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a b s t r a c t

Multi-view maximum entropy discrimination (MVMED) and alternative MVMED (AMVMED) are pro-
posed as extensions of maximum entropy discrimination (MED). In MVMED and AMVMED, they use hard
margin consistency principle that the decision of margin parameter is related to classifier parameter
directly. While the decision always be indirectly in practice, thus soft margin consistency based multi-
view maximum entropy discrimination (SMVMED) has been proposed. But it is found that SMVMED is
only adaptive to supervised problems. In this paper, we extend the model of SMVMED to the semi-
supervised problems and develop a semi-supervised SMVMED (SSMVMED). Related experiments on
multi-view data sets from different aspects have validated the effectiveness of SSMVMED theoretically
and empirically. From the experiments, it is found that (1) compared with SMVMED, the average test
accuracy of SSMVMED has a 2% enhancement; (2) SSMVMED costs more training time than SMVMED
and the extra time is not more than 10%; (3) in terms of the generation of additional unlabeled instances,
‘mid’ strategy has a better test accuracy than ‘self’ and taking all instances to get the center brings a better
test accuracy as well; (4) with SSMVMED, the applications to estimation problem and regression problem
will be more feasible.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Background

Multi-view data set is composed of instances with multiple
views and each view consists of multiple features. A corresponding
feature group is made up of these features. Take a video data set as
an example, suppose this data set consists of multiple videos and
each video appears in multiple different forms including visual,
audio, and text. Then we treat each form as a view of a video. More-
over, each view has several features, for example, text view can be
described by text color, text size, text content and color, size, con-
tent form a feature group of text view. In order to process those
multi-view data sets, many multi-view learning machines are pro-
posed as below.

(1) pre-fusion methods: multiple kernel learning (MKL) [1], cen-
tered alignment-based MKL algorithms (CABMKL) [2], sim-
ple MKL method (SMKL) [3], group Lasso-based MKL
method (GLMKL) [4], localized MKL (LMKL) [5].

(2) late-fusion methods: robust late fusion method (RLF) [6].
(3) subspace approaches: multi-view linear discriminant analy-

sis (MV-LDA) [7], multi-view canonical correlation analysis
(MV-CCA) [8], multi-view locality preserving projections
(MV-LPP) [9].

(4) disagreement-based methods: co-training [10], confident
co-training with data editing (CoTrade) [11], co-regularized
Laplacian SVM (Co-Lap) [12].

But these learning machines always neglect to consider uncer-
tainties over model parameters and then maximum entropy dis-
crimination (MED) [13] has been developed to consider this issue
and learn a discriminative classifier. In MED, it learns a distribution
pðHÞ over classifier parameter H and this is contrast to the tradi-
tional learning machines. In terms of traditional learning machines,
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they only find a single classifier parameter pðHÞ of the discriminant
function LðHÞ (e.g., LðXt jHÞ ¼ hTXt þ b;H ¼ fh; bg). While MED
obtains a joint distribution pðH; cÞ over H and margin parameters
c by minimizing its relative entropy with respect to some prior tar-
get distribution p0ðH; cÞ under certain large margin constraints,
MED marginalizes out c to obtain pðHÞ [14].

Although MED considers the uncertainties over model parame-
ters, its applicable scope limits to single-view problem. Thus multi-
view maximum entropy discrimination (MVMED) [15] and alter-
native MVMED (AMVMED) [16] are developed to extend the model
of MED to multi-view problems. MVMED and AMVMED exploit
multiple views in a different style called margin consistency and
enforce the margins from two views to be identical. In other words,
they adopt the hard margin consistency while have no ability to
process large data sets. So soft margin consistency based multi-
view maximum entropy discrimination (SMVMED) [17] has been
proposed. Different from MVMED and AMVMED, SMVMED
achieves ‘soft’ margin consistency by utilizing the sum of two KL
divergences KLðpðcÞjjqðcÞÞ and KLðqðcÞjjpðcÞÞ in the objective func-
tion, where pðcÞ and qðcÞ are the posteriors of two view margins,
respectively. By balancing all involved terms in the objective func-
tion, SMVMED is more flexible.

While SMVMED is only feasible for supervised problems, i.e.,
the used instances are labeled. Indeed, most real-world multi-
view data sets consist of labeled and unlabeled instances and they
are named semi-supervised data sets. In order to process semi-
supervised data sets, semi-supervised learning machines have
been developed and introduced in many applications [18–24]. In
terms of the applications of MED, there also exist some related
learning machines for semi-supervised problems, for example,
semi-supervised multi-sensor classification via consensus-based
multi-view maximum entropy discrimination [25], semi-
supervised learning via generalized maximum entropy [26], and
semi-supervised multi-task learning via self-training and maxi-
mum entropy discrimination [27]. But these learning machines
do not consider soft margin and we find that soft margin has its
special physical meaning. As [17] said, if one view corresponds to
one special sub-learning machine, its parameters include classifier
parameterH and margin parameter c. If the decision of c is related
to H directly, we define it as hard margin consistency while if the
decision is not directly, we call it as soft margin consistency. For
soft margin consistency, [17] has also validated that the decision
of c is more flexible and the performance and the conduction of
a learning machine is much better and fast.
1.2. Proposal and trouble

Thus, in this paper, we still adopt soft margin consistency and
apply it to semi-supervised problems and then propose the semi-
supervised soft margin consistency based multi-view maximum
entropy discrimination (SSMVMED). But during the process of
SSMVMED, there is a potential trouble when the data sets consist
of few labeled instances and many unlabeled ones. As we know,
compared with unlabeled instances, labeled ones can provide more
useful discriminant information while in real-world applications,
most data sets consist of few labeled instances and many unlabeled
ones and labeling instances is a high-cost task. Thus, for traditional
semi-supervised problems, the performances of learning machines
are sensitive to the data sets. In order to enhance the performance
of a learning machine, a widely used and feasible method is gener-
ating additional unlabeled instances with the original labeled or
unlabeled ones and combining all instances together. These addi-
tional unlabeled instances will possess some discriminant informa-
tion derived from the original labeled and unlabeled instances.
Here, Universum learning [28] is such a kind of method. For
Universum learning, it aims to create additional unlabeled
instances (also called Universum instances or Universum set) and
incorporates priori knowledge which is introduced in the form of
additional unlabeled instances into the learning process [29]. By
Universum learning, the performance of a traditional learning
machine can be boosted. Now Universum learning has been grad-
ually spread into different applications [30–34] and some related
methods are also developed including Universum support vector
machine (U-SVM) [35] and self-Universum support vector machine
(SUSVM) [36]. So for our SSMVMED, we also adopt Universum
learning to add useful discriminant information.

But for these Universum-based learning machines, there still
exists two key problems. First one is that when generating Univer-
sum set, the weights of views and features which play different
discriminant roles are always neglected. Second one is that when
generating the additional unlabeled instances, traditional
Universum-based learning machines only adopt labeled or unla-
beled instances for generation. In order to solve the first problem,
we adopt weighted multi-view clustering (WMVC) [37] which is a
multi-view clustering method and can find the optimal cluster
assignment. With WMVC, the weights of views and features can
be gotten. For the second problem, we try to design some schemes
and adopt both labeled and unlabeled instances to generate the
additional unlabeled instances.

1.3. Novelty and practical applications

The novelty of the proposed SSMVMED is given below.
First, compared with some semi-supervised learning machines

with MED, SSMVMED adopts the soft margin and inherits the
advantages of soft margin consistency which makes the decision
of margin parameters be more flexible and the performance and
the conduction of a learning machine be much better and faster.

Second, SSMVMED extends the model of SMVMED to semi-
supervised problems and this enlarges the applicable scope of
MED.

Third, during the procedure of SSMVMED, it improves the
Universum learning methods, and when generating the additional
unlabeled instances, the weights of views and features will be con-
sidered and both labeled and unlabeled instances are used for the
generation.

The practical applications of SSMVMED can include estimation
problems, regression problem, classification problems and so on.
In our work, we will adopt some related experiments to show
the effectiveness of our proposed SSMVMED in these applications.

1.4. Framework

The rest of this paper is organized as below. Related work about
MED is given in Section 2. Description of SSMVMED is given in Sec-
tion 3. Experiments are given in Section 4. The conclusions are
given in Section 5.
2. Related work

Since our SSMVMED is the extension of SMVMED and SMVMED
is different from MVMED and AMVMED, thus we will review
MVMED, AMVMED, and SMVMED here.

2.1. MVMED

MVMED was proposed as an extension of MED to the multi-
view learning setting and it considers a joint distribution
pðH1;H2Þ over the view 1 classifier parameter H1 and view 2 clas-
sifier parameter H2. Using the augmented joint distribution
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pðH1;H2; cÞ, the model of MVMED is given in Eq. (1) [15] where
1 6 t 6 N. In this model, L1ðX1

t jH1Þ and L2ðX2
t jH2Þ are discriminant

functions from two views, respectively. yt is the class label of tth
labeled instance Xt and its margin parameter is ct . X

1
t and X2

t are
the representations of Xt in the first and second views, respectively.
With MVMED, multi-view feature selection, multi-view multi-task
learning, multi-view structure learning, and some other problems
can be solved well.

minpðH1 ;H2 ;cÞKLðpðH1;H2; cÞjjp0ðH1;H2; cÞÞ ð1Þ

s:t:

R
pðH1;H2; cÞ½ytL1ðX1

t jH1Þ � ct �dH1dH2dc P 0R
pðH1;H2; cÞ½ytL2ðX2

t jH2Þ � ct �dH1dH2dc P 0

(

2.2. AMVMED

Different from MVMED, AMVMED considers two separate dis-
tributions pðH1Þ over H1 and pðH2Þ overH2 and balances KL diver-
gences of their augmented distributions with respect to the
corresponding prior distributions. The model of AMVMED is given
in Eq. (2) [16] and 1 6 t 6 N;q is a coefficient.

minp1ðH1 ;cÞ;p2ðH2 ;cÞqKLðp1ðH1; cÞjjp0ðH1; cÞÞ ð2Þ
þ ð1� qÞKLðp2ðH2; cÞjjp0ðH2; cÞÞ

s:t:

R
pðH1; cÞ½ytL1ðX1

t jH1Þ � ct �dH1dc P 0R
pðH2; cÞ½ytL2ðX2

t jH2Þ � ct �dH2dc P 0R
pðH1; cÞdH1 ¼ R

pðH2; cÞdH2

8><
>:
As [17] said, for both MVMED and AMVMED, they exploit the

multiple views in a different style called margin consistency which
indicate the margins from two views are enforced to be identical.
Moreover, the margins are related to the parameters H1 and H2

directly and those margins are named as hard margins. Although
MVMED and AMVMED have provided state-of-the-art multi-view
learning performance, hard margin requirement is somewhat too
strong to fulfill in many cases. For example, all positive margins
can lead to the same label prediction in binary classifications.

2.3. SMVMED

SMVMED is different from MVMED and AMVMED due to the
margin of SMVMED is soft. SMVMED achieves margin consistency
by minimizing the KL-divergence between the posteriors of margin
parameters from two views. Then a trade-off parameter balancing
large margin and margin consistency is also introduced to make
the model more flexible. The model of SMVMED is given below.
Here, pðHÞ or qðHÞ is a distribution over H and pðH1;H2Þ is a joint
distribution over H1 and H2. The parameter a is a parameter play-
ing the trade-off role of balancing large margin and soft margin
consistency. Compared with MVMED and AMVMED, SMVMED is
more flexible and the performance and the conduction of a learn-
ing machine with SMVMED is much better and faster.

minpðH1 ;cÞ;qðH2 ;cÞKLðpðH1Þjjp0ðH1ÞÞ þ KLðqðH2Þjjq0ðH2ÞÞ ð3Þ
þ ð1� aÞKLðpðcÞjjp0ðcÞÞ þ ð1� aÞKLðqðcÞjjq0ðcÞÞ
þ aKLðpðcÞjjqðcÞÞ þ aKLðqðcÞjjpðcÞÞ

s:t:

R
pðH1; cÞ½ytL1ðX1

t jH1Þ � ct �dH1dc P 0R
qðH2; cÞ½ytL2ðX2

t jH2Þ � ct�dH2dc P 0

(

3. Semi-supervised Soft Margin Consistency based Multi-view
Maximum Entropy Discrimination (SSMVMED)

Our proposed SSMVMED consists of three steps. First, compute
the weights of views and features by WMVC [37]. Second, generate
the additional unlabeled instances. Third, apply the original
labeled, unlabeled, and the generated additional unlabeled
instances into the model of SSMVMED.
3.1. Obtain the weights of views and features

In order to obtain the weights of views and features, we adopt
WMVC for help. Suppose there is a multi-view data set consisting
of N instances represented by V views, i.e.,

v ¼ fX1
1;X

2
1; . . . ;X

V
1 ; . . . ;X

1
N;X

2
N; . . . ;X

V
Ng where Xvi 2 Rdv is the repre-

sentation of ith instance Xi in the vth view and dv is the dimension
of vth view.Here,we letXv ¼ fXv1 ;Xv2 ; . . . ;XvNg represent the vth view

and v can be represented as v ¼ fX1;X2; . . . ;Xv ; . . . ;XV�1;XVg. Then
according to the notion of WMVC, we try to obtain the weights of
views and the weights of features for each view. Let weight of each
view be xv where v ¼ 1;2; . . . ;V and weight for the lth feature of
vth view is svl where l ¼ 1;2; . . . ; dv . Here, each weight should not

be less than zero. Furthermore,
PV

v¼1xv ¼ 1 and for each view

Xv ;
Pdv

l¼1svl ¼ 1. Then according to the notion of WMVC, the whole
multi-view data set should be divided into several clusters. Let the
number of clusters be M; k denote the index of clusters, and dik
denote the belonging of the instance Xi, if instance Xi belongs to
kth cluster, then dik ¼ 1, otherwise, dik ¼ 0. For any instance
Xi;

PM
k¼1dik ¼ 1. The objective function of WMVC is given in Eq. (4).

minfdikgMk¼1 ;fxvgVv¼1 ;fsvgVv¼1
eH ð4Þ

s:t:

PM
k¼1dik ¼ 1; 8i; dik 2 f0;1gPV
v¼1xv ¼ 1; xv P 0Pdv

l¼1svl ¼ 1; 8v; svl P 0

8>><
>>:
In this function, eH ¼PV

v¼1ðxv Þp
PN

i¼1

PM
k¼1dikjjdiagðsv ÞðXvi �mv

k Þjj2þ
b
PV

v¼1jjsv jj2; sv ¼ fsv1 ; sv2 ; . . . ; svdv g, and diagðsv Þ represents the
diagonal matrix where other elements in this matrix are zeros.

Moreover, mv
k ¼

PN

i¼1
dikX

v
iPN

i¼1
dik

is the cluster center of kth cluster in the

vth view. Furthermore, b
PV

v¼1jjsv jj2 is used to control the sparsity
of the feature weight vectors sv ;8v so as to avoid the situation that
only a few features are selected in getting a very small but mean-
ingless objective value. The parameters p and b are the exponential
and balancing parameters, which are selected according to the pri-
ori knowledge of data so as to help controlling the sparsity of the
view weight vector x ¼ fx1;x2; . . . ;xVg and the feature weight
vectors sv ;8v ¼ 1;2; . . . ;V respectively.

Then with WMVC, xv can be updated by Eq. (5) and sv can be
updated by Eq. (6) until the computations of xv and sv be conver-
gent or the iteration times is up to a maximum number. In these

equations, Dv ¼ PN
i¼1

PM
k¼1dik diagðsvÞðXvi �mv

k Þ
�� ���� ��2 and Bvl ¼ bþ

ðxv Þp
PN

i¼1

PM
k¼1dikðXvi �mv

k Þ
2
l where ðHÞl represents the lth element

of ðHÞ.

xv ¼ 1PV
u¼1

Dv
Du

� �1=ðp�1Þ p > 1 ð5Þ

xv ¼ 1;v ¼ argminuDu

0; otherwise

�
p ¼ 1
svl ¼ 1Pdv

m¼1
Bvl
Bvm

8l ð6Þ

Finally, we can get the optimal or finalx and sv and the weights
of views and features are also gotten.
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3.2. Approaches of generating additional unlabeled instances

After we get the weights of views and features, we will adopt
Universum learning to generate the additional unlabeled instances
(i.e., Universum instances or Universum set). In our paper, the gen-
eration approaches used are given in Table 1. From this table, it is
found that each approach has a code with the form ‘A-B-C’. ‘A’ has
three choices, ‘all’, ‘unlabeled’, ‘labeled’. ‘B’ has three choices, ‘all’,
‘near’, ‘far’. ‘C’ has two choices, ‘mid’ and ‘self’. For ‘A’, ‘all’ (‘unla-
beled’, ‘labeled’) represents that one computes the midpoint of
all (unlabeled, labeled) instances as a center. For ‘B’, ‘all’, ‘near’,
and ‘far’ represent that one uses all instances, K instances which
locates nearest from the center, and K instances which locates far-
thest from the center as selected instances respectively. For ‘C’,
‘mid’ represents one takes the midpoint of a selected instance
and the center to construct Universum set while ‘self’ represents
Universum set consists of the selected instances themselves. We
take _U1�2 as the example. In this approach, we first to compute
the mean of all instances as a center, then we select K instances
which locates nearest from this center, finally take the midpoint
of a selected instance and the center to construct Universum set.

For all approaches used here, when we compute midpoint or
distance, the weights of views and features should be used. Con-
cretely speaking, if there are two instances, X1 ¼ fX1

1;X
2
1; . . . ;X

V
1g

and X2 ¼ fX1
2;X

2
2; . . . ;X

V
2g. The weights of views are x1;x2; . . . ;xV

and the weights of features are sv where v ¼ 1;2; . . . ;V and
sv ¼ fsv1 ; sv2 ; . . . ; svdv g. d

v is the dimension of vth view and svl repre-
sents weight of the lth feature of vth view. Then the midpoint of X1

and X2 is
PV

v¼1
xv
Pdv

l¼1
ðsv

l
ðXv1þXv2 ÞlÞ

2 and the distance between X1 and X2

is
PV

v¼1xv
Pdv

l¼1ðsvl ðXv1 � Xv2Þ2l Þ where ðHÞl represents the lth ele-
ment of ðHÞ.
3.3. Solution of SSMVMED

Once we generate additional unlabeled instances, we will apply
them along with the original labeled and unlabeled instances into
the model of SSMVMED. For convenience, we adopt a binary-view
data set for example. For a data set with more than two views, we
can divide it into several binary-view problems, and for each
binary-view problem, a sub model of SSMVMED is gotten and they
can be integrated together and get the final model for multi-view
data sets.

Suppose for a binary-view data sets, there are N (here N is dif-
ferent from the N in Section 3.1 which denotes the number of all
instances) labeled instances fX1

t ;X
2
t ; ytg and L unlabeled instances

(including the generated additional ones) fU1
i ;U

2
i g. Here, X1

t (X2
t )

represents the first (or second) view of the tth labeled instance
Xt and yt is its class label. For U

1
i (U

2
i ), it represents the first (or sec-

ond) view of ith unlabeled instance Ui. Different from Eq. (3), the
model of SSMVMED adds the constraint of unlabeled instances
and the parameter c ¼ fcjg where j ¼ 1;2; . . . ;N;N þ 1; . . . ;N þ L.
Namely, SSMVMED considers the margin constraint of each labeled
Table 1
The codes of used Universum set construction ways.

Code Way Code

_U1�1 all-all-mid _U2�1 u
_U1�2 all-near-mid _U2�2 un
_U1�3 all-far-mid _U2�3 u
_U1�4 all-near-self _U2�4 un
_U1�5 all-far-self _U2�5 u
or unlabeled instance. Eq. (7) shows the model of SSMVMED. In
this model, 1 6 t 6 N;1 6 i 6 L; pðHÞ (qðHÞ) is a distribution over
H and pðH1;H2Þ (qðH1;H2Þ) is a joint distribution over H1 and
H2. a is still a parameter playing the trade-off role of balancing
large margin and soft margin consistency. H1 (H2) is the view 1
(2) classifier parameter. c is the margin parameter.

minpðH1 ;cÞ;qðH2 ;cÞKLðpðH1Þjjp0ðH1ÞÞ þ KLðqðH2Þjjq0ðH2ÞÞ ð7Þ
þ ð1� aÞKLðpðcÞjjp0ðcÞÞ þ ð1� aÞKLðqðcÞjjq0ðcÞÞ
þ aKLðpðcÞjjqðcÞÞ þ aKLðqðcÞjjpðcÞÞ

s:t:

R
pðH1; cÞ½ytL1ðX1

t jH1Þ � ct �dH1dc P 0R
qðH2; cÞ½ytL2ðX2

t jH2Þ � ct�dH2dc P 0R
pðH1; cÞ½L1ðU1

i jH1Þ � ci�dH1dc P 0R
qðH2; cÞ½L2ðU2

i jH2Þ � ci�dH2dc P 0

8>>>><
>>>>:
In order to optimize Eq. (7), we use an iterative scheme for find-

ing a solution to Eq. (7) which is similar with the one given in [17].
In the mth iteration, we successively update pðmÞðH1; cÞ and
qðmÞðH2; cÞ by solving the following two problems (Eqs. (8) and
(9)) and before the solution, we choose some initial value for
qð0ÞðH2; cÞ with q0ðH2; cÞ and this makes Eq. (8) be a standard
MED problem.

pðmÞðH1; cÞ ¼ argminpðmÞðH1 ;cÞKLðpðmÞðH1Þjjp0ðH1ÞÞ ð8Þ
þ ð1� aÞKLðpðmÞðcÞjjp0ðcÞÞ þ aKLðpðmÞðcÞjjqðm�1ÞðcÞÞ

s:t:

R
pðmÞðH1; cÞ½ytL1ðX1

t jH1Þ � ct�dH1dc P 0R
pðmÞðH1; cÞ½L1ðU1

i jH1Þ � ci�dH1dc P 0

(

qðmÞðH2; cÞ ¼ argminqðmÞðH2 ;cÞKLðqðmÞðH2Þjjq0ðH2ÞÞ ð9Þ
þ ð1� aÞKLðqðmÞðcÞjjq0ðcÞÞ þ aKLðqðmÞðcÞjjpðmÞðcÞÞ

s:t:

R
qðmÞðH2; cÞ½ytL2ðX2

t jH2Þ � ct �dH2dc P 0R
qðmÞðH2; cÞ½L2ðU2

i jH2Þ � ci�dH2dc P 0

(

The Lagrangian of Eq. (8) can be written as

L ¼
Z

pðmÞðH1Þlog p
ðmÞðH1Þ
p0ðH1Þ dH1 ð10Þ

þ ð1� aÞ
Z

pðmÞðcÞlog p
ðmÞðcÞ
p0ðcÞ

dcþ a
Z

pðmÞðcÞlog pðmÞðcÞ
qðm�1ÞðcÞdc

�
XN
t¼1

Z
pðmÞðH1; cÞkðmÞ

1;t ½ytL1ðX1
t jH1Þ � ct�dH1dc

�
XL

i¼1

Z
pðmÞðH1; cÞ/ðmÞ

1;i ½L1ðU1
i jH1Þ � ci�dH1dc

¼
Z

pðmÞðH1; cÞlog pðmÞðH1; cÞ
p0ðH1Þ½p0ðcÞ�1�a½qðm�1ÞðcÞ�a

�
XN
t¼1

Z
pðmÞðH1; cÞkðmÞ

1;t ½ytL1ðX1
t jH1Þ � ct�dH1dc

�
XL

i¼1

Z
pðmÞðH1; cÞ/ðmÞ

1;i ½L1ðU1
i jH1Þ � ci�dH1dc
Way Code Way

nlabeled-all-mid _U3�1 labeled-all-mid

labeled-near-mid _U3�2 labeled-near-mid

nlabeled-far-mid _U3�3 labeled-far-mid

labeled-near-self _U3�4 labeled-near-self

nlabeled-far-self _U3�5 labeled-far-self
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where kðmÞ
1 ¼ fkðmÞ

1;t g and /ðmÞ
1 ¼ f/ðmÞ

1;i g are sets of nonnegative
Lagrange multipliers, one for each classification constraint. Then
we take the partial derivative of Eq. (10) with respect to
pðmÞðH1; cÞ, set it to be zero and get the solution of pðmÞðH1; cÞ as
below.

pðmÞðH1; cÞ ¼ 1

ZðmÞ
1 ðkðmÞ

1 Þ
p0ðH1Þ½p0ðcÞ�1�a½qm�1ðcÞ�a ð11Þ

e
PN

t¼1
kðmÞ
1;t

½ytL1ðX1
t jH1Þ�ct �þ

PL

i¼1
/ðmÞ
1;i

½L1ðU1
i jH1Þ�ci �

where ZðmÞ
1 ðkðmÞ

1 Þ is the normalization constant and e is the exponen-

tial operation. According to [17] said, kðmÞ
1 is set by finding the

unique maximum of the following concave objective function.

JðmÞ
1 ðkðmÞ

1 Þ ¼ �logZðmÞ
1 ðkðmÞ

1 Þ ð12Þ
Then for Eq. (9), we adopt the same analysis and obtain the

solution of qðmÞðH2; cÞ as below.

qðmÞðH2; cÞ ¼ 1

ZðmÞ
2 ðkðmÞ

2 Þ
q0ðH2Þ½q0ðcÞ�1�a½pmðcÞ�a ð13Þ

e
PN

t¼1
kðmÞ
2;t ½ytL2ðX

2
t jH2Þ�ct �þ

PL

i¼1
/ðmÞ
2;i

½L2ðU2
i jH2Þ�ci �

where kðmÞ
2 ¼ fkðmÞ

2;t g and /ðmÞ
2 ¼ f/ðmÞ

2;i g are another sets of nonnega-

tive Lagrange multipliers. Like kðmÞ
1 ; kðmÞ

2 is set by finding the unique
maximum of the following concave objective function.

JðmÞ
2 ðkðmÞ

2 Þ ¼ �logZðmÞ
2 ðkðmÞ

2 Þ ð14Þ
As [17] said, after each iteration, we calculate the relative error

between values of Eq. (12) from two successively iterations and
that of Eq. (14), respectively, and utilize them for determining con-
vergence. When the relative errors

JðmÞ
1 ðkðmÞ

1 Þ � Jðm�1Þ
1 ðkðm�1Þ

1 Þ
Jðm�1Þ
1 ðkðm�1Þ

1 Þ
ð15Þ

and

JðmÞ
2 ðkðmÞ

2 Þ � Jðm�1Þ
2 ðkðm�1Þ

2 Þ
Jðm�1Þ
2 ðkðm�1Þ

2 Þ
ð16Þ

are both less than some tolerance �, the iteration ends and finally we
can get the optimal pðH1Þ and qðH2Þ. Then for a test instance

Xr ¼ fX1
r ;X

2
r g, we can use ŷ1 ¼ sign

R
pðH1ÞL1ðX1

r jH1ÞdH1

� �
to get

the class label of Xr from the first view while

ŷ2 ¼ sign
R
pðH2ÞL2ðX2

r jH2ÞdH2

� �
is used to compute the class label

of Xr from the second view. Finally, we can use

ŷ ¼ sign x1
R
pðH1ÞL1ðX1

r jH1ÞdH1 þx2
R
pðH2ÞL2ðX2

r jH2ÞdH2

� �
to

get the class label of Xr in the whole sample space without consider-
ing the view spaces where x1 and x2 are the weights of views
respectively.

4. Experiments

In order to validate that SSMVMED has a better performance,
we conduct our experiments on five parts. They are (1) comparison
for test accuracy, (2) comparison for training time and computa-
tional complexity, (3) comparison between different additional
unlabeled instances generation approaches in terms of test accu-
racy and training time, (4) application to estimation problem,
and (5) application to regression problem.

The used data sets and compared learning machines are given
in related experimental contents and we will show the common
experimental settings and the setting for our SSMVMED. Con-
cretely speaking, (a) for each data set, we run the compared learn-
ing machine for 10 times and 70% instances for each data set are
chosen in random for training and the remaining are chosen for
test. In the training set, we randomly choose 30% as the labeled
instances while the left 70% are treated as unlabeled instances;
(b) for SSMVMED, (b-1) when we compute the weights of views
and features, the setting can be referred to [37], i.e., exponential
parameter p is selected from the set f1;2; . . . ;30g and balancing
parameter b is initialized to be 0:1, the cluster number equals to
be the class number, the maximum iteration times is 300;xv ¼ 1

V,
and svl ¼ 1

dv
;8l ¼ 1;2; . . . ; dv ;8v ¼ 1;2; . . . ;V; (b-2) when we gener-

ate the additional unlabeled instances, the used approaches can
refer to Table 1. In terms of the number of instances which locates
farthest or nearest from the center K is selected from the set
f1; ::;Ne�maxg where Ne�max ¼ Nt � Nmax. Nt is the total number of
training instances and Nmax is the number of instances from largest
training class. For example, a training data set consists of three
classes, one has 100 instances, another has 120 instances, and
the third has 140 instances, then Ne�max ¼ 220; (b-3) since we have
given the solution of pðH1Þ and qðH2Þ and furthermore, we also
have given the way to predict a test instance with the optimal
pðH1Þ and qðH2Þ, thus it is found that the key of solution is the
expressions of L1ðX1

t jH1Þ and L2ðX2
t jH2Þ. In our practical experi-

ments, we adopt linear classifier assumptions, i.e.,
L1ðX1

t jH1Þ ¼ hT1X
1
t þ b1 and L2ðX2

t jH2Þ ¼ hT2X
2
t þ b2. Furthermore, in

our experiments, we refer to [17] and suppose that
p0ðH1; cÞ ¼ p0ðH1Þp0ðcÞ ¼ p0ðh1Þp0ðb1Þp0ðcÞ and q0ðH2; cÞ ¼
q0ðH2Þq0ðcÞ ¼ q0ðh2Þq0ðb2Þq0ðcÞ where p0ðh1Þ and q0ðh2Þ are satis-
fied with Gaussian distributions with mean 0 and standard devia-
tion I; p0ðb1Þ and q0ðb2Þ are set to non-informative Gaussian

distributions, and p0ðcÞ ¼
QN
t¼1

p0ðctÞ
QL
i¼1

p0ðciÞ and q0ðcÞ ¼
QN
t¼1

q0ðctÞ
QL
i¼1

q0ðciÞ. Here, p0ðctÞ ¼ q0ðctÞ ¼ cffiffiffiffi
2p

p e�
c2
2 ð1�ct Þ

2
and p0ðciÞ ¼ q0ðciÞ ¼

cffiffiffiffi
2p

p e�
c2
2 ð1�ciÞ

2
which are Gaussian priors with mean 1 that encour-

ages large margins where c is selected from the set
f21;22; . . . ;215g. Finally, for SSMVMED, the tolerance � is initialized
to be0:001.

4.1. Comparison for test accuracy

First, we will show the effectiveness of the proposed SSMVMED
on test accuracy. Since related experiments have been validated
that SMVMED outperforms MED, MVMED, and AMVMED [17]
and the effectiveness of MED-related learning machines have also
been validated compared with the traditional multi-view learning
machines due to MED-related learning machines consider the
uncertainties over model parameters [13–16], thus the used com-
pared learning machine is SMVMED here. Experimental setting of
SMVMED can be referred to the one of SSMVMED (see (b-3)) since
the parameters of SSMVMED include the ones of SMVMED. More-
over, the used data sets are six multi-view data sets Course, Cite-
seer, Cora, WebKB, NewsGroup, and Reuters. Information of them
is summarized in Table 2 where C represents the class number.
(1) Course data set [10] is used to describe web pages and we want
to predict whether the given web page is a course page or not; (2)
Citeseer and Cora data sets both consist of 4 views and we choose
view content and cites here [38]; (3) WebKB data set consists of
web pages collected from four universities: Cornell, Texas, Wiscon-
sin and Washington which have 5 categories, i.e., student, project,
course, stuff and faculty. Data in WebKB are described with two
views: content and citation. We treat WebKB in four separate data
sets grouped by universities [39]; (4) NewsGroup data set [40] is of
six groups extracted from the 20-Newsgroup dataset, i.e., M2, M5,



Table 2
Brief data set description.

Data set C N V dv (v ¼ 1;2; . . . ;V)

Course 2 1051 2 66, 5
Citeseer 6 3264 2 3703, 3264
Cora 7 2708 2 1433, 2708

Cornell 5 195 2 1703, 195
Texas 5 185 2 1703, 185

Washington 5 217 2 1703, 217
Wisconsin 5 262 2 1703, 262
News-M2 2 1200 3 2000, 2000, 2000
News-M5 5 500 3 2000, 2000, 2000
News-M10 10 500 3 2000, 2000, 2000
News-NG1 2 500 3 2000, 2000, 2000
News-NG2 5 400 3 2000, 2000, 2000
News-NG3 8 1000 3 2000, 2000, 2000
Reuters 6 1600 5 2000, 2000, 2000, 2000, 2000
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M10, NG1, NG2, NG3. Every group contains 10 data sets, and we
choose the first set for all six groups in our experiments (see
Table 2). For each data set, there are three views, Partitioning
Around Methods, Supervised Mutual Information, and Unsuper-
vised Mutual Information; (5) In terms of Reuters, it is the abbre-
viation of Reuters RCV1/RCV2 Multilingual and this data set
consists of machine translated documents which are written in five
different languages [41,42]. These five languages are English (EN),
French (FR), German (GR), Italian (IT), and Spanish (SP). Each lan-
guage is treated as a view of this Reuters data set and each docu-
ment can be translated from one language to another language.
For this data set, the documents are also categorized into six differ-
ent topics, i.e., six classes. They are C15, CCAT, E21, ECAT, GCAT,
M11.

Table 3 shows the related experimental results about the com-
parison for test accuracy between SSMVMED and SMVMED. From
this table, it is found that the proposed SSMVMED outperforms
SMVMED in average since on 12 data sets, SSMVMED has a better
performance. The average accuracy of SSMVMED has a 2%
Table 4
Critical values for the two-tailed Nemenyi test. Each critical value qa is based on the stud

No. learning machines 2 3 4 5

q0:05 1.960 2.343 2.569 2.728
q0:10 1.645 2.052 2.291 2.459

Table 3
Test accuracies (average value ± std.) compared with SMVMED. Last row list the win/
tie/lose counts of SSMVMED on all data sets with t-test against SMVMED at
significance level 95%. The best performance on each data set is in bold. (H) indicates
the sig-value with paired t-test.

Data set SSMVMED SMVMED

Course 0.957 ± 0.008 0.943 ± 0.011 (0.032)
Citeseer 0.737 ± 0.008 0.714 ± 0.008 (0.041)
Cora 0.827 ± 0.002 0.815 ± 0.010 (0.047)

Cornell 0.788 ± 0.021 0.760 ± 0.041 (0.023)
Texas 0.797 ± 0.014 0.785 ± 0.037 (0.031)

Washington 0.826 ± 0.019 0.816 ± 0.039 (0.026)
Wisconsin 0.884 ± 0.011 0.868 ± 0.023 (0.043)
News-M2 0.967 ± 0.003 0.972 ± 0.010 (0.057)
News-M5 0.989 ± 0.011 0.965 ± 0.015 (0.037)
News-M10 0.855 ± 0.003 0.829 ± 0.017 (0.033)
News-NG1 0.929 ± 0.001 0.931 ± 0.025 (0.049)
News-NG2 0.953 ± 0.006 0.912 ± 0.009 (0.012)
News-NG3 0.915 ± 0.006 0.901 ± 0.009 (0.016)
Reuters 0.783 ± 0.001 0.753 ± 0.016 (0.033)

Average 0.872 ± 0.008 0.855 ± 0.019

W/T/L SSMVMED vs. SMVMED 13/1/0
enhancement. Moreover, from the standard deviation values, it is
found that the performance of SSMVMED is more stable than
SMVMED.

Furthermore, in order to validate the difference between
SSMVMED and SMVMED is significant, we adopt paired t-test
[45] (paired t-test is different from t-test) and Nemenyi statistical
test [46] for quantitative evaluation analysis. Paired t-test is used
to analyze if the differences between two compared learning
machines on one data set are significant or not. Then for Nemenyi
statistical test, it is used to analyze if the differences between two
compared learning machines on multiple data sets are significant
or not. Nemenyi is different from another famous test, i.e., Fried-
man statistical test which is used to analyze if the differences
between all compared learning machines on multiple data sets
are significant or not. Since the number of compared learning
machines here is two, thus we adopt Nemenyi statistical test rather
than Friedman statistical test. In generally, the differences always
indicate the ones in test accuracy. Thus, here we conduct quantita-
tive evaluation analysis in terms of test accuracy.

(A) For paired t-test [45], we use sig-value to represent the sig-
nificant differences of test accuracy. When sig-value is less
than 0.05, it indicates that the compared two learning
machines have a significant difference in the test accuracy
on one data set. Furthermore, the difference is more signifi-
cant when the sig-value is smaller. According to Table 3, we
use ðHÞ indicates the sig-value with the comparison
between SSMVMED and SMVMED. From the table, we find
that the difference between SSMVMED and SMVMED is sig-
nificant in average.

(B) For Nemenyi statistical test, the performance of two learning
machines on all data sets is significantly different if the cor-
responding average ranks differ by at least the critical
difference
entized
CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6N

r
ð17Þ

where critical value qa is given in Table 4, N is the number of
data sets, k is the number of learning machines.
range statistic [46] divided by
ffiffiffi
2

p
.

6 7 8 9 10

2.850 2.949 3.031 3.102 3.164
2.589 2.693 2.780 2.855 2.920
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According to Table 3, the average rank of SSMVMED 1:1429 is
while the one of SMVMED is 1:8571. Then for Nemenyi statistical
test, if a ¼ 0:05, the critical value q0:05 is 1:960 (see Table 4) and

the corresponding CD is 1:960
ffiffiffiffiffiffiffiffiffiffiffiffi
2�ð2þ1Þ
6�14

q
¼ 0:5238. Under such a case,

since 1:1429þ 0:5238 ¼ 1:6667 < 1:8571, so the difference
between the average rank of SSMVMED and the one of SMVMED
is significant. When a ¼ 0:10, the critical value q0:10 is 1:645 (see

Table 4) and the corresponding CD is 1:645
ffiffiffiffiffiffiffiffiffiffiffiffi
2�ð2þ1Þ
6�14

q
¼ 0:4396. Under

such a case, since 1:1429þ 0:4396 ¼ 1:5825 < 1:8571, so we get
the similar conclusion.

In other words, with paired t-test and Nemenyi statistical test,
we can validate the effectiveness of SSMVMED from the quantita-
tive evaluation analysis aspect.

4.2. Comparison for training time and computational complexity

Here, we still adopt SMVMED for comparison about the training
time and computational complexity. As we know, compared with
SMVMED, our proposed SSMVMED has to generate additional
unlabeled instances. Thus SSMVMED has to cost more training
time theoretically and Table 5 validates that. From this table, we
can find that SSMVMED costs more training time than SMVMED.
But the extra time is not more than 10% which is acceptable for
us. In other words, we can achieve better test accuracy with only
a little extra time with SSMVMED adopted.

In order to validate the higher training time, we give the com-
putational complexity of them theoretically. As we know, in
SSMVMED, it consists of three steps. So here, we will discuss the
computational complexities for different steps. For convenience,
we let the number of labeled instances be N, the number of original
unlabeled instances be L, the number of additional unlabeled
instances be U.

For the first step, the computation focuses on xv and svl . In
terms of xv , its computational complexity depends on Dv and

the computational complexity of Dv is OðMðN þ LÞððdvÞ2 þ 2dv ÞÞ.
In terms of svl , its computational complexity depends on Bvl which
computational complexity is OðMðN þ LÞÞ. Thus, for the first step,

the computational complexity is OðVMðN þ LÞððdv Þ2þ
2dv ÞÞ þ OðdMðN þ LÞÞ where d ¼ PV

v¼1d
v
;M is the number of clus-

ters, and V is the number of views. Here, for dv in

OðVMðN þ LÞððdv Þ2 þ 2dv ÞÞ þ OðdMðN þ LÞÞ, we can select the lar-
gest dv and in fact, this selection won’t influence too much.

For the second step, the computational complexity consists of
three parts. For ‘A’, if we select ‘all’, the computational complexity
is OððN þ LÞdVÞ; if we select ‘unlabeled’, the computational com-
plexity is OðLdVÞ; if we select ‘labeled’, the computational com-
Table 5
Comparison about average training time (in seconds).

Data set SSMVMED SMVMED

Course 2.249 2.170
Citeseer 290.545 277.717
Cora 212.896 201.727

Cornell 91.870 87.120
Texas 87.832 84.980

Washington 2.933 2.677
Wisconsin 1.099 1.010
News-M2 30.396 29.913
News-M5 258.455 241.120
News-M10 275.072 263.533
News-NG1 199.226 183.350
News-NG2 176.051 173.270
News-NG3 259.336 259.153
Reuters 234.180 222.730
plexity is OðNdVÞ. For ‘B’, if we select ‘near’ or ‘far’, the
computational complexity is OðNðN � 1ÞdV=2Þ; if we select ‘all’,
we can omit the related computational complexity. For ‘C’, if we
select ‘mid’, the computational complexity is OðKdVÞ or
OððN þ LÞdVÞ which depends on the selection of ‘B’ and K is the
number of selected instances; if we select ‘self’, we can also omit
the related computational complexity. As a result, the total compu-
tational complexity of the second step is ½minfOðLdVÞ; OðNdVÞg;
maxfOððN þ LÞdVÞ þ OðNðN � 1ÞdV=2Þ þ OðKdVÞ; 2OððN þ LÞdVÞg�.

For the third step, the computational complexity is similar with
the one of SMVMED. In this step, the computational complexity of

SSMVMED is OððN þ UÞ2Þ while the one of SMVMED is OððN þ LÞ2Þ.
Totally speaking, the computational complexity of SSMVMED is

OðVMðN þ LÞððdv Þ2 þ 2dv ÞÞ þOðdMðN þ LÞÞ þ ½minfOðLdVÞ;OðNdVÞg;
maxfOððN þ LÞdVÞ þ OðNðN � 1ÞdV=2Þ þ OðKdVÞ; 2OððN þ LÞdVÞg�þ
OððN þ UÞ2Þ and compared with SMVMED, the extra computational

complexity is OðVMðN þ LÞððdv Þ2 þ 2dvÞÞ þ OðdMðN þ LÞÞþ
½minfOðLdVÞ; OðNdVÞg; maxfOððN þ LÞdVÞ þ OðNðN � 1ÞdV=2Þþ
OðKdVÞ; 2OððN þ LÞdVÞg� þ OððN þ UÞ2Þ� OððN þ LÞ2Þ. From this
result, it looks like that our proposed SSMVMED seems to cost more

training time, but compared with OððN þ UÞ2Þ and

OððNþLÞ2Þ;OðVMðNþLÞððdvÞ2þ2dv ÞÞþOðdMðNþLÞÞþ½minfOðLdVÞ;
OðNdVÞg;maxfOððNþ LÞdVÞþOðNðN�1ÞdV=2ÞþOðKdVÞ;2OððNþ LÞ
dVÞg� won’t influence too much due to NþU and Nþ L is always
much larger than d;V ;M;K.

Now according to the theoretical analysis about computational
complexity, we can also validate the conclusion derived from this
experimental item that with SSMVMED adopted, we can achieve
better test accuracy with only a little extra time.

4.3. Comparison between different additional unlabeled instances
generation approaches in terms of test accuracy and training time

Here, we will discuss the difference between additional unla-
beled instances generation approaches which are given in Table 1
in terms of test accuracy and training time. Figs. 1 and 2 show the
test accuracy and training time of different approaches given in
Table 1 on the used data sets. In these figures, orders in
‘Approaches in Table 1’ represent the approaches in Table 1, i.e.,
1- _U1�1, 2- _U1�2, 3- _U1�3, 4- _U1�4, 5- _U1�5, 6- _U2�1, 7- _U2�2, 8- _U2�3,
9- _U2�4, 10- _U2�5, 11- _U3�1, 12- _U3�2, 13- _U3�3, 14- _U3�4, and 15- _U3�5.
Then from these figures, it is found that different additional unla-
beled instances generation approaches bring different perfor-
mances. We find that for _U1�x ðx ¼ 1;2;3;4;5Þ approaches, they
can get better test accuracies compared with the _Uy�x approaches
where x ¼ 1;2;3;4;5 and y ¼ 2;3 in average. Moreover, we find
that take ‘mid’ strategy for experiments has a better test accuracy
than ‘self’. In terms of training time, approaches with taking all
instances as the center bring longer training time due to all
instances rather than labeled or unlabeled instances are used to
compute the center.

4.4. Application to estimation problem

Here, we apply our SSMVMED to estimation problem so as to
validate its effectiveness. The estimation problem discussed here
aims to forecast the demographic trends which has also been dis-
cussed in [43]. For the forecast, USs Census population data is used.
In the experiments, we predict the demographic distribution in the
year 2010 based on the historical data in years 2000 and 2006. The
prediction is then compared with the actual Census data in the
year 2010. This setting is same as the one in [43]. In [43], the
authors conducted the estimation experiments with three stages
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and showed the experimental results with 12 figures, while since
the limitation of paper length, we won’t show all the results. For
convenience, we will only show the average difference between
the estimation and the real values of age in year 2010. SMVMED
and the proposed method in [43] (we call it EDT) are used for com-
parison. Fig. 3 shows the related experiments. From this figure, it is
found that compared with SMVMED and EDT, the predicted age
distribution of our SSMVMED can accord with the real age distribu-
tion to a large extent.

4.5. Application to regression problem

Here, we apply SSMVMED to regression problem. The regres-
sion problem discussed here aims to estimate full joint distribu-
tions from incomplete information which has also been discussed
in [44]. In [44], authors proposed generalized cross entropy model
(GCEM) and estimated the distribution of Singapore household
profile (http://www.singstat.gov.sg) with the joint probability dis-
tribution of the household dwelling type (HD), household size (HS)
and home ownership (HO) measures. In those experiments,
authors conducted the experiments on three different cases: (1)
pure entropy with constraints, (2) minimum discrimination infor-
mation without constraints, and (3) minimum discrimination
information with constraints. Moreover, authors adopted (a) accu-
racy heat maps to compare the accuracy of the three cases, (b)
KullbackCLeibler (KL) distance to compare the estimated joint dis-
tribution and the observed one, and (c) Linfoots measures to com-
pare a wide range of spatiotemporal signals from brain waves to
human dynamics. For accuracy heat maps, if the estimated heat
map is close to the true heat map, we say the estimation is better.
For KL distance, the smaller the KL distance between any two dis-
tributions is, the closer are their profiles. For Linfoots measures, it
has three indexes, C measures the relative structural content, F
looks at the fidelity or peak alignment, and Q reflects the correla-
tion quality [44]. If these three indexes are more closer to 1, then
we say the estimated distribution is more closer to the true distri-
bution. From those experiments, it was found that case 1 and case
2 had comparable performance and case 3 had a best performance.

In our experiments, for the limitation of paper length, we won’t
conduct all experiments given in [44]. We will only adopt GCEM
and SSMVMED for comparison on the Singapore household profile
when case 3 is considered. In order to show the results clearly, we
combine the results of accuracy heat maps (here, the differences
between estimated heat maps and the true ones are given), KL dis-
tance, and Linfoots measures together and only show that whether
SSMVMED brings a better performance or not. Table 6 shows the
results in a simple manner. From this table, it is found that with
SSMVMED, the error of estimation is decreased and the difference
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Fig. 3. The predicted age distribution of US population for the year 2010 based on the population data in the years 2000 and 2006 with SSMVMED, SMVMED, and EDT used.

Table 6
Comparison between GCEM and SSMVMED on Singapore household profile with
minimum discrimination information with constraints in terms of the results of heat
maps, KL distance, and Linfoots measures.

Measures SSMVMED SMVMED

Accuracy heat maps 0.017 0.012
KL distance 0.0039 0.0028

Linfoots measures C 1.016 1.003
Q 0.9991 0.9994
F 1.007 1.004
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between the estimated distribution and the true distribution is
more smaller. In other words, SSMVMED brings a better regression
performance.
5. Conclusions

Traditional multi-view learning machines do not consider the
uncertainties over model parameters. Thus maximum entropy dis-
crimination (MED) and its extended versions multi-view maxi-
mum entropy discrimination (MVMED) and alternative MVMED
(AMVMED) are developed for this issue. While for processing
multi-view data sets, they only use the hard margin consistency
principle that the decision of margin parameter c is related to clas-
sifier parameter H directly. As we know, the decision always be
indirectly in practice. So soft margin consistency based multi-
view maximum entropy discrimination (SMVMED) has been pro-
posed. Although related experiments have validated the effective-
ness of SMVMED, it is only adaptive to supervised problems.
Indeed, in real-world, most data sets are semi-supervised, namely,
the data sets consist of labeled instances and unlabeled instances.
So this paper extends the model of SMVMED to the semi-
supervised problems and develop a semi-supervised SMVMED
(SSMVMED). Furthermore, in order to get more useful discriminant
information, we propose some schemes to generate more addi-
tional unlabeled instances. Moreover, these generated additional
unlabeled instances will also be used in the model of SSMVMED
along with the original labeled and unlabeled instances so that
the performance of a learning machine can be boosted. Related
experiments on multi-view data sets from different aspects have
validated the effectiveness of SSMVMED theoretically and empiri-
cally. From the experiments, it is found that (1) compared with
SMVMED, the average test accuracy of SSMVMED has a 2%
enhancement; (2) SSMVMED costs more training time than
SMVMED and the extra time is not more than 10%which is accept-
able for us; (3) in terms of the generation of additional unlabeled
instances, ‘mid’ strategy has a better test accuracy than ‘self’ and
taking all instances to get the center brings a better test accuracy
as well; (4) with SSMVMED, the applications to estimation prob-
lem and regression problem will be more feasible.
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