3.1. Distributed intelligence

Raw-data: Raw-data is usually being in the form of symbols or
signs in the context of knowledge hierarchy. In an IoT scenario,
raw-data is any data that is collected from a thing, e.g. sensor or
actuator. Raw-data is usually collected and fed forward by a gate-
way. There are many protocols that can be exploited by IoT to col-
lect raw-data from the things. Some of the promising protocols are:
MQTT, CoAP, DCXP, etc. [6,7]. The things can further be controlled
via employing self-organizing algorithms such as presented earlier
in [16]. This part of connecting and collecting raw-data is beyond
the scope of this particular work. The next two steps are relevant
to this particular paper, i.e. information and knowledge.

Information: As seen from Fig. 3, information corresponds to
answering few of the fundamental questions. This also refers to
contextualizing a thing. The collected data is fed into the contextu-
alization algorithm (see Algorithm 1) which by answering the
questions like: who, what, where, when, etc. provides more mean-
ing to the raw-data. Here, who refers to thing’s identity,what refers
to the actual data, where refers to its origin, and when refers to its
time of occurrence. There could be more context information
added at this step for example its relation to other things and/or
context information.

Knowledge: This step then provides further low-level intelli-
gence based on the contextualized data. Although the figure shows
knowledge as part of the low-level intelligence; in essence, knowl-
edge would be distributed to both low-level and high-level intelli-
gence. The reason being that the proposed IoT controller at the
edge would run on resource-constrained devices which might
not be able to provide all the required knowledge. High-level
knowledge would come from more advanced computational
devices. More insight to the data can be provided at the cloud by
employing data mining techniques.

Understanding & Wisdom: These two operations are meant for
operations like extracting meaningful information from data. These
data mining challenges are beyond the scope of this paper and can
be dealt at the higher level. Since understanding deals with appre-
ciation of the data and wisdom is for evaluating the data which are
analytical; and require all the previous steps and synthesizing
knowledge from earlier knowledge and information. Wisdom on
the other hand requires human intervention as this is the last

H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87 77
and highest level, so it extends the previous steps to infer new
knowledge or understanding. A data scientist or a researcher per-
haps would infer this new knowledge or understanding. Or in
future deep learning based AI solution might be able to provide
the required wisdom.

To understand the above steps, let’s consider an IoT application
in a SmartHome scenario where things such as sensors and actua-
tors are installed for home automation. The sensors and actuators
are controlled via an IoT edge controller. The controller collects
data from the things and executes DAP. The following example
shows how a temperature sensor reading can influence actions
such as lighting, heating and making breakfast.

3.1.1. Example 1

Raw-data

Example raw-data from a sensor and actuators
Temperature sensor: 2000
Lighting actuator: 0
Heating: 1
Breakfast (coffee-maker & toaster): 0

Information

Contextualized Temperature Sensor
Who: temperaturesensor1.bedroom@smarthome1
What: 2000/100 = 20 �C (warm)
When: 07:00 AM (morning)
Where: home
Which: heating, lighting
Contextualized Lighting (Actuator)
Who: lighting1.bedroom@smarthome1
What: 0
When: 07:30 AM
Where: home
Which: coffee-maker, toaster
Contextualized Coffee-maker (Actuator)
Who: coffeemaker.kitchen@smarthome1
What: 0
When: 07:30 AM
Where: home
Which: toaster

Knowledge
Above shows example of raw-data and context information

from sensor and actuators in a SmartHome scenario. The context
information also shows which things are related to each thing.
Based on the available context information following knowledge,
i.e. DAP can be used. Although there are existing SmartHome plat-
forms that are built upon IFTTT (IF This Then That), e.g. Smart-
Things [29], CNET SmartHome [30], etc. SmartThings’ IFTTT does
not consider logical association between things, and often requires
user intervention to trigger a task. Moreover, the intelligence is not
provided at the edge rather the gateway is only used for connecting
things, and for collecting and forwarding data. Temperature sensor
at bedroom reading gives 20 �C (warm). Now following this read-
ing, when the temperature at bedroom is above 20 �C the con-
troller can make decision to turn off the heating and turn on the
lighting. However, before triggering the action, the controller
needs to take into account other related context information for
example time of the occurrence of this temperature reading. If this
temperature reading occurred at morning (around 07:00 AM), only
then turn off heating and turn on the lighting (turning on the light
could also depend on the motion sensor, i.e. if it detects any phys-
ical activity then turn on the light). This time also refers to the
weekdays of the week, during weekend the time might be set to
a later time. The controller also has the knowledge that when this
SmartHome user wakes up, she usually takes her breakfast 30 min
after waking up. Following turning on the bedroom light, motion
sensor detects movement inside the bedroom (confirming that
she is now awake) and make decisions on preparing breakfast,
e.g. toasts and coffee.

Now another scenario could be that the user returns home on
weekdays around 18:00 and the controller knows that if the tem-
perature is below 15 �C (cold) then user turns the heating on when
she is at home or about to reach home. To know user’s current
location, controller consults with her mobile application on the
SmartPhone. When the user is 15 min away or 10 km away, con-
troller decides to turn the heating on. The controller knows she
eats her supper around 19:30, so it turns the oven on at a desired
temperature at 18:45 every day. Now considering a non-regular
day when the user joins dinner at a friend’s house or outside, the
controller makes a prediction on whether or not the oven should
be turned on. Here, this knowledge is not embedded into the con-
troller. Therefore, controller learns not to take such usual actions
when user is not around.

3.1.2. Example 2

Raw-data

Example raw-data from sensors and actuators
Light: 40
Temp: 18
Nutrition: 26
Moisture: 43
Soil moisture: 30

Information

Contextualized Nutrition Sensor
Who: nutritionsensor1.gateway2@adamsfarm
What: 26%
When: 03:00 PM
Where: Zone 2, Row 3, Column 4
Which: Fertilizer
Contextualized Soil Moisture Sensor
Who: soilsensor.gateway5@adamsfarm
What: 30%
When: 05:00 PM
Where: Zone 4
Which: Sprinklers

Knowledge
The example here shows a probable scenario in farming where

sensors and actuators are used for automating tasks. Few of the
such tasks are monitoring water, soil, temperature, nutrition and
operating fertilizer machine, sprinklers, lighting, etc. For example,
Edyn [31], an example of connected farming, enables healthy farm-
ing by allowing instant access to one’s remote farm. While Edyn
alerts its users when to water, fertilize, control light, etc. which
is useful but user might be not connected to receive alerts and
might risk of not being able to execute such tasks required for
healthy plant-growth; therefore, it would have been fitting in the
era of connected world to let the IoT controller decide when to exe-
cute a task at the farm. For example, a farm could employ different
sensors for collecting data as shown above and the controller
would control DAP execution if and when to trigger a task. The task
could be to start water sprinkle if soil moisture is below the thresh-
old (a value which is specific to application and implementation)
but before starting the task, controller would check weather fore-

78 H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87
cast and based on the weather information it would decide how
much, and if, water needs to be poured. Similarly, when the nutri-
tion level drops below a desired value, the controller would try to
execute the task of providing fertilizer; but fertilizing can also
depend on the plant growth meaning if the plants are ready to har-
vest then there is no need to fertilize the plants.

3.2. Belief-network

To achieve the aforementioned knowledge execution, i.e. steps
shown in example 1 and 2, the paper proposes the belief-
network concept instead of only rules. More specifically, each of
the context information (ConIn) would be assigned with a prior-
belief. In Bayesian or belief network, prior-belief is always defined
even before collecting data [23]. Following the collection of data,
new belief is obtained. And based on the belief-calculation, a task
would be executed. Bayesian machine learning belief calculation
follows two simple rules of sum and product rule [23]. Based on
this, the paper adapts the formula as outlined in Eq. (1). The equa-
tion shows how to calculate the probability of taking an action by
the IoT edge controller. An action is usually taken based on belief of
ConIn that affect the action. Therefore, the controller would first
determine which of the ConIn belief are required to take an action.
Following this, the controller would calculate the probability
according to:

PrðAÞ ¼
Xn

i¼1

ðßCI � ßCIV Þ ð1Þ

Here, ß is the belief and Pr is the probability, ßCI and ßCIV stands for
belief of ConIn and ConIn value respectively. For example, CI is the
temperature sensor and CIV is the value of temperature sensor (e.g.
cold). Once Pr is calculated then it is checked with a threshold value
(e.g. a pre-defined value of 75% which can later be changed or
learned), £, when £ exceeds Pr, new belief is established, as for-
mulated in Eq. (2).

ßnew ¼ ðPr > £Þ ð2Þ
Figs. 4 and 5 show such belief-networks for SmartHome and

SmartFarming respectively where it illustrates which sensors and
actuators affect which actuators. However, the prior-belief may
not always be optimal since this is pre-defined; therefore, the
paper proposed to exploit the reinforcement learning technique
to learn belief through experiences which can then be used to
update the prior-belief. This learning implies that whenever an
Fig. 4. Example Belief-Net
event occurs, it is given a reward (a numerical value). Fig. 6
illustrates how reinforcement learning-like approach is proposed
for an IoT controller. The controller observes actions about a cer-
tain IoT application (e.g. SmartFarming) by interacting with the
application, and increases frequency for each action in a context
state (set of ConIn). An action here could be collecting ConIn for
sensors or performing an actuation. Increasing frequency is compa-
rable with giving reward as in reinforcement learning. Frequency is
also increased for each specific ConIn at the time of different asso-
ciated ConIn, e.g. frequency of cold temperature at different time of
the day for different user locations. And when the frequency
exceeds the threshold level, prior-belief is altered with new belief
as formulated in Eq. (2). Furthermore, when one or more context
value is missing from the set of ConIn, the missing value is pre-
dicted by analysing the learned experiences. This learning algo-
rithm gives advantage over other machine learning algorithms
with respect to the fact that no prior data is required and it learns
from its experiences perceived from the environment.
4. Model

This section describes modelling of the proposed approach of
this paper. The section first describes the workflow of the model
and follows with describing the algorithms to achieve the goals
set in this paper.

4.1. Workflow

The paper proposes to provide distributed intelligence to coun-
ter the influx of context information in the IoT domain by provid-
ing intelligence both at the edge and at the cloud as illustrated in
Fig. 3. Edge-intelligence implies that intelligence based on raw-
data collected by the IoT controller from the things would be pro-
vided as fast as possible. The first task of the proposed approach is
to contextualize the collected raw-data. This is done by answering
four fundamental questions of knowledge-hierarchy. Algorithm 1
deals with this, i.e. contextualization. Hence, the first task of the
model is to check if a raw-data has been contextualized or not; if
the data is already contextualized i.e. the questions are answered,
the ConIn would be forwarded to determine a task after updating
existing set of ConIn and frequency of each ConIn. Algorithm 2
demonstrates the determine task part, it then decides whether to
activate an action based on the available thing’s ConIn (TConIn)
or forwards the ConIn to learn experiences. Algorithm 3 illustrates
work for SmartHome.

Fig. 5. Example Belief-Network for SmartFarming.

Fig. 6. Learning experiences based on reinforcement learning.

H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87 79
learning experiences which are then forwarded for learning and/or
prediction. Learning and/or prediction usually take place in scenar-
ios when one or more ConIn is missing. In such cases, first associ-
ated ConIn (AConIn) is obtained which is along with the available
ConIn then decides whether to predict or learn an action.
Fig. 7. Workflow of the
Algorithm 4 and 5 take care of learning and prediction respectively.
Fig. 7 further demonstrates the workflow of the proposed approach
to alleviate intelligence of things by harvesting information of things
at the edge.
4.2. Algorithms

4.2.1. Contextualization
This, contextualization, algorithm deals with answering ques-

tions to provide more meaning to the raw-data from a connected
thing. This also corresponds to the second step of the knowledge
hierarchy as shown in Fig. 3. The algorithm takes the sensed
raw-data as input and outputs the contextualized data. It also takes
care of calculating frequency of each ConIn, frequency of each
ConIn at given ConIn, and AConIn. These frequencies and AConIn
are then exploited by other algorithms for carrying out the DAP.
At this stage, ConIn are mapped to some other context information
that it may affect, e.g. some actuation and occurrence of the ConIn
is also saved for future uses, e.g. finding frequency.
proposed approach.

Fig. 8. Probability, i.e. belief distribution for turning on heating.

Fig. 9. Probability, i.e. belief distribution for turning on a light.

80 H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87

H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87 81
4.2.2. Determine task
This algorithm is where based on ConIn a decision is made to

execute a task or experience is obtained in case of missing ConIn.
As the paper proposes employing belief-network for decision mak-
ing; the algorithm first looks up to the prior-belief of each ConIn if
set of thing’s ConIn (TConIn) is not missing. The prior-belief of each
ConIn is predefined; this can be defined at the cloud based on some
data mining or other machine learning algorithms. At the initial
stages of installing the IoT controller for a SmartHome, SmartFarm-
ing, e-Health, etc. applications, user could be involved to set the
prior-belief based on individual preferences, i.e. each IoT controller
could be personalized and personalization could be saved and ini-
tialized at the edge. Later on, the prior-belief can be altered by the
controller based on experiences – through learning. As for this
paper, prior-belief has been predefined which has been distributed
among simulated ConIn (see Figs. 8 and 9). After retrieving prior-
belief for each of the TConIn, probability for each task is calculated
using Bayesian Theorem as shown in Section 3 and in [23]; and
actions related to TConIn are executed when the calculated proba-
bility exceeds the pre-defined threshold value. Exploring belief-
network at the controller is deemed efficient compared to using
only rules (see Section 5.2 for more). Next, when one or more
ConIn is missing from TConIn, the algorithm first fetches its ACo-
nIn. Once the AConIn is found, then TConIn and AConIn are fed into
find experience algorithm for further analysis or prediction.

Algorithm 1 Contextualization

1. Initialize Connection/communication to collect data
2. while there is sensed data do
3. if sensed data is not contextualized then
4. what: raw-data
5. where: origin of the raw-data
6. when: time of occurrence
7. who: originator of the raw-data
8. else if sensed data is contextualized then
9. find its frequency
10. frequency at the given ConIn
11. what other ConIn it is related to, e.g. some actuation
12. update ConIn
13. end if
14. determineTask(TConIn);
15. addToAConIn();
16. addToTConIn();
17. end while
Algorithm 2 Determine Task

1. Fetch TConIn
2. for all TConIn do
3. while TConIn is not empty do
4. Look up the prior-belief for each ConIn
5. Calculate probability of tasks related to TConIn (Eq.

(1))
6. if probability of task > threshold then
7. Execute task(s), i.e. decision
8. end if
9. end while
10. while TConIn is not empty do
11. findAConIn(TConIn)
12. predict (TConIn);
13. end while
14. findExperience(TConIn, AConIn);
15. end for
4.2.3. Find experience

This algorithm finds experiences of a thing in the IoT domain. It

takes TConIn and AConIn as input and returns thing’s experiences.
This algorithm checks each of the ConIn and stores frequency for
each tuple of ConIn (e.g. {what, when}, {what, when, where}, {what,
when, where, who}). This frequency based on the experience later is
used to find belief, learning and prediction - thereby, improve per-
formance of tasks. For example, when one or more ConIn is miss-
ing, this tuple of context information’s frequency is used to
predict the missing ConIn. Further, the frequency based on experi-
ence is used to learn action for each set of ConIn and later prior-
belief can be altered.

Once the edge controller has learned the experiences by counting
frequency of each ConIn tuple and total frequency of each set of
ConIn, this algorithm can learn from the experiences to take an
action. This is similar to reinforcement learning where an agent
learns from its environmentwhich gives reward (a numerical value)
for each action. Similarly, this algorithmalso increases frequency for
every action, and saves occurrenceof everyConIn tuple as illustrated
in Fig. 6. This reward or frequency is then used to calculate belief of
anaction.Once thealgorithmhascalculatedbelief of certainConIn, it
checks with a threshold value (the choice of value could be deter-
minedat the cloudbyhuman-expertise, byexploringmachine learn-
ing technique, by the user during personalization) and when check
returns true, it helps the controller to learn actions related to this
ConIn. However, if belief fails to meet the desired threshold value,
it can then decide whether to send to cloud for high-level action or
no action is required to trigger. Algorithm 4 describes this.

4.2.4. Prediction
This algorithm is employed to predict missing values in a set of

ConIn. This algorithm takes TConIn as input with missing values,
and finds other ConIn (OConIn) for the available ConIn. Following
this, the algorithm finds frequency for each OConIn. It then checks
if the frequency is the highest among OConIn frequencies; when
the frequency is the highest frequency it identifies as the most
probably missing ConIn. For example, if the algorithm is given a
tuple such as {when, who, where}, the OConIn for this tuple would
be what; now assuming that what has the four values {very cold,
cold, comfort, warm}, the algorithm would fetch probability (from
the OConIn frequencies) for each of what value. And if cold has the
maximum probability, e.g. 45%, the algorithmwould predict cold as
the missing ConIn.

Algorithm 3 Find Experiences

1. Fetch TConIn
2. for each what (sensed data) do
3. for each when (time) do
4. add to tuple
5. increase frequency
6. for each where (location) do
7. add to tuple
8. increase frequency
9. for each who (originator) do
10. add to tuple
11. increase frequency
12. find AConIn
13. add to tuple (TConIn, AConIn) to learn

experiences
14. learnBelief(TConIn, AConIn);
15. end for
16. end for
17. end for
18. end for

puting and Informatics 14 (2018) 73–87
Algorithm 4 Learn Belief
1. Fetch TConIn, AConIn
2. for i = size of TConIn do
3. for j = size of AConIn do
4. if TConIn(i) is associated with AConIn(j) then
5. fetch frequency of (TConIn(i), AConIn(j))
6. calculate probability of (TConIn(i), AConIn(j))
7. if probability > threshold (Eq. (2)) then
8. new belief is obtained
9. end if
10. else if
11. forward for higher level action (to cloud)
12. end if
13. end for
14. end for

Algorithm 5 Prediction

1. for each available tuple of ConIn do
2. find OConIn for this tuple
3. for each available tuple of ConIn do
4. fetch frequency
5. if frequency of OConIn equals highest frequency then
6. ConIn predicted
7. end if
8. end for
9. end for

82 H. Rahman, R. Rahmani / Applied Com
Table 1
Advantages of Belief-Network over rule-based.

What When Motion Location Heating Lighting

3 3 2 2 2 2
4 3 2 3 2 2
4 4 2 4 2 2
5 5 2 4 2 2
6 5 2 5 2 2

Fig. 10. (a) Rules increas
5. Results & discussions

This section demonstrates the evaluation of the concept men-
tioned in the earlier sections. This paper has employed simulations
as experiments [32,33] for verifying feasibility of the proposed
approach. Simulations generate new data about empirical systems
[32] which is also a kind of experiment and allow to carry scientific
inquiry of a model with less-cost and more quickly [33]. The model
has been developed in Java and the developed model has been
tested on a raspberry pi 2 (Model B) [12] to observe performances
since the paper mentioned it as a suitable candidate for edge con-
troller. By consulting earlier research [11], data about a
SmartHome has been generated which is randomized in each sim-
ulation. These simulated data are later fed into the developed
model to generate new data to verify the feasibility of the model.
First of the objectives is investigation of employing belief-
network instead of only rules where it is shown how such belief-
network can help in reducing rule domination and obtaining faster
response time. Subsequently, the results of applying belief-
network and reinforcement learning to predict or learn actions
have been portrayed. Each simulation has been run for 100 times
except for prediction part which has been run few hundred times;
and mean values for each simulation are reported. Evaluation of
the algorithms can be seen in the following sub-sections.

5.1. Simulation scenario

In order to verify the feasibility of the proposed approach in this
paper, the algorithms are verified by simulated ConIn values. Sim-
ulation scenario for each of the DAP is presented in this sub-section
where decision is made based on the prior-belief of each ConIn. In
the following example of a SmartHome scenario, assuming that
Total ConIn Increase in ConIn Total rules % increase in rules

14 - 144 -
16 2 288 100
18 4 512 255
20 6 800 456
22 8 1200 733

e; (b) response time.

Fig. 11. Pseudo-code for turning on heating in belief-network.

Fig. 12. Simulated ConIn examples and probability for actuations.

H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87 83

84 H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87
there are four actuators, e.g. heating, lighting, making breakfast
and dinner (could be more for example: door, robot cleaner, win-
dow blinds control, etc.), probability for each of the actuation is
1.0 (since probability cannot be over 1.0) which is then distributed
among the ConIn that affect the actuation. For instance, activation
of heating is dependent mainly on temperature, user’s current loca-
tion, time and motion sensor. Of these 4 ConIn, temperature affects
heatingmostly followed by user’s location, time andmotion sensor.
Therefore, temperature is given 0.5 of probability followed by 0.2 to
both location and time, and 0.1 to motion sensor. Motion sensor
gets low probability because user might be at home but no physical
activity (e.g. sleeping) is detected. However, temperature can be
further divided into many sub-categories (e.g. cold, comfort, warm;
or low, medium, high) and each of these sub-categories would then
be given prior-belief. Obviously cold or low temperature affects
heating more than any other ConIn, so this ConIn would get higher
belief compared to others. Figs. 8 and 9 show the prior-belief distri-
bution for heating and lighting actuation respectively. However,
the prior-belief that is distributed among the ConIn may not be
optimal, optimal belief distribution may be done by employing
other type of learning techniques at the cloud as part of high-
level intelligence or during personalization as mentioned earlier.

5.2. Belief-network vs. rule-based solution

As thenumberof connected things increase in IoT sodoes thevol-
ume of context information. This high influx of ConInwould require
a large number of rules to execute a certain task. For instance, in a
SmartHome scenario as shown earlier in example 1 (Section 3.1.1),
if we want to apply rules for events related to a temperature sensor
at bedroom,where it is assumed that sensed temperature values are
grouped in different ranges (e.g. cold, comfortable, warm (3)), and
after contextualizing the temperature values with AConIn (location:
home, away (2); time: morning, afternoon, evening (3);motion: yes,
Fig. 13. Results of predictio
no (2)) would require (3 � 2 � 3 � 2 =) 36 rules to activate any
action comparing every conditions based on these ConIn. Now if
there are 3 more ConIn are added, the required rules would become
108 (= 3 � 3 � 4 � 3) - a whooping 200% increase in the rules. This
gives an idea about howdepending only on the rules for intelligence
wouldbe impractical for thousands, or evenmore, of things for apar-
ticular controller. Table 1 and Fig. 10(a) further demonstrate this
dependency on the rules.

From Fig. 10(a) and Table 1, it is seen that a total of 1200 rules
might be required for a total of 22 ConIn, whereas for ConIn of 14
the rule shrinks to 144. This is roughly 733% increase in the number
of rules requirement only for 8 ConIn increase. The requirement of
number of rules for every condition to be met follows the product
rule of thing’s ConIn. This can be obtained by the following formula:

Nr ¼
Yn

i¼1

NCIi ð3Þ

Nr = Total number of rules, NCI = Number of ConIn, n = total number
of context state

Now if belief-network, i.e., prior-belief, is employed instead of
rules for each of the ConIn as shown in earlier section, the require-
ment for rules decrease drastically. The total number of rules
needed by assigning prior-belief for each ConIn is equivalent to
the total of number of ConIn plus one rule for taking each action
for combined belief as formulated in Eq. (4). Fig. 10(a) shows two
results of belief-network with 1 and 20 actions to be taken, this
suggests that even with increase in number of actions, rules for
belief-network remain lower. Fig. 11 illustrates pseudo-code of
rules for employing belief-network for taking an action. The
pseudo-code also signifies the fact that the more ConIn are there,
the more advantageous employing belief-network becomes.

Nr ¼
Xn

i¼1

NCIi þ NA ð4Þ
n for missing value (1).

H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87 85
NA refers to the number of actions to be taken for NCI.
Besides, belief-network demonstrates faster response time

compared to only rule-based approach as illustrated in Fig. 10(b).
The figure was plotted in logarithmic scale, and ‘x’ times of same
ConIn was used to measure the response time (in nanosecond)
on raspberry pi for both belief-network and rule-based approach.
The result shows that belief-network and rule-based approach
required almost same response time for the first set of ConIn when
number of rules for both of these were almost same; however, as
the number of ConIn increase belief-network required low
response time compared to only rule-based approach. This
response time is one of the significant performance metrics in edge
computing and the proposed approach has demonstrated faster
response time.

The example further signifies the advantages belief-network
provides over only rule-based solution. The controller only needed
11 rules for 10 ConIn to turning on heating, whereas rule-based
would have to define a rule for every condition for each ConIn
which would make number of rules to be 36. However, belief-
network requires to provide prior-belief which rule-based does
not necessarily need to. This prior-belief distribution among ConIn
can further be learned or predicted by utilizing concept similar to
reinforcement learning as shown in the following sub-section.

5.3. Learning and prediction

The example shown above, i.e. prior-belief for each ConIn,
works when all the ConIn are available. However, in a situation
when one or more ConIn is unavailable, the IoT controller would
be unable to make a decision since one or more of the beliefs to
Fig. 14. Results of predictio
execute a certain task are missing. In such cases, the IoT controller
would have to predict through learned experiences to take actions.
Learning in this paper has been limited to experiences only where
the IoT controller would learn frequency of each ConIn and ConIn
tuple. However, learning an action based on ConIn and AConIn is
also possible which has been left for future work. Fig. 12 shows
results of running the model of the proposed approach assuming
that no ConIn value is missing. This figure illustrates how collected
raw-data is being contextualized (TConIn) and four such examples
are shown. In the 3rd example, TConIn is {warm, home, morning,
yes} which is interpreted as ‘‘temperature is warm in the morning
at home and the user is awake (motion sensor detected a move-
ment)”. Probability for each actuation is calculated using Eq. (1)
and presented in the figure. Heating probability is 0.36 for the
3rd ConIn tuple which indicates that heating does not need to be
activated, even though user is at home but temperature is warm;
lighting probability is high at 0.77 which indicates light should
be turned on. The actuations that would be activated based on
the following TConIn examples are: lighting and breakfast (2nd &
3rd TConIn); lighting and dinner (4th TConIn).

Fig. 13 shows results for prediction, after running few hundred
more simulations, when a ConIn is missing. Only temperature
value missing has been considered for proof-of-concept of the
algorithms. For the example shown in Fig. 12, frequency and expe-
rience (algorithm 1 and 3) for each particular ConIn are stored
which are subsequently used to predict the missing values. The
first TConIn tuple in Fig. 13 shows that available ConIn tuple:
{home, bedroom, morning}, here bedroom refers to the ‘who’ that
is the identification of the context originator. The probability for
missing temperature value is 0.41, 0.28 and 0.31 respectively for
n for missing value (2).

86 H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87
cold, comfort, and warm. Therefore, the prediction algorithm pre-
dicts ‘‘cold” as the most probable missing temperature for this par-
ticular ConIn tuple. Afterwards, these predicted values are used
with the available ConIn and actions are taken against this ConIn
tuple. For the first ConIn tuple, heating, lighting and breakfast
actions are taken which seem an accurate predicted estimation
since user is at home in the morning. Thus, turning on these actions
are the most probable actions. The algorithm through the experi-
ences learns to improve its tasks. However, the probability for
missing value illustrated in Fig. 13 appear very close, the reasons
being the randomness of the three-simulated value of temperature
where after few hundred simulations each value might appear
equally. Fig. 14 further shows results of prediction algorithm with
five simulated value of temperature. The probability of each value
in this particular case seems more spread. In either case, the pre-
diction algorithm deems successful in predicting the most proba-
ble missing ConIn value and thereby improving the controller’s
performance in executing tasks. Furthermore, Figs. 13 and 14 also
suggest that algorithms are successful in learning the frequencies,
e.g. frequency for each ConIn, ConIn tuple at given ConIn.
6. Conclusions

Internet of Things, the next technological revolution in the cur-
rent world, applications have so far been relied on cloud-based
solutions for computations, analytics, etc. While the advantages
offered by cloud-based solutions cannot be disregarded; the need
for computations, analytics closer to the things, i.e. at the edge is
gaining growing attention recently. Edge analytics are dominated
by rules which are computationally expensive and fail to scale well
with the ever-mounting number of things in the IoT paradigm
which mandate to look into alternative solution such as AI based
solutions. AI based solutions can also cater for uncertain and new
events. The paper has presented an AI based distributed-
intelligence assisted Future Internet of Things Controller (FITC)
that utilizes both edge and cloud based intelligence. More specifi-
cally, edge controller is employed to provide low-level intelligence
and cloud controller would provide high-level intelligence.

It is foreseen that the combination of IoT and AI is inseparable,
and edge controller by utilizing AI techniques closer to the things
would allow necessary edge analytics. Belief-network enables to
make decisions based on prior-belief and it further can learn new
belief based on probability. The proposed IoT edge controller fur-
ther exploits capability similar to the reinforcement learning to
learn experiences which can then be used for learning probability
and making prediction. To the best of our knowledge, this paper is
the first to propose such novel idea of employing belief-network
and reinforcement learning at the edge of IoT. The feasibility of
the proposed approach has been backed up by simulated
SmartHome scenario on a raspberry pi as a proof-of-concept. Fur-
thermore, mathematical formulas for obtaining probability, new
belief and rules for belief-network have been presented in this
paper. Results conveyed here suggest that employing belief-
network considerably reduces requirement of rules and enables
faster response time for the edge controller; it also allows learning
new belief based on experiences. Making prediction is one of the
important capabilities that was missing from earlier edge solutions
which this paper has successfully achieved to make prediction of
the missing ConIn. The paper has also presented algorithms to
achieve the aforementioned capabilities. Further, an algorithm to
provide meaning to the raw-data inspired by the information-
knowledge hierarchy has also been presented. Given the evidences
reported in this paper, the approach can be used in many IoT appli-
cations such as SmartHome, SmartFarming, SmartHealth, Waste
Management, etc. which can be explored in the future.
Moreover, to complement the work presented in this paper, few
of the work that can be done in future are as follows: further ver-
ifying the FITC performance by incorporating a cloud controller
along with the presented edge controller; a distributed edge con-
troller for large scale IoT applications such as traffic/environment
management, SmartAgriculture, etc.; learning was limited to expe-
riences and finding new belief in this paper and this could be
extended to learning other actions such as when to sense data,
activate an actuation, when to send data to cloud, etc.; providing
multi-modal Context-Aware reasoNing (CAN) in order to employ
edge controller for various IoT applications. It would also be inter-
esting to investigate dynamic behaviour of the controller.
References

[1] H. Sundmaeker, P. Guillemin, P. Friess, S. Woelffle, Vision and Challenges for
Realising the Internet of Things Technical Report, European Commission
Information Society and Media, 2010.

[2] M. Ali Feki, F. Kawsar, M. Boussard, L. Trappeniers, The Internet of things: the
next technological revolution, Computer 46 (2) (2013) 24–25, http://dx.doi.
org/10.1109/MC.2013.63.

[3] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (IoT): a vision,
architectural elements, and future directions, Future Gener. Comput. Syst. 29
(7) (2013) 1645–1660.

[4] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context aware
computing for the Internet of Things: a survey, IEEE Commun. Surv.
Tutorials 16 (1) (2014) 414–454, First Quarter.

[5] OpenIoT: Open Source Solution for the Internet of Things into the Cloud,
January 2012. <http://open-platforms.eu/library/openiot-the-open-source-
internet-of-things/> (last accessed: January 2017).

[6] H. Rahman, R. Rahmani, T. Kanter, Enabling scalable publish/subscribe for
logical-clustering in crowdsourcing via mediasense, in: IEEE Science and
Information (SAI) Conference 2014, August 27–29, 2014, London, UK, 2014.

[7] A. Antonić, M. Marjanović, K. Pripužić, I.P. Žarko, A mobile crowd sensing
ecosystem enabled by CUPUS: Cloud-based publish/subscribe middleware for
the Internet of Things, Futur. Gener. Comput. Syst. 1 (2015) 1–16, http://dx.doi.
org/10.1016/j.future.2015.08.005.

[8] A. Botta, W. de Donato, V. Persico, A. Pescapé, On the integration of cloud
computing and internet of things, in: 2014 International Conference on Future
Internet of Things and Cloud, Barcelona, 2014, pp. 23–30. http://dx.doi.org/10.
1109/FiCloud. 2014.14.

[9] Cisco White Paper, Fog Computing and the Internet of Things: Extend the
Cloud to Where the Things Are <https://www.cisco.com/c/dam/en_
us/solutions/trends/iot/docs/computing-overview.pdf> (last accessed:
January 2017).

[10] C. Perera, P.P. Jayaraman, A. Zaslavsky, P. Christen, D. Georgakopoulos,
MOSDEN: an internet of things middleware for resource constrained mobile
devices, in: 2014 47th Hawaii International Conference on System Sciences,
Waikoloa, HI, 2014, pp. 1053–1062. http://dx.doi.org/10.1109/HICSS.2014.
137.

[11] H. Rahman, R. Rahmani, T. Kanter, M. Persson, S. Amundin, Reasoning Service
enabling SmartHome Automation at the Edge of Context Networks, New
Advances in Information Systems and Technologies, vol. 444, Springer
International Publishing, 2016, pp. 777–786, http://dx.doi.org/10.1007/978-
3-319-31232-3_73.

[12] Raspberry Pi. <https://www.raspberrypi.org/> (last accessed: January 2017).
[13] A.M. Rahmani, T.N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang, P. Liljeberg,

Exploiting smart e-Health gateways at the edge of healthcare Internet-of-
Things: a fog computing approach, Future Gener. Comput. Syst. (2017).

[14] Amazon AWS IoT. <https://aws.amazon.com/iot/> (last accessed: January
2017).

[15] K. Ashton, That ‘‘Internet of Things’’ thing, RFiD J. (2009).
[16] H. Rahman, T. Kanter, R. Rahmani, Supporting self-organization with logical-

clustering towards autonomic management of Internet-of-things, Int. J. Adv.
Comput. Sci. Appl. (IJACSA) 6 (2) (2015), http://dx.doi.org/10.14569/
IJACSA.2015.060204.

[17] A.M. Haubenwaller, K. Vandikas, Computations on the edge in the internet of
things, in: Procedia Computer Science, The 6th International Conference on
Ambient Systems, Networks and Technologies (ANT 2015), vol. 52, 2015, pp.
29–34.

[18] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the
internet of things, in: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing (MCC ’12), ACM, New York, NY, USA, 2012, pp. 13–16.

[19] M. Aazam, E.N. Huh, Fog computing and smart gateway based communication
for cloud of things, in: 2014 International Conference on Future Internet of
Things and Cloud, Barcelona, 2014, pp. 464–470.

[20] S. Sarkar, S. Chatterjee, S. Misra, Assessment of the suitability of fog computing
in the context of internet of things, IEEE Trans. Cloud Comput. 99 (2015) 1,
http://dx.doi.org/10.1109/TCC.2015.2485206.

[21] M. Kavis, Forget Big Data – Small Data is Driving The Internet of Things.
<http://www.forbes.com/sites/mikekavis/2015/02/25/forget-big-data-small-

http://refhub.elsevier.com/S2210-8327(17)30036-4/h0005
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0005
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0005
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0005
http://dx.doi.org/10.1109/MC.2013.63
http://dx.doi.org/10.1109/MC.2013.63
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0015
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0015
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0015
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0020
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0020
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0020
http://open-platforms.eu/library/openiot-the-open-source-internet-of-things/
http://open-platforms.eu/library/openiot-the-open-source-internet-of-things/
http://dx.doi.org/10.1016/j.future.2015.08.005
http://dx.doi.org/10.1016/j.future.2015.08.005
http://dx.doi.org/10.1109/FiCloud.%202014.14
http://dx.doi.org/10.1109/FiCloud.%202014.14
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://dx.doi.org/10.1109/HICSS.2014.137
http://dx.doi.org/10.1109/HICSS.2014.137
http://dx.doi.org/10.1007/978-3-319-31232-3_73
http://dx.doi.org/10.1007/978-3-319-31232-3_73
https://www.raspberrypi.org/
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0065
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0065
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0065
https://aws.amazon.com/iot/
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0075
http://dx.doi.org/10.14569/IJACSA.2015.060204
http://dx.doi.org/10.14569/IJACSA.2015.060204
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0085
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0085
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0085
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0085
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0085
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0090
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0090
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0090
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0090
http://dx.doi.org/10.1109/TCC.2015.2485206
http://www.forbes.com/sites/mikekavis/2015/02/25/forget-big-data-small-data-is-driving-the-internet-of-things/#736c8b98661b

H. Rahman, R. Rahmani / Applied Computing and Informatics 14 (2018) 73–87 87
data-is-driving-the-internet-of-things/#736c8b98661b> (last accessed:
January 2017).

[22] XpertRule Software Ltd. <http://xpertrule.com/> (last accessed: January 2017).
[23] Z. Ghahramani, Probabilistic machine learning and artificial intelligence,

Nature 7553 (2015) 452–459.
[24] P.P. Jayaraman, C. Perera, D. Georgakopoulos, S. Dustdar, D. Thakker, R. Ranjan,

Analytics-as-a-service in a multi-cloud environment through semantically-
enabled hierarchical data processing, Softw. Pract. Exp. (2016).

[25] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-P. Calbimonte, M. Riahi, K.
Aberer, P.P. Jayaraman, A. Zaslavsky, I.P. Žarko, et al., in: Interoperability and
Open-Source Solutions for the Internet of Things, Springer, 2015, pp. 13–25.

[26] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, B. Koldehofe, Mobile
fog: a programming model for large-scale applications on the internet of
things, in: Proceedings of the Second ACM SIGCOMM Workshop on Mobile
Cloud Computing (MCC ’13), ACM, New York, NY, USA, 2013, pp. 15–20.

[27] P. Barnaghi, F. Ganz, C. Henson, A. Sheth, Computing perception from sensor
data, Sensors, IEEE, Taipei, 2012, pp. 1–4, http://dx.doi.org/10.1109/
ICSENS.2012.6411505.

[28] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, The MIT
Press Cambridge, Massachusetts, London, England. <https://webdocs.cs.
ualberta.ca/~sutton/book/ebook/the-book.html> (last accessed: January 2017).

[29] SmartThings: Smart Home, Intelligent Living. <https://www.smartthings.com/
> (last accessed: January 2017).

[30] CNET Smart Home – CNET. <http://www.cnet.com/smart-home/> (last
accessed: September 2016).

[31] EDYN Smart Gardeing. <https://edyn.com/> (last accessed: January 2017).
[32] A. Barberousse, S. Franceschelli, C. Imbert, Computer simulations as
experiments, Synthese 169 (3) (2009) 557–574.

[33] E.C. Parke, Experiments, simulations, and epistemic privilege, Philos. Sci. 81 (4)
(2014) 516–536.

Hasibur Rahman earned his Philosophy of Licentiate degree in Computer and
Systems Sciences in 2015 from Stockholm University, Sweden where he is currently
working towards his final doctoral degree. Prior to this, he received his M.Sc. degree
in Computer Engineering from Mid Sweden University in 2013. Immediate after he
joined Stockholm University as a Research Assistant where he started his current
research in Internet of Things. He has previously conducted research in Wireless
Communications -CDMA, Single Frequency Networks, Mobile TV, DVB-T/H, etc. His
current research includes autonomic management of IoT, Context Information
management, Intelligent SmartCity applications, Context-Aware Reasoning ser-
vices, etc.

Rahim Rahmani earned a Ph.D. in communications in heterogeneous networks and
he is an Associate Professor of Computer Science at the Department of Computer
and System Sciences at Stockholm University, where his research focuses on Col-
laborative ubiquitous services and context-aware mobile communication and ser-
vice architectures and self-organizing application infrastructures. He is a member of
the editorial board of International Journal of Wireless Networking and Commu-
nications.

http://www.forbes.com/sites/mikekavis/2015/02/25/forget-big-data-small-data-is-driving-the-internet-of-things/#736c8b98661b
http://xpertrule.com/
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0115
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0115
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0120
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0120
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0120
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0125
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0125
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0125
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0125
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0130
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0130
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0130
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0130
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0130
http://dx.doi.org/10.1109/ICSENS.2012.6411505
http://dx.doi.org/10.1109/ICSENS.2012.6411505
https://webdocs.cs.ualberta.ca/<ucode type=
https://webdocs.cs.ualberta.ca/<ucode type=
https://www.smartthings.com/
http://www.cnet.com/smart-home/
https://edyn.com/
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0160
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0160
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0165
http://refhub.elsevier.com/S2210-8327(17)30036-4/h0165

	Enabling distributed intelligence assisted Future Internet of Things Controller (FITC)
	1 Introduction
	2 Related work
	3 Proposed approach
	3.1 Distributed intelligence
	3.1.1 Example 1
	3.1.2 Example 2

	3.2 Belief-network

	4 Model
	4.1 Workflow
	4.2 Algorithms
	4.2.1 Contextualization
	4.2.2 Determine task
	4.2.3 Find experience
	4.2.4 Prediction

	5 Results & discussions
	5.1 Simulation scenario
	5.2 Belief-network vs. rule-based solution
	5.3 Learning and prediction

	6 Conclusions
	References

